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Abstract 

The supersymmetric flavor problem may be solved if the first and second 
generation scalars are heavy (with multi-Te V masses) and scalars with large 
Higgs couplings are light (with sub-TeV masses). We show that such an inverted 
spectrum may be generated radiatively; that is, from initial conditions where 
all scalar masses are multi-Te V at some high scale, those with large Higgs 
couplings may be driven asymptotically to the weak scale in the infra-red. The 
lightness of third generation scalars is therefore a direct consequence of the 
heaviness of third generation fermions, and fine-tuning is avoided even though 
the fundamental scale of the soft supersymmetry breaking parameters is multi­
TeV. We investigate this possibility _in the framework of the usual Yukawa 
quasi-fixed point solutions. The required high scale boundary conditions are 
found to be simple and highly predictive. This scenario also alleviates the 
supersymmetric CP and Polonyi problems. 



1 Introduction 

If low-energy supersymmetry (SUSY) is realized in nature, the effective Lagrangian 
must contain many new mass parameters that explicitly, but softly, break supersym­
metry. The requirement that large quadratic divergences not be reintroduced in the 
electroweak breaking sector is oftent£l.ken to suggest that these soft SUSY-breaking 
(SSB) parameters are at the scale mtight ;S 1 TeV. On the other hand, stringent flavor 
changing constraints require that many of the soft scalar masses either be at the scale 
mheavy rv 10TeV or fall into highly constrained patterns [1]. The tension between 
these requirements is the supersymmetric flavor problem. 

This problem may be resolved, however, if the scalars have an inverted mass 
hierarchy relative to the fermions [2, 3, 4]. In such a scenario, the scalars of the 
first fwo generations are at the scale mheavy· This highly suppresses supersymmetric 
contributions to flavor (and C P) violation involving the first two families, where the 
constraints are most stringent. At the same time, the scalar partners of the heavy 
fermions, which interact through large Yukawa couplings with the Higgs bosons, are 
at the scale mtight, avoiding fine-tuning in the Higgs sector. Note that, because the 
scalars of the first two generations interact very weakly with the Higgs bosons, they 
may be significantly heavier without destabilizing the gauge hierarchy. 

This inverted hierarchy of scalar masses has been analyzed in a number of studies, 
and it has been argued that it may be created by dynamical mechanisms at high [3, 5] 
or intermediate [6] energies. The experimental signatures of such scenarios have also 
been studied. Observable effects of the light supersymmetric particles have been 
considered in Refs. [7, 8], and the non-decoupling effects of very massive superparticles 
have been discussed in Refs. [9, 10]. 

In this paper, we note that there is no a priori need to impose this hierarchy 
among the scalar masses at some high scale, such as the grand unified theory (GUT) 
or Planck scale, in order to realize the hierarchy at the weak scale. Instead, we 
demonstrate that even if all soft scalar masses have multi-Te V values at some high 
stale boundary, the mass hierarchy may be generated radiatively. In this scheme, for 
specific ratios of the SSB parameters which we will determine, the third generation 
scalars are driven to the light ·scale by large Yukawa couplings. The lightness of third 
generation scalars and heaviness of third generation fermions are therefore intimately 
connected, and fine-tuning is avoided, even though the fundamental scale of the SSB 
parameters (the gravitino mass) is"' 10 TeV. 

We will demonstrate this idea in the context of scenarios in which large Yukawa 
couplings saturate their infra-red quasi-fixed points ( QFPs ). In this case, the relevant 
SSB parameters will be seen to have simultaneous (approximate) zero fixed-points. 
The required boundary conditions for such fixed points to exist will be seen to be 
remarkably simple and highly predictive, though also highly constrained [11] .1 

1 In a related, but orthogonal, approach to the supersymmetric flavor problem, one may search 
for models in which scalar mass degeneracy, as opposed to a scalar mass hierarchy, is generated by 
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2 Inverted Hierarchy Models 

We first review the constraints on supersymmetric models with inverted scalar mass 
hierarchies. 

A supersymmetric scenario is fine-tuned if there are large cancellations in the 
conditions for electroweak symmetry breaking: 

1 2 
-mz 
2 

2m~ (1) 

In these equations, mHu and mHd are the SSB Higgs boson masses, m~ is the soft 
bilinear scalar coupling of the two Higgs doublets, f.l is the Higgsino mass parameter, 
and tan ,B = ( H~) I ( H~) is the usual ratio of Higgs vacuum expectation values. In 
models with hierarchical scalar masses, these conditions have a number of implications 
resulting from the fact that the light-heavy scalar mass hierarchy and, hence, the 
Higgs parameters of Eq. (1) are not stable against radiative corrections [2). 

Several of these implications are evident even at one-loop. For the soft scalar mass 
parameter mi, the one-loop renormalization group equation is 

'> 

dm~~ 
Tt 1-loop = 

(2) 

where t = ln(M}IQ2 )147r, and Mx is the high scale boundary. The index a runs over 
gauge groups, Ca(i) are quadratic Casimir invariants,2 and Y denotes hypercharge. 
M, h, and hA are gaugino masses, Yukawa couplings, and trilinear scalar couplings, 
respectively. Summations over scalar indices implicitly include summations over color 
and weak isospin. 

Each of the four terms of Eq. (2) leads to a constraint for generating and main­
taining a scalar mass hierarchy. From the first and second terms, we see that gauginos 
masses and trilinear scalar couplings must be at the light scale. From the third term, 
which arises from quartic scalar gauge interactions, it is evident that the hypercharge 
trace must satisfy Lj Yjm] ::S m~ght· From the fourth, one-loop corrections to light 

scale masses of the form h2m~eavy lead to the upper bound mheavy ::S ( 47r I h )mlight· 

Even if the three constraints and upper bound mentioned above are satisfied, 
two-loop gauge interactions threaten to drive the light scalar masses negative. These 

fixed points [12]. 
2 For the U(l) gauge group, Ca = Y2 for scalars with hypercharge Y, and for the SU(N) gauge 

groups, Ca = (N 2 - I)/2N for scalars in~the fundamental representation. 
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two-loop corrections are given by [13]: 

d:::~~- ex: LL-ta(j)Ca(i)a~mJ, 
2-loop a j 

(3) 

where a again sums over all gauge groups, ta = Y2 for hypercharge, and ta = ~ 
for fundamentals of SU(N). To avoid tachyonic states and color-breaking minima, 
these must be co'mpensated by positive contributions from gaugino masses [2, 14, 15]. 
This observation leads to lower bounds on gaugino masses that are most stringent in 
models with high-energy mediation of the heavy SSB parameters, where the evolution 
interval (the logarithm) is maximized. 

3 Radiative Hierarchy with Low tan f3 
Now we present a first concrete example of the generation of an inverted hierarchy 
through renormalization group evolution. This will serve as a simple illustration of 
the idea. A more complicated, but more satisfactory, sc~nario will be discussed in the 
following section. 

We will consider the minimal supersymmetric standard model (MSSM) with su­
perpotential 

( 4) 

where Hu and Hd are the up- and down-type Higgs superfields, Q and L are the 
quark and lepton doublets, U, D, and E are the up-type quark, down-type quark, 
and charged lepton singlets, respectively, and the indices i and j denote generations. 

We begin by considering the case of low tan f3. In this scenario, the only significant 
Yukawa coupling is the top quark Yukawa ht = h~3 . As noted above, the stability of 
light-heavy scalar hierarchies requires gaugino masses and trilinear scalar couplings 
to be at the light scale. Scenarios in which this arises naturally will be described in 
Sec. 5. Assuming this to be true, and further neglecting the Tr[Y m 2] term, we find 
that the scalar masses renormalized by the top Yukawa satisfy 

dm2 

~ = htXlowm
2 

, (5) 

where 

3 3 )" 2 2 
1 1 

(6) 

.and m 2 = ( m't-u, m'f_;
3

, m~3 )T. Two eigenvectors of X1ow have eigenvalue 0; the third, 
m2 = (3, 2, 1)T, has eigenvalue -6. Arbitrary boundary conditions may be evolved 
by first decomposing them along the three eigenvectors [16]. The components par­
allel to the eigenvectors with zero eigenvalue are constants of the evolution, and the 
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component parallel to m2 is asymptotically damped to zero. If the initial conditions 
are dominated by their m2 component, the three scalar masses will have, subject to 
the assumptions above, simultaneous fixed points at zero, thereby creating a scalar 
mass hierarchy. 

· To determine whether the fixed points for the mass parameters are reached rapidly 
enough, let us consider scenarios in which the top quark Yukawa is near its quasi­
fixed point (QFP) [17). In the low tan,B QFP scenario, ht is drawn to its QFP value 
of hfP :::::: 1.1 in the infra-red, irrespective of its value at the high scale, as long as 
this value is not too small. Weak scale parameters are therefore insensitive to the 
exact value of the top Yukawa at the high scale, which is attractive because our 
scenario may then be realized without postulating specific and possibly complicated 
relations between the parameters of the Yukawa and SSB sectors. Given the relation 
h't(mt) ~ (0.95/ sin ,B) (mfole/175 GeV), we find tan,BFP:::::: 1.8 for the low tan,B QFP 
scenario.3 Such low values of tan ,8 are currently probed in Higgs boson searches. 

In the QFP scenario, it is possible to solve analytically for the low energy values 
of the soft scalar masses in terms of the high scale boundary conditions, which we 
denote by zeroes [19): 

m2 
Hu 

f"V micrJO) + 0.52M{12 ~ 3~m
2 

m2 
Hd 

f"V micr)O) + 0.52M{12 
2 

mQ; f"V m~;(O) + 7.2M{12 - 8i~m2 

2 
mu; m~;(O) + 6.7 M{12 - 8i2~m2 (7) 
m2 

D; 
f"V mb;(O) + 6.7 M{12 

2 
mL; f"V mL(O) + o.52M{12 

2 
mE; m~;(O) + 0.15M{12 , 

where 

~m2 "' ~ [micrJO) + m~3 (0) + m~3 (0)] r 

+M112 (Ir- r2
) +lAo (~Ao- 2:3M1; 2) r (1- r) (8) 

and, for simplicity, we have assumed a common gaugino mass M1; 2 and trilinear scalar 
coupling A0 at the high scale, which is identified with the scale of coupling constant 
unification. The subscript i is a generational index; 81 = 82 = 0 and 83 = 1. Finally, 

the parameter r = [ ht/ hfP t ::::; 1 is a measure of the proximity of the top Yukawa 
coupling to its QFP value at the weak scale. 

3 We ignore here various subtleties associated with the value of the strong coupling and with finite 
superpartner radiative corrections to mfole. These can lead to substantial corrections, but may be 
absorbed in the relevant value of tan {Jpp [18]. 
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From Eq. (7) we see that the large Yukawa coupling ht gives a large negative 
correction to the Hu, Q3 and U3 scalar masses. It is easy to verify that in the limit 
of r-+ 1 and neglecting M112 , the equation mHu = mQ3 = mu3 = 0 is solved by the 
boundary conditions 

(9) 

as expected. That is, even if all scalar masses are at some heavy scale mheavy rv 10 TeV, 
if the constraints of Eq. (9) are satisfied, then ffiHu, ffiQ3, and mu3 are still only 
"' mlight in the infra-red. From the form of Eqs. (7) and (8), we see that these 
conclusions hold, roughly, as long as 1 - r ;S( mtight/mheavy )2 and deviations from the 
boundary conditions of Eq. (9) satisfy !lm~u' flm~3 , flmb

3 
;S maght· 

The light-heavy hierarchy is, of course, also subject to the constraints discussed 
in Sec. 2. From Eq. (8), we see that we require M112, A0 "' mtight· 4 In addition, the 
boundary conditions for Hd and the other sfermions are constrained by the require­
ment Tr[Y m 2

] ;S maght; simple boundary conditions, such as the condition that all of 
these other scalar masses equal m 0 , may be found to satisfy this constraint. Finally, 
the zero fixed points of the mass parameters receive the usual two-loop gauge correc­
tions of Eq. (3). Because of large group theoretical factors, the two-loop corrections 
to the light sfermion masses are always more important than the one-loop Yukawa 
correction. As noted above, for the light scalar squared masses to remain positive, the 
negative two-loop corrections above must be compensated by positive gaugino mass 
contributions. The requirement that there be no tachyons or color-breaking minima 

demands roughly that M112 ~ Ja.s/47r mo. 
We have confirmed the analytic approximations described above with complete 

numerical calculations including the two-loop gauge corrections. In Fig. 1 we show 
the renormalization group evolution of the SSB mass parameters for a representative 
set of boundary conditions satisfying Eq. (9). Despite multi-TeV values at the high 
scale boundary, we see that the masses renormalized by the large top Yukawa are 
quickly driven to the weak scale in the infra-red. Th~ other scalar masses remain at 
the multi-Te V scale, and we see that a scalar mass hierarchy is generated radiatively. 
To quantify how generic such results are, we display in Figs. 2 and 3 the regions in 
parameter space for which phenomenologically-desirable squark masses are obtained. 
In Fig. 2 the weak scale parameters are obtained from the high scale boundary condi­
tions through one-loop renormalization group equations. In the shaded region, both 
Q3 and U3 masses are positive and below 1 TeV. Any gaugino mass is possible, as 
long as it is not so large as to drive the Q3 and U3 masses above 1 TeV. In Fig. 3, the 
two-loop gauge contributions are included. As noted above, these contributions must 
be compensated by gaugino contributions to avoid tachyons and color-breaking min­
ima, and so now, for a given m 0 , there is a minimum allowed M112 • We see, however, 

41n fact, Ao ,..... mtight is not required in this example if r -+ 1; this will not hold in general, 
however. · 
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Figure 1: The two-loop renormalization group evolution of SSB masses for a represen­
tative case in the low tan (3 QFP scenario. The boundary conditions at Q ~. 2.4 x 1016 

GeV are those of Eq. (9) with m0 = 5 TeV, and M1; 2 = 500 GeV and A0 = 0. The 
SSB masses for Q3 , U3 , and Hu are quickly .driven to the weak scale by the top 
Yukawa coupling, while the rest of the scalars, represented by D3 here, remain at the 
multi-Te V scale. 

that there is still a substantial band in which all phenomenological requirements are 
met, and the Q3 and U3 masses are below a TeV. 

In this scenario, the fine-tuning associated with mHu and the squark fields Q3 and 
U3 , which are strongly coupled to Hu, has been successfully eliminated. Unfortunately, 
mHd is not affected by the Yukawa fixed point in the low tan (3 scenario and remains 
at the heavy scale. Electroweak symmetry breaking therefore requires J.l 2 

"' m'td "' 

m~eavy' and this scenario is still fine-tuned. 5 

This flaw may be avoided in high tan (3 scenarios, to yvhich we will turn in the 
following section. Before doing so, however, we collect here a number of remarks. 
First, note that the boundary conditions of Eq. (9) are inconsistent with any minimal 
GUT embedding requiring mQ3 (0) = mu3 (0). Second, large (2: 10%) and negative 
finite mass corrections to the top quark mass may increase the low·tan/3 QFP value 

5 The requirement that squark mixing not lead to color-breaking minima also leads to the con­
straint mlightffiHd < mb ~ 7 M[12 , which is, however, weaker than the constraints discussed above 
and is easily satisfied. -
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-Q3 

--- u3 
1-loop 

400 600 800 1000 
M 112 (GeV) 

Figure 2: The allowed region (shaded) in the (M1; 2 , m0 ) parameter place, where M1; 2 

is the high scale gaugino mass, and m0 specifies the high scale scalar masses through 
Eq. (9). One-loop renormalization group equations are used and A0 = 0. To the left 
of the solid (dashed) contour, the scalar Q3 (U3 ) mass is below 1 TeV at the weak 
scale. All physical squared masses are positive and electroweak symmetry is properly 
broken throughout the plane. Note the different mass scales. 

to tan,BFP » 1. In this case, as is evident from Eq~ (1), the fine-tuning related to 
large mHd is significantly diminished, and ffiHd "'mheavy may be tolerated. However 
the finite mass contributions realized by supersymmetric QCD corrections in most 
models are .;S 10%, and so this scenario may be difficult to realize. 

Finally, it is entertaining to note that mHd, l~tl » mweak is actually preferred 
by coupling constant unification, as it leads to a pattern of superparticle threshold 
corrections that diminishes the prediction for the strong coupling a 8 (mweak)· In the 
absence of threshold corrections, one predicts too-large a8 (Mz) ~ 0.13, and most 
typical patterns of superparticle threshold corrections only aggravate this problem. 

4 Radiative Hierarchy with High tan f3 
·The fine-tuning situation may be resolved in the case of high tan ,B "' 50 - 60, where 
both ht and hb = h~3 are near their fixed points. The coupled set of renormalization 
group equations is now more complicated. However, assuming ht ~ hb, and neglecting 
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Figure 3: Same as in Fig. 2, but including the two-loop gauge contributions in the 
evolution. To the left of the left-most solid (dashed) contour, the scalar Q3 (U3 ) mass 
is negative at the weak scale; to the right of the right-most solid (dashed) contour, the 
scalar Q3 (U3 ) mass is above 1 TeV. In the shaded region, both masses are positive 
and below 1 TeV. 

for simplicity all gaugino masses, trilinear scalar couplings and Tr[Y m2
] as before, we 

find that the scalar masses evolve as 

dm2 

~ = htXhighm
2 

, (10) 

where 
3 3 3 0 0 
2 2 2 0 0 

xhigh =- 1 1 2 1 1 (11) 
0 0 2 2 2 
0 0 3 3 3 

and here m
2 = (mk, mb3, m~3' ml>3, m'1£d)T. Three eigenvectors of xhigh have eigen­

value 0; the other two a:re m~ = ( -3, -2, 0, 2, 3f with eigenvalue -5 and m~ = 
(3, 2,2, 2, 3)T with eigenvalue -7. We thus expect a two parameter family of bound­
ary conditions leading to a scalar mass hierarchy. 

As before, we consider the QFP framework, but now for high tan ,B. Neglecting 
gaugino masses and the trilinear scalar couplings, we find simple solutions for the 
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low-energy masses in terms of their high scale boundary values [20]: 

m2 H., f'V m2 (0) - 3L\m2 
Hu t 

2 
mHd f'V m~)O) - 3L\m~ 
m2 

Q; 
f'V mb;(O) - c5i(L\m; + L\m~) 

2 
mu; f'V m~;(O) - c5i2L\m; (12) 
m2 f'V m'b; (0) - c5i2L\m~ D; 

2 
mL; f'V mL(o) 

2 
mE; m~;(O) , 

where 

L\m; rv ~ [m~JO) + mb3(0) + m~3 (0)] r 

1
1
0 
[m~.,(O)- m~)O) + m~3 (0)- m'b3(0)] [~r + (1- r)t- 1] (13) 

L\m~ rv } [m~d(O) + mb3 (0) + m'b3 (0)] r 

+ 1
1
0 
[m~JO)- m~JO) + m~3 (0)- m'b3(0)] [~r + (1- r)t- 1] , (14) 

and, as before, r = [ ht/ hfP r :S 1. In this solution, we have neglected small differences . 
in the top and bottom Yukawa coupling evolution, and assumed vanishing leptonic 
couplings. In particular, we neglect hr; see the discussion below. 

In contrast to the previous low tan (3 case, hb is now significant. We must then 
demand that the Hu, Hd, Q3 , U3 , and D3 scalar masses all be driven to zero in 
the infra-red. We find that this scenario is obtained for an extremely simple two­
parameter family of boundary conditions given by 

m~, (0) 3 2 ( 2mu3 0) 

m~d(O) 3 2 ( 2mD3 0) (15) 

mb3 (0) ~ [m~3 (0) + m'b3 (0)] 

These boundary conditions are just a reparametrization of the space spanned by the 
eigenvectors m~ and m~. Clearly, in this case both Higgs mass parameters are affected 
by the fixed point and no fine-tuning is required (aside from the moderate tuning at 
the level of m~ /m~ght• which is always associated with such high values of tan (3 [22]). 

The solutions of Eq. (12) are valid for boundary values h;(o) « hl(O) and hr « 
47r ffiJight/mheavy· The first relation is found in a certain range of very high tan(3"' 
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50 - 60.6 (See, for example, Fig. 1 of Ref. [18].) One often associates the high 
tan f3 QFP scenario with either hb = h-r or ht = hb = h7 unification at the GUT 
scale, as implied by minimal SU(5) and S0(10) GUTs, respectively. A subset of 
the solutions of Eq.(15), with m~3 (0) = ml,

3 
(0) = mb

3 
(0) and mh-JO) = mJi)O) = 

~m~(O), is consistent with such a GUT embedding. (The hypercharge trace condition· 
is automatically satisfied in this case.) In general, however, the boundary conditions 
need not admit a true (minimal) GUT embedding, and we therefore do not require 
such scalar mass relations or the accompanying Yukawa coupling unifications. 

It is difficult to incorporate analytically the effects of a non-negligible hn and 
generally an involved numerical analysis is required. In Ref. [20] this effect was 
estimated, but the results were valid only for 0.6 ::S r ::S 0.95. The required boundary 
conditions have a complicated dependence on r and therefore do not have obviously 
simple forms away from the QFP value of r = 1. 

In the quantitative discussions above, we have focused on only two simple sce­
narios with minimal field content. It should be stressed, however, that while the 
required boundary conditions depend on the specific Yukawa fixed point structure, 
the existence of such boundary conditions stems from the general existence of such a 
structure. Hence, it is reasonable to speculate that our observations apply more gen­
erally. For example, one could look for similar QFP solutions in the MSSM extended 
by a gauge singlet.S interacting through the superpotential term SHuHd, or at the 
c~se oflepton number violating Yukawa couplings with simultaneous fixed points [21]. 
Many other such examples are possible. . 

5 High-energy Frameworks and R Symmetry 

We have seen that inverted scalar hierarchies may be generated radiatively for cer­
tain boundary conditions. Such boundary conditions are both highly constrained and 
highly predictive, and it is of some interest to investigate specific high energy frame­
works that give such mass patterns. Here we will limit ourselves to a discussion of 
general principles that lead to the required features. 

Let us concentrate on the high tan f3 scenario. The appearance of a light-heavy 
hierarchy in the scalar mass sector can only occur if there is already a hierarchy 
between the scalar masses (heavy) and the p parameter, m~, gaugino masses, and A­
terms (light). (Electroweak symmetry breaking requires m~ at the light scale, since 
m~ = ~(mku + mh-d + 2p2

) sin 2/3.) 
Such a hierarchy might be generated by an approximate U(1) symmetry. In the 

absence of the 1-l and SSB parameters, the MSSM possesses two global U(1) symme­
tries: a Peccei-Quinn symmetry, under which all components of a given superfield 

6 Again, the exact value of tan,B for which ht(O)::: hb(O) >> hr(O) depends sensitively on low­
energy finite radiative corrections to the t and b-quark masses and on the exact value of the strong 
coupling. ~ 
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have the same charge, and an R symmetry, under which the boson and fermion com­
ponents of a given superfield differ by one unit. If 11 and the SSB parameters are 
viewed as spurion fields [24], we may choose the following charge assignments for 
them: PQ(11) = PQ(m~) = 1, with all others PQ neutral, R(mo) = R(11) = 0, 
and R(m5) = R(M1; 2 ) = R(A) = -2. Under suitable linear combinations of these 
two symmetries, such as R + PQ, all parameters are charged, .except for the scalar 
masses m0 . (Note that scalar masses ar~ neutral, and gaugino masses and A-terms are . . .. 

charged, for all possible linear combinations.) Thus, an approximate U(1) symmetry, 
such as an R + PQ symmetry, naturally produces the necessary hierarchy, and the 
presence of R symmetries may play a vital role in realizing models that exhibit the 
inverted hierarchy. 

Alternatively, the suppression of the necessary parameters may be the result of 
some other mechanism. Assume, for example, that the scale at which SUSY-breaking 
is communicated to the MSSM, M, is significantly higher than the initial scale of 
SUSY-breaking itself, ft. We can then express the most general set of operators in 
an expansion in powers of n I M. The leading terms in that expansion that generate 
the 11 parameter and soft terms have the following form: 

Scalar masses : (16) 

11 parameter : (17) 

Gaugino masses: (18) 

A-terms: 

where the Wa are gauge vector supermultiplets containing the standard model gaug­
inos, the «<>i are standard model chiral superfields, and S and Z represent SUSY­
breaking gauge singlet and non-singlet superfields, respectively. These terms give 
SSB parameters and the f-l parameter when the S and Z fields get F-term vacuum 
expectation values: S --r FsfP, Z --r Fz(P (and, in the second source for A-terms, 
«<>j --r F;JJ2"' <Pi«<>kiP). 

From the expressions above, it is clear that the terms corresponding to dimension 
3 operators rely on SUSY-breaking singlet fields at leading order in M-t, while the 
scalar masses do not. Therefore, in any scenario in which Fs « Fz (or S is absent 
from the spectrum), 11, the gaugino masses, and all A-terms will be suppressed relative 
to scalar masses. For example, to generate the desired hierarchy, it is sufficient for 
Fs to be generated radiatively so that Fs "'a/4rr Fz. (Note, however, that m~ must 
be suppressed by some other means, such as the U(1) symmetries discussed above.) 

Finally, it is interesting to ask whether such a hierarchy could ever occur in 
supergravity-mediated SUSY-breaking models. It is known that in models without 
singlets, gaugino masses are suppressed relative to scalar masses. If we further assume 
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that there are no Planck scale vacuum expectation values in the hidden sector (as 
is expected in models that break SUSY in the flat limit), then A-terms will also be 
suppressed [25]. In such scenarios, conventional contributions to the gaugino masses 
and A-terms are highly suppressed, and the dominant contributions have reCently 
been shown to be those arising frotn the superconformal anomaly [26]. In fact, the 
natural suppression of gaugino masses relative to squark masses is then one-loop, 
roughly corresponding to the size we require in our me·chanisrri. 

Once the hierarchy between the scalar and gaugino masses is generated, it is still 
necessary to understand the particular form of the scalar mass boundary conditions 
that are required in these scenarios. 

The rational relations that are required among the soft masses in the previous 
sections are immediately reminiscent of the relations one would expect were soft 
masses to be communicated via D-terms of broken gauge symmetries. This results 
in terms .C = 9

2

2 

[Tr Qim~ ± eJ 2
; where Q is a charge in the Cartan subalgebra of the 

broken group and e is an order parameter of the group's breaking. Note that the 
squared masses are always proportional to the broken Cartan charges of the fields. 
Unfortunately, it is im'possible to have the spectrum of charges corresponding to 
Eq. (9) [Eq. (15)] and simultaneously demand invariance of the top [top and bottom] 
Yukawa coupling under the broken symmetry group, which is a natural assumption 
given its large size~ 

One might also consider the framework of weakly coupled string theory. There, 
the dilaton field is one of the singlets S above. If SUSY-breaking is dominated by 
the dilaton F component, then gaugino masses and (universal) scalar masses are of 
the same order [27]. However, if SUSY-breaking is dominated by F components of 
moduli ci> ivf, gaugino masses arise only at loop-level in string theory, giving M1; 2 rv 

( Ostring/ 47r) mo. (Of course, a mechanism for suppressing the A-terms is also needed.) 
Incidentally, in the moduli-dominated scenario, scalar masses are generically all at 
the same scale, but may differ by order one coefficients given by the Kahler metric: · 
m~ ~ Kiim5. This is exactly the necessary condition for radiative inverted hierarchy 
generation. In this framework, the boundary condition scalar mass ratios that we 
derived above correspond to ratios of modular weights of the different fields. 

6. The CP and Polonyi _Problems 

The R symmetry'discussed above was previously studied in Ref. [23], where a number 
of attractive phenomenological features were noted. In that work, an approximate R 
symmetry was seen as a possible source for a hierarchy fl, M1; 2 , A rv 1 GeV «: m 0 rv 

mweak· In this study, we are considering mass scales roughly 100 times those discussed 
there. However, as rriost of the attractive features discussed there result from the hier­
archy itself, they apply equally well here. For example, supersymmetric contributions 
to electron and neutron electric dipole moments are de,n ex (1/m5)( M1; 2m/m5), where· 
m rv fl, A, and mo represents scalar masses of the first generation. These contribu-
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tions are therefore suppressed both by the large scalar mass scale and by the hierarchy 
between mlight and mheavy, and are well below cu-rrent experimental bounds. 

Our models also have an important cosmological virtue. Many supergravity mod­
els contain a boson ¢, the Polonyi field, with mass of order the gravitino mass. The 
Polonyi field has gravitational couplings and, consequently, an extremely long lifetime 
r "' M'fofm:, where Mp is the Planck mass. For such models with gravitino masses 
of order 100 GeV, the Polonyi field typically decays during or after temperatures of 
order 1 MeV, thereby potentially ruining nucleosynthesis. This is often referred to as 
the "Polonyi problem" [28], and is a serious cosmological difficulty for many models. 

The Polonyi problem may be solved, for example, in particular SUSY-breaking 
scenarios [29]. Irrespective of the SUSY-breaking mechanism, however, in the models 
discussed here, the Polonyi problem is always alleviated, as the gravitino mass m 3; 2 rv 

m 0 is in the multi-TeV range. It has been pointed out that this provides a solution to 
the Polonyi problem, since in this case even a Polonyi field with mass mr/> rv m3;2 "' 10 
TeV decays sufficiently quickly to avoid the difficulty mentioned above [30]. Potential 
problems with generating the baryon asymmetry and overdosing the universe with 
Polonyi decay products may also be solved, the first with Affieck-Dine baryogenesis, 
and the second with the presence of a very light and stable superpartner or with 
R-parity violation [31]. 

7 Summary and Outlook 

To conclude, we have investigated the possibility that soft SUSY-breaking scalar mass 
parameters are not ;S 1 TeV at some high scale boundary, as is typically assumed, but 
rather, are all in the multi-Te V range. For particular boundary conditions, given in 
Eqs. (9) and (15), we find that scalars with large Higgs couplings are asymptotically 
driven to the weak scale by renormalization group evolution, while the remaining 
scalars remain at the multi-TeV scale. By this mechanism, the light scalars are 
precisely those that must be light to preserve the gauge hierarchy, and the heavy 
scalars are precisely those corresponding to light fermions that must be heavy to 
satisfy stringent flavor-changing constraints. 

In addition to the suppression of flavor-changing contributions, these scenarios 
naturally possess a number of other virtues, including the suppression of C ?-violating 
electric dipole moments and a possi.ble resolution to the Polonyi problem. As in 
any scenario with hierarchical scalar masses, many of the superpartners will not be 
discovered directly in the next generation of collider experiments. Nevertheless, at 
least some gauginos and some third generation sfermions will. The mheavy sector 
may then be explored indirectly by measurements of the superoblique corrections of 
Ref. [9]. Although very massive scalars decouple from many observables, they leave 
their imprint on low energy processes by breaking the equality of gauge boson-fermion­
fermion couplings and the corresvonding gaugino-fermion-sfermion couplings. These 
deviations are non-decoupling. The superoblique parameters are therefore sensitive 
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to arbitrarily heavy MSSM sfermions, and may be measured to high accuracy in 
processes involving the observable superparticles-[9, 10]. 

In this scenario, the requirement of, for example, scalar degeneracy to remove 
dangerous flavor-changing contributions is replaced by the requirement of particular 
high scale boundary conditions. In the absence of a more fundamental theory, this is 

· not an obvious improvement. However, this scenario provides a new arena for SUSY 
model building. With regard to the supersymmetric flavor problem, it opens the 
possibility that a solution is provided by some dynamical mechanism that produces 
the required boundary conditions, such as the simple conditions of Eq. (15). We 
have discussed theoretical motivations for the required hierarchies and a possible 
relation to R symmetries. More generally, it raises the possibility of scenarios in 
which electroweak symmetry breaking is not fine-tuned, even though the fundamental 
scale for the soft SUSY-breaking parameters is '"" 10 TeV, rather than '"" 1 TeV as is 
typically assumed. 

Finally, we note that, while our illustrations have been limited to the MSSM, 
these observations should apply more generally. It would be particularly interesting 
to pursue this framework in models with extended fixed point structures, and also 
more extensively in the high tan f3 regime. 
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