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On the Prediction of Large-Scale Dynamics using 
Unresolved Computations 

Alexandre J. Chorin, Anton P. Kast, and Raz Kupferman 

ABSTRACT. We present a. . theoretical fra.IIlework and numerical methods for 
predicting the large-scale properties of soiutions of partial differential equa
tions that are too complex to be properly resolved. We assume that prior 
statistical information about the distribution of the solutions is available, as 
is often the case in practice. The quantities we can compute condition the 
prior information and allow us to calculate mean properties of solutions in 
the future. We derive approximate ways for computing the evolution of the 
probabilities conditioned by what we can compute, and obtain ordinary differ
ential equations for the expected values of a set of large-scale variables. Our 
methods are demonstrated on two simple but instructive exa.IIlples, where the 
prior information consists of invariant canonical distributions 

1. Introduction 

There are many problems in science that can be modeled by a set of differ
ential equations, but where the solution of these equations is so complicated that 
it cannot be found in practice, either analytically or numerically. For a numerical 
computation to be accurate the problem must be well resolved, i.e, enough variables 
(or "degrees of freedom") must be represented in the calculation to capture all the 
relevant features of the solution; insufficient resolution yields sometimes disastrous 
results. A well-known example in which good resolution cannot be achieved is tur
bulent flow, where one has to resolve all scales ranging from the size of the system 
down to the dissipation scale-a prohibitively expensive requirement. One is then 
compelled to consider the question of how to predict complex behavior when the 
number of variables that can be used in the computation is significantly less than 
needed for full resolution. This is the question considered in the present paper; 
part of the theoretical framework and methods have already been briefly discussed 
in [CKK98]. 

Studies on underresolved problems exist in a wide range of different contexts, 
along with a large amount of literature that describes problem-specific methods. In 
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turbulence, for example, there are various modeling methods for large eddy simu
lations. In all cases one needs to make additional assumptions about the relation 
between those degrees of freedom that are represented in the computation and the 
"hidden", or "invisible" degrees of freedom that are discarded from the computa
tion. A number of interesting attempts have been made over the years to fill in 
data from coarse grids in difficult computations-so as to enhance accuracy without 
refining the grid (see e.g. [SM97, MW90]). Indeed, nothing can be done without 
some information regarding the unresolved degrees of freedom. Such additional as
sumptions are usually motivated by intuitive reasoning and their validity is usually 
assessed by comparing the resulting predictions to experimental measurements. 

In many problems the lack of resolution is due primarily to the insufficiency and 
sometimes also the inaccuracy of the measurements that provide initial conditions 
for the system of equations. This is the case for example in weather forecasting, 
where the initial information consists of local weather measurements collected at 
a relatively small number of meteorological stations. The problem of insufficient 
and sometimes noisy data is not considered in the present paper. We focus here 
on the case where underresolution .is imposed by computational limitations. Initial 
data will be assumed to be available at will, and this assumption will be fully 
exploited by allowing us to select the set of degrees of freedom that are represented 
in the computation at our convenience. Another issue that often arises in the 
modeling of complex systems is uncertainty regarding the equations themselves. 
This important question is also beyond the scope of this paper; the adequacy of 
the system of equations to be solved is taken for granted. 

We now define the problem and introduce some of the nomenclature: We con
sider a system described by a differential equation of the form 

(1.1) Ut = F(u), 

where tis time, subscripts denote differentiation, u(x,t) is the dependent variable, 
and F(u) = F( u, Ux, Uxx, ..• ) is a (generally nonlinear) function of its arguments; 
the spatial coordinate x and the dependent variable u can be of arbitrary dimen
sionality. 

To solve an equation of the form (1.1) on a computer one ordinarily discretizes 
the dependent variable u(x, t) both in space and time and replaces the differential 
equation by an appropriate relation between the discrete variables. As described, 
the solution to the discrete system may approximate the solution of the differen
tial equation well only if the discretization is sufficiently refined. It is our basic 
assumption that we cannot afford such a refined discretization, and must therefore 
be content with a much smaller number of variables. One still has the liberty to 
choose the degrees of freedom that are retained in the computation; those will be 
chosen, for convenience, to be linear functionals of the dependent variable u(x, t): 

(1.2) Ua[u(-, t)] = (ga(·), u(-, t)) = j Ua(x)u(x, t) dx, 

where a is an index that enumerates the selected degrees of freedom. Variables of 
the form (1.2) will be referred to as collective variables; every collective variable Ua 
is defined by a kernel 9a(x). Point values of u(x) at a set of points X a, and spectral 
components of u( x) for a set of modes ka are two special cases of collective variables; 
in the first· case the corresponding kernels are delta functions, 9a ( x) = 8( x - X a), 
whereas in the second case the kernels are spectral basis functions, exp( ika · x). We 
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assume that our computational budget allows us to operate on a set of at most N 
collective variables, so that a= 1, ... , N. The question is, what can be predicted 
about the state of the system at a future time t given the values of the collective 
variables U a at an initial time t = 0? 

Suppose that we know at time t = 0 that the collective variables U a assume a 
set of values Va. (We will denote by U = (U1 , •.. , UN)T and V = (V1, ... , VNf 
the vectors whose entries are the collective variables and their initial values, respec
tively.) Our postulate that the number of collective variables N does not suffice to 
resolve the state of the system implies that the initial data, V, do not determine 
sharply enough the initial condition, u(x, 0). A priori, every function u(x, 0) that 
is compatible with the given values of the collective variables, that is, belongs to 
the set 

(1.3) M(V) = {v(x) : Ua[v(·)] =Va, a= 1, ... , N}. 

is a plausible initial condition. One could define underresolution in terms of the set 
offunctions (1.3); the problem is underresolved ifthis set is non-trivial. Clearly, the 
state of the system at future times depends on the particular initial condition; in 
many cases it is even very sensitive to small variations in the initial condition. One 
wonders then in what sense the future can be predicted when the initial condition 
is not known with certainty. 

The essence of our approach is the recognition that underresolution necessarily 
forces one to consider the evolution of a set, or ensemble, of solutions, rather than 
a single initial value problem. This requires the replacement of equation (1.1) by 
a corresponding equation for a probability measure defined on the space of the 
solutions of (1.1). The prediction of the future state of the system can then be 
reinterpreted as the prediction of most likely, or mean, properties of the system. 
Loosely stated, in cases where sufficient resolution cannot be achieved the original 
task of solving an initial value problem has to be replaced by a more modest one
the determination of "what is most likely to happen given what is initially known." 

At first, there seems to be no practical progress in the above restatement of the 
problem. First, the statistical problem also requires initial conditions; a measure 
defined on the space of initial conditions u(x, 0) must be provided for the statistical 
problem to be well-defined. Second, the high-dimensional Liouville equation that 
describes the flow induced by (1.1) is not easier to solve than the original initial 
value problem. It turns out that in many problems of interest there exists a natural 
measure IJ that characterizes the statistical properties of the system; what is meant 
by "natural" has to be clarified; an important class of such measures are invariant 
ones. We are going to use this information to partially cure the two aforementioned 
difficulties: First, this measure will define the initial statistical state of the system 
by being interpreted as a "prior" measure-c-a quantification of our beliefs regarding 
the state of the system prior to the specification of any initial condition. The initial 
values ofthe collective variables are constraints on the set of initial states and induce 
on /1- a conditional measure that constitutes an initial condition for the Liouville 
equation. Second, the existence of a distinguished statistical measure suggests a 
way to generate a hierarchy of approximations to the Liouville equation, examples 
of which w!ll be described in the following sections. 

The rest of this paper is organized as follows: In Section 2 we present our 
theory, and provide a recipe (2.11) for approximating the mean evolution of a set 
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of collective variables. In Section 3 we derive formulas for the calculation of con
ditional expectations in the case of Gaussian prior measures; these are necessary 
for the evaluation of the right-hand side of equation (2.11). In Sections 4 and 5 
we demonstrate the power of our theory by considering two examples: a linear 
Schrodinger equation and a nonlinear Hamiltonian system. Conclusions are pre
sented in Section 6. 

2. Presentation of the theory 

Our starting point is a general equation of motion of the form (1.1), and a set 
of collective variable Ua defined by (1.2) for a set of kernels Ua(x); the question of 
what constitutes a good choice of kernels will be discussed below. 

In many problems of interest there exists a measure on the space of solutions 
of (1.1) that is invariant under the flow induced by (1.1); a measure that has this 
property is referred to as an invariant measure. Invariant measures are known to 
play a central role in many problems; macroscopic systems (that is, systems that 
have a very large number of degrees of freedom) whose macroscopic properties do 
no change in time, often exhibit an invariant statistical state. By that we mean the 
following: when the large scale observable properties of the system remain constant 
in time, the likelihood of the microscopic degrees of freedom to be in any particular 
state is distributed according to a measure that is invariant in time. We will assume 
that such an invariant measure J.Lo exists and that we know what it is. The measure 
J.Lo will then be postulated to be the prior measure, i.e, it describes the probability 
distribution of initial conditions before any measurement has been performed. We 
will denote averages with respect to the invariant measure J.Lo by angle brackets ( ·); 
let O[u(·)] be a general functional of u, then 

(2.1) (0) = J O[u(·)] df.Lo, 

where the integration is over an appropriate function space. We shall write formally, 

(2.2) df.Lo = fo[u(·)] [du], 

as if the measure J.L were absolutely continuous with respect to a Lebesgue measure, 
where fo[u] is the invariant probability density, and [du] is a formal product of 
differentials. 

We next assume that a set of measurements has been carried out and has 
revealed the values Va of the collective variables U a at timet = 0. This information 
can be viewed as a set of constraints on the set of initial conditions, which is now 
given by (1.3). Constraints on the set offunctions u(x) automatically induce on J.Lo 
a conditional measure, which we denote by f.LV. In a physicist's notation, 

N 

(2.3) dJ.Lv = fv[u(·)] [du] = cfo[u(·)] [du] x IT 6 (Ua[u(·)]- Va), 
a=l 

where fv [u( ·)]is the conditional probability density, and cis an appropriate normal
ization factor. The conditional probability density is equal, up to a normalization, 
to the prior probability density projected on the space of functions M(V) that 
are compatible with the initial data. Note that the conditional measure J.Lv is, in 
general, not invariant. Averages with respect to the conditional measure will be 
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denoted by angle brackets with a subscript that symbolizes the constraints imposed 
on the set of functions, 

(2.4) (O)v = j O[u(·)]fv[u(·)] [du]. 

The dynamics have not been taken into consideration so far, except for the fact 
that the measure J.to was postulated to be invariant. Let f[u(·), t] be the probability 
density of the solutions of (1.1) at timet, that is, the probability density that evolves 
from the initial probability density fv[u(-)] under the flow induced by (1.1); it 
satisfies the Liouville equation [Ris84] 

(2.5) It+ (~~(·),F(u(·))) =0, 

where ~ denotes a functional derivative. An equivalent statement is that if St 
denotes the time evolution operator induced by (1.1), i.e., St : u(x, 0) -+ u(x, t), 
then 

(2.6) f[u(·), t] = f[S;- 1u(·), 0] = fv[S;- 1u(·)], 

where S;-1 is the operator inverse to St, which we assume to exist. 
The objective that has been defined in the introductory section is to calculate 

the expectation value of observables O[u(·)] at timet, given the initial data V. In 
terms of the notations introduced above this is given by 

(2.7) {O[u(-), t])v = (O[Stu(·)])v 

(operators are generally treated as function of the dependent variable and time, 
O[u(·), t]; when no reference to time is being made the expression refers to the 
initial time). 

We next make the following observations: (i) The initial probability measure 
(2.3) is completely determined by theN numbers Va. (ii) By the invariance of fo[u] 
and by equation (2.6), the probability density at later timet can still be represented 
as the invariant density projected on a set of N conditions; specifically, 

N 

(2.8) f[u(-),t] = cfo[u(·)] ITo [(ua(·),S;- 1u(-))- Va]. 
<>=1 

Note however that the set of functions that support this measure at time t is 
generally not of the form (1.3), that is, the observable (ga(·), s;- 1 u(·)) is not a 
linear functional of u. 

These observations suggest an approximate procedure for solving the Liouville 
equation (2.5). We propose an ansatz in which theN conditions that are imposed on 
J.to remain for all times conditions on the values of the collective variables U; namely, 
the probability density is specified by a time-dependent vector of N numbers Va(t), 
such that 

N 

(2.9) f[u(-), t] ~ c fo[u(-)] ITo [Ua[u(-)]- Va(t)]. 

One has still to specify the time evolution of the vector V(t). Suppose that 
the distribution of solutions is indeed given by (2.9) at timet, and consider a later 
timet+ ilt. The value of the observable Ua[u( ·)] at the later time will, in general, 
not be uniform throughout the ensemble of solutions. The ansatz (2.9) projects 
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the distribution back onto a set of solutions M(V(t + ~t)). A natural choice for 
Va(t + ~t) is the expectation value ofthe collective variable Ua[u(-)] given that the 
distribution at timet was (2.9): 

Va(t + ~t) ~ {Ua[u(·),t+ ~t]}V(t) = 
= (Ua[u(·)])v(t) + ~t ((ga(·), F(u(·)))}v(t) + O(~t2). 

(2.10) 

Taking the limit ~t --> 0 we finally obtain, 

(2.11) d~a = ((ga(-), F(u(·)))}v(t) · 

Equation (2.11) is our main tool in the present paper and we will next discuss 
its implications: 

• Equation (2.11) constitutes a closed set of N ordinary differential equations, 
which by our postulate is within the acceptable computational budget. 

• The central hypothesis in the course of the derivation was that the distribu
tion of solutions can be approximated by (2.9). This approximation assumes 
that for all times t the collective variable Ua has a uniform value Va for all 
the trajectories in the ensemble of solutions. This assertion is initially cor
rect (by construction) at timet = 0, but will generally not remain true for 
later times. The approximation is likely to be a good one as long as the 
above assertion is approximately true, that is, as long as the distribution of 
values assumed by the collective variables remains sufficiently narrow. In 
many cases it is possible to guarantee a small varian<;e by a clever selection 
of collective variables (i.e., of kernels). Note furthermore that the smallness 
of the variance can be verified self-consistently from the knowledge of the 
probability density (2.9). 

• Equation (2.11) still poses the technical problem of computing its right-hand 
side. This issue is the subject of the next section. 

• The case where the equations of motion (1.1) are linear, i.e, 

(2.12) 

(2.13) 

(2.14) 

Ut = Lu, 

with L being a linear operator, can be worked out in detail. Using the 
fact that St = exp(Lt), the solution to the Liouville equation (2.8) can be 
rearranged as 

N 

f[u(·), t] = cfo[u(-)] II 6 [ (e-Lttga(·), u(-))- Va], 
a=l 

where Lt is the linear operator adjoint to L. Thus, the probability density 
for all times is fo projected on the set of functions for which a set of N linear 
functionals of u have the values V; note that V here is not time dependent, 
but is the vector of initial values of the collective variables U. The kernels 
that define these functionals are time dependent, and evolve according to 
the dual equation 

dga = -Lt Ya· 
dt 

If the kernels Ya are furthermore eigenfunctions ofthe dual operator Lt with 
eigenvalues Aa, the ansatz (2.9) is exact, with Va(t) = Va(O) e>.,t. Hald [Hal] 
shows that by selecting kernels that are approximate eigenfunctions of Lt, 
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one can bound the error introduced by the ansatz (2.9), while retaining the 
simplicity of the procedure. 

• The two alternatives of evolving either the values Va or the kernels Ua(x) 
are analogous to Eulerian versus Lagrangian approaches in fluid mechanics, 
or Schrodinger versus Heisenberg approaches in quantum mechanics. For 
nonlinear equations one has a whole range of intermediate possibilities; for 
example one may split the operator Fin equation (1.1) as F = L+Q, where 
L is linear. The kernels can be evolved according to the linear operator, 
while the values of the collective variables can be updated by the remaining 
nonlinear operator. The art is to find partitions F = L + Q that minimize 
the variance of the distribution of values assumed by the collective variables. 

• Equation (2.11) should be viewed as a first approximation to the solution of 
the Liouville equation, where the only information that is updated in time is 
the mean value of a fixed set of collective variables. In principle, one could 
also update higher moments of those variables, and use this additional in
formation to construCt a better approximation. For example, equipped with 
the knowledge of means and covariances one could find new kernels and 
new values for the corresponding collective variables, such that the distri
bution obtained by conditioning the invariant distribution with those new 
constraints is compatible with the calculated means and covariances. Thus, 
one could imagine an entire hierarchy of schemes that take into account an 
increasing number of moments of the resolved variables. 

3. Conditional expectation with Gaussian prior 

Equation (2.11) is a closed set of equations for the vector V(t), which requires 
the computation of a conditional average on its right-hand side. To have a fully 
constructive procedure, we need to evaluate conditional averages {O[u(-)])v, where 
0 is an arbitrary observable, and v denotes as before the vector of values of a set 
of collective variables U of the form (1.2). In this section we present three lemmas 
that solve this problem for the case where the prior measure J.lo is Gaussian. In 
the two examples below, the prior measure is either Gaussian or can be viewed as 
a perturbation of a Gaussian measure. 

The random function u( x) has a Gaussian distribution if its probability density 
is of the form 

(3.1) fo[u(·)] = z-1 exp (-~if u(x)a(x,y)u(y)dxdy+ J b(x)u(x)dx)' 

where a(x, y) and b(x) are (generalized) functions, and Z is a normalizing constant. 
The functions a(x, y) and b(x) are related to the mean and the covariance of u(x) 
by 

(3.2) {u(x)} = (a- 1(x, ·), b(·)), 

and 

{3.3) Cov [u(x), u(y)] = {u(x)u(y)}- {u(x)} {u(y)} = a- 1 (x, y), 

where the generalized function a- 1(x,.y) is defined by the integral relation 

(3.4) (a(x, ·), a- 1
(·, y)) = (a- 1(x, ·),a{·, y)) = 6(x- y). 
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To compute the expectation value of higher moments of u one can use Wick's 
theorem [Kle89]: 

{ 

0, 

""' Cov [uip , Ui ] · · · Cov [ui , Ui ] , L,_. 1 P2 Pl-1 PI 

l odd 

l even' 

with summation over all possible pairings of { i 1 , ... , i 1}. 

Next, suppose that the random function u(x) is drawn from a Gaussian distri
bution, and a set of measurements reveal the vector of values V for a set of collective 
variables U of the form (1.2). This information changes the probability measure J.lo 
into a conditional measure J.Lv with density fv given by (2.3). Conditional averages 
of operators O[u(·)] can be calculated by using the following three lemmas: 

LEMMA 3.1. The conditional expectation of the function u(x) is a linear form 
in the conditioning data V: 

N 

(3.6) (u(x)}v = (u(x)} + L ca(x) {Vcr- {Ucr[u(·)]}}, 
cr=l 

where the vector of functions c0 ( x) is given by 

N 

(3.7) ca(x) = L (a- 1(x, ·), g13(·)) m;c!, 
f3=1 

and where the m,Bc! are the entries of an N x N matrix M-1 whose inverse M has 
entries 

(3.8) mf3cr = Cov[U{3[u(·)], Ua[u(·)]] = J J g13(x)a- 1(x, y)ga(Y) dx dy. 

PROOF. Given the prior measure J.Lo and the values V of the collective variables 
U, we define a regression function (an approximant to u( x)) of the form 

N 

(3.9) R(x) = L ra(x)Va + s(x), 
cr=l 

where the functions r cr( x) and s( x) are chosen such to minimize the mean square 
error, 

(3.10) E(x) ~ (''(•)) = ( [ u(x)- '%;; r.(x)U.[u(·)]- .(<)] '). 
for all x. Note that this is an unconditional average with respect to p 0 . 

Minimization with respect to s( x) implies that 

(3.11) ~!(~? = {e(x)} = ( u(x)-~ r 0 (x)Ua[u(-)]- s(x)) = 0, 

which, combined with (3.9), yields 

N 

(3.12) R(x) = {u(x)} + L ra(x) {(Ucr[u(·)]}- Vcr}. 
cr=l 
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Minimization with respect to ra(:z:) implies: 

(3.13) 

:~i~ ~ ('(•) U.[u(·)]) ~ ( [ u( •) - ~ rp(x )Up [u( ·)]- s(x )] u.[u(·)]) ~ 0 

Equation (3.13) can be rearranged by substituting equations (3.3) and (3.11) into 
it, and using the fact that Ua[u(·)] = (ga(·), u(·)): 

N 

(3.14) L Cov [Ua[u(-)], Up[u(·)]] rp(:z:) = (ga(·), a-1(:z:, .)) . 
{3=1 

One readily identifies the functions ra(:z:) as satisfying the definition (3.7) of the 
functions ca(:z:). Comparing (3.12) with (3.6), the regression function is nothing 
but the right-hand side of equation (3.6). 
' It remains to show that the regression curve equals also the left-hand side 
of (3.6). Consider equation (3.13): it asserts that the random variable e(:z:) is 
statistically orthogonal to the random variables Ua[u(-)]. Note that both e(:z:) and 
the collective variables Ua are linear functionals of the Gaussian function u(:z:), 
and are therefore jointly Gaussian. Jointly Gaussian variables that are statistically 
orthogonal are independent, hence, the knowledge of the value assumed by the 
variables Ua[u(·)] does not affect the expectation value of e(:z:), 

(3.15) 

( u(:z:)-~ ra(:z:)Ua[u(·)]- s(:z:)) V = ( u(:z:)-~ ra(:z:)Ua[u(-)]- s(:z:)). 

The function s(:z:) is not random and (Ua[u(·)]}v = Va, from which immediately 
follows that 

N 

(3.16) (u(:z:))v = (u(:z:)) + 2::: ra(:z:) {Va- (Ua[u(·)]}}, 
a=l 

This completes the proof. D 

LEMMA 3.2. The conditional covariance of the function u(:z:) differs from the 
unconditional covariance by a function that depends on the kernels Ya(:z:), without 
reference to the conditioning data V: 

N 

(3.17) Cov[u(:z:), u(y)Jv = Cov[u(:z:), u(y)]- 2:::::Ca(:z:) (ga(·),a- 1
(·, y)). 

a=l 

PROOF. The proof follows the same line as the second part of the proof of 
Lemma 3.1. Consider the following expression: 

(3.18) 

'(x),(y) ~ [•(x)-~ r0 (x)U0 [u0]- s(x)l [ u(y)-~ rp(y)Up[u(·)]- s(y)] . 

Both e(:z:) -and e(y) are independent of the collective variables U. It is always true 
that if A1, A2 an,d A3 are random variables with A3 being independent of A1 and 
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A2, then (A1A2}A
3 
= (A1A2}. Hence, 

(3.19) {e(x)e(y)}v = {e(x)e(y)}, 

from which (3.17) follows after straightforward algebra. D 

LEMMA 3.3. Wick's theorem extends to conditional expectations: 

l odd 

l even' 

where again the summation is over all possible pairings of { i1 , ... , iz}. 

PROOF. Using the fact that a delta function can be represented as the limit of 
a narrow Gaussian function, the conditional expectation of any list of observables, 
Ol[u(·)], ... , Op[u(·)], can be expressed as 

(3.21) {Ol[u(·)]· · ·Op[u(-)]}v = lim j 0 1[u(·)] · · ·Op[u(-)] J$[u(·)][du], 
.a.-o 

where 

(3.22) .a. ITN 1 [ (Ua[u(·)]- Va)
2

] 
fv [u(·)] = c.a. fo[u(·)] a=l ..jif.D.. exp - .6.2 , 

the coefficient c.a. is a normalization, and the order of the limit .6. _,. 0 and the 
functional integration has been interchanged. Note that the exponential in (3.22) 
is quadratic in u(x), hence the finite-.6. probability density J$'[u(-)] is Gaussian, 
Wick's theorem applies, and the limit .6. _,. 0 can finally be taken. D 

The conditional expectation of any observable O[u(·)] can be deduced, in prin
ciple, from a combination of Lemmas 3.1-3.3. 

In the examples considered below, the dependent variable u(x, t) is a vector; 
let u•(x, t) denote the i'th component of the d-dimensional vector u(x, t). All the 
above relations are easily generalized to the vector case. To keep notations as clear 
as possible, we denote indices associated with the collective variables by Greek 
subscripts, and indices associated with the components of u by Roman superscripts. 
The probability density f 0 [u(-)] is Gaussian if it is of the following form, 

(3.23) 

/o[u(· )] = ~ exp ( -~ ;~.1 j u;(x )a;; (x, y)u; (y) dx dy + ~ j b;(x )u;( x) dx) , 

where aii (x, y) are now the entries of ad x d matrix of functions, and bi(x) are the 
entries of a vector of functions. These functions are related to the mean and the 
covariance of the vector u( x) by 

d 

(3.24) (ui(x)) = L ([a- 1(x, ·)]ii, ll(·)), 
j=l 

and 

(3.25) 
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where [a- 1(x, y)]'i is defined by 
d 

(3.26) L ([a-1(x, ·)]'i, aik(·, y)) = 6(x- y) 6ik· 
j=l 

Suppose now that a set of measurements reveals the values V~ of a matrix of 
collective variables of the form, 

(3.27) U![u(·)] = (g"'(·), u'(-)), 

where a= 1, ... , Nandi= 1, ... , d. The conditional expectation and covariance 
of u'(x) are given by straightforward generalizations of Lemmas 3.1 and 3.2: 

N d 

(3.28) (u•(x))v = (u'(x)) + LLc!t(x) {vt- (U~[u(·)])}, 
0!=1 j=1 

and 
'(3.29) 

N d 

Cov [u'(x), ui (y)] v = Cov [u'(x), ui(y)] - L L c~(x) (g"'(·), [a- 1
(-, y)]ki). 

where 
N d 

(3.30) c!t(x) = L L ([a-1(x, ·)]ik,gp(·)) [m-1]~~. 
/3=1 k=1 

and where the [m- 1]~"' are the entries of an N x N x d x d tensor M- 1 whose 
inverse M has entries 

(3.31) m~"' = j j gp(x)[a- 1(x, y)]'i g"'(y) dx dy. 

4. A linear Schrodinger equation 

The equations of motion. The first example is a linear Schrodinger equation 
that we write as a pair of real equations: 

Pt = -qxx + m~q 
2 ' qt = +Pxx - m 0 p 

(4.1) 

where p(x, t) and q(x, t) are defined on the domain (0, 21r], m0 is a constant, and 
periodic boundary conditions are assumed. Equations ( 4.1) are the Hamilton equa
tions of motion for the Hamiltonian [FH65], 

(4.2) 
1 [2" 

H[p(·),q(·)] = 2 Jo [(Px)2 + (qx) 2 + m~(p2 + q2
)] dx, 

with p(x) and q(x) being the canonically conjugate variables. 
The prior measure. Equation (4.1) preserves any density that is a function 

of the Hamiltonian. We will assume that the prior measure is given by the canonical 
density, 

(4.3) fo[p(·), q(·)] = exp { -H[p(-), q(-)]}, 

where the temperature has been chosen equal to one. 
The measure defined by equation ( 4.3) is absolutely continuous with respect 

to a Wiener measure [McK95], and its samples are, with probability one, almost 
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nowhere differentiable. The corresponding solutions of the equations of motion are 
weak and hard to approximate numerically. 

The Hamiltonian (4.2) is quadratic in p and q, hence the probability density 
(4.3) is Gaussian. By symmetry we see that the unconstrained means {p(x)} and 
( q( X)} are zero. To extract the matrix of covariance functions A - 1, we write the 
Hamiltonian ( 4.2) as a double integral: 

(4.4) H[p(·), q(·)] = JJ [p.,(x)c5(x- y)p.,(y) + q.,(x)c5(x- y)q.,(y) + 

+ ~~ p(x)c5(x- y)p(y) + m~ q(x)c5(x- y)q(y)] dx dy. 

Integration by parts shows that the entries of the matrix of functions A are 

(4.5) aii (x, y) = ( -c5"(x- y) + m~ c5(x- y)] bij, 

where the indices i and j represent either p or q, and c5"(-) is a second derivative of 
a delta function. The integral equation for the inverse operator A - 1 can be solved 
by Fourier series. The result is a translation-invariant diagonal matrix 

. . 1 oo eik(x-y) 

[a-1(x, y)]'J = 2c5ij L k2 + 2. 
7r k=-oo mo 

(4.6) 

The collective variables. We assume that the initial data for equations ( 4.1) 
are drawn from the distribution ( 4.3), and that 2N measurements have revealed 
the values of the 2N collective variables, 

(4.7) 
U~[p(-),q(·)]:::: (ga(-),p(·)) = VJ' 

U~[p(·), q(-)]:::: (ga(-), q(-)) = VJ' 

for a = 1, ... , N. The kernels Ya( x) are translates of each other, Ya( x) = g( x- X a), 
and the points Xa = 21rajN form a regular mesh on the interval (0, 27r). We choose 

(4.8) 1 ~ [ (x- 21rr?]· 
g(x) = ..Jia r~oo exp a2 , 

i.e., the kernel is a normalized Gaussian whose width is a, with suitable images to 
enforce periodicity. The Fourier representation of g(x) is 

(4.9) 

We could have trivialized this example by choosing as kernels a set of trigono
metric functions, which are eigenfunctions of the evolution operator. The goal here 
is to demonstrate what one could do when an exact representation of the eigen
functions is not known. 

Qonditional expectation. We now demonstrate the application of the Lem
mas derived in the previous section. Given the initial data, VP and Vq, we may 
calculate the expectation of the functions p( x) and q( x); these conditional averages 
are given by equation (3.28). Because the unconditional averages ofp(x), q(x), Ug 
and Ug all vanish, and the unconditional covariance [a- 1(x, y)]'i is diagonal with 
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respect to i and j (p and q are independent), equation (3.28) reduces to a simpler 
expression; the conditional average of p(x), for example, is 

N 

(4.10) {p(x)}v = .L:CP!(x)V,r, 
a=1 

where 
N 

(4.11) cP!(x) = L ([a-1(x, ·)JPP,gp(·)) [m- 1]~~ = c~q(x), 
.8=1 

and [m- 1]~~ are the entries of an N x N matrix M-1 (the upper indices p are 
considered as fixed) whose inverse M has entries 

(4.12) m~~ = jj gp(x)[a- 1(x,y)JPPga(y)dxdy = m~~-
Substituting the Fourier representations of A- 1 (4.6) and g (4.9), we obtain 

( 4.13) 

and 

(4.14) 
1 oo _l.k•o• 

PP """ e 2 • mpa = 2 ~ k2 2 exp [zk(xa- xp)]. 
7r k=-oo + mo 

The regression function (4.10) can be viewed as an "optimal interpolant"; it 
is the expectation value of the function p( x) given what is known. Examples of 
regression functions are plotted in Figure 1 for a mesh of N = 5 points. The 
open circles represent the values of the five collective variables VJ'; the abscissa 
is the location of the point Xa around which the average is computed, and the 
ordinate is the value of the corresponding collective variable. The three curves 
represent the interpolating function ( 4.10) for three different values of the kernel 
width: u = .D..x = 21rjN (solid line), u = 0.5 .D..x (dashed line), and u = 0.1.D..x 
(dash-dot line). The parameter mo was taken to be one. 

Time evolution. We next consider the time evolution of the mean value of 
the collective variables UP and Uq, first based on the approximating scheme (2.11). 
The equation for VJ', for example, is 

d~J' = ((ga(·),-qxx(-)+m5q(·)))v = 

=- (na(·), ::2 (q(-)}v) + m5 (ga(·), {q(-)}v) · 
(4.15) 

Substituting the regression function ( 4.10) we find: 

(4.16) d~t = t, {t, (g.(·),gp(·))[m-']~~} vr 
A similar equation is obtained for VJ by the symmetry transformation VJ' ---> VJ and 
VJ ---> - VJ'. Equation ( 4.16) represents a set of 2N ordinary differential equations 
that approximate the mean evolution of the collective variables. These equations 
are easy to solve with standard ODE solvers. Note that the matrix elements in 
braces need to be computed only once to define the scheme. 
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FIGURE 1. Example of regression functions for the linear 
Schrodinger equation. Values for five collective variables were cho
sen, representing local averages of p( x) on a uniformly spaced grid. 
The kernels are translates of each other and have Gaussian profiles 
of width u centered at the grid points. The lines represent the re
gression function, or optimal interpolant (p( x )}y given by equation 
(4.10) for u = dx (solid), u = 0.5dx (dashed), and u = 0.1dx 
(dash-dot). 

We next calculate the exact mean value of the collective variables, UP and Uq, 
at timet, conditioned by the initial data, VP and vq' at time t = 0, so that they 
can be compared with the result V(t) of the scheme we just presented. We are 
able to do so in the present case because the equations are linear, and a simple 
representation of the evolution operator can be found. 

The solution to the initial value problem ( 4.1) can be represented by Fourier 
senes, 

(4.17) 

1 
00 J . p(x, t) =- L e•k(:c-y) [p(y) coswt + q(y) sinwt] dy 

271' 
k=-oo 

1 
00 J . q(x, t) = 

2
71' L e•k(:c-y) [q(y) coswt- p(y) sinwt] dy 

k=-oo 

where p(y) and q(y) are the (random) initial conditions, and w = k2 + m~. 
The expectation values of the collective variables Ug and U:i, are obtained by 

averaging the scalar products (p(·,t),ga{)) and (q(·,t),g0 .(-)) with respect to the 
initial distribution. Because equations ( 4.17) are linear in the random variables 
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p(y) and q(y) this gives 

(4.18) 

{U~fp(-), q{-), t]}v = 2~ f j eik(x.,-y)-tk
202 

[(p(y))v coswt + (q(y))v sinwt] dy 
k=-oo 

(U~fp(-), q(·), t]}v = 2~ f: J eik(x.,-y)-tk
202 

[(q(y))v coswt- (p(y))v sinwt] dy. 
k=-oo 

Note that in the linear case averaging and time evolution commute; equation ( 4.18) 
would have also been obtained if we first computed the mean initial state, (p(y))v 
and (q(y))v, evolved it in time according to ( 4.17), and finally computed the col
lective variables by taking the appropriate scalar products. 

To complete the calculation, we substitute the linear regression formula ( 4.10) 
for (p(y))v and (q(y))v and obtain: 

(4.19) 

where 

(4.20) 

and 

(4.21) 

N . 

{U~fp(-), q(-), t]}y = E { C~p(t)[m- 1 ]~~ V.f + C~p(t)[m- 1 ]~~ v-:} 
P>r=1 

N 

{U~fp(·), q(-), t]}y = E { C~p(t)[m- 1 ]~~ v-:- C~p(t)[m- 1 ]~~ V.f} 
P>r=1 

00 

c 1 ""' Cap(t) = 271" L 
k=-oo 

sin wt ik(x -xA) _ !.k20 2 --e "' ,.. e 2 • 

w 

Results. We now compare the exact formula (4.19) for the future expecta
tion value of the collective variables to the approximation (4.16). Figures 2a-2c 
compare between the two evolutions for N = 5 and randomly selected initial data, 
VJ' and VJ. The graphs show the mean time evolution of the collective variable 
Uffp(·),q(·)]. The same set of initial values was used in the three plots; the differ
ence is in the width u of the kernels 9a(x): u = ~x (Figure 2a), u = 0.5 ~x (Figure 
2b), and u = 0.1 ~x (Figure 2c). In the first case, in which the kernel width equals 
the grid spacing, the approximation is not distinguishable from the exact solution 
on the scale of the plot for the duration of the calculation. The two other cases 
show that the narrower the kernel is, the sooner the curve deviates from the exact 
solution. 

5. A nonlinear Hamiltonian system 

The equations of motion. The method demonstrated in the preceding sec
tion can be generalized to a nonlinear Schrodinger equation. However, we want 
to exhibit the power of our method by comparing the solutions that it yields to 
exact solutions; in the nonlinear case, exact solutions of problems with random 
initial conditions are hard to find, so we resort to a stratagem. Even though our 
method applies to nonlinear partial differential equations, we study instead a finite 
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FIGURE 2. Mean evolution of the collective variable Uf(p(·), q(·)] 
for N = 5, and a random choice of the initial data VP and vq. 
The open dots represent the exact solution ( 4.19), whereas the 
lines represent the approximate solution obtained by an integration 
of the set of 10 ordinary differential equations (4.16). The three 
graphs are for different values of the kernel width u: (a) O" = ~x, 
(b) O" = 0.5~x, and (c) O" = 0.1~x. 

1.8 1.8 

dimensional system of 2n ordinary differential equations that is formally a finite 
difference approximation of a nonlinear Schrodinger equation: 

dp(j) q(j- 1)- 2q(j) + q(j + 1) + 3( ") 
dt . ~x2 q J 

dq(j) = +p(j- 1)- 2p(j) + p(j + 1)- 3( ") 
dt ~x2 p 3 

(5.1) j = 1, ... ,n, 

where ~x = 1/n is the mesh spacing, and periodicity is enforced with p(O)::: p(n), 
p(n + 1) = p(1), etc; this system is non-integrable for n > 1. The approximation 
is only formal because we shall be considering non-smooth data which give rise to 
weak solutions that cannot be readily computed by difference methods. 

We shall pretend that n is so large that the system (5.1) cannot be solved on a 
computer, and shall therefore seek an approximation that requires a computation 
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with fewer variables. In practice we shall pick an n small enough so that the results 
of the approximate procedure can be compared to an ensemble of exact solutions. 

The prior measure. The system of equations (5.1) is the Hamilton equations 
of motion for the Hamiltonian 
(5.2) 

H[p,q] = ~ ~ { [p(j +~X- p(j)] 2 + [ q(j +~X- q(j)] 2 + ~ [p\j) + q4(j)]}' 

where p = (p(1), ... ,p(n)) and q = (q(1), ... ,q(n)). The differential equations 
(5.1) preserve the canonical density 

(5.3) fo(p, q] = exp { -H[p, q]}, 

which we postulate, as before, to be the prior probability density. 
The prior density (5.3) is not Gaussian, which raises a technical difficulty in 

computing expectation values. We adopt here an approximate procedure where the 
density (5.3) is approximated by a Gaussian density that yields the same first and 
second moments (means and covariances) of the vectors p and q. The means are 
zero by symmetry: 

(5.4) (p(j)} = (q(j)} = 0 

(positive and negative values of these have equal weight). Also all p's and q's are 
uncorrelated: 

(5.5) (p(it)q(h)} = 0, 

since the density factors into a product of a density for the p's and a density for the 
q's. Thus (p(jt)p(h)} = (q(it)q(h)} are the only non-trivial covariances. Finally, 
since the Hamiltonian is translation invariant, these covariances depend only on the 
separation between the indices it and h, and are symmetric in it- h-

To relate the present discrete problem to the continuous formalism used in the 
preceding section we write in analogy to ( 4.6) 

Cov[p(h),p(h)] = [a- 1(it,h)]PP = c(lh- hi) 

(5.6) Cov [p(jt), q(h)] = [a-1(j1, h)]Pq = 0, 

with it,h = 1, ... , n. We computed the numbers, c(lit- hi), for n = 16 and 
j 1 - h = 0, ... , 15 by a Metropolis Monte-Carlo algorithm [BH92]; the covariances 
obtained this way are shown in Figure 3. Along with the zero means, the numbers 
represented in Figure 3 completely determine the approximate prior distribution. 

The collective variables. We next define a set of 2N collective variables 
(N < n), whose values we assume to be given at the initial time. The class of 
collective variables that is the discrete analog of ( 4.7) is of the form 

n 

U~[p, q] = (ga(·),p(·)) = LYa(i)p(j) 

(5.7) 
i=l 

n a= 1, ... ,N, 

U! [p, q] = (ga(.), q(.)) = E ua(j)q(j) 
i=l 

where the g's are discrete kernels. In the calculations we exhibit we chose n = 16 
and N = 2 so that we aim to reduce the number of degrees of freedom by a factor 
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FIGURE 3. The covariance (p( i) p(j)} = ( q( i) q(j)} as function of 
the grid separation i - j for the non-Gaussian probability distri
bution (5.3) with n = 16. These values were computed by a Me
tropolis Monte-Carlo simulation. 

of 8. We pick as kernels discretized Gaussian functions centered at the grid points 
j = 1 and j = 9: 

(5.8) 
g1(j) = ~ exp { 

g2(j) = ~ exp { 

where Z is a normalizing constant, u = 0.25, and d(ii,h) is a distance function 
over the periodic index axis, i.e., it is the minimum of Iii -hi, li1 - h- nj, and 
Iii- i2 + nl. 

Conditional expectation. With the approximate measure defined by the 
covariances (5.6), and the collective variables (5.7), whose measured values are 
again denoted by VJ' and VJ, we can approximate the conditional expectation of 
various observables O[p, q]. We shall need specifically the conditional expectation 
values of p(j) and p3(j). 

The approximate conditional expectation value of p(j) is given by the discrete 
analog of equation (4.10), namely, 

N 

(5.9) (p(j)} v = 2:::: cf! (j) V,;', 
a=l 

where 
N 

(5.10) cP,}'(j) = 2:::: ([a-l(j, ·)]PP, 9!30) [m-1]~:, 
!3=1 
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and 
n 

(5.11) m~"a = L Y.B(il)[a- 1(il,i2)]PPga(h). 
il.h=l 

(Again, the matrix inversion is only with respect to the lower indices a and {3.) 
To calculate the approximate conditional expectation value of p3(j) we first use 

Wick's theorem (Lemma 3.3): 

(5.12) 

and then calculate the conditional second moment by using the discrete analog of 
equation (3.17): 

N 

(5.13) (p2(j))v = {p(j))~ + [a-l(j,j))PP _ L c~(j) (ga(-), [a-l(·,j)]PP). 
a=l 

Time evolution. The approximating scheme for calculating the mean evolu
tion of the 2N collective variables UP and uq is derived by substituting the kernels 
(5.8) and the equations of motion (5.1) in the approximation formula (2.11). The 
equation for vg, for example, is 

(5.14) 

d~.f =- A~2 f;ga(j) [{q(j -l))v- 2 {q(j))v + {q(j + 1))v] + 

n 

+ LYaU) (q3(j))v · 
j=l 

Substituting the expressions for the conditional expectations (5.9) and (5.12), and 
performing the summation, using the values of the covariances plotted in Figure 3, 
we explicitly obtain a closed set of 4 ordinary differential equations. The equation 
for V{ is: 

(5.15) 
d:f = -19.5 (V2q - vn + 

+ [ 1.5o cvn3 
- o.88 cvn2v2q + o.21 vl wn2 + o.11 cvn3J . 

The equation for V:f is obtained by substituting 1 .-... 2; the equations for V1q and 
Vl are obtained by the transformation p ---> q and q ---> -p. 

Unlike in the linear case, we cannot calculate analytically the mean evolution of 
the collective variables. To assess the accuracy of the approximate equation (5.15) 
we must compare the solution it yields with an average over an ensemble of solutions 
ofthe "fine scale" problem (5.1). To this end, we generated a large number of initial 
conditions that are consistent with the given values, VP and Vq, of the collective 
variables. The construction of this ensemble was done by a Metropolis Monte Carlo 
algorithm, where new states are generated randomly by incremental changes, and 
accepted or rejected with a probability that ensures that for large enough samples 
the distribution converges to the conditioned canonical distribution. We generated 
an ensemble of 104 initial conditions; each initial state was then evolved in time 
using a fourth-order Runge-Kutta method. Finally, for each time level we computed 
the distribution of collective variables, UP and Uq; the average of this distribution 
should be compared with the prediction of equations (5.15). 
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FIGURE 4. Evolution in time of the mean value of the four collec
tive variable: Vf (~), V{ (•), Vl (•), and V2q (+). The symbols 
represent the values of these quantities obtained by solving the 32 
equations (5.1) for 104 initial conditions compatible with the ini
tial data, and averaging. The solid lines are the values of the four 
corresponding functions obtained by integrating equation (5.15). 
Figures (a) and (b) are for the time intervals (0, 1] and (0, 10] re
spectively. · 

The comparison between the true and the approximate evolution is shown in 
Figure 4. Once again the reduced system of equations reproduces the average 
behavior of the collective variables with excellent accuracy, but at a very much 
smaller computational cost. Indeed, we compare one solution of 4 equations to 104 

solutions of 32 equations. 
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FIGURE 5. Evolution of the distribution of the collective variable 
Uf. The x-a.xis represents time, the y-axis represents the value 
of Uf, and the z-axis is proportional to the density of states that 
correspond to the same value of Uf at the given time. 

In Figure 5 we show the evolution of the distribution of values assumed by the 
collective variable Uf; the data was extracted from the evolution of.the ensemble. 
The distribution is initially sharply peaked, and spreads out as time evolves; yet, it 
remains sufficiently narrow throughout this computation, so that the approximation 
that projects that distribution back onto a sharp one is reasonable. This indicates 
that the choice of collective variables, or kernels, was appropriate. The use of 
narrow kernels, or even point values, would have yielded a distribution of value 
that spreads out almost instantaneously. 

6. Conclusions 

We have shown how to calculate efficiently, for a class of problems, the average 
behavior of an ensemble of solutions the individual members of which are very 
difficult to evaluate. The approach is reminiscent of statistical mechanics, where 
it is often easier to predict the evolution of a mole of particles than to predict the 
evolution of, say, a hundred particles, if one is content with the average behavior of 
a set of coarse variables {collective variables). The key step is the identification of a 
correspondence between underresolution and statistics; underresolved data define, 
together with prior statistical information, an ensemble of initial conditions, and the 
most one can aim for is to predict the expectation with respect to this ensemble of 
certain observables at future times. Our approach applies in those cases where prior 
statistical information is available, and is consistent with the differential equations; 
for example, it may consist of a measure invariant under the How defined by the 
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differential equations. Fortunately, there are important classes of problems where 
we can find such information. 

We proposed a scheme (2.11) that advances in time a set of variables that 
approximate the expectation values of a set of collective variables. As we explained, 
this scheme has to be viewed as a first approximation; more sophisticated schemes 
may be designed by allowing the kernels to vary in time and/or by keeping track 
of higher moments of the collective variables. Such refinements are the subject of 
ongoing research [CKKT). 

One limitation of our present scheme can be perceived by considering the long 
time behavior of the nonlinear Hamiltonian system presented in Section 5. The 
flow induced by equations (5.1) is likely to be ergodic, hence the probability density 
function will approach, as t --+ oo, the invariant distribution. Indeed, the initial 
data have a decreasing influence on the statistics of the solutions as time progresses. 
This implies that the expectation values of the observables UP and uq will tend 
to their unconditional means, i.e., will decay to zero. On the other hand, no such 
decay occurs if one integrates the effective equations (5.15) for very long times. 
One must conclude that the present model is accurate for time intervals that are 
not longer than the time during which the initial data influence the outcome of the 
calculation. 

The above discussion raises a number of questions interesting on their own: 
What is the range of influence, or the predictive power, of a given set of data? 
How much information is contained in partial data? These questions need to be 
formulated in a more quantitative way; they are intimately related to the question 
of how to choose appropriate collective variables, and their scope is beyond any 
particular method of solution. 

Finally, a full knowledge of the prior measure is a luxury one cannot always 
expect. One needs to consider problems where the statistical information is only 
partial; for example, a number of moments may be known from asymptotics and 
scaling analyses (e.g., in turbulence theory [Bar96, BC97, BC98]). One can 
readily see from the nonlinear example that one can make do with the knowledge 
of means, covariances, and perhaps some higher-order moments. In addition, this 
knowledge is needed only on scales comparable with the widths of the kernels. 

(Bar96) 

(BC97) 

(BC98) 

(BH92) 

(CKK98) 

(CKKT) 

(FH65) 

(Hal) 
(Kle89) 
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