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Electromagnetic fields due to a loop current in a cased borehole 
surrounded by uniform whole space 

Abstract 

Precise evaluation of electromagnetic (EM) response in steel-cased borehole is an 
essential first step towards developing techniques for casing parameter evaluation, which 
would ultimately help evaluating the formation response. In this report we demonstrate a 
numerical scheme for accurately computing EM responses in cased borehole environment. 
For improved numerical accuracy we use explicit representations of the electromagnetic 
spectra inside the borehole, in the casing, and in the formation. Instead of conventional 
Hankel transform, FFf is used to improve the numerical accuracy. The FFf approach allows 
us to compute fields at positions very close to the source loop, including the center of the 
transmitter loop. 

Technical description 

P Zan view Section view 

z 
Figure 1. Casing problem. The center of the current ring is at the origin. Medium 1 means 

the inside of borehole, medium 2 is the casing, and medium 3 is the formation 
which is the whole space. 

Let's assume that the center of the current carrying ring is at the origin of the 
cylindrical coordinate system. Maxwell's equations are generally expressed in frequency 
domain as 

v X E(r) + z(r)H(r) = 0 ' 

VxH(r)-y(r)E(r)=Js(r), 

(1) 

(2) 

where E(r) is the electric field, H(r) the magnetic field, z(r) = iw,u(r) the impedivity, 

y(r) = o-(r) +ims(r) the admittivity, •(r) the conductivity, •(r) the electric permittivity, 



•(r) the magnetic permeability, and J,(r) the source current distribution expressed as 
(Augustin et al., 1989) 

a 
Js(r) = -l(OJ)t5(p-a)t5(z)¢ , (3) 

p 
where /( •) is the amount of the current impressed, and a is the radius of the current ring. 

Because of axial symmetry of the problem, electromagnetic fields have specific 
directional components as 

E(r) = {O,E;(p,z),O} , 

H(r) = {HP(p,z),O,Hz(p,z)}. 

(4) 

(5) 

Combining equation (1) and (2) with the above symmetric properties, the electric field in the 
mediumj satisfies the following diffusion equation: 

( 
ii 1 a 1 a2 2J A a 

- 2 +----2 +-2 +kj E;/P.z)=zj-I(w)t5(p-a)t5(z), 
ap pap p az · p 

(6) 
where wave propagation constant kj is, when we neglect the displacement current, 
represented by 

(7) 

Taking Fourier transform of equation (6) about the z-axis yields 

( a
2 

1 a 1 2 2 J- A a -+----+k. -k E .(p,k )=z.-l(w)t5(p-a). (8) 
ap2 p ap p2 J z ;,, z J p 

To get the complementary solution of the above equation, rearranging the left-hand side of 
equation (8) yields 

with the substitution 

(10) 

Equation (9) is a typical differential equation, the solution of which is composed of modified 
Bessel functions. Hence we can express the complementary solution of equation (8) as 

(11) 

where C. and D. are the inward and outward reflection coefficients in the j-th medium, 
1 1 

respectively. Particular solution of equation (8) or primary electric field is to be obtained 
using Hankel transform (Appendix), i.e., 
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p<a 

p>a 

Note that the primary field exists only iil the medium 1, that is in borehole. 

(12) 

The reflection coefficients at interfaces of each medium are to be determined by 
applying the boundary condition, which is the continuity of the tangential electric and 
magnetic fields at the boundary. The magnetic fields are related to electric fields through curl 
operation as in equation (1). Again simplifying the mathematics with axial symmetric 
property yields 

(13) 

and 

(14) 

The boundary condition here reduces to the continuity of horizontal electric fields and vertical 
magnetic fields at the two boundaries between mud and· casing, and between casing and 
formation. In matrix form, 

J.lJII(ylb) - J.l2ll (y 2b) - J.l2K1 (y 2b) 0 cl 

rJoCr1b) - Y 2/o(y 2b) Y 2Ko(y 2b) 0 c2 

0 J.l2/l (y 2d) J.l2K1 (y 2d) - j.l3K1 (y 3d) D2 

0 Y 2/o(y 2d) - Y 2Ko(y2d) Y 3Ko(Y 3d) D3 

-pJI (y la)KI (y lb) 

Y J1 (y Ia)Ko(Y 1b) 
= 

0 
(15) 

0 

Solving the matrix equation, 

1 
CI =-{-pl/l(yla)KI(ylb)Ail +yJI(yla)Ko(Yib)A21} , (16) 

IAI 

C2 = J.l1Y 1 l 1(y 1a){l0 (y 1b)K1(y 1b)+l1(y 1b)K0 (y 1b)} 
IAI 
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J.l1I1 Cr 1a) { } 
=- biAI J.lzr 3II Cr zd)KoCr 3d)+ J.l3r zioCr 2d)K1 Cr 3d) , 

J.lJI.tzr lr z II Cr Ia){ IoCr lb)KI Cr lb) +II Cr Jb)KoCr lb)} 
IAI 

·{IoCr zd)KI Cr zd) +II Cr zd)KoCr zd)} 

where the determinant of the matrix is 

I AI= J.l1I1 Cr lb)Au + r JoCr 1b)Az1 

Au = J.l3Y z
2 
Kl Cr 3d){ IoCr zb)Ko(r zd)- IoCr zd)Ko (r zb)} 

-J.lzr zr3KoCr 3d){ IoCr zb)KJ Cr zd) +II Cr zd)KoCr zb)} , 

Azl = J.lz 
2
r 3Ko Cr 3d){ II Cr zb)KI Cr zd)- II Cr zd)KJ Cr zb)} 

-J.lzJ.l3r 2K1 Cr 3d){ IoCr zd)KI Cr zb) +II Cr zb)KoCr zd)} 

(18) 

(19) 

(20) 

(21) 

(22) 

Note that the following formula of Wronskian of modified Bessel functions was used in 
derivation of equations (17), (18), and (19) (Abramowitz and Stegun, 1965, p. 375). 

1 
W{ Kn Cz), In (z)} =In (z)Kn+J (z) + In+J (z)Kn (z) =- . 

z 
(23) 

Hence we can summarize the magnetic fields in each medium. At first, in medium 1, that is 
in borehole, 

p<a 

p>a 

p<a 

p>a 

(24) 

(25) 
with the aid of the formulae for derivatives of Bessel function (Abramowitz and Stegun, 
1965, p. 376), 

d 1 
-d( )I1(yp)=I0 (rp)--I 1(rp), 

rP rP 
(26) 

d 1 
--K1 (rp) = -K0 (rp)- -K1 (rp) . 
d(rp) rP 

(27) 

Secondly, in medium 2, that is in casing, 
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iip.2(p,kz) = -ikzai(m){ C2I 1 (y 2p) + D2K1 (r 2P)} 

= -ik ai(m) 111II <rIa) 
z biAI 

· {112r 3Ko<r 3d)[l1 <r 2p)K1 <r 2d)- II <r 2d)K1 <r 2p)] 

-113r 2K1 <r 3d)[Io(r 2d)K1 <r 2P) +II <r 2p)Ko(r 2d)]} , 
(28) 

iiz,2(p,kz) = ai(m)y 2{ C2Io(r 2P)- D2Ko(r 2P)} 

= ai(m) I11Y 2II (y Ia) 
~AI , 

· {112r 3Ko <r 3d)[! o <r 2p)K1 <r 2d) +II <r 2d)Ko <r 2P)l 

-113Y 2K1 (y 3d)[Io(Y 2p)Ko(Y 2d)- Io(Y 2d)Ko(Y zP)]} · 
(29) 

In medium 3, that is in formation, 

fip,3(p,kz) = -ikpi(m)D3K1 (y 3p) 

= ik ai(m) 111112 II <r 1a)K1 <r 3P) 
z IAI bd ' 

(30) 

fiz,3(p,kz) = -ai(m)y3D3Ko(Y3P) 

= ai(m) I11I12Y 3 II (yla)Ko(Y 3p). 
IAI bd 

(31) 

Finally, the magnetic fields in space domain are to be obtained by taking inverse 
Fourier transform, or in tum, Fourier cosine or sine transform. 

Hp./p,z) = 2~ j fip./p,kz)e+ik,zdkz 
-<X> 

. "' 
=.!_I fip./P,kz)sin(kzz)dkz , 

ffo . 
(32) 

Hz)p,z) = 2~ j fiz./P,kz)e+ik,zdkz 
--«) 

1"' -
= ff I H,,j (p, kz> cos( k,z)dkz 

0 

(33) 

Note that there exists a closed-form solution for primary vertical magnetic field along the 
borehole axis even at the origin (Appendix), while the horizontal component vanishes along 
the z-axis. 

(34) 

where 

(35) 
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Appendix. Primary fields due to a current ring in whole space 

Determination of primary EM fields in whole space is to get the particular solution of 
equation (8) or 

( 
a2 

1 a 1 2 2 J - A a 
- 2 +----2 + ki - kz E;.i(p,kz) = zi -I(w)o(p- a) . (A.1) 
ap pap P p 

Let's start with the Hankel transform pair of order n. 

co 

F(A-) = Hn {f(p)} = f j(p)pln(A-p)dp, 
0 

co 

f (p) = Hn -I {F(A-)} = f F(A-)A.Jn (A-p)dA- . 
0 

Taking Hankel transform of order 1 of equation (A.1) yields 

Hence the electric field in k, domain is 

(A.5) 

and using integral transform tables (Erdelyi, 1954, Ch. 8, Sec. 11, eq. (10)), 

p<a , 

p>a 

(A.2) 

(A.3) 

(A.4) 

(A.6) 

According to equations (13) and (14), the primary magnetic fields in space domain 
are 

co 

J I 1 (yp)K1 (ya)kz sin(kzz)dkz , 

HP(p,z) = ai(w). o 
1r co J I 1 (ya)K1 (yp)kz sin(kzz)dkz , 

0 

p<a, 

(A.7) 

p>a, 

p<a, 

(A.8)-

p>a. 

Along the z-axis, that is for ••= 0, horizontal magnetic field vanishes while vertical magnetic 
field reduces to 
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al(w) s"' . Hz (O,z) = y/(1 (ya)cos(kzz)dkz . 
" 0 

(A.9) 

Again using integral transform tables (Erdelyi, 1954, Ch. 1, Sec. 13, eq. (45)) and 
mathe~atical handbook (Abramowitz and Stegun, 1965, p. 444) yields 

Hz (O,z) = a2 l(w) (ik)Yz 3 K 3 (ik.J z2 + a2) 
.J2i (z2 +a2)74 -2 , 

= a2l(w) (l+ik.Jz2+a2) e-ikJhaz 

2 (z2 +a2)Yz 
(A.10) 

At the center of the current ring, we get 

(A.l1) 
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