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Intersections, ideals, and inversion 

D. W. Vasco* 
(October 7, 1998} 

ABSTRACT 

Techniques from computational algebra provide a framework for treating large classes of inverse problems. In 
particular, the discretization of many types of integral equations and of partial differential equations with undetermined 
coefficients lead to systems of polynomial equations. The structure of the solution set-of such equations may be 
examined using algebraic techniques. For example, the existence and dimensionality of the solution set may be 
determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a 
numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are 
used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence 
of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best 
fitting structure is dominantly one-dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is 
compatible with studies suggesting lower surface wave velocities than found in typical stable cratons. 

*Center for Computational Seismology, Berkeley Laboratory, University of California, Berkeley, CA 94720 
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INTRODUCTION 

The complete solution of an inverse problem re
quires addressing questions concerning the existence and 
uniqueness of an Earth model compatible with a given 
set of observations. In this regard linear inverse prob
lems have been treated rather successfully. There are 
now well established methods for calculating model pa
rameter resolution and uncertainty. Much of the power 
of these techniques derives from formalisms developed in 
linear algebra and functional analysis (Halmos 1957, Lu
enberger 1969, Dorny 1980). Mathematical structures 
in these areas, in particular vector and Hilbert spaces, 
provide a framework for answering the questions posed 
when solving inverse problems (Parker 1994). To date, 
we have no direct link between non-linear inverse prob
lems and any such algebraic formalism. To be sure, there 
are extensive numerical techniques for finding solutions 
as well as methods for linearization. But such methods 
are usually local in nature or do not fully utilize the math
ematical structure of the equations defining the inverse 
problem. 

What I wish to demonstrate in this paper is that there 
is a body of mathematical work providing a framework 
for treating many non-linear inverse problems. Specifi
cally, techniques from algebraic geometry and computa
tional algebra can answer questions concerning the ex
istence and uniqueness of solutions to non-linear inverse 
problems. Algebraic structures such as polynomial ide
als and their geometric counterparts, algebraic varieties, 
are useful for describing the solution set of an inverse 
problem. To a significant degree these methods are gen
eralizations of techniques used in linear algebra. For ex
ample, there are procedures akin to Gaussian elimination 
applicable to polynomial systems of equations. It is pos
sible to construct an algebraic basis, similar to the basis 
of a vector space, associated with the solution set of a 
non-linear inverse problem. As shown below, the meth
ods are global and do not depend on linearization about 
some initial model. Furthermore, they are enumerative, 
providing information about the dimension of the solu
tion set. In the case of a zero-dimensional solution set 
~consisting of a finite number of distinct solutions, one 
may bound the number of solutions to the inverse prob
lem. Finally, the approach outlined here may be used 
in the presence of noisy data and in conjunction with 
regularization penalty terms. This work was motivated 
by Everett's (1996) treatment of inverse problems in the 
form of polynomial equations and by a desire to gain a 
greater understanding of the solution sets of such equa
tions. To this end I consider the under-determined case 
in which there are an infinite number of solutions as well 
as the situation in which the solution set is empty. 
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METHODOLOGY 

Many important inverse problems may be formulated 
in terms of functionals or as partial differential equa
tions with undetermined coefficients. In the course of 
the numerical solution of these kinds of inverse problems 
one is usually compelled to discretize the defining equa
tions. The methods described here assume that such a 
discretization has been performed. As pointed out by 
Everett (1996), when considered as inverse problems, the 
discretized differential equations are often in the form 
of systems of polynomial equations. Under certain as
sumptions discretized functionals also may be put in the 
form of polynomial equations. Such equations are the 
domain of algebraic geometry, commutative algebra, and 
computational algebra. Much insight into inverse prob
lems may be gained from techniques developed in these 
areas. Furthermore, explicit computational procedures 
have been developed to address the existence, enumera
tion, and dimensionality of solutions to systems of poly
nomial equations. In this section we review the concepts 
that are key to understanding these useful algorithms. 
Algebraic geometry and commutative algebra are sub
jects of great depth, and it is not feasible nor desirable 
to provide an extensive review here. I merely wish to 
highlight the most important concepts in the context of 
solving inverse problems. 

Governing Equations and Discretization 

Functionals and Integral Equationi'.irs-t, con
sider an inverse problem in which the observed data d; 
are functionals of the Earth's structure 

d; = l f(x; 8
, x, u(x))dx, (1) 

where x;" denotes the location of the ith station, the 
vector x denotes position within the Earth, u(x) is the 
unknown function describing the spatial variation in a 
material property such as density, and the integration is 
over some volume of interest 0. In general, the integrand 
will be a non-linear function of the unknown u. A direct 
discretization of the integral (1) comes from evaluating 
it as a sum over a set of lattice points. In fact, there are 
accurate lattice summation techniques for the numerical 
evaluation of integrals (Sloan and Joe 1994). In its basic 
form the integral appears as a sum over the function value 
at N points of an integration lattice, 

(2) 

where Uj = u(xj) is the material property at lattice point 
j. 



Many functionals and integral equations occurring as 
inverse problems reduce to systems of polynomial equa
tions when they are discretized. In particular, many in
tegral equations which are derived from differential equa
tions of the form 

L[u(x,w)] + wu(x)u(x,w) = -s(x,w) 

where L signifies a self-adjoint, second-order, linear op
erator, u(x,w) denotes the wavefield, u(x) signifies the 
material property variation in the subsurface, w is the fre
quency, and s(x,w) is the source term. Using a Green's 
function and the representation theorem, it is possible to 
derive an equivalent integral equation (Stakgold 1979). 
Discretization of the equation produces a system of poly
nomial equations in the unknown internal field and ma
terial property variables. 

As an example consider the Helmholtz equation, which 
represents the wave-equation in the frequency domain, 

(3) 

This equation occurs frequently in acoustic (Miller et al. 
1987) and electro-magnetic wave propagation (Hohmann 
1987). Consider the material property variation as a sum 
of some specified prior structure u0 (x) and a deviation 
(perhaps a large deviation) from the prior structure u'(x) 

u(x) = uo(x) + u'(x). (4) 

Often we may choose the prior structure such that it is 
possible to construct a Green's function G(x, y, w ), which 
satisfies 

Substituting equation ( 4) into equation (3) and making 
use of equation (5) we may construct an integral equation 
for u(x,w) 

u(x,w) = j G(x,y,w) [s(y,w) +w2 u'(y)u(y,w)] dy. 

Noting that the first term on the right is simply the wave
field predicted by the prior model, the reference wavefield 
which is denoted u0 (x,w), we may write 

u(x.,w) = u0 (x.,w) + w2 j G(x.,y,w)u'(y)u(y,w)dy 

where we have taken x to be the location of a station 
X 8 • When this equation is discretized at the N points 
of an integration lattice it becomes a quadratic polyno
mial in u and u' at the lattice points. Given a set of 
M observations we arrive at M polynomial equations in 
approximately 2N unknowns (boundary conditions will 
reduce the number of unknowns somewhat). Regulariza
tion, as described below, will introduce additional poly
nomial constraint equations. An alternative discretiza
tion involves expanding u' in a series of rectangular basis 
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functions. If the blocks are taken small enough we may 
assume that u is essentially constant in each cell. We 
could then solve for the average value of u in each cell as 
well as the expansion coefficients. 

For more complicated non-polynomial integrands we 
might resort to a representation of the function f in a 
power series expansion in O"j, truncated to order l, we 
have 

(6) 

where Cijl are the expansion coefficients. The result is 
a set of polynomial equations for the unknown material 
properties O"j at each lattice point. The power series ex
pansion introduces an additional approximation which 
limits the range of applicability of this particular tech
nique. Because of this limitation, the range of appli
cability should be determined for each specific mverse 
problem. 

Differential Equation~t, consider an inverse 
problem in the form of a partial differential equation with 
variable but unknown coefficients. For the most part, the 
governing equations we employ are linear partial differ
ential equations (Menke and Abbott 1990), though this 
is not absolutely necessary. In the case of line~r partial 
differential equations we have the form 

(7) 

where L( u, 'V u) is a linear function that depends on some 
combination of u and its spatial derivatives as well as on 
a set of unknown coefficients. The kth time derivative on 
the left may be removed by a Fourier or Laplace trans
form, thus introducing a transform variable such as w or 
s. 

As an example of an equation in the transformed do
main, consider the two-dimensional modified Helmholtz 
equation associated with the interpretation of magne
totelluric (MT) data, for the transverse electric (TE) 
mode, 

(8) 

where J.lo is the magnetic permeability of free space, w 
is the angular frequency, u(x, y) is the conductivity dis
tribution in space, and u is the electric field associated 
with a steady state monochromatic (eiwt) excitation (Vo
zoff 1985). The existence question for electromagnetic 
induction has been answered for the one-dimensional in
verse problem (Parker and Whaler 1981), but is still 
an open question for full three-dimensional conductivity 
variations. We shall treat this equation in some detail is 
this paper, using it to illustrate the concepts we intro
duce. The forward problem associated with this partial 
differential equation is to find the electric field u at a set 
of 'observation' points given the distribution of material 



properties, in this case the conductivity u(x, y) and the 
necessary boundary values. The inverse problem entails 
finding the u(x, y) given a set of observations, usually at 
discrete points on the surface. 

The approach we shall take is to discretize the govern
ing differential equation and consider the forward and 
inverse problem for a lattice of points. There are a num
ber of ways to discretize continuous equations ranging 
from finite difference, finite element (Mikhlin 1979), and 
lattice gas methods (Doolen et al. 1990), to direct for
mulation on a point lattice (Toda 1981). We follow the 
approach of Everett (1996) based upon finite differences, 
in which the spatial derivatives are approximated as nu
merical differences. Furthermore, we shall assume that 
the time derivative has been removed either by transfor
mation or by considering a field u with the time variations 
eiwt. As described in Everett {1996) our finite difference 
representation of the linear partial differential equation 
takes the form of a linear system of equations 

Au=b. (9) 

As an example, consider the magnetotelluric equation 
(8), where A is anN x N block tridiagonal matrix of the 
form 

A= 

0 0 

0 
0 

(10) 

I and 0 are N x N identity and zero submatrices, re
spectively. There are N rows and N columns in the fi
nite difference grid. The sub matrices A;, i = 1, ... , N are 
tridiagonal matrices of the form 

-4 + iwpoh2u1; 1 
1 -4 + iwpoh2u2; 

0 

0 
0 

where the O'jk denote nodal conductivities u(x, y) for row 
j and column k, and h is the distance between finite 
difference nodes. As noted by Everett (1996) the right 
hand side of equation (9) also may be written in a par
titioned form b = (b1, ... , bNf where the subvectors b; 
are composed of combinations of force terms (if present) 
and Dirichlet and, possibly, Neumann boundary values, 
including the surface measurements. We also may write 
the electric field vectors u as (u1, ... ,uNf where each 
subvector u; = (uli, ... ,uNi)T contains the field compo
nents for the ith layer of the mesh. As in Everett (1996) 
the Oth layer of the mesh denotes the lower boundary and 
the Nth layer signifies the surface. The constraints on the 
interior values of both u(x, y) and u(x, y) are provided 
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by the boundary conditions, such as far-field conditions, 
and measured surface values in row N. For example, we 
might have observations for all surface nodes, all elements 
of UN, for several frequencies w = w1, ... , Wm. 

To solve the inverse problem we may work downwards, 
solving for UN _ 1 in terms of the boundary and measured 
values. Then, using back-substitution in equation (9), we 
solve successively for UN- 2 , UN_ 3 ... until u 1 . The final 
equation is a set of N polynomial equations in terms of 
the data, boundary values, and unknown nodal conduc
tivities. 

As an illustration and to motivate the ideas presented 
in this paper we shall consider the special case N = 2 in 
some detail. This is the same situation treated in Everett 
(1996). The field vector is u = ( u1, u2, u3, u4)T where 
u1 , u2 are unknown interior field values while u3 , u4 are 
fixed by surface Dirichlet and Neumann observations d1 

and d2. The entire system consists of four polynomial 
equations in six unknowns u1 , u2, u1, u2, 0'3, and 0'4 (Ev
erett 1996): 

iwp,oh2u1u1- 4ul + u2 + (d1 - b1) = 0 
iwp,oh2u2u2 + u1- 4u2 + (d2- b2) = 0 

iwp,oh2d1u3 + u1 + ( -4ch + d2 - b3) = 0 
iwp,oh2d2u4 + u2 + ( -4d2 + d1 - b4) = 0. 

If these equation were linear we would have techniques 
from linear algebra and linear inverse theory at our dis
posal to determine the existence and the uniqueness of 
the solutions. Furthermore, we could introduce con
straints or penalty terms and construct solutions to the 
regularized inverse problem. However, the equations are 
polynomial due to the presence of the product terms u;u;. 
Therefore, we must find other means to address the ex
istence and uniqueness issues. 

Numerical Lattices and Affine Varieties 

As shown above, starting from functionals, integral 
equations, or differential equations we often arrive at a 
system of polynomial equations in the field variables and 
material properties. Such equations are highly struc
tured and have been intensively studied (Kendig 1977, 
Dieudonne 1985, Mishra 1993). In this paper I shall ex
amine some of the techniques which are applicable to in
verse problems. To state the ideas and results efficiently 
we shall need a uniform and compact notation for polyno
mials in several variables z = (z1 , ... , Zn). A polynomial 
consists of a sum of terms 

aa E k, 

where k is a number field, a is a vector of integer indices, 
a= (a1. ... , an), and the monomial term za is given by 



The degree of the monomial term is denoted lal = 
a 1 + · · · + an and the total degree of the polynomial 
f, signified by deg(f), is the maximum lal such that 
the coefficient, a0 , is nonzero. The set of all polyno
mials in the variables z1, ... , Zn with coefficients in the 
number field k is symbolized by k[ z1 , ... , zn]. In mod
ern treatments the field k is usually unspecified. Here 
we shall always work with either the real (R) or com
plex (C) number fields. The advantage of working with 
C is that it is a closed field, any polynomial equation 
with complex coefficient has a solution in the field of 
complex numbers (Gallian 1990, p. 305). In all that 
follows we shall assume that k is algebraically closed, 
we shall take C as the number field. As an example, 
let us re-write the unknowns in the system of equations 
as Z1 = U1, Z2 = U2, Z3 = 0"1, Z4 = 0"2, Z5 = 0"3, and 
z6 = u4 and scale the conductivities u1, u2 by iwp,oh2 , 

0"3 by iwp,oh2d1, and 0"4 by iwp,oh2d2, so that the equa
tions become 

Z1 Z3 - 4z1 + Z2 + C1 = 0 
Z2Z4 + Z1 - 4z2 + C2 = 0 

Z5 + Z1 + C3 = 0 

Z6 + Z2 + C4 = 0 

where c1 = (d1-b1), c2 = (d2-b2), c3 = (-4d1 +d2-b3), 
and c4 = ( -4d2 + d1 - b4). 

A central concern in any inverse problem is the struc
ture of the solution set. Is there a unique solution, a 
finite set of solutions, or an infinity of solutions? Alter
natively, if there is no solution, can this be determined 
from the set of equations? For systems of polynomial 
equations, the primary object of study is the geometric 
quantity defined by the zero set. in the affine space kn, 

Definition An affine variety associated with the set 
of p polynomials II, ... ,!p in n variables, denoted 
V(II, ... , fv), is the set of points ((1, ... , (n) E kn for which 
/;((1, ... ,(n) = 0 for all12:: i 2': p. 

(Kendig 1977, p. 1). Intuitively, affine varieties are de
fined by the intersection of a number of hyper-surfaces 
defined by polynomial equations. In our example there 
are p = 4 equations in n = 6 unknowns, with the poly
nomials given by 

II = z1z3- 4z1 + z2 + c1 

h = Z2Z4 + Z1 - 4z2 + C2 

fa = Z5 + Z1 + C3 

/4 = Z6 + Z2 + c4 . 

Affine varieties consist of collections of points in affine 
space kn, which may define individual points, lines, sur
faces, or hypersurfaces, or some such combination. In 
general, affine varieties may kink and self-intersect and 
hence do not constitute differentiable manifolds because 
the tangent vector at a point may not be unique (Aus
lander and MacKenzie 1963). However, as we shall see, 
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because they are specified by polynomials these sets of 
points have a rich algebraic structure. For simplicity we 
shall only treat the case of affine space, which may be 
thought of as an n-dimensional normed space such as R n 

or en. There are some advantages working in projective 
space (Kendig 1977), where it is easier to handle points 
at infinity, but such an added complication will not be 
considered here. 

Ideals and the Ideal-Variety Correspondence 

The most important algebraic structure associated 
with solution sets of polynomial equations are ideals 
(Gallian 1990, p. 210). In terms of polynomials an ideal 
has three distinguishing properties (Cox et al. 1997, p. 
29) as indicated by the following definition. 

Definition A subset of all polynomials, denoted by I C 
k[z1, ... , zn], is an ideal if 0 E I, and for f, g E I and 
hE k[z1, ... , Zn] both f + g and h ·fare in I. 

The property that the product of an element in the ideal 
I with any member of the space k[z1, ... , zn] (i.e. any 
polynomial in the variables z1 , ... , Zn) results in an ele
ment in the ideal I may be new to those familiar with 
vector spaces. For our purposes one of the most useful re
alizations of this abstract definition is the ideal generated 
by a set of polynomials, that is, the sum of all possible 
products of the defining polynomials II, ... , fv with all 
other polynomials h; E k[z~, ... , zn] 

Note that such sums vanish on the variety defined by 
II = 0, ... , fn = 0 as well as at the zeros of the poly
nomials h;. Thus, the ideal may be thought of as the 
consequence of the equations/; = 0, i = 1, ... ,p on the 
space of all possible polynomials. An ideal is said to be 
finitely generated if II, ... , /pis a finite set; these polyno
mials are the ge.nerators of the ideal. In many respects 
an ideal is similar to a subspace in linear algebra. For 
example, an ideal is closed under addition and multipli
cation by polynomials (which take the place of scalars), 
and finitely generated ideals are similar to the span of 
a finite set of vectors. Carrying the analogy further, it 
may be shown that a variety depends only on the ideal 
generated by its defining equations, not on the particu
lar equations. This is akin to the fact that a subspace 
in linear algebra does not depend on the particular set 
of basis vectors used for its representation. The formal 
theorem for ideals is 

Theorem If (II, ... , /p) 
V(II, ... , /p) = V(g1, ... , Uq) 

Thus, as in linear algebra, we may change the basis set in 
certain ways without affecting the variety, the .zero set. 



This fact is key to our ability to manipulate the defining 
equations into a desired form. In our example, the set 

-z3Z5 + Z2- C3Z3 + 4zs + C1
1 = 0 

Z4Z6 + Zl - C4Z4 + 4z6 + C2
1 = 0 

Z5 + Z1 + C3 = 0 

Z6 + Z2 + C4 = 0, 

where c1' = c1 +4c3 and c2' = c2 +4c4, defines the same 
variety as the original system of equations. 

An ideal that is central to affine varieties and hence 
the solution set of a system of polynomial equations is 

Definition The ideal of a variety V C kn is the set 

I(V) = {! E k[z1, ... , Zn]} 

such that !((1, ... ,(n) = 0 for all ((1, ... ,(n) E V. 

Simply stated, the ideal of a variety V is the set of poly
nomials that vanish at every point of V. A proof that 
I(V) is in fact an ideal is given in Cox et al. (1997, p. 32). 
The most relevant properties of the ideal of a variety are 
that {ft, ... ,fv} C I(V), but equality, {ft, ... ,Jp} = I(V), 
does not necessarily hold. Consider our example: the 
variety defined by I = {It, h, fa, !4{, the set of zeros is 
identical to that of I 2 = {It 2, h 2, fa , f 4 

2}, while the ide
als differ (!2 may not contain ft for example). To recover 
equality we must consider the possibility of such 'roots' 
of our defining polynomials, which leads to the notion of 
the radical of an ideal (Cox et al. 1997, p. 173). 

Definition An ideal I is radical if fm E I for any integer 
m ~ 1 implies that f E I. 

Given an arbitrary ideal I we may introduce notation 
symbolizing the derivation of a radical ideal from I, the 
ideal containing the 'roots' of any polynomials of the form 
Jm, 
Definition For an ideal I C k[z1, ... , zp] the radical of I, 
denoted by VI, is the set 

{f: fm E I} 

for some integer m ~ 1. 

Algorithms are available for extracting the radical of a 
given ideal (Gianni et al. 1989, Eisenbud et al. 1992, 
Becker and Weispfenning 1993) and determining if a 
polynomial is a member of the radical of a particular 
ideal (Cox et al. 1997, p. 176). Radical ideals are ~II 
that is required to produce a one-to-one correspondence 
between affine varieties (zero sets) and an ideal gener
ated by the defining polynomial equations. That is, for 
any ideal we have V(I(V)) = V, but for radical ideals 
we also have that I(V(I)) = I. This is formalized by a 
landmark theorem of Hilbert's, a vast generalization of 
the fundamental theorem of algebra to multi-dimensional 
spaces (Kendig 1977,p. 124). 
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Theorem (Hilbert's Nullstellensatz) For 
f, /t, ... ,Jp E k[z1, ... , Zn], we have f E I(V(ft, ... , fv)), 
if and only if there exists an integer m ~ 1 such that 
fm E (!1, ... ,fp}· 

In light of this theorem the investigation of varieties, so
hition sets of polynomial equations, may be framed in 
terms of the algebra of ideals. As shown in the next three 
subsections, this shift of emphasis generates techniques 
of considerable power. 

Ideal Bases and Grobner Bases 

The importance of a basis for a polynomial ideal is tied 
to our ability to change such bases and carry out calcu
lations using the elements of the basis generating set. As 
with vector spaces, the question of the size of the basis 
set determines the practically of the computations. If we 
restrict our attention to polynomials in a finite number of 
variables the following theorem by Hilbert (Kendig 1977, 
p. 119, Cox et al. 1997, p. 74) assures us that basis set 
calculations are at least finite in length. 

Theorem (Hilbert's Basis Theorem) Every ideal 
I C k[zt. ... , zn] has a finite generating set. 

Thus, in describing our solution set we only need a fi
nite set of generators. As shown in the previous section, 
equivalent sets of generators (generators producing iden
tical ideals) produce the same variety (zero set). So there 
is a certain freedom in adopting a particular generating 
set of polynomials. Are some generating sets more desir
able than others? As we shall soon see, the Grobner bases 
(Buchberger 1985) have many useful properties when it 
comes to questions of the existence of solutions to poly
nomial systems of equations and addressing the issue of 
non-uniqueness. 

In simplest terms, a Grobner basis provides an algo
rithmic means to determine if a system of polynomial 
equations is solvable and to estimate the dimension of the 
solution set. If the solution set is 0-dimensional and con
sists of a finite number of points, a Grobner basis may be 
used to define the total degree of the polynomial system. 
This information may be used to bound the number of 
solutions to the inverse problem. Finally, using this spe
cial basis we may perform something akin to Gaussian 
elimination upon polynomial systems of equations. That 
is, using this basis set we may derive a 'triangular' set 
of polynomial equations in which the final equations are 
in the fewest number of variables (Mishra 1993). In the 
optimal case the final equation is a polynomial equation 
in a single variable, say Zn. This equation is solved for 
all values of Zn and these values are successively back
substituted into the previous equation, which is solved 
for Zn-1, and so on. 

An essential component of the reduction or systematic 
manipulation of the defining equations of a variety is an 
ordering of the monomial terms in the set of polynomials. 



For example, if we wish to perform some type of elimina
tion of variables we must work systematically from z1 to 
z2 and so on, until the final variable Zn. Such an ordering 
is standard in algorithms in linear algebra and necessary 
for systematic computation. When considering systems 
of polynomial equations attention must also be paid to 
the total degree of each term in the polynomial as well 
as to the variable ordering. In our illustrative example, 
z1 might be considered 'larger' than z2. However, is z2z4 
'larger' than zs? The idea of monomial orderings is to 
construct a systematic ordering of the terms in multi
variate polynomials. That is, given the vector of integer 
indices, a = (a1, ... ,an) introduced above, we must be 
able to order any two such vectors as greater than, less 
than, or equal to. In Appendix A two such monomial 
orderings are described. The first, lexicographic ordering 
is a dictionary type ordering in which the degree of the 
left-most variable, such as z1 takes precedence over all 
others. In graded lexicographic ordering, the other type 
considered here, total degree dominates. In the case of 
monomials of equal total degree we use lexicographic or
dering. 

The final ingredient needed to define a Grobner basis 
is the notion of an ideal of leading terms. For a particu
lar polynomial f = La a,.z01 the leading term, denoted 
LT(f) is that monomial a,.z01 with the greatest index 
vector a (with respect to the monomial ordering, such as 
lexicographic or graded lexicographic). In other words, 
LT(f) is the 'largest' or 'leading' term of the polynomial. 
For the illustrative system of polynomials, the leading 
terms of II,/2,/a,f4 are Z1Z3,Z2Z4,z1, and z2 with re
spect to graded lexicographic ordering. For any ideal I 
we can construct the ideal of leading terms which is de
fined as follows. 

Definition The ideal of leading terms, denoted by 
(LT(I)), is the ideal generated by the set ofleading terms 
of the elements of I (symbolized by LT(I)). 

One fundamental property of the ideal of leading terms 
(LT(I)) is that it is a monomial ideal, an ideal gen
erated entirely by monomials rather than by the more 
complicated polynomials. Another critical fact is that 
there are elements Yl, ... , 91 E I such that (LT( I)) = 
(LT(g1), ... , LT(gl)) (Cox et al. 1997, p. 73). Thus, the 
criterion for an ideal to be a Grobner basis is based upon 
the following property of its leading terms: 

Definition (Grabner Basis) A finite subset G = 
{g1, ... , g1} of an ideal I is a Grabner basis if 

(LT(gl), ... , LT(g1)) = (LT(I)). 

Note that this is not a trivial statement. Due to possible . 
cancellation, the ideal (LT(I)) may contain generators 
contributed by lower degree terms from g1, ... , g1, mono
mials other than the those in (LT(gl), ... , LT(g1)). The 
S-polynomials, used to quantify such cancellations in a 
basis set, are introduced in Appendix B. 
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It has been established that every non-zero ideal I has 
a Grobner basis and that any Grobner basis is a valid 
basis for I (generates I) (Mishra 1993, p. 49). Appendix 
B outlines how a Grobner basis is derived from a defin
ing set of polynomial equations. A specific procedure, 
Buchberger's algorithm, is given for calculating the ba
sis elements. There are now numerous commercial (ax
iom, maple, macsyma, mathematica, reduce, etc.) and 
public domain (cocoa, macaulay, mas, magma, singu
lar etc.) software packages, pri.marily computer algebra 
software, that compute Grobner bases and perform other 
tasks in computational ideal theory. For descriptions and 
information on accessing these routines refer to Adams 
and Loustaunau (1994), Eisenbud (1995), and Cox et al. 
(1997). 

Unlike linear systems, the size and complexity of an 
ideal basis depends on the monomial ordering adopted. 
For example, lexicographic Grobner bases are often much 
more difficult to compute than others such as graded or
ders. If the ideals are 0-dimensional, corresponding to 
varieties defined by a finite set of points, there is an ef
ficient technique for converting a Grobner basis with re
spect to some order into a lexicographic order (Faugere 
et al. 1993). An advantage of the approach is that it 
only requires methods from linear algebra. The next two 
sections discuss two important uses of ideal bases. As we 
shall see, different monomial orderings may be used to 
examine various aspects of a solution set. 

Existence: Elimination Ideals and Solvability 

In this subsection ideal bases are used to address the 
existence question. That is, does the defining system of 
polynomial equations have any solutions at all? We also 
explore how the Grobner basis algorithm in some sense 
generalizes Gaussian elimination. Finally, we describe a 
more numerical approach to solving polynomial systems 
of equations. 

First consider the question of the existence of a solu
tion. It turns out that the existence question is simply 
stated in terms of the Grobner basis G of the ideal I: 

Theorem Given polynomials II, ... , fp there are no so
lutions to the system II = 0, ... , fp = 0 in kn if and only 
if1 E G 

(Adams and Loustaunau 1994). The proof of this follows 
directly from a weak form of Hilbert's Nullstellensatz pre
sented earlier. This says that if we compute the Grobner 
basis, with respect to any monomial ordering and find 
that it contains the constant 1, no solution exists. 

In order to actually calculate solutions we must exam
ine the notion of eliminating a variable in more detail. 
There are two processes involved in solving a system of 
equations in many variables. First, one must isolate a 
particular variable, say Zn, in a single equation. Next, 
having found a value of Zn that solves the single equation 



we must extend the solution to the full system. That is, 
the value is back-substituted into the full system of equa
tions and the reduced set is used to find Zn-1· The pro
cedure is repeated until all values of z1, ... , Zn are found. 
In what follows only elimination will be examined. For 
details on solution extension the reader may consult more 
complete sources. A criterion for the extension of a solu
tion is given in Mishra (1993) for example. 

Given a polynomial ideal I, the elimination of a vari
able z; consists of finding the intersection of I with the 
space of all possible polynomials in z;. It may be proven 
that this intersection is in fact an ideal (Mishra 1993, p. 
137) known as the lth elimination ideal. 

Definition Given an ideal I C k[z1, ... , Zn] the lth elimi
nation ideal, denoted I, is the ideal k[z1+1, ... , zn] defined 
by 

I, =In k[zl+1' ... , Zn]· 

The elimination ideal I, consists of all consequences of 
f1 = 0, ... , /p = 0 that eliminate the variables z1 , ... , z,. 
Translated into the algebra of ideals we find that elimi
nating z1 , ... , z, means finding nonzero polynomials in the 
lth elimination ideal I,. 

The primary computational question is: how do we 
find polynomials in the elimination ideal of I? It turns 
out that Grobner bases, coupled with lexicographic or
dering, automatically provide the needed polynomials 
(Adams and Loustaunau 1994, p. 65). In particular, 
such an ordering produces a 'triangular' system of poly
nomial equations from which the we may immediately 
determine if elements of the elimination ideal exist and 
may be extended. 

Theorem Let I be a 0-dimensional ideal and G = 
(g1, ... , gm) its reduced Grabner basis with respect to lexi
cographic ordering with z1 < z2 < ... < Zn. Then we can 
order g1, ... , gm such that g1 contains only the variable z1, 
g2 contains only the variables z1 and z2, g3 contains only 
the variables z1, z2, and Z3 1 and so forth until gm. 

Thus, when a finite solution set exists, a Grobner ba
sis with respect to lexicographic ordering produces an 
ordered set of equations in which the first equation con
tains only z1 , the second equation contains only z1 and 
z2, and so on. As noted above, if there is no solution 
set the Grobner basis will contain the constant {1} as 
well. If the solution set is not finite, the Grobner basis 
with respect to lexicographic ordering will not contain 
an equation solely in z1 . Rather, the first equation will 
contain z1 and a subset of z2, ... , Zn. We can illustrate 
these ideas by considering our example problem again. 
A Grobner basis with respect to pure lexicographic or
dering is identical to the basis G derived in Appendix B 
using graded lexicographic ordering: 

g1 = z1 + zs + c1' 

g2 = Z2 + Z6 + C2
1 
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g3 = Z4Z6 + C4Z4 + Z5- 4z6 + C3
1 

g4 = Z3Z5 + C3Z3- 4zs + Z6 + C4
1

• 

Note that the final two equations do not contain the vari
ables z1 and z2 which are the electric field variables u1 

and u2 • Thus, the final two equations are relationships 
that contain only the conductivities a-1, a-2, a-3, and a-4. 
These equations are similar to those obtained by Everett 
(1996) upon explicit elimination of u 1 and u 2 from the 
original system. Also note that the Grobner basis does 
not contain a constant polynomial, indicating that the 
system is solvable. However, the system is not finitely 
solvable; the variety is not 0-dimensional, because it can
not be put in a triangular form, that is, there is no one 
equation in a single variable. There are an infinite num
ber of solutions which form a variety of some dimension. 
Characterizing this dimension is the subject of the next 
section. 

The above theorem is satisfying from theoretical point 
of view, but as a way to find solutions it runs into com
putational problems (Adams and Loustaunau 1994). At 
present, Grobner bases constructed using lexicographic 
ordering are only computationally feasible for small prob
lems. There is some evidence that parallel computation 
and approaches taking account of system sparsity could 
extend the range of the calculations, but this remains 
to be seen. The source of some of this difficulty stems 
from trying to derive a single polynomial equation in one 
unknown. The total degree of such an equation will be 
quite high and the coefficients of the equation will vary by 
many orders of magnitude. Consider the factored form 
of such an m-degree polynomial equation for z,: 

(z,- rl)(z1- r2) · · · (z1- rm).= 0 

where the r; denote the roots. The constant term will 
consist of the product of the roots r1 · r2 · · · Tm while 
the coefficient of the term z1m will be L Similarly, the 
other coefficients will consist of sums of various products 
of the roots (Tignol 1988). Depending on the size of the 
roots, the terms likely to vary greatly in size for m large. 
In order that the roots may be determined accurately, 
extremely high precision is required leading to storage 
problems and excessive computation manipulating coef
ficients. It should be emphasized that such problems are 
not associated with graded Grobner bases, those which 
order by monomial degree first, because such orderings 
do not produce triangular systems. Graded orderings are 
used in the next section to extract information concern
ing polynomial varieties. Finally, Grobner basis calcula
tions are efficient when a finite number field, modulo a 
large prime number for example, is used. There are tech
niques for relating calculations made using several such. 
number fields to a Grobner basis with respect to infinite 
fields such as the rational numbers Q or R (Manocha 
1994). 

Feasible approaches to solving systems of polynomial 
equations are largely numerical and work directly with 



the defining equations. For example, there are purely 
numerical approaches based upon Newton iteration and 
deflation (Dobbs and Hanks 1992). A Newton-Raphson 
algorithm is used to find a root ( = ((t, ... ,(n), and 
then the linear factors Zt - ( 1, ... , Zn - (n are succes
sively divided out of the equations using polynomial divi
sion. A more sophisticated approach uses a combination 
of multi-polynomial resultants and matrix computations 
(Manocha 1994). Such an approach follows upon early 
work in algebraic geometry (Macaulay 1902). The under
lying idea is to take the polynomial system of equations, 
f1 = 0, ... , /p = 0, say of maximum order d, in the vari-
ables z1, ... , Zn and write it as a matrix equation 

M(zl)z = 0 

where M( z1) is a square matrix of polynomials in z1 and 
z is a vector containing monomial multipliers in the other 
variables z2, ... , Zn · 

1 

z= 

The condition for the existence of a non-trivial solution of 
the above system is that the determinant of M(zl) van
ish. The matrix M(zl) may be decomposed into terms 
of various orders in Zt 

where M; are matrices with numerical entries and I is 
the maximum degree of z1 in M( Zl). The equation may 
be normalized if we multiply by M1-l, assuming that it 
is non-singular. The singular case is treated in Manocha 
(1994). Denote the transformed matrices by 

M; = M1-1M; 

similarly for M(zt). For a non-trivial solution to exist 
the determinant of the matrix M~t) must vanish. It 
turns out that the determinant of M(zt) is a polynomial 
whose roots correspond to the eigenvalues of the matrix 

CL 
Im 0 
0 Im 

P= 

-Mt -M2 

(Manocha 1994). One advantage of this approach is that 
we never derive a single polynomial equation for z1. Fur
thermore, we may make use of techniques from linear 
algebra. The computation requirements and numerical 
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characteristics of such techniques are well understood. 
One difficulty of this approach is that the order of the 
matrix P grows exponentially with the order and num
ber of equations. This fact is offset by the sparseness of 
the matrix that often increases with the size of the prob
lem. Sparse matrix eigen-decomposition techniques can 
now treat very large problems (Sehmi 1989). 

Non-uniqueness: The Dimension and Degree of a Va
riety 

The case of finite solvability corresponds to an affine 
variety of 0-dimension, consisting of a finite collection 
of points. The more general case of an infinite solution 
set of some positive dimension might be encountered in 
practice. As in the previous subsections, the geometric 
question of the dimension of a variety may be expressed 
in terms of the algebra of ideals. 

First consider the dimension of a variety V defined 
by the vanishing of monomials. This case provides some 
insight into the calculation of the dimension of a general 
polynomial variety. Furthermore, the dimension of an 
arbitrary variety can be related to a specific monomial 
ideal: the ideal ofleading terms (LT( I)). Now the variety 
defined by a single monomial in a single variable, say 
Zk "'k = 0, is a coordinate hyperplane, denoted by Hzk. 
The variety defined by the vanishing of a single monomial 
in several variables, 

consists of the union of such coordinate hyperplanes. A 
variety defined by a set of multivariable monomials is 
the intersection of such unions. Because intersections 
are distributive over unions and the intersection of co
ordinate hyperplanes is a coordinate hyperplane we may 
write V(J) as a union of coordinate subspaces 

V(J) = V1 U · · UVp. 

The dimension of the variety is defined as the largest of 
the dimensions of the subspaces V k. 

Definition If V(J) is the union of a finite number of lin
ear subspaces of kn, the dimension of the variety, dimV, 
is the largest of the dimension of these subspaces. 

The definition of the dimension of a monomial variety, 
while simple to compute, does not carry over to general 
varieties characterized by sets of polynomials. In order 
to arrive at a workable algorithm we must pursue an al
ternative strategy. The key observation, first made by 
Hilbert, is that the dimension of a variety V can also be 
characterized by the growth, as a function of total de
gree, of the number of monomials not contained in the 
ideal J(V). In fact, the dimension is given by the degree 
of a polynomial characterizing the number of monomials 
not in J(V). First we introduce a concise notation for 



the set of exponents of monomials not in I, known as the 
complement of the monomial ideal, 

C(I) ={a E zn : za rt I} 

where z denotes the integers and zn signifies an n
dimensional vector of integers. The relationship between 
the complement of the monomial ideal and the dimen
sion of the variety is given as follows (Cox et al. 1997, p. 
436). 

Theorem The dimension ofV(I) is the dimension of 
the largest coordinate subspace in C(I). 

The importance of this theorem is that there are explicit 
formulas for the total number of monomials in C(I). For 
example, the number of monomials of a total degree ~ s 
in k[z1, ... , zm] is given by the binomial coefficient, and is 
a polynomial of degree m in s 

(m + s) (m + s) 1 s = m = m!(s+m)(s+m-1)···(s+1). 

The intuitive idea for calculating C(I) is that the ele
ments that are not in C(I), those monomials in I, are 
contained in a finite number of translates of the octant 
zn. 

As an example, consider the ideal generated by the 
monomialsz15 z2

2 and z1 3 z2 4 (Figure 1). The monomials 
contained in I = ( z1 5 z2 2, z1 3 z2 4 } are denoted by the filled 
squares and the shaded region in Figure 1. The monomi
als in C(I) are those found in hyperplanes between the 
boundaries of the octant zn and the boundaries of the 
set of oct ants (quadrants in the example) translated to 
(5,2) and (3,4). In Figure 1 these missing monomials, up 
to degree 6, are indicated by crosses. For a particular 
total degree, the number of such trapped monomials is 
given by the following theorem (Cox et al. 1997, p. 442). 

Theorem If I C k[zt, ... , Zn] is a monomial ideal with 
dim V(I) = d, then for all s sufficiently large, the number 
of points in C(I) of total degree ~ s is a polynomial of 
degree d in s that can be written in the form 

where ai E Z for 0 ~ i ~ d and ao > 0 

This polynomial function is known as the affine Hilbert 
polynomial of I and is denoted by H P1(s). 

In order to move on to general varieties, defined by 
systems of polynomial equations, there is a critical result 
that depends on how the monomials are ordered. In par
ticular, a graded ordering is necessary because under this 
ordering we can directly relate the Hilbert polynomial of 
I to a monomial ideal (Cox et al. 1997, p. 448). 

Theorem Let I C k[zl, ... , zn] be an ideal. The mono
mial ideal (LT(I)}, constructed using a graded order on 
k[z1 , ••. , zn], has the same affine Hilbert polynomial as I. 
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It also may be shown that both the ideal I and its radical 
..jj have affine Hilbert polynomials of the same. degree 
(Cox et al. 1997, p. 449). Gathering facts, we find a 
suggestion that the degree of the affine Hilbert polyno
mial contains geometric information about the variety V. 
First, it is an integer that is invariant for a large collection 
of ideals defining the variety, namely V(I), V( 0) and 
all varieties in between. Furthermore, the degree of the 
affine Hilbert polynomial is the same for the monomial 
ideal (LT(I)} and I. Finally, we know that for mono
mial ideals the affine Hilbert polynomial corresponds to 
our intuitive notion of the dimension of the variety. For 
these reasons the dimension of a general affine variety is 
often defined in terms of the affine Hilbert polynomial. 

Definition The dimension of an affine variety V C kn, 
denoted dim V, is the degree of the affine Hilbert poly
nomial of the ideal I= I(V) C k[z1, ... , Zn]· 

How do we go about computing the dimension of a vari
ety V(I)? First, we compute a Grebner basis for I using 
a graded lexicographic ordering. From the definition of 
a Grabner basis we know that if {g1, ... , gp} generate a 
Grebner basis of I then (LT(gl), ... , LT(gp)} = (LT(I)}. 
We then compute the maximum dimension d of the coor
dinate subspaces contained in V( (LT(I)} ). Because this 
is a monomial ideal this is easily done, as indicated at the 
beginning of this subsection. Consider our example prob
lem and the Grebner basis with respect to graded lexico
graphic ordering. The ideal of leading terms is generated 
by (z1, z2 , z4 z6, Z3Z5} with the corresponding coordinate 
subspaces 

The dimension of the zero set of the system of polynomial 
equations is given by the dimension of this quantity. 

One may devise a systematic algorithm for computing 
the dimension of a variety given the monomial generating 
set of its ideal I (Cox et al. 1997, p. 431). The algorithm 
is outlined here and illustrated by the example prob
lem. For an ideal generated by monomials m1, ... , mp, 
I= (m1, ... , mp}, the variety consists of the common zero 
set of the defining monomials, that is, the intersection of 
the zero sets of all the components 

p 

V(I) = n V(mi)· 
i=l 

From the above definition, the dimension of V(I) is the 
component that has the largest dimension. The basic 
idea is to find a collection of variables Zi, , ... , z,. such that 
each monomial contains at least one variable in the set. 
Then the coordinate subspace specified by the vanishing 
of these variables is contained in V(I). The largest such 
subspace is the one defined by the vanishing of the fewest 
variables. Therefore we should try to find the smallest 
of all such sets. Specifically, denote the set of subscripts 



occurring in monomial mi 

Mj = {i E (1, ... , n): Zi divides the monomial mj} 

For our example problem m1 = z1, m2 = z2, m3 = Z4Z6, 

and m4 = Z3Z5 so that · 

M1 = {1} 
M2 = {2} 
M3 = {4,6} 

M4 =:= {3, 5} 

Now consider all subsets of {1, ... , n} that have elements 
in common with every set M1 

Mcommon = {J C (1, ... , n): J n Mi f:. 0} 

Let IJI denote the number of elements in any set J from 
Mcommon. Then it may be shown (Cox et al. 1997, p 
431) that dimV(I) = n- min(IJI). 

For our small example the elements of Mcommon are 
sets with 4 members: (1, 2, 4, 3), (1, 2, 6, 3), (1, 2, 4, 5), 
and (1, 2, 6, 5). Hence, the variety determined by our 
small system of polynomial equations has dimV(I) = 
6 - 4 = 2. In such a simple case we could compute the 
dimension almost by inspection. However, in actual ap
plications there will be a large number of equations and 
variables and we must rely on symbolic computational 
algorithms such as those mentioned above. 

As might be expected, such a general concept as di
mension may be approached from a number of directions. 
This is true in algebraic geometry and there are a number 
of other definitions for the dimension of an affine vari
ety (Eisenbud 1995). For example, there is the algebraic 
Krull dimension (Kunz 1985, Eisenbud 1995, p. 227). 
There are also more geometric approaches related to non
singularity and the idea of a manifold (Kendig 1977, p. 
163). Our approach falls more into the class of computa
tional techniques based upon the codimension of a variety 
and the number of independent variables with respect to 
the ideal I (Mishra 1993, p. 141). 

The Hilbert polynomial H P1(s) also may be used to 
calculate the degree of the ideal I (Giusti 1989). In par
ticular, the coefficient ao in the polynomial 

is equal to the degree of I. The degree of I is a gen
eralization of the total degree of the defining equation 
of a hypersurface. For the case of an ideal I generated 
by a set of homogeneous polynomials f1, ... , /p the de
gree of I is the product degfl · · · deg/p. Homogeneous 
polynomials may be thought of as defining varieties in a 
projective space. In projective space solutions or roots at 
infinity are well defined (Kendig 1977) and the degree of 
the defining polynomials may be directly related to the 
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zero set. For general 0-dimensional ideals the degree is 
an upper bound on the number of solutions to the set of 
defining equations. That is, there may be fewer solutions 
because we do not consider roots at infinity. 

Regularization Polynomials 

It is quite common to treat the issue of non-uniqueness 
by introducing some form of regularization (Menke 1989, 
Parker 1994). Regularizing non-linear inverse problems 
is complicated by the presence of local minima (Vasco 
1998). The usual approach is to introduce a function that 
measures some quantifiable attribute of the model such as 
model norm or model smoothness. Often these attributes 
are described by quadratic functionals defined over the 
model space. For example, we may wish to obtain a 
model that lies close to a prior structure z0 as measured 
by the sum of the squares of the deviations 

n 

lz- z0 1 = ~)z;- z0i) 2
• 

i=l 

Another common form of regularization is model rough
ness that is also typically a quadratic form such as 

n 

IV'2zl = ~)Ll2 zi) 2 , 
i=l 

where Ll2 is the second spati~l differencing operator. For 
ann= l xI 2D grid of cells Ll2 zi is given by 

which is a measure of the difference in parameter val
ues between block i and blocks i - 1, i + 1, i - l, and 
i + l, where l is the number of blocks in a row of cells. 
There are a number of ways to combine such penalty 
terms and the data equations. For example, we could 
minimize the model norm and/ or the model roughness 
subject to the satisfaction of the data equations. Using 
the method of Lagrange multipliers (Menke 1989, Parker 
1994) produces a system of polynomial equations defin
ing an affine variety (Watson and Morgan 1992). Al
ternatively, we could simultaneously minimize both the 
quadratic regularization measures and the deviation of 
our data equations from zero (in a squared-error sense), 
again arriving at a system of polynomial equations. The 
point is that the algebraic techniques presented above are 
still applicable when considering the regularized inverse 
problem, for most commonly used regularization terms, 
or when minimizing data misfit. 

Consider a specific application of the Lagrange multi
plier approach to the system of equations (9). For this 
example let's seek the model closest to the prior struc
ture u0 (x, y) that fits the data. We shall assume that the 
constraint equations (9) have been modified to account 
for the inclusion of the boundary data. For example, in 



our small problem we have substituted observed values 
d1 and d2 for nodal electric field variables u3 and U4. 

There are two consequences of this: we have fewer elec
tric field variables and also there will be conductivities 
in the new 'right-hand-side', denoted by b'. In order to 
find the model nearest to our prior model that satisfies 
the modified constraint equations we minimize 

M 

W(u) = 'L:(u;- u; 0)2 

i=l 

subject to the M constraints, 

U;(u, u) =I: A;/(u)uj- b/(u) = 0, 
j=l 

where M signifies the total number of grid points (N2 

for an N x N grid). The primes denote the fact that 
we are working with the modified constraint equations 
rather than with equation (9). The grid values are num
bered sequentially using a single index rather than two 
indices as before. The notation A;/ ( u) and b/ ( u) is used 
to specify that the coefficient matrix and the modified 
right-hand-side depend on the model parameters. Us
ing Lagrange multipliers .A; we may write the necessary 
equations for a constrained extrema of W(u), 

M 

\i'W(u) +I: .A;\i'U;(u, u) = 0 

U;(u,u)=O, i=l, ... ,M 

where the gradient contains partial derivatives with re
spect to both u and u variables. In total, there are 3M 
equations in 3M variables (u;, u;, .A;), i = 1, ... M. 

NUMERICAL ILLUSTRATION 

Penalized Helmholtz Equation 

As a prelude to the analysis of a set of magnetotelluric 
field data, consider a numerical test case. As in Everett 
(1996), consider the Helmholtz equation defined over a 
region of the x, y plane 

\72u + qu(x, y)u = 0 

where q is a real scalar. Both Dirichlet (u) and Neumann 
(oujoy) data are available on the surface (y = 0) and 
Dirichlet data are given on the remaining three bound
aries. Assume that we have written out the discrete equa
tions A( u )u = b for N R rows of nodes in the y (depth) 
direction and Nc columns of nodes in the x (horizontal) 
direction, a total of N = NR * Nc unknown conduc
tivities and some subset of unknown field components 
u. As described in Everett (1996) and outlined earlier, 
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given enough data, we may write the field components 
in the top layer in terms of the boundary values and the 
data. Using a vector form of back substitution, the entire 
system of equations may be converted to a system of N
linear polynomial equations in the conductivities, data, 
and boundary values. Explicitly, the equations for a 2 x 2 
grid are 

Au1 + Bua + Cu4 + Du1u3 + E = 0 
Fu2 + Gua + Hu4 + lu2u4 + J = 0 

where the coefficients A through J depend on the bound
ary values (including the surface data), the mesh interval 
h, and the scalar q. The system of polynomial equa
tions is written symbolically as F(u) = 0 as in Everett 
(1996). Everett (1996) worked directly with the con
straint equations, adding more frequencies until the prob
lem was over-determined. As with linear problems, the 
constraint equations may be nearly singular and hence 
unstable with respect to small perturbations in the coef
ficients. A penalized least squares approach is somewhat 
more robust and less influenced by random errors in the 
data. Specifically, we include a norm penalty and mini
mize the composite quantity 

N M NR 

W(u) = v L:(u;- u;
0

)
2 + 'L:'L:Fi/(u) (11) 

i=l i=l j=l 

where M denotes the number of data and v is the trade
off parameter controlling the importance of remaining 
close to the prior model u0 relative to fitting the data. It 
would be no more work to consider a roughness penalty 
term such as the first or second derivative operators. The 
necessary equations for an extremum are given by the 
vanishing of 

N M NR 

\i'W(u) = v 'L:(u;- u;0
) · \i'u +I: I: Fij(u) · \7 F;j(u) 

i=l i=lj=l 

where the gradient is with respect to the conductivity 
variables. This is a system of N N R-linear polynomial 
equations in N unknowns. 

For the sake of illustration, we consider the inversion 
of a collection of synthetic values. In particular, con
sider the 2 x 2 difference grid and assume that we have 
both Dirichlet and Neumann data at the surface nodes 
for M = 10 frequencies q;. The frequencies start at 1 Hz 
and vary geometrically by factors of 1.5. The situation 
is somewhat similar to the inversion of the Helmholtz 
equation using noisy data described by Everett (1996) 
except that our penalized least squares approach is fol
lowed. Note that adding more data does not change ei
ther the degree or the number of defining equations. The 
additional data are present in the coefficients of the poly
nomial equations as sums of M products of the individual 

. coefficients (A through J). The model parameters used 
to generate the data set are u1 = 2, u2 = 2, ua = 4, 0"4 = 4 



and the prior model u0 consists of a uniform background 
with (u01,u0

2,u03,u04) = (1.5,1.5,3.5,3.5). We use 
techniques from the previous subsections to determine 
the dimension of the solution set and, if possible, esti
mate a finite set of solutions. 

First, consider an inversion without regularization, in 
which a penalty term is not included. Using a graded 
lexicographic Grabner basis and methods from the pre
vious subsection, we find that the solution set is two
dimensional. That is, even though we have 20 equations 
(two for each frequency) constraining four unknowns the 
problem is still undetermined. Furthermore, a Grabner 
basis representation using lexicographic ordering is not 
in a triangular form. In particular, the basis elements 
contain the cross product terms u1 · u3 and u 2 · 0'4. Both 
of these calculations were carried out in a fraction (0.63) 
of a CPU second on a workstation, using the package 
Singular from the University of Kaiserlautern (Cox et 
al. 1997). The non-uniqueness is suggested by Figure 2, 
which displays six two-dimensional sections through the 
model space. In each section, the sum of the square ofthe 
components of 'VW(u) is shown. The vanishing of these 
components is a necessary condition for the least squares 
solution. The sections are all through the solution to the 
inverse problem (u1,u2,0'3,u4) = (2,2,4,4). There is a 
trade-off between 0'1 and the conductivity of the over
lying node u3 . In addition an infinite number of com
binations of the conductivities u2 and u4 minimize the 
misfit to the data. Our set of observations do not allow 
us to resolve the depth variation in conductivity. Thus, 
our inverse problem seems to be over-determined, there 
are more equations than unknowns. However, due to the 
distribution offrequencies (q;), trade-offs are present and 
there is no unique solution. ' 

Next consider the effect of including a regularization 
penalty term. The weighting associated with the penalty 
term is taken to be quite small, 10-6 , later we shall ex
plore the result of varying this weighting. In Figure 3, 
the sections through the model space, the trade-offs be
tween u 1 and u3 and between 0'2 arid 0'4 are no longer 
evident. Now the graded lexicographic Grabner basis cal
culations indicate that the solution set is 0-dimensional. 
This means that there is a finite number of solutions to 
the above system of equations. The degree of the ideal is 
calculated to be 25, providing an upper bound on the to
tal number of solutions. For such a small problem a lexi
cographic Grabner basis can be used to find the solutions. 
The Grabner basis consists of four elements in a strongly 
triangular form. Thus, we have reduced the polynomial 
system to a sequence of one-dimensional problems that 
may be solved successively for the conductivities. The 
Grabner basis elements are 

25 

L c1(i) · 0'4; = 0 
i:O 

24 

0'3 + L c2(i) · 0'4; = 0 
i=O 

13 

6 6 

0'2 + LLc3(i,j) · 0'3i0'4i = 0 
i=O j=O 

2 2 1 

0'1 + L L L c4(i, j, k) · u2;0'3j u/ = 0 
i=O j:O k:O 

where c1(i), c2(i), c3(i), and c4(i) are known numerical 
coefficients produced by Buchberger's algorithm. Of the 
25 roots associated with the first equation only three re
sulted in real conductivities, giving u4 equal to either 
1.13, 3.88, or 5.06. The second Grabner basis element is 
only first degree in the unknown u 3 . Because, the first 
equation gives three possible values for u4 we merely sub
stitute them into this equation and easily solve for u3 . 

Possible values for u 3 are 1.13, 3.87, and 636.14. The 
third basis element is only first order in u2 and sixth or
der in both u3 and 0'4, After substituting the previously 
determined values for 0'3 and u4, we find that only the 
first two values produce positive estimates for u2 : 2.78 
and 2.07. Lastly, the equation for u 1 is in the same form 
as those for u2 and 0'3, linear in the unknown conduc
tivity ( u!) Only the second root gives a positive value of 
u 1 : 2.06. Thus, we find a single physical solution for the 
conductivities 0'1, 0'2, 0'3, 0'4 which is closest to our prior 
model and which fits the data: 2.06, 2.07, 3.87, and 3.88. 

For comparison, a variable metric or quasi-Newton 
method (Gill et al. 1981) was used to minimize the 
function W(u) numerically. We are guided by the in
formation provided by the graded Grabner basis repre
sentation. Specifically, the basis calculations show that· 
a finite solution set indeed exists. Furthermore, the de
gree bound of 25 provides an upper bound on the total 
number of solutions possible. The approach is to find a 
solution using the numerical scheme and then to deflate 
the system by dividing out the root to produce a poly
nomial system of lower total degree. Note that because 
we are only interested in real positive solutions we need 
only deflate the roots that are real and positive. This 
is important because there are generally many fewer real·· 
positive roots. As in the lexicographic Grabner basis cal
culations we find a single positive real solution. The es
timated values for u1, 0'2, 0'3, u4 are 2.09, 2.08, 3.84, and 
3.84 respectively. 

In order to evaluate the influence of data errors on the 
parameter estimates, various levels of Gaussian noise are 
added to the synthetic field values. The normal deviates 
are zero mean with a standard deviation proportional to 
a fixed percentage of the synthetic field value. A total 
of 25,000 noisy field values were generated at each er
ror level. The errors propagate from the field values to 
the coefficients of the defining polynomial equations. Be
cause the coefficients enter as products, the error propa
gation will not be linear. Adding noise to the field values 
perturbs the coefficients resulting in perturbed zeroes of 
the polynomial equations. In general real roots become 
complex and roots formerly complex may become real. 
Because the components of u are not complex we need a· 



working definition of a 'real' root. A root is defined to 
be real if its imaginary component is 1/1000th of its real 
part and not greater than 0.001 in magnitude. Further
more, all elements of u must be positive and only positive 
roots are retained. 

In Figure 4 the 'real' positive roots of u1 are shown 
for four different noise levels. When the data are con
taminated by very little noise (Figure 4a) most values 
are near the actual value of u 1 used to generate the syn
thetic field values (2.0). Due to the regularization, there 
is a bias to values slightly less than 2. Increasing the 
noise level to just 3% produces a dramatic shift in the 
configuration of solutions (Figure 4b). Many solutions 
have u 1 equal to values near 2 but a larger number have 
u1 around 3. Note how the results of the penalized least 
squares approach contrast with the distribution of solu
tions found by Everett (1996). At 1% noise he found a 
great scatter of values for u 1 with no significant clustering 
of solutions. This result illustrates the greater stability 
of a penalized least squares approach with respect to per
turbations in the coefficients A through J. When 10% 
noise is added to the synthetic field values the number 
of solutions clustering around u1 = 2 is much less than 
the number of solutions containing u1, slightly l.ess than 
3 (Figure 4c). When the noise level is equal to the signal 
(Figure 4d) most solutions have u1 = 1.5, the value of our 
prior model u 0 

1 . Lastly, the distribution of solutions for 
all four parameters are shown in Figure 5 for a noise level 
of 5%. All estimates cluster about one or more distinct 
values. Note the significant influence ofthe penalty term 
in biasing the clusters away from the actual u values. 

The preceding synthetic tests were conducted with a 
penalty weight of 10-6 . Four sets of inversion were also 
conducted in which the penalty weight varied by ten or
ders of magnitude (Figure 6). For each of these sets the 
noise in the field values was 5%. The structure of the so
lution set varied little for a wide range of penalty weight
ing, over six orders of magnitude, from 10-6 to 1 (Figures 
5a and 6a). The penalty weight had to be raised to very 
large values (Figure 6b) before any significant change in 
the solution set was noted. At around v = 1010 the so
lutions begin to cluster around the prior estimate u0 

1 . 

As indicated in Figure 4, this behavior may be strongly 
influenced by the level of noise in the data. 

APPLICATION 

East Antarctic Magnetotelluric Experiment 

Probably the least understood continental structure is 
that of Antarctica. Up to 95% of the land mass lies 
enshrouded in ice and the region is relatively inacces
sible. Successful geophysical investigations must cope 
with the thick (1-3 km) layer of ice, which has a fairly 
high (3.9 km/sec) P-velocity (Bentley 1973, 1991) and 
is highly resistive (Beblo and Leibig 1990). Crudely, 
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Antarctica is divided into eastern and western regions 
by the Transantarctic mountains (Craddock 1970). West 
Antarctica has accreted to East Antarctica from the
Lower Paleozoic to the present (Storey and Alabaster 
1991). East Antarctica has remained relatively stable 
through the Jurassic and is overlain by sediments of the 
Beacon Supergroup that reach thicknesses of up to 2.5 
km (Barrett 1991). Seismic surface wave studies in
dicate continental-type structure in eastern Antarctica 
(Press and Dewart 1959, Roult et al. 1994) and a dif
fering crustal thickness between east and west Antarc
tica (Evison et al 1959, Bentley 1991). In particular, 
there is a 10 km difference in the crustal thickness of 
east ( 40 km) and west (30 km) Antarctica (Evison et al. 
1959). East Antarctic group velocities fall between those 
of Eurasia and North America suggesting that the re
gion is not simple crystalline shield but rather a 'typical 
continental structure' (Dewart and Toksoz 1965, Bent
ley 1973). There are suggestions that basement eleva
tions of East Antarctica are high, perhaps by as much as 
1 km, suggesting some form of dynamic tectonic sup-
port (Bentley 1991). The difference in crustal thick
ness between east and west Antarctica also is supported 
by seismic refraction work (Bentley 1991) and by the 
strong Bouguer gravity gradient across the Transantarc
tic Mountains (Robinson 1964). 

In an effort to better constrain east Antarctic crustal 
structure a group of investigators from the University of 
Utah and Berkeley Laboratory conducted a South Pole 
magnetotelluric (MT) survey. This electromagnetic tech
nique is sensitive to conductivity variations of the order 
of kilometers to tens of kilometers and complements ear
lier seismic studies of the region. The current experi
ment was a follow-up to the University of Utah's first 
successful broadband magnetotelluric survey in Western 
Antarctica during 1994-1995 (Wannamaker et al. 1996). 
Using a differential E-field measurement technique this 
group overcame the difficulty caused by the very high 
contact impedance of the polar ice. The high impedance 
prevented high quality broadband electric field measure
ments. The results of the East and West Antarctic sur
veys demonstrate the feasibility of conducting MT sur
veys over the entire continent and the ability of MT to 
map conductivities to lower mantle depths (lOOO km) at 
the South Pole. Such deep mantle resistivity profiles are 
lacking in this part of the globe (Everett and Schultz 
1996). 

The East Antarctic experiment was conducted along a 
54 km transect with an origin offset about 6 km from the 
South Pole and an azimuth of 210° east of the Green
wich meridian (Figure 7). This orientation was approx
imately perpendicular to the strike of the Transantarc
tic Mountains. The station spacing was approximately 6 
km, with locations provided by hand-held GPS.receivers, 
and equipment was transported between stations using 
snowmobiles. The station spacing provided adequate 
spatial sampling because the thick ice sheet eliminated 
the near-surface 'static' effects observed in many land 



surveys (Pellerin and Hohmann 1990). Magnetotelluric 
observations were recorded over a number of days, on av
erage three days per station. One reason for the fairly 
long observation times was a wind induced voltage vari
ation in the ice itself which appeared as noise in electric 
field measurements at periods of 10 s or longer. 

The electric and magnetic field measurements are 
Fourier transformed and averaged over frequency bands 
to obtain estimates of Ex(w), Ey(w), Hx(w), Hy(w), and 
Hz(w) (Stodt 1983). The bandwidth of the measure
ments spanned a period range of 0.001 to 500 s. Using a 
cross-power spectral technique, the impedance tensor Z;j 

is estimated from the field averages (Vozoff 1991). The 
components of the impedance are in turn used to derive 
apparent resistivities Pxy and Pyx as well as impedance 
phases ¢xy and ¢yx (Figures 8 and 9). There is a notable 
drop in apparent resistivity with period for short and 
intermediate periods. Furthermore, the overall similar
ity of the xy apparent resistivity and phase with the yx 
components indicates that the structure in this region is 
not very anisotropic. For example, at periods less than 1 
s, the apparent resistivity (Figure 8) does not vary much 
between stations. At longer periods both Pxy and Pyx are 
somewhat lower, between -35 and -25 km along the sur
vey line. Similarly, the phase (Figure 9) behaves rather 
uniformly between stations, with a change in phase angle 
from 80-90° to 40-60° for periods greater than about 10 
s but less than 300 s. There is an increase in phase angle 
between -35 and -25 km in the transect, which correlates 
with apparent resistivity variations. A rough interpreta
tion of the apparent resistivity and phase pseudosections 
indicates shallow high resistivity polar ice underlain by 
lower resistivity sediments, which are on top of a slightly 
more resistive basement structure. 

Integrated one-dimensional modeling, based on the 
method of Petrick et al. (1977), by the University of 
Utah group indicates that the apparent resistivity and 
phase are well matched by three layers over a half-space. 
The first layer represents highly resistive (250,000 ohm
m) polar ice with a thickness of 2.9 km. The other layers 
are found at depth intervals of 2.9-3.7 km and 3.7-27.2 
km with resistivities of 3.3 and 26 ohm-m's respectively. 
The layer directly beneath the ice may represent porous 
sediments, perhaps from the Beacon Supergroup (Bar
rett 1991). This layered structure serves as our a priori 
model, u 0 , and the starting point for the inversion. The 
inversion technique is the penalized least squares algo
rithm represented by equation (11). However, because 
the data suggest a dominantly one-dimensional structure, 
data from each station is inverted for a purely vertical 
variation. The model is specified by five nodes in depth, 
centered at the mid-points of each layer (1.45 km, 3.3 
km, 15.5 km) and a node just above the ice surface -0.1 
km as well as a node at 33.6 km to capture variation at 
the top of the half-space. There was also a deep bound
ary node at 60 km used to enforce the bottom boundary 
condition. The electric (Ex(w)) and the magnetic fields 
(Hy(w) = 8Exoz) at 34 distinct frequencies provide the 

15 

basic data at each station. 
A block-centered, finite-difference discretization of the. 

TE mode equation provides the relationship between the 
electric field and subsurface conductivity. A variable 
node spacing is used to account for the differences in layer 
thickness. The interior electric field variables are elim
inated, resulting in a polynomial equation in the layer 
conductivities u1 - u4 (the conductivity of the surface 
air layer is fixed). The resulting regularized inverse prob
lem consists of four polynomial equations of degree 5 in 
the four unknown conductivities beneath the station. A 
graded lexicograpic Grobner basis indicates that the sys
tem of polynomial equations is solvable, that the solution 
set is 0-dimensional, and the total degree of the system 
is 50. This provides an upper bound on the total number 
of solutions to the inverse problem. The graded lexico
graphic Grobner basis consists of 35 elements of degrees 
4 and 5. An iterative numerical solver is used to find the 
solutions with which to deflate the defining polynomial 
equations. Again, .only the real positive roots were used 
to deflate the equations. Of all real positive solutions the 
one producing the minimum misfit is taken as the 'best' 
solution. In Figure 10 the resulting solutions for all ten 
stations are shown. The solutions are plotted beneath 
each station, at approximately 6 km spacing. Note the 
largely one-dimensional structure and the lateral conti
nuity of the solutions, even though no lateral smoothing 
was enforced in the inversion. There would appear to be 
a trade-off between the resistivity of the top two layers 
and the resistivity of the 3.7-27.2 km layer. One way to 
control the trade-off is to fix the conductivity of the ice, 
assuming it does not vary laterally. However, an inver
sion in which the resistivity of the top layer was fixed at 
250,000 ohm-m produced essentially the same variation 
in the 3.7 to 27.2 km depth interval. 

In general the squared error, representing the sum of 
the squares of the deviations or the right-hand-side of 
the equations from zero, decreased from around 10-7 to 
roughly 10-lo for each station. The reduction in misfit 
is shown in Figure 11 for each frequency (34) and each 
station (10). In this figure the percent ratios (final mis
fit)/(prior misfit) are shown for all residuals. The misfit 
is measured by the absolute value of the right-hand-side 
of the polynomial equation. For a perfect fit and no mod
eling error, the right-hand-side would vanish. In Figure 
11 we see that much of the misfit has been reduced to 
less than 1% of the initial misfit. With the exception of 
26 values, the data misfit has been reduced to under 5% 
of the initial misfit. 

DISCUSSION AND CONCLUSIONS 

The solution of non-linear inverse problems is a difficult 
task. Current approaches generally rely on either a local 
linearization or some stochastic sampling of the model. 
space. Both of these methodologies suffer from limita-



tions, and neither makes full use of the analytic structure 
of the equations defining the inverse problem. In specific 
cases it is possible to transform a non-linear problem to a 
linear one (Vasco 1997) and then apply conventional tech
niques, but this in not possible in general. For a large 
class of inverse problems, differential equations with un
determined coefficients and many integral equations, the 
discrete form of the equations are polynomial (Everett 
1994). Thus, the equations have a well defined structure 
and the solution sets are restricted in form. That is, the 
solution sets constitute geometrical entities known in al
gebraic geometry as analytic varieties. The solution of 
polynomial equations is a topic of considerable history 
and efforts at solving such equations have led to many 
advances in mathematics (Tignol1988). However, many 
notable advancements such as the Grabner basis algo
rithm (Buchberger 1985) are quite recent. Furthermore, 
the numerical implementation of these ideas is still at an 
early stage of development (Fleischer et al. 1995). Com
pared to linear algebra for example, the development of 
numerical and symbolic algorithms for polynomial sys
tems is a young field and considerable improvements in 
efficiency are likely. In order to limit the scope of this pa
per many algorithms have not been touched ·upon. For 
example, techniques for counting real roots (Pederson et 
al. 1993) have not been described. Combination of the 
concepts discussed here with new numerical algorithms, 
such as intermediate factorization of polynomials (Me
lenk et al. 1989) or algorithms for polynomial program
ming (Floudas and Visweswaran 1990, Sherali and Tunc
bilek 1992), could provide both insight and computabil
ity. 

In this paper I have tried to illustrate the utility of 
ideas and algorithms from computational algebra in the 
solution of inverse problems. The applications are in
tended to demonstrate that the algorithms and concepts 
apply to practical problems. By this I mean one can 
account for data noise and also incorporate regulariza
tion into the formulation. However, the robustness of a 
least squares approach comes at the cost of additional 
computation. For example, consider the penalized misfit 
functional in equation ( 11). If the defining equations are 
of order d in the variables u, the necessary equations are 
of order order 2d - 1 because we are squaring and then 
differentiating with respect to the variables. Thus, we 
must solve equations of higher degree . than the original 
set. Even so, it is possible to use this approach in the 
analysis of actual observations. The inversion of the East 
Antarctia magnetotelluric observations is a first step in 
that direction. Working directly with the discrete dif
ference equations we are able to improve the match to 
the field data. The low crustal resistivity, 2 ohm-m or 
less, appears to support earlier evidence of low seismic 
surface wave phase velocities (Bentley 1973, 1991). This, 
coupled with the anomalously high basement elevation in 
the region, suggests active tectonic support. 

Several aspects of this work could be explored in more 
detail. For example, it is well established that the num-
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her of roots of a polynomial system of equations grows 
exponentially with the number of variables and the de
gree of the equations. However, often one is only inter-. 
ested in the real positive roots of the equations. The 
number of real roots is generally a much smaller sub
set of the set of all roots. By restricting the number 
field we are working in one may substantially limit the 
amount of computation required. An even more restric
tive approach is to employ a type of interval constraint 
on each parameter uk. The roots of the equations are 
restricted to lie between particular upper and lower val
ues: Uk" > UJc > Uk 

1• This would both avoid extreme. 
values and help in culling the roots, thus preventing pos
sible exponential growth in the number of solutions. The 
degree to which parallel computation could help in solv
ing larger problems also needs to be examined. Parallel 
computation has proven helpful in examining the set of 
solutions to the travel time tomographic inverse prob
lem (Vasco et al. 1996) using a purely numerical ap
proach. As shown above, solving multi-variable systems 
of polynomial equations leads to a large sparse eigen-. 
value problem, which might be solved efficiently in par
allel (Sehmi 1989). The techniques presented here only 
apply to the discretized inverse problem. It is possible to 
treat the continuous non-linear inverse problems (Snieder 
1991) but' the approach is computationally intensive and 
based upon a perturbative analysis. There is a formalism 
for polynomial equations in Banach space (Argyros 1998) 
which may extend the discrete approach described here, 
but this is a topic for future research. Finally, the alge-. 
braic approach presented here needs to be compared to 
conventional inversion techniques. Only in applications 
will the strengths and limitations of the algorithms be 
revealed. 
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APPENDIX A: MONOMIAL ORDERINGS 

Here I introduce two monomial orderings which shall 
be used in this paper. Each ordering results in an ideal 
basis with certain desirable properties. One ordering of 
importance to us is the following. 

Definition (Lexicographic Order) For two index vec
tors o: = ( 0:1, ... , o:n) and f3 = (/31, ... , f3n) we say that o: 
is greater than f3 with respect to a lexicographic ordering 
(a: >lex f3) if the left-most non-zero entry of the vector 
o: - f3 is positive. 

This ordering is similar to that used in placing entries 
in a dictionary, we begin with the left-most letter and 
work to the right. Consider the terms z0 = z1z3 and 
z!3 = Z2Z4 in our simple example. The respective index 
vectors are o: = (1, 0, 1, 0, 0, 0) and f3 = (0, 1, 0, 1, 0, 0) 
in the n = 6 variable space. And the left-most entry of 
o:- f3 = (1, -1, 1, -1, 0, 0) is positive so that with respect 
to lexicographic ordering Z1Z3 >lex z2z4. The importance 
of Lexicographic ordering is that when used to construct 
a Grabner basis such an ordering produces a 'triangu
lar' form. One disadvantage of lexicograpic ordering is 
that it can results in a large Grabner basis (Adams and 
Loustaunau 1994). 

In lexicographic order the variables themselves domi
nate the total degree of the monomials, but we could let 
degree take precedence. For example, there is an ordering 
in which z0 > z!3 whenever lo:l > l/31, known as a graded 
order. We can easily define such an ordering based upon 
the lexicographic ordering. 

Definition (Graded Lexicographic Ordering) Let 
o:, f3 E zn be integer index vectors. We say that o: is 
larger than f3 under graded lexicographic _ordering, de
noted by 0: >grlex /3, if 

n n 

Ia: I= 2:: a, > 2:: !3• = l/31 
i=l i=l 

or if lo:l = l/31 and o: >Iex f3. 

The monomials are ordered by total degree and we use 
lexicographic ordering for cases of equal degree. Note 
that in our example Z1Z3 >urlex Z2Z4 but that Z2Z4 >urlex 
z1, which is not true using purely lexicographic ordering. 
As we shall see, graded lexicograpic ordering is impor
tant when determining the dimension and total degree of 
a variety. There are other orderings that are useful in ac
complishing various tasks. For example, elimination or
dering groups collections of variables and produces a type 
oflexicographic ordering between the groups (Adams and 
Loustaunau 1994). It is useful because it generates a less 
complicated basis set while still producing equations in 
which a set of variables is eliminated. 
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APPENDIX B: BUCHBERGER'S ALGORITHM 

In this appendix the steps in Buchberger's (1985) al
gorithm to compute a Grabner basis are outlined. 

S-polynomials 

A Grabner basis is a very useful computational tool 
for determining· properties of the zero sets of polyno
mial equations and their associated algebraic structures 
polynomial ideals. How does one find a generating set 
{g1, ... 91} which is a Grabner basis? The main imped
iment to realizing a Grabner basis is when the leading 
terms of some combination of polynomials in the gener
ating set cancel, leaving only smaller terms (Cox et al. 
1997, p. 81). That is, given two polynomials fi,/j in the 
generating set of the ideal I, and monomials a and b, the 
leading terms of 

a·f;-b·/j 

cancel, producing a polynomial of lower total degree. 
A measure of such cancellations is provided by the S
polynomial 

Definition The S-polynomial off and g is given by 

z'Y z'Y 
S(f, g.) = LT(f) . f- LT(g) . g 

where 1 is the index vector with entries li = max( o:;, /3;) 
for each i. 

Note that the monomial ordering enters the computa
tion of the S-polynomials in the determination of the· 
leading terms and in calculating I· For our simple ex
ample, considering the first two elements of I, (h, h): 
1 = (1, 1, 1, 1, 0, 0), z'Y = z1z2z3z4, LT(fl) = z1z3, 
LT(h) = z2z4, and using graded lexicograpic ordering, 

S(h, h) = Z2Z4 . h - ZlZ3. h 

Similarly, S(h, fa)= -Z2Z4z5+z1 2-4zlz2-c3z2z4+c2z1 
and S(fa, f4) = c4z1 + C3Z2 - ZlZ6 + z2z5. By analogy 
with Gaussian elimination, the S-polynomials, coupled 
with lexicographic ordering, produce a type of pivoting 
step in the triangularization algorithm. It is shown in 
Cox et al. (1997, p. 81) that S-polynomials account for. 
all cancellations within a generating set of an ideal. In 
fact, there is an equivalent S-polynomial criterion for the 
basis of an ideal to be a Grabner basis, 

Theorem A basis G = {g1, ... , gq} for an ideal I is a 
Grabner basis if and only if the remainder on division of 
S(g;, Yi) by G is zero for all pairs i =/= j. 



Division by a set of polynomials is a generalization of the 
standard polynomial division algorithm in one variable 
(Gallian 1990) (! is successively divided by elements of 
the Grabner basis), to represent f in terms of the ele-
ments of the Grabner basis {91 , ... , 91} r 

where h; are elements of k[z1, ••. , zn] and r is the poly
nomial remainder of total degree less than /. The poly
nomial f is an element of I if and only if the remainder 
r is zero. A compact notation for the remainder of f 
upon division by a set of polynomials G = (91. ... , 91) is r. The above theorem provides an algorithmic criterion 
which is much more useful than the motivating definition 
of Grabner bases. A proof is given in Mishra (1993, p. 
57) and Cox et al. (1997, p. 82). 

Buchberger's Algorithm 

We are now in a position to write down an explicit algo
rithm for the construction of a Grabner basis. In essence, 
the approach is to add more polynomials from I to the 
original generating set 11, ... , /p until the conditions for 
a Grabner basis are satisfied. The elements which we 
add derive from the S-polynomials defined above. In 
particular, we must keep adding the remainders of the 
S-polynomials upon division by the current basis set. 

Theorem (Buchberger's Algorithm) Let I = 
(11, ... , /p} :f. {0} be a polynomial ideal. A Grabner basis 
for I can be constructed in a finite number of steps by the 
algorithm: 

INITIALIZE : F = (11, ... , /p) 

REPEAT until G = G': 

G'::: G 
FOR each pair {p, q} ,p :f. q in G' DO 

-.--:-<G' 
S::: S(p, q) 

IF S :f. 0 THEN G ::: G U { S} 

The above algorithm is a simplified version of Buch
berger's algorithm, detailed enough to understand the 
underlying principle's. However, many improvements are 
needed to produce an algorithm efficient enough for ap
plications (Mishra 1993, Adams and Loustaunau 1994, 
Cox et al. 1997). One of the first improvements involves 
casting out unneeded generators from the Grabner ba
sis and writing the basis in a canonical form. The basic 
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idea is encapsulated in the following theorem (Cox et al. 
1997, p. 89) 

Theorem If p is a member of G, a Grabner basis for 
the ideal I and LT(p) E (LT(G- {p})}, then G- {p} is 
also a Grabner basis for I . 

This theorem leads to the idea of a reduced form for the· 
Grabner basis, the formal definition is 

Definition A reduced Grabner basis for an ideal I is a 
Grabner basis such that all leading coefficients are unity 
and for all p E G, no monomial of p lies in (LT( G- {p}). 

Let us cycle through Buchberger's algorithm using our 
illustrative example and graded lexicographic ordering. 
First, we begin with (11, h,/3, /4) and compute the S-. 
polynomials. From the computations above we know that 
S(/1, h)= -z1 2z3+4z1z2z3 -4z1Z2Z4 +z2

2 
Z4 -c2z1z3 + 

c1z2 z4 • Now we compute the remainder upon division 
by the set of polynomials 11, h, fa, / 4 . After successive 
polynomial division by the elements G = (11, /2, /a, f4) 
we find that we may write the S-polynomial as the sum 

with remainder 5(11, h) G = 0. Thus, we do not need to 
add any elements to the initial basis set due to S(l1, /2). 
Similarly, we find that 

and S(h,/a)G = 0. Continuing on, we may write 

with remainder S(f3,/4)G = -2c4Z5- 2c3c4. We must 
now enlarge the basis set to include /s = -2c4Z5- 2c3c4. 
We proceed in this manner, considering all remaining 
S(f;, /j) combinations where both i and j now vary from 
1 to 5. As more non-zero remainders are encountered 
we enlarge the set G. Upon completion of the algorithm,· 
which was executed using the public domain software Co
CoA (Adams and Loustaunau 1994), we find a reduced 
Grabner basis G 

91 = z1 + zs + c1' 

92 = Z2 + Z6 + C2
1 

93 = Z4Z6 + C4Z4 + Z5- 4z6 + C31 

95 = Z3Z5 + C3Z3 - 4zs + Z6 + C4
1 

for the example ideal I, where c1' = c3, c2' = c4, C31 

-c2 + c3- 4c4, and c4' = -c1 - 4c3 + c4. Note, the in 
the reduction process the set of generators was reduced 
from 5 to 4. 



FIGURE CAPTIONS 

Figure 1. Illustration of the monomials contained in 
the ideal I = (z1 

5 z2 
2 , z13 z2 4 ). The filled squares and the 

shaded region denote monomials generated by the ele
ments of I up to degree 6 in each variable. The crosses 
indicate monomials that are 'missing' from I, up to de
gree 6 in each variable. 

Figure 2. Two-dimensional sections through the four
dimensional model space (ul,u2,1T3,u4). The contours 
denote the sum of the squares of the gradient components 
for each parameter in the cross section. The weighting 
for the penalty term is 0 in this case. The vanishing of 
the gradient is a necessary condition for an extremum. 

Figure 3. As in Figure 2, two-dimensional 
sections through the four-dimensional model space 
(u1 , u 2 , u 3, u4 ). The weighting for the penalty term is 
10-6 in this case. 

Figure 4. Histograms of the number of 'real' solu
tions of the inverse problem for the penalized Helmholtz 
equation .. These values of 1T1 minimize W(u) in equa
tion (11). Each panel displays the distribution of 'real' 
solutions for varying levels of Gaussian noise in the field 
values. A penalty weighting term of 10-6 was used. 

Figure 5. As in Figure 4, the distribution of 'real' 
solutions for all four parameters (ul> u 2, u3, u4). In this 
case the field values are contaminated by 5% Gaussian 
noise. A penalty weighting term of 10-6 was used. 

Figure 6. As in Figure 4, the distribution of u1 for the 
'real' solutions at differing penalty weights v in equation 
(11) for a noise level of 5%. 

Figure 7. Station distribution for the Antarctic mag
netotelluric experiment. The origin of the survey is in
dicated by the filled square. The filled circle denotes the 
approximate locate of South Pole Station. The receivers, 
indicated by the crosses, were laid out along a line of 
azimuth of 210°, positive values of distance are in that 
direction. 

Figure 8. Pseudosections of apparent resistivities Pxy 

and Pyx for the South Pole experiment. The contours are 
in ohm-m and positive distance along the line is in the 
direction of azimuth 210°. 

Figure 9. Pseudosections of phase cPxy and c/Jyx for the 
South Pole experiment. The phase angles are a function 
of the logarithm of the period and the positive distance 
along the line in the direction of azimuth 210°. 

Figure 10. Best fitting solution to the South Pole 
electric and magnetic ob,Servations. The depth scale is 
logarithmic and the horizontal lines show the location of 
the three major interfaces in the model. The nodal values 
have been linearly interpolated onto a finer grid for the 
purposes of plotting. 

Figure 11. Ratio of final to prior misfit in percent. 
Misfit is defined as the absolute value of the right-hand
side of the polynomial equations, given by the absolute 
values of Fij(u) in equation (11). The data set is com
posed of observations for 34 frequencies at the ten sta-

tions. 
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