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1 Introduction 

It was conjectured by Susskind [1] that each momentum sector of the discrete 

light cone quantization (DLCQ) of M-theory is described by a maximally 

supersymmetric Matrix model [2, 3, 4] with the momentum identified with 

the rank of the gauge group. The conjecture. was further clarified by Sen and 

Seiberg [5, 6]. They used an infinite boost and a compensating rescaling to 

show that the DLCQ Hamiltonian of the original M-theory is given by the 

Hamiltonian of an auxiliary M-theory compactified on a vanishingly small 

space-like circle of radius R. This is then equivalent to a weakly coupled 

Type IIA string theory, which will be referred to, following Sen [7], as the 

auxiliary Type II string theory. At the same time, the original light-cone 

momentum is mapped into Ramond-Ramond DO brane charge. The string 

coupling and string mass scale are given by the R-+ 0 limit of 

_ M3/2 (LR)3f4 _ M3/2L3f4R-lf4 Ys- p , ms- p . 

In this limit as proposed by Witten [8], and discussed extensively in [9], the 

dynamics of n DO branes is determined by the maximally supersymmetric 

Matrix model [2, 3, 4]. 

Toroidal compactification of M-theory can be obtained by considering 

Matrix theory on the covering space of the torus and imposing a periodicity 

constraint on the dynamical variables [10, 11, 12]. The constrained system 

is formally equivalent to a U(n) super Yang-Mills (SYM) gauge theory on 

a dual torus. On the other hand upon compactification on a d-dimensional 

torus Td M-theory has additional moduli from the three form of eleven di­

mensional supergravity. Connes, Douglas and Schwarz [13], conjectured that 

these moduli correspond to the deformation parameters eij of a noncom­

mutative super Yang-Mills (NCSYM) gauge theory. Further studies of this 

subject followed in [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,· 26, 27]. 

In [13], where compactification on a two-torus was considered in some 

detail, it was suggested that the S£(2, Z) noncommutative duality group of 
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the NCSYM gauge theory [28, 29, 30, 31, 32] corresponds to the T-duality 

in the DLCQ direction and one of the space-like compact directions of M­

theory. Later Rieffel and Schwarz [20] showed that NCSYM gauge theories 

on higher dimensional tori have an SO(d, d IZ) duality, and conjectured that 

this is the realization, in the NCSYM theory, of the auxiliary Type II string 

theory T-duality. 

In this paper we investigate this conjecture for compactifications on a 

three-torus. First we extend the method used in [22, 26] to construct twisted 

bundles to the three-torus. Then we show explicitly how to construct an 

action of the duality group S0(3, 3IZ) on NCSYM theories. Under these 

duality transformations the rank of the gauge group and the magnetic flux 

numbers transform together in a Weyl spinor representation, and the defor­

mation parameters transform by fractional transformations. We also obtain 

the transformation properties, under the duality group, of the gauge coupling 

and the metric. We can then directly compare these relations with the string 

theory T-duality predictions. 

In the next section we review the standard toroidal Matrix compactifica­

tion leading to a SYM gauge theory on the dual torus. Then we present the 

conjecture [13], that in the presence of nonvanishing NS antisymmetric mod­

uli Bij, the translation generators implementing the quotient condition do 

not commute, such that Matrix compactification leads to a noncommutative 

super Yang-Mills gauge theory on a dual noncommutative torus. 

In Section 3, we study adjoint quantum bundles on noncommutative tori 

of arbitrary dimension which admit a constant curvature which is not valued 

in the su(n) subalgebra and have transition functions of a special simple 

form. 
In Section 4 we show how to expand the sections of the adjoint bundle 

of a U(n) gauge theory in terms of matrix valued functions on a dual non­

commutative torus. The dual deformation parameter 8' lies on the same 

SO(d, d IZ) orbit as the original e. We perform most of the calculations on 

tori of arbitrary dimension, but later in the paper we concentrate on the two 
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and three-tori. 

In Section 5, we describe the quantum bundles corresponding to the two 

dimensional compactification. We rewrite some of the known two dimen­

sional relations in a form that admits immediate generalization to higher 

dimensions. Section 6 contains the solution for arbitrary bundles over three 

dimensional tori. 

In Section 7, we consider the noncommutative SYM action on a twisted 

quantum bundle after a brief description of the quantum integral. 

In Section 8, we show how to manipulate the NCSYM action of a U(n) 

theory on a twisted three-torus such that it is formally equivalent to a U(q) 
action on a trivial bundle over a dual torus, where q is the greatest com­

mon divisor of n and the magnetic fluxes of the bundle. More generally, 

two NCSYM theories are equivalent if their rank and magnetic fluxes and 

deformation parameters are on the same orbit of S0(3, 3IZ). The rank and 

the magnetic fluxes transform. in an integral Weyl spinor representation of 

the group. Related results were obtained in [24] using a more abstract math­

ematical language. In the last section we show that this duality is the low 

energy remnant of the T-duality of Type II string theory. 

Finally in the appendix we prove a theorem showing that the chiral spinor 

representations of SO(d, d IZ) are integral, and also show that the spinor 

representation of S0(3, 3IZ) is in fact SL(4, Z). 

2 Matrix Compactification 

In this section we present a review of Matrix theory compactification. In the 

limit of large string mass the dynamics of n DO branes, in uncompactified 

space-time, is determined by the maximally supersymmetric Matrix action [2, 

3, 4], 

sDO = ~Jdttr(L:X.M}(M + ~ L [XM,XN][XM,XN] + fermions). 
2gs M (2n) M<N 
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This action is obtained by dimensional reduction of the ten dimensional 

N = 1 SYM gauge theory. Alternatively we could work with the IKKT 

functional [33) obtained by dimensionally reducing, in all directions includ­

ing time, the Euclidean ten dimensional SYM action. 

The compactification of Matrix theory on a d-dimensional torus is ob­

tained by considering an infinite number of DO branes living on R d, the 

covering space of the torus, and then imposing the following quotient condi­

tions [10, 11). 
ui-l X 1Ui = 2ne{ + X 1

, i,I = 1, ... 'd, 

ui-lXaUi=Xa, a=d+1, ... ,9. 

Here I runs over the compact directions, and the e{ form a basis defining the 

compactification lattice. The U/s are unitary operators. One can define new 

matrix coordinates 

which obey the simpler quotient conditions 

(1) 

In terms of the new variables the action takes the form 

DO 1 J ( . i . . 1 1 i k j l S = 
298 

~t Tr GijX X 1 + "2 (
2
n)2GijGkt[X ,X )[X ,X]+ 

:L.Xa.Xa + -( 1)2 LGii[Xi,Xa][Xi,xa]+ 
a 21r a 

(2) 

-( 
1

)
2 

L[Xa,Xb][Xa,Xb] +fermions), 
21r a<b 

where we have introduced the metric Gij = 2:1 e{e]. In (2), the trace over 

infinite dimensional matrices is formally divided by the infinite order the 

quotient group zd. 
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The original solution of the quotient condition assumed that the transla­

tion operators commute 

[Ui,Uj] = 0. 

The standard way to solve (1) is to introduce an auxiliary Hilbert space on 

which Xi's and Ui's act. In the simplest case this is taken to be the space of 

functions on a d-dimensional torus taking values in en. Then if we let the 

ui 's be the generators of the algebra of functions on the torus 

U.- eiu; 
t- ' 

where tTi are coordinates on the covering space of the torus, the Xi's satisfy­

ing (1) must be covariant derivatives 

(3) 

The partial derivative is with respect to tTj, and AJ are n-dimensional her­

mitian matrices. The action (2) can be rewritten as ad-dimensional SYM 

action, by replacing the Xi's with covariant derivatives as above, and rewrit­

ing the trace over the infinite dimensional matrices as 

Here tr is an n-dimensional trace, and the new coordinates tTi are to be 

integrated from zero to 2n. The action becomes 

(2 )2-d 
sDo = 7r .. I dt I ddtT .Jdet(GiJ) tr ( GJLvG~p[D1t, D~][Dv, DP]-

4gs)det(QtJ) 

LGJLv[DJL,Xa][Dv,xa] + L[Xa,Xb] [Xa,Xb] +fermions), 
a a<b 

where the scalar fields xa have been rescaled by a factor of 2n. We have 
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written the action in standard forma so that we can read off the SYM gauge 

coupling 

(4) 

Thus the gauge coupling g~YM equals the string coupling on the T-dual 

torus. The square root factor accounts for the expected dilaton shift under 

T-duality. 

Following [13] we consider the general case when the unitary operators 

Ui do not commute. Consistency of the quotient conditions requires that the 

Ui's must commute up to a phase 

U·U· - e-z11'ie;iU·U· z J - · J z· 

Connes, Douglas and Schwarz conjectured that the deformation parameters 

8 correspond to certain moduli of the compactification of the DLCQ of M 

theory on tori. If ryii- represents a three cycle wrapped around the transversal 

directions xi and xi and the light cone direction x-, then 

eij = (21)31 .. c, 
7r . "Y'J-

where C is the antisymmetric three form of eleven dimensional supergravity. 

Written in terms of the auxiliary type IIA string theory variables, 

where B is the NS two form. In the noncommutative case it is convenient to 

introduce another set of translation operators Ui which satisfy 

U·U· - e211'ie;j U·U· z 3 - J z· (5) 

aNote that the positions of all the indices are switched. For example the metric has 

upper indices. This just reflects that we have performed a T-duality under which the 

metric is replaced with the inverse metric. Another way to understand the index position 

is that T -duality is a canonical transformation which exchanges coordinates and momenta 

and therefore reverses the index structure. 
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The Ui's generate the algebra of functions on a quantum torus. We will 

denote this algebra, Ae. For an expanded discussion of this and other issues 

in noncommutative geometry see [34, 35]. This algebra can be realized as a 

subalgebra of the quantum plane algebra, which is generated by ai satisfying 

[a· a·] = -2Jri8· · tl J tJ. (6) 

Then we realiz.e the generators of Ae as 

To realize the Ui generators we also introduce partial derivatives satisfyingb 

Now we can write the Ui generators as 

U iu·-2ne--ai 
i = e ' '1 . 

Note th~t both ai and ai act as translation generators on the a/s, and the 

exponent in the Ui's is just the linear. combination that commutes with all 

the ai's. Thus 

For vanishing 8 we see that Ui and Ui coincide. 

The simplest example of solutions of the quotient conditions (1) are quan­

tum connections on trivial bundles 

(7) 

In the noncommutative case the matrix elements of Ai are elements of Ae. 
Again using the representation (7) of Xi in the Matrix model action we 

obtain a NCSYM action [36]. However we will postpone writing this action 

until we study more general solutions which are connections on nontrivial 

bundles. 

b Just as in the classical case, one can also introduce quantum exterior forms dcri, which 

anti-commute with each other and commute with all other variables. 
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3 Twisted Quantum Bundles on Tori 

In this section we construct quantum U ( n) bundles on d-dimensional non­

commutative tori which admit constant curvature connections with vanishing 

su(n) curvature. This is done by finding explicit transition functions compat­

ible with such a connection. We employ a method which is a straightforward 

generalization of [22, 26]. Using a gauge transformation the constant curva­

ture connection can be brought into the form 

(8) 

where F is an antisymmetric matrix. We define the constant curvature to be 

and using the commutation relations (6) one can calculate 

In general, such a connection can only exist on a non-trivial bundle. One 

can introduce transition functions ni such that the connection satisfies the 

twisted boundary conditions 

(9) 

We can try to find solutions for the transition functions of the form 

(10) 

where Pis an arbitrary constant d-dimensional matrix and the Wi's are con­

stant, unitary n-dimensional matrices. The boundary conditions (9) imply 

the following equivalent relations 

P = (1 + 2nFe)-12nF = 2nF(1 + 82nF)-I, 

2nF = P(1- 8P)-1 = (1- Pe)-1P. 
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Note that P must be antisymmetric because of our gauge choice. Consistency 

of the transition functions of the bundle requires 

which is known in the mathematical literature as the cocycle condition. In 

our case the cocycle condition implies 

rxr.w. _ e-211"iMii fnw.ur. 
vv~ 3 - 3 vv~, (11) 

where the antisymmetric matrix M is given by 

M = n(2P- P8P). 

By taking the determinant of both sides of (11) one finds that M must have 

integer entries. In the classical case Mii corresponds to the value of the first 

Chern class on the ( ij) two-cycle of the torus. In the auxiliary Type IIA 

string theory, M is interpreted as D2 brane winding. This interpretation 

remains true in the quantum case. 

Let q be the greatest common divisor of n and the nonvanishing entries 

ofM 

q = gcd(n, Mii). 

Next we define nand M which have relatively prime entries 

n=qn, M=qM. 

It is convenient to consider Wi's which have block diagonal form with q 

identical blocks along the diagonal 

Here Wi are ii-dimensional matrices. Alternatively we can write this in tensor 

product notation 
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The transition functions are also block diagonal and can be written 

(12) 

To find explicit boundary conditions, following 't Hooft [37], we make the 
ansatz 

(13) 

where ai and bi are integers and U and V are the clock and shift matrices [38, 

37] 

U _ 27ri(k-1)/n£ tr _ £ k z- 1 -
kl - e Uk,!, Vkl - Uk+l,l, , - , · · ·, n, 

and the subscripts are identified with period fi. They satisfy 

Then (11) leads to the following relation 

Mij = (ai~- biaj) mod(fi). (14) 

For two or three dimensional tori, one can find integers ai and bi such 

that (14) holds for arbitrary M, as will be shown in Sections 5 and 6. In 

higher dimensional cases the ansatz is not sufficiently general to describe ar­

bitrary bundles. In particular, we can always perform a change oflattice basis 
such that the only nonvanishing components of M are Md-l,d = -Md,d-l, 

while in general, an arbitrary antisymmetric matrix can not be brought into 

such a form. Furthermore, for d > 3, even in the commutative case, generic 

bundles do not admit connections with vanishing su(n) constant curvature. 

A more general construction could be obtained by allowing for an arbitrary 
constant curvature connection. 

4 Adjoint Sections on Twisted Bundles 

In this section we analyze the structure of adjoint sections on twisted bundles. 

The scalar and fermion fields are examples of such sections. We will also 
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write the connection as a sum of a constant curvature connection yri, and a 

fluctuating part Ai 

Note that Ai is also an adjoint section. Since it is the difference between two 

connections it transforms covariantly under gauge transformations. It should 

not be confused with a gauge potential. Adjoint sections are n-dimensional 

matrices with entries which are elements of the quantum plane algebra (6) 

and obey the twisted boundary conditions 

(15) 

Next we will try to find the general solution of (15) and write it in uncon­

strained form, reflecting the global properties of the bundle. First consider 

the simpler example of a U(n) NCSYM on a trivial bundle over a two-torus. 

Since ni = 1 we have 

where Eab are n-dimensional matrices with one nonzero entry, (Eab)ij = 6f6j, 
and 'l!f:i

2 
are c-numbers. In other words, each matrix element of the adjoint 

section is an arbitrary function on the quantum torus. If we consider a 

twisted U(n) bundle with magnetic flux m, such that nand mare relatively 

prime, one can show [13, 22, 26] that the adjoint sections have the expansion 

"IJ! = L "IJ!ili2Zfl z~2 , 
i1i2EZ 

where now the coefficients Wi1i 2 are c-numbers, and Zi are n-dimensional 
matrices with noncommutative entries satisfying 

Z Z 21rio'z z 
1 2 = e 2 1· 

Thus the Zi 's satisfy the commutation relations of a generators of the quan­

tum torus. This shows that the set of sections is isomorphic to the set of 
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functions on a dual torus, and is very similar to the set of adjoint sections of 

a U(1) NCSYM theory. For two and three dimensional adjoint bundles with 

arbitrary magnetic fluxes, we will show that the general solution takes the 

form 

d= 2,3. (16) 

Here Eab are q dimensional. 

We begin by writing \II in tensor notation 

q 

\II ( O"i) = L Eab 0 wab ( O"i)' 
a,b=l 

where wab(O"i) are ii-dimensional matrices with noncommutative entries. Im­

posing the boundary conditions (15) and using (12) we obtain 

(17) 

A less restrictive but very convenient constraint is obtained by shifting O"i by 

21rn using ( 17) 

wab(O"i + 21rn<5f) = wJwab(O"i)wjn. (18) 

In (18) all the matrix factors disappear since un = vn = 1. The O"i dependent 

exponential of (10) survives and acts like a translation operator due to the 

commutation relations (6). This implies the following periodicity relation 

(19) 

where 

Q-1 = 1- Pe. 

Next we try to find solutions of the form 

i = 1. . . d. (20) 
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Here Sj and ti are integers and the exponent was chosen so that it is com­

patible with the constraint (19) if the matrix N has integer entries. One can 

show that Zi is compatible with the boundary conditions (17) if 

(21) 

where ai and bi are defined by (14). In the next two sections we will consider 

in detail the two and three dimensional cases, and find ai, bi, si and ti such 

that (14) and (21) hold. Furthermore, for properly chosen integers ai, bi, Sj 

and ti, one can show that an arbitrary adjoint section can be expanded in 

terms of the Zi's as in (16). For a proof of this statement in two dimensions 

see [26]. It is convenient to define another matrix which will be used shortly, 

(22) 

In the remainder of this section we will calculate the commutation rela­

tions satisfied by the Z/s and the constant curvature connection (8). Using 

their explicit form (20) we find, after some matrix algebra, 

(23) 

where 

(24) 

From (23) we see that the algebra generated by the Z/s is the algebra of 

functions on the quantum torus with deformation parameters given by 8'. 

After some further matrix algebra and using the following identities, 

Q 1 + 21rF8, 

Q2 1 + 21fF(o)e = (1- M8/ii)-1
, 

Qre 8Q , 

we can rewrite 8' as a fractional transformation 

8' = A(8) der (A8 + B)(C8 + v)-1 . (25) 
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Here 

A=(:~)· 
and the d-dimensional block matrices are given by 

A=ii-1(NT+LN-1M), B=-LN-1 , C=-N-1M, 1J=fiN-1 . (26) 

One can check that 

and thus A is an element of O(d, d IR), i.e. it satisfies 

ATJA= J, 

where 

(28) 

In the two and three dimensional examples that we will study later, A is in 

fact an element of SO(d, d IZ). This is the subgroup with determinant one 

and integer valued entries in the basis where the metric is given by (28). 

The Weyl spinor representations of SO(d, d IZ) are also integral, that is the 

representation matrices have integer entries. We prove this statement, which 

is implicit in papers discussing T-duality of Type II string theory, in the ap­

pendix. Since the spinor representation of SO(d, d IZ) will be used extensively 

in the following sections we recall that the vector and spinor representations 

are related by 

s-1/s S = A/ /p, 

and the gamma matrices satisfy 

(29) 

(30) 

Finally, one can show by direct calculation that the commutation relations 

of the constant curvature connection and Zi have the form 

(31) 
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where there is no sum over j and H = (ii- Me)-1 N. Note that H can also 

be written in terms of 8 and some of the block components of A 

H-1 = ce +V. (32) 

Finally, we present some identities, which will be useful in later sections 

H = ii-1Q2 N, det(H) = ii-2 det(Q2), 

det(Q2) = (1- tr(~e))-2. 
2n 

(33) 

Note that all the previous relations are valid for tori of arbitrary dimension 

provided we work on the bundles discussed in Section 3. 

5 Two Dimensional Solution 

Although the twisted two dimensional case has been discussed extensively in 

the literature [13, 21, 22, 26], we review it here in a form that readily admits 

generalization ~o higher dimensional compactifications. 

In the two dimensional case the antisymmetric matrices 8 and M have 

the form 

e=( 0 (}),M=( 0 m) 
-{} 0 -m 0 

where (} is the deformation parameter and m is the magnetic flux, which is 

interpreted as the number of D2 branes wrapping the two-torus. 

One can verify that the integers 

where n = qii and m = qm, satisfy (14). Then choosing si = (0, 1) and 

ti = (b, 0), where b is an integer such that an- bm = 1, we have N = fz. 
One can now use (22) and (26) to find 

(34) 
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where £ is a two dimensional matrix with the only nonvanishing entries 

given by £12 = -£21 = 1. Group elements of the form above are in an 

8L(2, Z) subgroup of 80(2, 2jZ). This subgroup is isomorphic with one of 

the Weyl spinor representations of 80(2, 2jZ). This feature is not generic for 

higher dimensional compactifications and reflects the fact that 80(2, 2jZ) "' 
8L(2, Z) x 8L(2, Z), so that it is not simple. 

The algebra of the Z/s is then determined by 8' which is given by the 

fractional transformation (25). In two dimensions, the 80(2, 2jZ) fractional 

transformation (25) can also be written in the more familiar form, used in [13, 

22], as a 8L(2, Z) fractional transformation acting on () 

()' = a()+ b 
mo + :n· (35) 

One can also check that the other 8L(2, Z) subgroup, made of elements of 

the form 

( ~ (R~)-1 ) ' 

acts trivially on 0. This subgroup is generalized to 8L(d, Z) in compactifi­

cations on ad-dimensional torus, and will play in important role later, but 

only for the two dimensional compactification it leaves 8 invariant. The Z/s 

then obey the following algebra 

Z Z 2niB'z z 
1 2 = e 2 1· 

As we will see shortly, the rank of the gauge group and the magnetic flux 

transform in an integral Weyl spinor representation of 80(2, 2jZ). Using the 

creation and annihilation operators introduced in the appendix we can write 

such a spinor as 

njO) + mala~IO). (36) 

Using (29) one can show that the spinor representation of (34) transforms 
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the .above state into qiO). In the Weyl basis we can write the action as 

where 

S = ( a_ -_b). 
-m n 

In Section 8 we will show, employing the expansion of the adjoint section in 

terms of the Zi generators (16), how to rewrite the original U(n) NCSYM 

action on a twisted bundle as a U(q) NCSYM action on a trivial quantum 

bundle over a torus with deformation parameter 8'. The SL(2, Z) trans­

formation, which relates the deformation parameters and the spinors (36) 

of these two NCSYM, can then be interpreted as a duality transformation 

inherited from T-duality of Type II string theory. This can be seen as fol­

lows. The rank and the bundle of the NCSYM theory determine the D brane 

charges in string theory. These charges transform in a chiral spinor represen­

tation of the target space duality group [39]. Given n and m with greatest 

common divisor q, one can perform aT-duality transformation which takes 

the original D brane configuration into q DO branes. 

Of course the metric and antisymmetric tensor also transform under this 

duality, and in the proper limit, which we will explain in detail later, the 

antisymmetric tensor B transforms separately by fractional transformation 

just as in (25). Since the parameters eii of the NCSYM theory are identified 

with Bij, the background expectation value of the NS antisymmetric tensor of 

the compactified auxiliary string theory, the expected transformation under 

target space dualities is (25). 
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6 Three Dimensional Solution 

The three dimensional case will be solved by first performing an SL(3, Z) 

transformation R to bring Min canonical forme 

where 
0 

0 

-m 

(37) 

(38) 

While it is always possible to find such a transformation, (37) does not define 

it uniquely. We will first find the solution corresponding to M 0 , and then 

obtain the general solution by using such an R. 
First note that M 0 corresponds to a background magnetic field with flux 

only through the (23) plane, which suggests that the solution should closely 

resemble the two dimensional one. As before, 

(a~) = (0, ih, 0), (b~) = (0, 0, 1) 

satisfy ( 14). Similarly if we set 

(s?) = (0, 0, 1), (t?) = (0, b, 0), (39) 

we can satisfy (21) with the N° matrix given by 

The diagonal entries of N° divided by n have the interpretation of wave 

numbers. Thus we see that twisting the boundary conditions allows for 

cit is always possible to bring an antisymmetric matrix in canonical form using S£(3, R) 

but here we need to do this using an integral matrix. 
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fractional wave numbers in the second and third directions. Using (39) we 

find 

L0 
= ( ~ ~ ~b). 

0 b 0 

One can now use (26) to find the S0(3, 3IZ) matrix 

1 0 0 0 0 0 

0 a 0 . 0 0 b 

Ao = 
0 0 a 0 -b 0 

(40) 
0 0 0 1 0 0 

0 0 -ih 0 n 0 

0 m 0 0 0 ii 

Everything so far is just as in the two dimensional case. Note however that 

in general 8 will not be in canonical form, that is, it will not have a form 

similar to (38). 

We can now write the general solution for an arbitrary M as 

t .- to z- jl 

(41) 

Just as in the two dimensional case we can find, using (29), the Weyl spinor 

representation matrices corresponding to (40) and (41) 

a -b 0 0 

so= -ih ii 0 0 

0 0 1 0 

0 0 0 1 
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S=so(l o )· 
0 RT 

The rank of the group and the magnetic flux matrix M define a state in the 

Weyl spinor Fock space 

niO) + ~Miia!a}IO). 
Now one can check that S acts on this spin or as 

q n 

0 
=S 

M23 

0 M31 

0 M12 

As we will see later this can be used to relate the original theory to a U ( q) 
theory on a trivial bundle. In the appendix we show that the Weyl spinor 

representation of 80(3, 3IZ) is in fact isomorphic to SL(4, Z). In this case, 

in the auxiliary Type IIA string theory, the DO and D2 branes form q bound 

states, and the transformation above corresponds to aT-duality transforma­

tion that maps the original D brane configuration into a q DO branes. 

7 Noncommutative Super Yang-Mills Action 

We are now almost ready to write the noncommutative Super Yang-Mills 

action, but first we need to understand how to perform integration on a 

noncommutative torus. In the classical case the integral is a linear map that 

associates to a function its zero mode Fourier coefficient. Similarly for an 

element of Ae of the form a = E aid2 ... idU~1 U~2 
••• u~d we define the integral 

as 

I dd def ( )d a a = 2n aoo ... o· (42) 

One can check that this definition has all the desirable properties of the 

classical integral, such as linearity and translation invariance in ai· For defi-
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niteness, in the remainder of this section we will discuss the three dimensional 

case. 

When twisted U(n) theories are considered, it was found in [13, 22] that 

the integral must be normalized in a particular way to find a duality invariant 

spectrum. The normalization can also be obtained directly as the Jacobian 

of a change of integration variables. Note that the integrand, which is the 

trace of an adjoint section, obeys the following periodicity 

Since trlll(ai) does not have periodicity 27T in O"i it can not be expanded in 

terms of the Ui variables. One can define new variables &i = aiQjkR~ and 

(Ji = eu;, where R is an arbitrary SL(3, Z) transformation. In the follow­

ing sections we will take R to be the matrix that brings M into canonical 

form (37). Then 

J d3atrll!(a) = J d3&ldet(Q-1)Itrlll(&Q-1
), (43) 

where det( Q-1 ) is the Jacobian of the coordinate transformation, and the 

second integral can now be performed as discussed above, since the integrand 

has an expansion in terms of the Ui variables. Using the expansion (16) of 

ll1 we obtain 

q J d3 a tr l¥( a) = (27T )3 n 1 det( Q-1
) I I: 'llooo· 

a=1 

The Super Yang-Mills action on a noncommutative three-torus is given 

by 

Su(n) = -i-Jdtjd3a Jdet(Gii) tr (~cii:PJi:FOi_ 
~YM 2 _ 

1 "k "k "l "l 
4GijGk1(:P - :F(o))(:FJ - :F[o))+ (44) 

~ L:.Xa_ka- ~LGij[Di,Xa][Di,Xa]+ 
a a 
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where :Fii = i [Di, Di] and :F// = i [V'i, Vi]. We have subtracted the constant 

part of the field strength in the second line of equation ( 44). This is equivalent 

to adding a constant to the Lagrangian, or equivalently to the Hamiltonian, 

and has the effect of setting the vacuum energy to zero. 

For the compactification of the auxiliary Type IIA string theory without 

wrapped D2 branes, the above action can be obtained directly from the 

Matrix action. One has to show that the trace over infinite dimensional 

matrices reduces to a finite dimensional trace and an integral. A formal 

argument for the commutative case was given in [11] and discussed in detail 

in [40). The same argument extends to the noncommutative case. A brief 

argument was given in [13) showing how to extend this construction when 

there are D2 branes wrapped on the torus in the auxiliary Type IIA string 

theory, corresponding to magnetic fluxes in the NCSYM gauge theory. Here 

we will just make the assumption that the NCSYM action is independent of 

the D2 brane charges and that adding D2 branes only results in changing 

the quantum adjoint bundle. We will provide evidence for this in the final 

section of the paper. 

8 80(3, 3IZ) Duality of Super Yang-Mills 

In this section we start with the U(n) NCSYM action (44) on a twisted quan­

tum bundle with magnetic fluxes M and deformation parameter e, and we 

show that after a sequence of field redefinitions it can be rewritten as a U(q) 
NCSYM action on a trivial bundle over a quantum torus with deformation 

parameter 8'. 

Using the matrix H defined in (31) we make the following constant cur,. 

vature and field redefinitions 

V'i def (H-l)~V'i, _Ai def (H-l)~Ai, 
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Di def (H-l)~Di, 

j"kl = [vk,All- [vl,Akl- i[Ak,Al]. 

In terms of the new variables the commutator of the constant curvature 

connection and the Z/s takes the simple form, 

and the curvature can be expressed as 

One can now rewrite the action in terms of the hatted variables and perform 

the change of coordinates ( 43) 

!a~.a' pkj"Jl+ 4 ZJ kl 

~ L:.Xaxa- ~ L:G~i[D\Xa][ffi,xa]+ 
a a 

~ L[Xa, Xb][Xa, Xb] + fermions) . 
a,b 

We have introduced a new gauge coupling and metric given by 

G'ii = (H-l)ik(H-l)il Gkl 

and used (33) to make these substitutions. 

(45) 

(46) 

Next we introduce primed variables O'L UI and partial derivatives 8'i sat­

isfying 
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[8\ aj] = 8j, [8'i, o'i] = 0, 

Ul def ia~ 
i = e ', 

u~ u~ = e27riS~j u~ u~ 
z J J J" 

Comparing the algebra satisfied by zi and Vi on one hand and u: and a: 
on the other, we see that all the commutation relations are the same except 

that the Vi's do not commute while the o'i's do. The dynamical variables 

of the theory are the c-number coefficients appearing in the expansion (16) 

of the adjoint sections in terms of Zi's. Since in the action, the constant 

curvature covariant derivatives only appear in commutators with the Z/s 
and not with each other, substituting u: and o'i for zi and vi leaves the 

dynamics invariant. A similar construction was also considered in [24]. The 

integral and trace of the U(n) theory can be translated to a U(q) integral 

using the definition of the integral ( 42) 

I d3& ~tr 'li(Zi) = I d3a' trq 'li(UI) = (27r) 3 :t wggo· 
n a=l 

Making these substitutions we obtain the U(q) action 

where 

. sU(q) = -
1

- I dt I d3a' Jdet(a'ii) tr (!a~ .;='0i:F'
0
j-

g'§yM q 2 ZJ 

!a~ .a' :F'ik :F'jl + 
4 ZJ kl 

~ z=xaxa- ~ z=a~i[D'i,xa][D'i,xa]+ 
a a 

~ 2:[Xa, Xb][Xa, Xb] + fermions) , 
a,b 

are the U(q) connection and curvature. Thus we have shown that the original 

U(n) theory is equivalent to a U(q) NCSYM theory with gauge coupling given 
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by ( 45) and defined on a trivial adjoint bundle over a noncommutative torus 

with deformation parameter 8' and metric given by (46). 
In general two NCSYM theories are dual to each other if there exists an 

element A of S0(3, 3IZ) with Weyl spinor representation matrix S, such that 

their defining parameters are related as follows 

fi n 

J\?23 
=S 

M23 

J\?31 M31 

J\?12 M12 

(Jii = (Ce + V)ik(Ce + V)il Gkl, 

9~vM = J I det(Ce +'D) I g~yM, 

(47) 

(48) 

(49) 

(50) 

where we used (32) in the last two equations. While e in (47) and the rank 

and magnetic flux numbers in ( 48) transform separately and the duality group 

action can be seen explicitly, the transformation of the gauge coupling and 

the metric also depends on 8. Note that C8 + V satisfies a group property. 

If A3 = A2A1 and 8' = A1(8) then 

(51) 

For a nonvanishing fi we remove the sign ambiguity that exists when we try 

to associate to a S0(3, 3IZ) transformation its spinor representation matrix, 

by requiring that fi is positive. Strictly speaking, one should not consider 

duality transformations for which fi vanishes since in this case the description 

in terms of gauge theories becomes singular. 

9 Target Space Duality 

Next we show that the S0(3, 3IZ) duality discussed in the previous section is 

the realization in NCSYM gauge theories ofT-duality in the auxiliary Type 
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IIA string theory. This relation is described by the following diagram. 

n, Mii U(n), Mii 

IIA 9s 
+--+ NCSYM 9SYM 

Gii Qii 

Bii eij = Bij 

t t 
q, M'ii = 0 U(q), M'ii = 0 

g~ I 

IIA +--+ NCSYM 9sYM 

G~i Qlij 

B~i e~j = B~j 

The right side of the diagram shows the equivalence described in Sec­

tion (8). The horizontal arrows represent the Connes, Douglas and Schwarz 

conjecture [13]. The left side of the diagram contains the string coupling, 

D brane charges, and compactification moduli of the two auxiliary Type IIA 

string theories corresponding to the NCSYM's on the right. The additional 

moduli corresponding to Ramond-Ramond backgrounds were set to zero in 

this paper and will be considered separately in [41]. Note that the NCSYM 

metric is the inverse of the Type IIA metric as indicated by the index po­

sition, the deformation parameter equals the NS antisymmetric tensor, and 

the rank and magnetic flux numbers translate into DO brane number and D2 

brane winding. Finally the SYM and string coupling are related by (4). 

In the remainder of this section we will calculate the relation between the 

parameters of the two auxiliary Type IIA string theories. First we describe 

how the metric, antisymmetric tensor and the string coupling transform un­

der an arbitrary T-duality transformation, and then we take the limit 

o/ ---+ 0, Gii ---+ 0, (52) 
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keeping a'-2Gij constant. This is the limit proposed by Seiberg and Sen [6, 5] 

and briefly discussed in the introduction. However, in this limit the auxiliary 

Type IIA string metric vanishes. Instead we will calculate directly the inverse 

metric of the NCSYM theory which, after including factors of a', is given by 
t-2c a ij· 

Under the T-duality group SO(d, d IZ) the metric and NS antisymmetric 

tensord transform together by fractional transformations [42] 

G' + B' = (A(G +B)+ B)(C(G +B)+ 'D)-1
. (53) 

Using the identification between 8 and B we have H-1 = CB +'D. Then, 

after some matrix algebra, we can write the symmetric and antisymmetric 

part of (53) as 

G' HTG(l- (HCG) 2
)-

1H, (5~) 

B' (AB + B)(CB + 'D)-1
- HrGHCG(l- (HCG)2

)-
1 H. (55) 

To derive this we used the fact that HC is antisymmetric. This can be shown 

using 

(CB + 'D)-1 =(A- (AB + B)(CB + 'D)-1Cf, 
which follows from (27). Note that (54) and (55) have simple expansions 

in G. For an elementary T-duality in the x 1 direction the string coupling 

constant transforms as 
, c-112 

gs = gs 11 · (56) 

Taking the limit (52) in (55) we can see that the antisymmetric tensor 

itself transforms by fractional transformatione 

B' = (AB + B)(CB + 'D)-1
. (57) 

dWe hope there is no confusion between B, denoting the NS tensor, and B which is the 

upper right block of A. 
eThis is consistent with the fact that the action by fractional transformations preserves 

the antisymmetry of the matrices. 
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To find the duality transformation of the metric, we reinstate factors 

of a' in (54) since the 80(3, 3IZ) transformations are defined to act on 

dimensionless fields. Now we can take the limit (52) and to first order in the 

dimensionless metric a'- 1Gij we have 

(58) 

If we make the identification B = 8, we recognize above the H matiix defined 

in (32). 

Finally using (56), we can also calculate how the string coupling trans­

forms under duality. It was shown in [20] that the SO(d, d IZ) group is 

generated by a set of simple elements. These are written explicitly in the 

appendix. For each of these generators one can check using (56) that the 

string coupling transforms as 

g~ = gs I det(CB + V)l-1
/
2

. (59) 

In fact (59) is true for an arbitrary transformation because CB + V satisfies 

the group property (51). 

Comparing the T-duality relations (57), (58) and (59) with the NCSYM 

duality relations (47), (49) and (50), using (4) to relate the string and gauge 

couplings, we see that indeed the two dualities coincide. 
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Appendix 

In the first part of this appendix we show that the Weyl spinor representations 

of SO(d, d IZ) are integral, i.e. have matrix elements which are integers. In 

the final part, we show that for d = 3 the Weyl spinor representation is in 

fact isomorphic to SL(4, Z). 

The gamma matrices obeying (30), where the metric has the form (28), 

are already, up to normalization, the standard creation and annihilation op­

erators used to generate the Fock space for Dirac spinors in the Weyl basis. 

These are defined as 

and satisfy the canonical anti-commutation relations 

{ ai, a}} = Oij, { ai, ai} = {a!, a}} = 0, i, j = 1, ... , d. 

As usual, the Dirac spinor and vector representations are related through 

formula (29) in the main text 

s-1"/s S = A/ "/p· 

To prove that the Weyl spinor representations are integral we use a theo­

rem presented in [24] where it was shown that the whole group SO(d, d IZ) is 
generated by a special subset of group elements. We will construct explicitly 

the Weyl spinor representation matrices corresponding to the group elements 

in that subset and show that they are integral. The subset contains three 

types of elements. The first type are generators of the form 

( 
Id n ) ' nT = -n . 
0 Id 

(60) 

The second type of generators forming a S L( d, Z) x Z2 subgroup have the 

form 

( 
R 0. ) detR = ±1. 0 Rr-l ' 
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These are the T -duality generators corresponding to a change of basis of the 

of the compactification lattice. 

The final generator is given by 

0 1 

0 1 

Id-2 od-2 
(62) 

1 0 

1 0 

od-2 Id-2 

It corresponds to T-duality along the x1 and x 2 coordinates. The full du­

ality group is in fact O(d, d IZ) but here we only consider its restriction to 

SO(d, d IZ) which is the subgroup that does not exchange Type IIA and liB. 
The full T-duality group is then obtained by adding to the above list one 

more generator corresponding to T-duality in a single direction. 

Using (29) one can check that the Dirac spinor representation correspond­

ing to the first type of generator ( 60) is 

1 
exp(2nijaiaj)· (63) 

This has a finite expansion and is manifestly integer valued in the standard 

Fock space basis obtained by acting with the creation operators on a vacuum 

state. 

One can prove that the full SL(d, Z) group is generated by its S£(2, Z)ij 
subgroups acting on the xi and xi coordinates. We can use this to find 

the spinor representation matrices corresponding to generators of the second 

type (61). Since each S£(2, Z)ii is generated by its Tii and Sii transforma­

tions, which in the ( ij) subspace where i < j have the form 

( 
1 1) ( 0 -1 ) 
0 1 . ' 1 0 ' 
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it is enough to find the spinor matrices for these generators. The spinor 

representation of Iii is given by 

(64) 

The exponential (64) has a finite expansion and its matrix elements are 

integer valued. Similarly the spinor representation of Sij is given by 

(65) 

Let us define A = a}ai - aJ ai for fixed values of i and j. In terms of number 

operators Ni = a!ai we have A2 = -Ni - Ni + 2NiNj· Since Ni can be 

either zero or one, A2 is zero or minus one. The Fock space can be split 

into a direct sum of two subspaces, defined by the eigenvalues of A2. On 

the subspace defined by A2 = 0, we also have A = 0 and thus the spinor 

representation (65) reduces to the identity. On the subspace defined by A2 = 

-1, the exponential can be written as cos(1rj2) + Asin(7r/2) =A. On both 

subspaces, the representation matrix of the transformation is integer valued. 

A formula for the spinor representation of the Sij generators which is valid on 

both subspaces is given by, l+A+A2. The second type of generator (61) also 

contains elements with det R = -1. A spinor transformation corresponding 

to such a generator is given by 

Finally, the generator (62) has the spinor representation 

exp(~(a1- a1)(a2- a~)). 

(66) 

(67) 

It has a finite expansion given by (a1 - a!}(a2 - a~), which can be obtained 

using ((a1 - a!)(a2 - a~)) 2 = -1, and in this form it is manifestly integral. 

Since the Fock space basis we have used splits into two subsets of definite 

chirality, it follows that the Weyl spinor representations of SO(d, d IZ) are 

also integral. 
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In the remainder of the appendix we show that the Weyl spinor represen­

tation of 80(3, 3IZ) is isomorphic to S£(4, Z). First note that for the Lie 

algebra corresponding to the continuous Lie groups we have the equivalence 

sa(3,3IR) "'sl(4,R). The spinor representation of the first group is isomor­

phic to the fundamental of the second. Since in the first part of the appendix 

we proved that the spinor representations are integral it is reasonable to ex­

pect that they form a subgroup of S L( 4, Z). In fact we will show that they 

are isomorphic to the whole S£(4, Z) group. 

We represent the Weyl spinor state niO) + ~MiiaJa}iO) as the column 

(68) 

Using operators of the form (64) and (65) we generate an SL(3, Z) subgroup 

of the form 

(69) 

where R is the same matrix appearing in (61). We will now show that the 

Weyl spinor representation also contains S£(2, Zhi subgroups which act on 

the first and the i + 1 entries of the column spinor (68). These subgroups 

together with (69) generate the entire SL(4, Z) group. The T-duality gener­

ator ( 67), denoted below T12 , has the Weyl spin or representation 

0 0 0 -1 

0 0 -1 0 

0 1 0 0 

1 0 0 0 
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Let us also consider a transformation G given by 

1 0 0 0 

G= 
0 1 0 0 

ad- be= 1, 
0 0 a b 

0 0 c d 

which is an element of an S£(2, Z) subgroup of elements of the form (69). 

By conjugating G with the T12 generator 

d c 0 0 

Ti;,1GT12 = 
b a 0 0 

(70) 
0 0 1 0 

0 0 0 1 

we find an S£(2, Z)I2 transformation acting on the first and second entries. 

All the other S£(2, Z)Ii subgroups can be obtained by conjugating (70) with 

elements of the form (69). Thus we have found Weyl spinor representations 

generating the entire S L( 4, Z) group. In fact the representation is isomorphic 

to SL(4, Z) since all the spinor representation matrices (63), (64), (65), (66) 

and (67) are integral and have unit determinant . 

• 
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