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Abstract 

We study large N SU(N) Yang-Mills theory in three and four 
dimensions using a one-parameter family of supergravity models which 
originate from non-extremal rotating D-branes. We show explicitly 
that varying this "angular momentum" parameter decouples the Ka
luza-Klein modes associated with the compact D-brane coordinate, 
while the mass ratios for ordinary glueballs are quite stable against this 
variation, and are in good agreement with the latest lattice results. We 
also compute the topological susceptibility and the gluon condensate 
as a function of the "angular momentum" parameter. 

1 Research fellow, Miller Institute for Basic Research in Science. 



1 Introduction 

Generalizing the conjectured duality [1] between large N superconformal field 
theories and superstring or M theory on anti-de Sitter (AdS) backgrounds, 
Witten proposed an approach to studying large N non-supersymmetric the
ories such as pure QCD using a dual supergravity (string theory) description 
[2]. The basic idea is to start with d + 1 dimensional superconformal field 
theories at finite temperature - thus breaking the superconformal invari
ance - and obtain a d dimensional non-supersymmetric gauge theory at zero 
temperature by dimensional reduction in the Euclidean time direction. The 
AdS space is then replaced by a certain limit of the Schwarzschild geometry 
describing a black hole in an AdS space. 

When the curvature of the space is small compared to the string scale (or, 
in the case of M theory, Planck scale), supergravity provides an adequate ef
fective description that exhibits a qualitative agreement with pure QCD in 
three and four dimensions [2, 3]. The superg,avity limit of string theory (i.e. 
infinite string tension, c/--+ 0 limit) corresponds to the strong coupling limit 
of the gauge theory (A = g~ M N ::?:> 1), with 1/ A playing the role of o/. In the 
approach of [2], the gauge theory has an ultraviolet cutoff proportional to the 
temperature T; the supergravity approximation should describe the large N 
gauge theory in the strong coupling regime with a finite ultraviolet cutoff. 
This is analogous to a strong coupling lattice gauge theory with lattice spac
ing rv 1/T [3]. In the limit that the ultraviolet cutoff is sent to infinity, one 
has to study the theory at small A, and the supergravity description breaks 
down. To calculate the spectrum in this regime, a better understanding of 
string theory with Ramond-Ramond (R-R) background fields is required. 

Glueball masses in the supergravity approximation have been computed 
in [4, 5]. The Witten model [2] contains in addition to the glueballs certain 
Kaluza-Klein (KK) particles with masses of the order of the glueball masses. 
These KK modes do not correspond to any states in the Yang-Mills theory, 
and therefore they should decouple in the "continuum" limit. The KK states 
do not decouple with the inclusion of the leading 1/ A corrections [6]. Al
though such states can decouple in a full string theory treatment, there may 
be generalizations of the Witten model that have a more direct connection 
with the continuum gauge theory already at the supergravity level (at least 
in the sector of states with spin :::; 2 that can appear in a supergravity de
scription). A similar situation arises in lattice gauge theory. It is well known 
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that the action one starts with has a significant effect on the speed at which 
one gets to the continuum limit. One can add to the lattice action defor
mations which are irrelevant in the continuum and arrive at an appropriate 
effective description of the continuum theory while having a larger lattice 
spacing (such a deformed action is called an "improved" lattice action). A 
similar strategy in the dual supergravity picture would correspond to a suit
able modification of the background metric, so as to have an appropriate 
effective description of the gauge theory while still having a finite ultraviolet 
cutoff. An important test of the proposal is to check that the KK modes 
in the supergravity description that do not correspond to gauge degrees of 
freedom are heavy and decouple, and at the same time the infrared physics is 
not significantly altered. In this paper we make the first step in this direction 
by examining a generalization of the Witten model that has an additional 
parameter. 

A more general approach to the conjectured correspondence between 
gauge theories and M-theory requires the investigation of supergravity com
pactifications which asymptotically approach anti-de Sitter backgrounds, e.g. 
AdS5 x S5 or AdS7 x S4 (see e.g. [7, 8]). There exist a few supergravity back
grounds that generalize the Witten model and which are regular everywhere. 
These are essentially obtained by starting with the rotating version of the 
non-extremal D4 brane background (or rotating D3 brane background, in 
the case of QCD3 ) and taking a field theory limit as in [1]. These models 
were investigated in [9]. The deformation of the background proposed in [2] 
is parameterized by an "angular momentum" parameter (the supergravity 
background is actually static, with the Euclidean time playing the role of an 
internal angle). In this paper we determine numerically the scalar and pseu
doscalar spectrum of these models as a function of the angular momentum 
parameter and compare the results to those obtained by lattice calculations. 
We also compute the gluon condensate and the topological susceptibility 

The paper is organized as follows: Section 2 is devoted to the study of 
supergravity models for pure QCD in 3 + 1 dimensions. The models are 
described in Section 2.1. In Section 2.2 we compute the scalar glueball mass 
spectrum and analyze its dependence on the angular momentum. In Section 
2.3 we calculate the mass spectrum of some KK modes. It will be shown that 
the KK modes associated with the compact D-brane coordinate decouple 
as the angular momentum parameter is increased. This, however, is not 
the case for the S0(3) non-singlet KK modes with vanishing U(1) charge 
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in the compact D-brane coordinate. In Section 2.4 we compute the gluon 
condensate from the free energy associated with the supergravity background, 
In Section 2.5 we compute the topological susceptibility and its dependence 
on the angular momentum parameter. Section 3 contains an analogous study 
for the case of QCD in 2 + 1 dimensions. The conclusions are similar in ,both 
cases, and they are summarized in Section 4. 

2 QCD in 3 + 1 dimensions 

2.1 Supergravity Models for QCD4 

One way to construct non-supersymmetric models of QCD based on super
gravity is to start from the non-extremal D4 brane metric, and view the 
Euclidean time coordinate as an internal coordinate compactified on a circle 
of radius (2nTH )-1 [2]. Possible generalizations of this proposal are con
strained by the no-hair theorem, which implies that the most general regular 
manifold with only D4 brane charges (and an isometry group containing R 4 ) 

is given by the rotating version of the non-extremal D4 brane, which has two 
additional parameters representing angular momenta in two different planes. 
The Euclidean version of this metric (related to the rotating M5 brane metric 
by dimensional reduction) was used in [9] to construct models for QCD with 
extra parameters. Here we investigate in detail the case when there is one 
non-vanishing angular momentum, parametrized by a. The field theory limit 
of the Euclidean rotating M5 brane with angular momentum component in 
one plane is given by the metric [9] 

(2.1) 

where x1 , ... , x5 are the coordinates along the M5 brane where the gauge the
ory lives, U is the "radial" coordinate of the AdS space, while the remaining 
four coordinates parameterize the angular variables of S4 , and where we have 
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introduced 

(2.2) 

Dimensional reduction along x 5 (which will play the role of the "eleventh" di
mension) gives N rotating non-extremal D4 branes, which in the low energy 
regime should be described by SU(N) Yang-Mills theory at finite tempera
ture T H, perturbed by some operator associated with the rotation. The 3 + 1 
dimensional SU(N) Yang-Mills theory at zero-temperature can be described 
by making x 4 --t -ix0 , and viewing T as parameterizing a space-like circle 
with radius R0 = (27rTH )-1 , where fermions obey anti-periodic boundary 
conditions. At energies much lower than 1/ R0 , the theory is effectively 3 + 1 
dimensional. Because of the boundary conditions, fermions and scalar parti
cles get masses proportional to the inverse radius, so that, as Ro --t 0, they 
should decouple from the low-energy physics, leaving pure Yang-Mills theory 
as low-energy theory. 

The gauge coupling g~ in the 3 + 1 dimensional Yang-Mills theory is given 
by the ratio between the periods of the eleven-dimensional coordinates x 5 and 
r times 27r. It is convenient to introduce ordinary angular coordinates 01 , 

and 02 which are 21r-periodic by 

g~ A 
T = Ro02 , xs = -RoO! = NRo01 , (2.3) 

27f 

A U4 

( 
-1 0 Ro = 27fT H) = - ' A - 4 1 4 ' 

3u0 uH- 3a 
(2.4) 

where uH is the location of the horizon, and we have introduced the 't Hooft 
coupling 

A= g~N (2.5) 
- 27f ' 

the coordinate u by U = 2(7rN) 112u, and rescaled a --t 2(7rN) 112a. By 
dimensional reduction in 01 , one obtains the metric 
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with a dilaton background 

87r A 3 >. 3u3 .6_1/2 1 
e2tf> = ----:::---

27 uJ N 2 
(2.7) 

With this normalization, the metric reduces to Eq. ( 4.8) of ref. [2] after 
setting a = 0. The string coupling etf> is of order 1/N, and the metric has 
become independent of N, which is consistent with the expectation that in 
the large N limit the string spectrum should be independent of N. The 
metric is regular, and the location of the horizon is given by 

i.e. 

4 
2 a 1 2 

UH = -2 + 3/'Uo' 
')'Uo 

6 4 2 6 0 
U H - a U H - Uo = , 

. 1/3 

( j 4 (a) 12
) ~' = 3 ~ + ~V 1 - 21 uo 

Note that for large a, one has the approximate expressions 

(2.8) 

(2.9) 

(2.10) 

(u1- is always real). This shows, in particular, that the radius R0 = A/(3u0 ) 

can be made very small by increasing a/u0 . This is essentially the mechanism 
that will make the corresponding KK modes decouple at large aju0 . At small 
a, such KK states have masses of the same order as the masses of the lightest 
glueball states. 

The string tension is given by [9] 

4 2 ug 
a= -3>.Auo = 4>.3 4 4 

un-a 
(2.11) 

String excitations should have masses of order a 112 • The spin ::::; 2 glue balls 
that remain in the supergravity approximation - whose masses are deter
mined from the Laplace equation - have masses which are independent of >.. 
The supergravity approximation is valid for >.A ~ 1 so that all curvature 
invariants are small [9]. In this limit the spin > 2 glueballs corresponding to 
string excitations will be much heavier than the supergravity glueballs. 
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2.2 Spectrum of glueball masses 

The glue ball masses are obtained by computing correlation functions of gauge 
invariant local operators or the Wilson loops, and looking for particle poles. 
Following [7, 8], correlation functions of local operators 0 are related at large 
Nand large g~MN to tree level amplitudes of supergravity. The generating 
functional for the correlation function of 0 is the string partition function 
evaluated with specified boundary values r.p0 of the string fields. When the 
supergravity description is applicable we have 

(2.12) 

where lsa is the supergravity action. 
The spectrum of the scalar glueball2 o++ is obtained by finding the nor

malizable solution to the supergravity equation for the dilaton mode <I> that 
couples to TrF2 , which is the lowest dimension operator with o++ quantum 
numbers. 

The equation for <I> reads 

where 9JLv is the string frame metric. 
We look for 0-independent solutions of the form <I> 

obtains the equation 

(2.13) 

X('ll)eik·x. One 

(2.14) 

where the eigenvalues Mare the glueball masses. The solution of this (ordi
nary) differential equation has to be normalizable and regular both at u -+ u H 

and u -+ oo. The eigenvalues of this equation can be easily obtained numer
ically [4] by using the "shooting" method. One first finds the asymptotic 
behavior of x( u) for large u, and then numerically integrates this solution 
back to the horizon. The solutions regular at the horizon will have a finite 
derivative at uH. This condition will determine the possible values of the 
glueball masses M. The results of this numerical procedure are presented in 
Table 2.1 and in Figure 2.1. One can see from Figure 2.1 that the ratios of 

2In the following we will use the notation JPG for the glueballs, where J is the glueball 
spin, and P, C refer to the parity and charge conjugation quantum numbers respectively. 
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the masses of the excited glueball states compared to the ground state are 
very stable with respect to the variation in the parameter a, even though 
both quantities themselves grow like M 2 ex: a2 for large a. The asymptotic 
value of the mass ratios is taken on very quickly, aju0 ~ 2 is sufficiently 
large to be in the asymptotic region. A priori one could have expected that 
these mass ratios may change significantly when a is varied. This leads one 
to suspect that there is a dynamical reason for the stability of the ratios of 
masses. 

state 
o++ 
o++* 
o++** 
o++*** 

lattice, N = 3 
1.61 ± 0.15 

2.8 

supergravity a= 0 
1.61 (input) 

2.55 
3.46 
4.36 

supergravity a -+ oo 
1.61 (input) 

2.56 
3.48 
4.40 

Table 2.1: Masses of the first few o++ glueballs in QCD4 , in GeV, from 
supergravity compared to the available lattice results. The first column 
gives the lattice result [10, 11), the second the supergravity result for 
a= 0 while the third the supergravity result in the a-+ oo limit. The 
authors of ref. [11] do note quote an error on the preliminary lattice 
result for o++*. Note that the change from a = 0 to a = oo in the 
supergravity predictions is tiny. 

Let us now consider the o-+ glueballs. The lowest dimension operator 
with o-+ quantum numbers is Tr F F. On the D4 brane worldvolume, the 
field that couples to this operator is the R-R 1-form Aw In order to find the 
o-+ glueball masses we have to solve its equation of motion 

Ov[-J9gMPgvu(opAu- OuAp)] = 0 , f.L, v = 1, ... , 10 . (2.15) 

Consider solutions of the form 

A ( ) ik·x 
62 = Xo2 u e '· AJ.t = 0 if J.L =/= 02 . (2.16) 

Plugging this into (2.16), we obtain 

Ov[J9l262 gvuouAo2 ] = 0, (2.17) 

which reads 
1 
us (u6

- a4u2
- ug)ou[~3 (u4 - a4)X~2 (u)] = -M2 (u4

- a4 )Xo2 (u). (2.18) 
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r 

1.594 

1.592 

a 
4 6 8 10 

1.588 

1.586 

Figure 2.1: The dependence of the ratio r = ~++· of the masses of the 
o++ 

first excited (o++n glueball state to the lowest o++ glueball state on 
the parameter a (in units where u0 = 1). The ratio changes very little 
and takes on its asymptotic value quickly. 

For a = 0, it yields Eq. (2.9) of [12], as required. When a =I 0 there are no 
solutions of the form (2.16). The reason is that the 9fh<p component of the 
metric (2.6) is non-vanishing for a =I 0 and, as a result, the <.p component 
of the Maxwell equation is not satisfied automatically (solutions contain a 
non-vanishing component A'P). 

We will work in the approximation afu0 ~ 1. In this approximation the 
non-diagonal 9fh'P part of the metric can be neglected, and there are solutions 
of the form (2.16). Effectively, we can solve (2.18) in the limit a ~ u 0 . We 
must however keep in mind that we need u0 =I 0 to regularize the horizon, 
and the actual limit that is taken is afu0 large at fixed u0 (so that curvature 
invariants are bounded from above and they are small for sufficiently large 
't Hooft coupling .A). 

The mass spectrum from (2.18) can be obtained using a similar numerical 
method as for the o++ glue balls. The dependence of the lightest o-+ glue ball 
mass on a is presented in Figure 2.2, whereas theo-+ glueball mass spectrum 
in Table 2.2. Note that while masses ratios are fairly stable against the 
variation of a (they again grow like M 2 ex: a2 ), the actual values of the mass 
ratios compared to o++ increase by a sizeable (rv 25%) value. The change 
is in the right direction as suggested by recent improved lattice simulations 
[13]. The mass of the second o-+ state also increases and is in agreement 
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with the new lattice results [13). 

state lattice, N = 3 supergravity a= 0 supergravity a---+ oo 
o-+ 
o-+* 
o-+** 
o-+*** 

2.59 ±0.13 
3.64 ±0.18 

2.00 
2.98 
3.91 
4.83 

2.56 
3.49 
4.40 
5.30 

Table 2.2: Masses of the first few o-+ glueballs in QCD4 , in GeV, 
from supergravity compared to the available lattice results. The first 
column gives the lattice result, the second the supergravity result for 
a= 0 while the third the supergravity result in the a ---+ oo limit. Note 
that the change from a = 0 to a = oo in the supergravity predictions 
is sizeable, of the order rv 25%. 

We can directly compare the ratio of masses of the lowest glueball states 
o-+ and o++ with lattice results [10, 11, 13). Since one of the largest errors 
in the lattice calculation of glueball masses comes from setting the overall 
scale3 the ratios of masses are even more accurately known from the .lattice 
than the masses themselves. Using the lattice results [11, 13, 14) in the more 
accurate "lattice units" r 0 : 

r0Mo++ = 4.33±0.05, r0 Mo-+ = 6.33±0.07, roMo-+• = 8.9±0.1, (2.19) 

we find: 

(M )a=O 
~ 
Mo++ supergravity 

= 1.24 

(
Mo-+ )a-too 
Mo++ supergravity 

= 1.59 

( zo-+) = 1.46 ± 0.03 
o++ lattice 

(2.20) 

(
Mo-+• )a=O = 1.85 
Mo++ supergravity 

(
Mo-+• )a-too = 2.17 
Mo++ supergravity 

( Mo-+•) = 2.06 ± 0.05 
Mo++ lattice 

(2.21) 

3We thank M. Peardon for emphasizing this point to us. 
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r 

1.6 

1.55 

1.5 

1.45 

I 
1.4 

I 
1.35 I 

1.25 '-------
I 

I 
I -
I 

/ 

4 
a 

6 8 10 

Figure 2.2: The dependence of the ratio r = zo-+ on the parameter a 
o++ 

(in units where u0 = 1). The change in the ratio is stable against the 
variation of a, however it increases by about 25% while going to a= oo. 
The change is in agreement with lattice simulations. As explained in 
the text, this figure is reliable only for the regions a << u 0 or a >> u0 

which are shown in the plot with a solid line, while for the intermediate 
region denoted by a dashed line there are corrections due to the non
vanishing off-diagonal component of the metric g82'P. 
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One can see that taking the a ---+ oo improves the agreement between the 
supergravity and lattice predictions significantly. One should however keep 
in mind that the supergravity results presented here are for the limit N---+ oo 
and A ---+ oo, while the lattice results are for N = 3 and A small.4 Dirett 
lattice calculations for the large N limit are have just started to become 
available [15], however no reliable direct estimate for the mass of the o-+ is 
known yet. 

2.3 Masses of Kaluza-Klein states 

In the supergravity approximation the a = 0 model contains additional light 
KK modes in the spectrum whose masses are of the same order as those of 
the glueball states [6]. In this section we investigate whether the additional 
parameter of the model considered here can be tuned to decouple the KK 
modes already at. the supergravity tree-level. In the following, it will be 

··shown that this is indeed the case for the KK modes wrapped around the fh 
direction, which become very heavy for aju0 » 1. We thus look for solutions 
of the dilaton equation (2.14) of the form 

(2.22) 

One finds the following equation: 

1
3

8u (u(u6- a4u2- ug)x'(u)) = (- M 2 + Rn: u
4

- a
4 

u6 ) x(u) , (2.23) 
u o u4- a4-.::!!. 

u2 

where R0 is given in Eq. (2.4). This generalizes (2.14) to the case n =/:. 0. We 
want to compare M0 M(n = 0) with MKK _ M(n = 1). The question is 
how M0 /MKK behaves as a function of a (we can set u0 = 1). The extra term 
proportional to 1/ R5 gives a positive contribution to the mass, so that MKK 
should increase as M'f<K ex a8 as a is increased (the KK radius R0 = A/3u0 

shrinks to zero as a ---+ oo). Thus one expects that M0 /MKK ex 1/a3 ---+ 0 
as a increases. The numerical values of the masses of these KK modes· are 
displayed in Table 2.3 and Figure 2.3. Note that the numerical evaluation of 
the masses of these KK modes becomes more and more difficult as a increases. 

4For example, in Ref. (11] the results are extrapolated to ,\ = 0 from calculations in 
the region 7.5 < g2 N < 10. 
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This is because the term with 1/ R~ causes an overall shift of the masses, while 
the splittings between the excited KK modes still remain of the same order as 
for the ordinary glueballs. As a result, the solutions become more and more 
quickly oscillating as a increases, making numerical treatments increasingly 
difficult. For this reason we display only values up to aju0 = 3. 

state value for a= 0 value for a= 3 
KK 2.24 20.25 
KK* 3.12 20.37 
KK** 4.01 20.52 
KK*** 4.89 20.72 

Table 2.3: Masses of the KK modes which wrap around the (}2 circle 
and have no corresponding states in QCD4 , in GeV. The first column 
gives the masses for a= 0 while the second the masses for a= 3. Note 
that even for a = 3 these states are heav= er by a factor of 10 than the 
o++ glueball mass and are effectively decoupled from the spectrum even 
in the supergravity limit. 

Above we have demonstrated that the KK modes which correspond to 
states that wrap the (}2 direction are effectively decoupled from the spectrum 
even in the supergravity approximation. However, there are other KK modes 
in this theory, and one would like to know whether these are decoupled as 
well. The reason for the decoupling of the modes on 02 is clear: the radius of 
this direction shrinks to zero when a --+ oo. However, the radii of the other 
compact directions do not behave similarly. Therefore it is reasonable to ex
pect that these states will not decouple at the level of supergravity from the 
spectrum (but they could decouple once string theory corrections are incor
porated). We now demonstrate by explicit calculation of the corresponding 
mass spectrum that this is indeed the case. 

Consider non-singlet modes which are independent of 02 , of the form 
f ( u) eik·x cos c.p sin(}. This corresponds to spherical harmonics on S4 with an
gular momentum l = 1. Plugging this ansatz into the dilaton equation (2.13) 
we find that f ( u) satisfies the equation ( u0 = 1) · 
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r 
0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

a 
0.5 1.5 2 2.5 3 

Figure 2.3: The dependence of the ratio r = MMo++ of the the lowest 
KK 

o++ glueball state compared to the KK mode wrapping the 82 circle on 
the parameter a in units where u 0 = 1. This KK mode decouples very 
quickly from the spectrum even in the supergravity approximation. 

The results of the numerical analysis of the eigenvalues are presented in 
Table 2.4 and Figure 2.4. One can see that these states do not decouple 
from the spectrum at the supergravity level, instead their masses remain 
comparable to the ordinary glueball masses. 

state value for a= 0 value for a --7 oo 
KK 2.30 2.84 
KK* 3.29 3.80 
KK** 4.23 4.74 
KK*** 5.15 5.65 

Table 2.4: Masses of the KK modes corresponding to l = 1 angular 
momentum on the S 4 , in Ge V. The first column gives the masses for 
a= 0 while the second the masses in the a --7 oo limit. Note that the 
change from a = 0 to a = oo in the supergravity predictions is not 
sufficiently large in order to decouple these particular states from the 
spectrum in the supergravity limit. 
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r 

1.75 

1.7 

1.65 

1.6 

1.55 

a 
2 4 6 8 10 

1.45 

Figure 2.4: The dependence of the ratio r = :JKK of KK modes (cor-
o++ 

responding to spherical harmonics with l = 1 on S4
) compared to the 

lowest o++ glueball state on the parameter a in units where u0 = 1. 
This KK mode does not decouple from the spectrum in the supergravity 
approximation even in the a--+ oo limit. 

2.4 Free energy and Gluon condensation 

The standard relation between the thermal partition function and free energy 
Z(T) = exp( -F/T) relates the free energy associated with the supergravity 
background to the expectation value of the operator TrF;;v. This relation 
was exploited in [12] to obtain a prediction for the gluon condensate in the 
Witten (a = 0) supergravity model. Let us now derive the corresponding 
supergravity result for general a. From the rotating M5 brane metric (given 
in Eq. (3.1) of [9]), one can obtain the following formulas for the ADM mass, 
entropy and angular momentum (see also [16, 17]): 

Vs V(!14) 3 . 2 

4 
G 2m(1 +- smh a) , 

1r N 4 
v(n ) = sw2 

4 3 ' (2.25) 

s Vs V(!14) 
4

GN 2mrHcosha, (2.26) 

Vs V(!14) 
41rG N ml cosh a , (2.27) 

G _ K~~ _ 24'lT"7z9 
N- - II p' 

81r 
(2.28) 
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where G N is Newton's constant in 11 dimensions, and lp is the 11 dimensional 
Planck length. The (magnetic) charge N is related to a and m by 

2m cosh a sinh a = 1r Nl~ . 

The Hawking temperature and angular velocity are given by 

3r~+ l2 

TH= ·. ' 
81rmcosha 

n _ lrH 
HH-

2m cosh a 

These quantities satisfy the first law of black hole thermodynamics: 

(2.29) 

(2.30) 

(2.31) 

We are interested in the field theory limit lp --+ 0, obtained by rescaling 
variables as follows 

1 
m = -u6 l 9 (47rN)3 

2 0 p ' 
(2.32) 

We get 
- 5 3 6 

E = MADM- Mextremal = 
3

1f3 VsN Uo' (2.33) 

4 3 2 3 
S = 

3
7f2 lfsN UHUo , (2.34) 

0 2 3 2 3 
JH = z

3
7r3 lfsN a u0 , (2.35) 

with 
A= 3u6 

3uii- a4 ' 
(2.36) 

The free energy is given by 

(2.37) 

For a= 0 this reproduces the result of [18] (u0 = 27rATH/3). The M5 brane 
coordinate x5 is compactified on a circle with radius RoA./ N, given by Eq. 
(2.4), so that 

(2.38) 
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The gluon condensate is then given by 

( 1 2 ( )) F 4 2 4 2 -
4 2 Tr Fp,v 0 = -uT = -

7 
>..N u0 A . 

9YM V4 H 2 7f 
(2.39) 

For a= 0 this reduces to the corresponding result in [12] (setting A= 1 and 
u0 = 21fTH /3). Expressing u0 in terms of the string tension (2.11) we obtain 

-1 2 1 N2 2 
(-
4 2 Tr Fp,v(O)) = -

2 
~a. 

9YM 1 7f /\ 
(2.40) 

Note that this relation is independent of a (in particular, it applies to the 
a = 0 case as well). It has the expected dependence on N, and a simple 
dependence on ).. . 

2.5 Topological Susceptibility 

The topological susceptibility Xt is defined by 

(2.41) 

The topological susceptibility measures the fluctuations of the topological 
charge of the vacuum. At large N the Witten-Veneziano formula [19, 20] re
lates the mass m 11' in SU(N) with N1 quarks to the topological susceptibility 
of SU(N) without quarks: 

(2.42) 

The effective low-energy four dimensional brane theory' contains the cou
pling 

_J_
2 
J d4 xd02 Ao2 Tr Fp,vF>.uEp,v>.u , (2.43) 

167f 
where A02 is the component along the coordinate 02 of the R-R 1-form Aw We 
will consider zero mode (M2 = 0) configurations where A02 is independent 
of the world-volume coordinates. Comparing to the standard Yang-Mills 
coupling, 

1 J' 4 ~ -
16

7f2 d xO Tr FF, (2.44) 
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one obtains the relation · 

A [21f 
(} = lo d02 Ao2 = 21r Ao2·. (2.45) 

The action of the R-R 1-form is given by 

I=~ ~-d10xy'g-4
1 

(811Av- OvA11 )(811,Av'- Ov1A11, )g11111 gvv' . 
2,.,;10 

(2.46) 

As discussed in Sect. 2.2, in the approximation that aju0 is either very large 
or very small, the metric is diagonal and there are zero mode solutions of the 
form Ao2 = Ao2(u), A11 = 0 , J-l f. 02 . The action reduces to 

I= ~ J d10xy'g (dAo2(u) )2guul2o2 . 
4,.,;10 du 

(2.47) 

Using Eq. (2.6) and integrating over the angular coordinates, this becomes 

I - 271r6A2,A3 Tr l.ood 3( 4- 4)(dAo2(u))2 
- 2 2 v4 u u u a . 

27u0K10 uH du 
(2.48) 

The equation of motion is then given by 

·(2.49) 

Whence 

(2.50) 

Ao2 =A~ [ 1 + 6C(a) ( 2;:2 + 4~6 log~:~::)] (2.51) 

The integration constant C(a) will be fixed by assuming that A02 (u) vanishes 
at the horizon [21]. This gives 

1 3ug 3ug u'k + a2 

-- = ---+-log~--=-
C(a) a4u'k 2a6 u'k- a2 · 

(2.52) 

The other integration constant A~ is related to the 0-parameter by (2.45), 

21rA~ = 0. Note that in the limit a = 0 one gets C(O) = 1 and A02 (u) = 
6 

A9z(l- ~). 
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, I= {p v; 167r A6C(a)A3T 4 . 4 729 H 
(2.53) 

The topological susce~tibility (2.41) can then be obtained by differentiating 
twice with respect to 0: 

327r 6 ) 3 4 Xt = 
729

A C(a A TH , (2.54) 

or, in terms of the string tension (2.11), 

(2.55) 

The 0-dependence of the vacuum energy of the form 02 is the result antici
pated in [21] for the a = 0 model, and Eq. (2.53) shows that it holds for large 
a too. In the large N limit, this must be the case for consistency [21]. For 
a= 0, one has A= 1 = C(a), and Eq. (2.54) reproduces the result obtained 
in [12]. In the large a limit we have (see Eq. {2.10)) 

so that 

a6 
C(a) ~ 6 , 

9u log..!!.. 

1 3 ug 
Xt ~ --A --=----=--

187r3 a2 log ..!!.. 
uo 

0 uo 

This decreases if we increase afu0 at fixed A and u0 . 

3 QCD in 2 + 1 dimensions 

3.1 Supergravity Models for QCD3-

{2.56) 

(2.57) 

Analogous models for QCD3 can be obtained by starting with the Euclidean 
rotating D3 brane (Eq. (3.16) in [9] with x0 --+ -ir, l --+ il) and taking 
ci --+ 0 by rescaling variables as follows: 

r = Uo/, (3.1) 
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In the limit cl ----t 0 at fixed U, a, U0 we obtain 

2 I l/2 [ U
2 

2 2 2 2) J41fgsN dU
2 

dsnB =a .6.0 J N(hodr + dx 1 + dx2 + dx3 + u4 
41f9s U2 (1 - ~- .::.0..) 

U2 U4 

V ( 2 Lio . 2 2 cos
2 

(} 2) 2aU~ . 2 . J + 47rg8 N d(} + .6.o sm Bdcp + 15:;;dfl3 U2.6.
0 

sm Bdrdcp , 

(3.2) 

where 

U.4 a2 cos2 (} - a2 

ho = 1- U4~0 , .6.o = 1- U2 .6.o = 1- U2 , (3.3) 

dfl~ = d'l/Ji + sin2 '¢1 d;p~ + cos2 '¢1 d'¢~ . (3.4) 

The theory describes fermions with anti-periodic boundary conditions on 
the circle parameterized by r, which has radius (27rTH)- 1 with 

(3.5) 

(3.6) 

For convenience, we have rescaled variables by U = ( 47rg8 N) 112 u , a ----t 
(47rg8 N) 112 a. At energies much lower than TH the theory should be effec
tively- 2 + 1 dimensional (with x 0 = ix3 playing the role of time). The gauge 
coupling of the 2 + 1 dimensional field theory is given by 

(3.7) 

(3.8) 

In this model Wilson loops exhibit an area-law behavior with string tension 

- 1 J 2 - ~ 3/2 ( ) a - - 47rgsN u0 - Y >.B u0 • · 3.9 
27r 

This can be obtained by minimizing the Nambu-Goto action [22], and it is 
essentially given by the coefficient of I:~=l dxr at the horizon times 1/(27r) [2, 
23, 24]. In the limit of large 't Hooft coupling, the light physical states are the 
supergravity modes, whose masses can be determined from the equations of 
motion of the string theory effective action. In the next sections we calculate 
the mass spectrum of the light physical states and of KK modes. 
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3.2 Spectrum of glueball masses 

In order to find the spectrum of the o++ glueball states one has to consider 
the supergravity equation for the dilaton mode <P that couples to the operator 
TrF2 

(3.10) 

evaluated in the above background. For functions of the form <P = x(U) eik·x, 

we obtain 

(3.11) 

The eigenvalues of this equation can again be determined numerically. The 
results are presented in Table 3.1 and Figure 3.1. Figure 3.1 gives the depen
dence on a of the mass ratio of the first excited o++ glueball state compared 
to the ground state o++. One obtains a very similar behavior to the case of 
QCD4 , that is the mass ratio changes very little, and takes on its asymptotic 
value quickly. The comparison to the available lattice results [25) are given 
in Table 3.1 

state lattice N --t oo value for a = 0 value for a --t oo 
o++ 4.065 ± 0.055 4.07 (input) 4.07 (input) 
o++* 6.18 ± 0.13 7.03 7.05 
o++** 7.99 ± 0.22 9.93 9.97 
o++*** 12.82 12.87 

Table 3.1: Masses of the o++ glueballs and their excited states in QCD3 . 

The first column gives the lattice results extrapolated to N --t oo, the 
second column the supergravity results for a= 0 and the third column 
the supergravity limit a --t oo. The lattice results are in the units of 
the square root of the string tension. The error given is statistical and 
does not include the systematic error. 

3.3 Masses of KK states 

Just like in the case of QCD4 , we would like to analyze the behavior of the 
masses of the different KK modes: We will find very similar results: the KK 
modes wrapping the coordinate T are decoupling (even though a bit slower 
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r 

1.732 

1.731 

a 
2 4 6 8 10 

1.729 

1.728 

1.727 

Figure 3.1: The dependence on a of the ratio r = MMo++• in QCD3. One 
o++ 

can see that the ratio is very stable to changes in a, and reaches its 
asymptotic value quickly. a is given in units of u 0 . 

than in QCD4 ), while the other KK modes corresponding to states with 
angular momentum on the S5 are not decoupling in the supergravity limit. 

First we consider the KK modes wrapping the compact T direction. Let 
us consider solutions to the Laplace equation \72 <P = 0 of the form 

(3.12) 

The coordinate Tis periodic with period Ti/, where TH is given in eq. (3.5). 
Therefore 

{3 = 2nTH n, (3.13) 

where n is an integer. Using the metric (3.2) we find 

One can see that just like in the case of QCD4 there is an additional positive 
contribution to the masses, which grows like a4 , therefore the masses of these 
KK states should grow as M'fcK ~ a4

• Thus these KK modes decouple from 
the spectrum, but slower than the corresponding KK modes in QCD4 • The 
results of the numerical analysis are summarized in Table 3.2 and Figure 3.2. 

Next we analyze the KK modes which correspond to states with angular 
momentum l = 1 on S5 in the a = 0 case. For a = 0 these states have been 
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state value for a= 0 value for a= 4 
KK 5.79 23.77 
KK* 8.64 24.63 
KK** 11.50 25.78 
KK*** 14.36 27.19 

Table 3.2: Masses of the KK modes wrapping the circle T in QCD3 , 

using the same normalization as in Table 3.1. The first column gives the 
masses for a= 0 while the second the masses for a= 4. Note that these 
states decouple quickly from the spectrum even in the supergravity 
approximation. 

r 
0.8 

0.7 t-----
0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

a 
2 3 4 

Figure 3.2: The dependence on a of the ratio r = MMo++ of the lowest 
KK 

o++ glueball state compared to the KK states wrapping the T circle in 
units where u0 = 1. These KK modes decouple from the spectrum in 
the supergravity approximation very quickly. 
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examined in (6], and found to be non-decoupling in the supergravity limit 
and including the lowest order ci corrections. Here we repeat this analysis 
and find (just like in the case of QCD4) them to be non-decoupling even in 
the a --+ oo case, in the supergravity limit. 

In order to do the analysis of these KK modes one needs to find the ex
plicit form of the spherical harmonics. The spherical harmonics on 5d can 
be constructed in the following way. One takes 5d embedded in Rd+1

, and 
expresses the Cartesian coordinates Yi in terms of the angles. Then the spher
iCal harmonics are just the functions Ci1 , .•. ,ikYh····Yik, where Cis a symmetric 
traceless tensor (26]. This way, the simplest non-trivial spherical harmonic is 
just the coordinate Yi itself. In the case of our QCD3 theory, we actually have 
to use the "spheroidal coordinates" Yi given in (9] on page 9. Thus one looks 
for solutions of the dilaton equation of the form f ( u )eik·xyi, i = 1, 2, 3, 4, 5, 6. 
For a = 0 the isometry group of 55 is 50(6), and the l = i KK mode is in 
the representation 6 of 50(6). Introducing the angular momentum a breaks 
S0(6) to 80(4) x U(1) x U(1), and the 6 decomposes into 4 + 1 + 1. These 
states satisfy different eigenvalue equations. For i = 1, 2 (the two singlets 
are degenerate) the equation one gets is 

(3.15) 

Note that for a= 0 this indeed reduces to the equation given in (6] for l = 1. 
We have numerically solved this equation, and find that the mass of these KK 
modes is growing slightly, until it becomes degenerate with the first excited 
state of the o++ glueball. Thus it does not decouple from the spectrum in 
the supergravity limit. The results are summarized Table 3.3 and Figure 3.3. 

For the other 4 KK states which are in the 4 of 50(4) one finds the 
equation 

(3.16) 

which for a = 0 reproduces the equation in (6] with l = 1. The additional 
mass term is now negative, which actually makes these KK modes lighter in 
the a --+ oo limit than for a = 0. However, they are still of the same order 
(and slightly heavier) than the o++ glue balls. The numerical results for this 
state are summarized in Table 3.4 and Figure 3.4. 
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state value for a= 0 value for a --+ oo 
KK 5.27 7.05 
KK* 8.29 9.97 
KK** 11.23 12.87 
KK*** 14.14 15.76 

Table 3.3: Masses of the KK modes corresponding to the two degenerate 
singlet pieces of the l = 1 sextet of the original 80(6) isometry in 
QCD3 , using the same normalization as in Table 3.1. The first column 
gives the masses for a = 0 while the second the masses in the a --+ oo 
limit. Note that these states do not decouple from the spectrum in the 
supergravity approximation. 

r 

1.7 

1.6 

1.5 

1.4 

2 4 6 8 
a 

10 

Figure 3.3: The dependence of the ratio r = MMKK of the KK modes 
o++ 

corresponding to the two singlet l = 1 states compared to the lowest o++ 
glueball state on the parameter a in units where u0 = 1. This KK mode 
does not decouple from the spectrum in the supergravity approximation 
even in the a--+ oo limit, even though it increases slightly and becomes 
exactly degenerate with the first excited glue ball state o++*. 
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state value for a= 0 value for a --7 oo 
KK 5.27 4.98 
KK* 8.29 8.14 
KK** 11.23 11.15 
KK*** 14.14 14.10 

Table 3.4: Masses of the KK modes corresponding to the quartet piece 
of the l · 1 sextet of the original 80(6) in QCD3 , using the same 
normalization as in Table 3.1. The first column gives the masses for 
a= 0 while the second the masses in the a--+ oo limit. Note that these 
states actually get lighter from a = 0 to a = oo in the supergravity 
approximation. 

r 
1.3 

1.28 

1.26 

1.24 

1.22 

a 
2 4 6 8 10 

Figure 3.4: The dependence of the ratio r = MMKK of the KK states 
o++ 

compared to the lowest o++ glueball state on the parameter a in units 
where u0 = 1. This KK mode does not decouple from the spectrum in 
the supergravity approximation even in the a--+ oo limit, they instead 
get even slightly lighter than for a= 0. 
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3.4 Free energy and Gluon condensatio~ 

From the rotating D3 brane metric (see Eq. (3.16) in [9]), one can find the 
following formulas for the thermodynamic variables: . 

V3 v ( ns) 52 ( 1 4 . h2 ) 
4 G 

m + -sm a , 
7r N 4 5 

V(ns) = rr3 , (3.17) 

s 

where 

V3 V(ns) 
4GN 2mrH cosh a, 

V3V(ns) l h 
4rrGN m cos a, 

TH = TH(2r'k + l 2
) !1H _ lr'k 

4rrm cosh a ' - 2m cosh a ' 
/),2 

G = _lQ = 8g2rr6 (a') 4 
N 8rr s ' 

2m cosh a sin a = 4rrg8 N a'2 
. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

One can check that they satisfy the first law of black hole thermodynamics 
Eq. (2.31). In the limit a' -t 0 (rescaling variables as in (3.1) ), we get 

- 3 2 4 
E = MADM - Mcxt = -2 V3 N Uo ' 

8rr 

uo 
TH=rrB' 

2 
n _ .auH 
HH -'l 2 ' 

uo 
u4 

u2H- a2 = _o 
4 ' UH 

The free energy is then given by 

N2u4 
F=E-THs-nHJH=-V3--0 . 

8rr2 

This gives for the gluon condensate the following expression: 

1 2 ·. F 12 3 
(-2-Tr F~tv(O)) = -VT = -

8 
N Bu0 • 

4gyM 3 H 7r 
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(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 



In terms of the Yang-Mills string tension, this is 

1 2 )) 1 N2 2 -(-
4 2 Tr F1.w(O =-,a . 

9YM 8rr A 
(3.29) 

We find again that supergravity predicts that the gluon condensate is pro
portional to N 2 /A times the string tension squared. The result expressed in 
terms of the string tension is thus independent of a. 

4 Conclusions 

In this paper we investigated quantitative aspects of large N 5U(N) Yang
Mills theory in three and four dimensions using a one-parameter family of 
supergravity models related to non-extremal rotating D-branes. The new 
feature of this class of models is the decoupling of the KK modes associated 
with the compact D-brane coordinate as the angular momentum parameter 
is increased . .The mass ratios for ordinary glueballs were found to be very 
stable against this variation. While the mass ratios of the o++ glueballs 
change only slightly compared to the case with zero angular momentum, 
there is a substantial change in the mass ratios of o-+, o-+* given in Eqs. 
(2.20), (2.21), which for large a are in better agreement with the lattice values 
than for a= 0. 

It is worth emphasizing that the ratio aju0 should be large enough to 
have MKK » Mgluebalb but not infinite, since there are also string states 
winding around the compact D-brane coordinate with masses of order a R0 

that should decouple, i.e. Mwind » Mglueball· This requires Augja8 » 1, 
which is consistent with the condition that curvature invariants are small 
compared to the string scale [9]. In general, for any given ratio aju0 which is 
large enough to decouple KK states from the low-energy physics, it is possible 
to choose A sufficiently large so that string winding states also decouple. 

We have found that the (50(3) or 50(4)) non-singlet KK modes with 
vanishing U(1) charge in the compact D-brane coordinate do not decouple in 
this class of models. One can hope that those KK modes may decouple in a 
model with more angular momenta (since there is room to take other limits). 
In this case the isometry group of the internal space is smaller. For example, 
in QCD3 , for a = 0 it is given by 50(6) x U(l), whereas for a =f: 0 it is 
S0(4) x U(1) x U(1). The isometry group of the model with the maximum 
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number of angular momenta only contains U(1) factors. This is consistent 
with the fact that in pure QCD there can only be singlets of the original 
R-symmetry. 

We have also found some features which seem to be universal, i.e. which 
do not depend on the extra supergravity parameter. In particular, both in 
QCD3 and QCD4 supergravity gives a gluon condensate of the form ~

2 

a 2
, 

with a coefficient which is the same for all models parametrized by a. Another 
feature that seems to be common to all supergravity models is a topological 
susceptibility of the form .Aa2

, with a coefficient which is independent of N 
but depends on aju0 . This result suggests that in the regime .A » 1 the 
rl particle of QCD4 with N = 3 is much heavier than other mesons (whose 
masses are proportional to the string tension). 
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