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The Pennsylvania State University, 
State College, PA, 16802, U.S.A 

E-mail: {xwang, zha}@cse.psu.edu 

Low rank approximation of large and/or sparse rectangular matrices is a very 
important topic in many application problems and is closely related to the sin­
gular value decomposition of the matrices. In this paper, we propose an implicit 
restart scheme for the bidiagonal Lanczos algorithm to compute a subset of the 
dominating singular triplets. We also illustrate the connection of the method with 
inverse eigenvalue problems. In the Lanczos process, we use the so-called one-sided 
reorthogonalization strategy to maintain the orthogonality level of the Lanczos vec­
tors. The efficiency and the applicability of our algorithm are illustrated by some 
numerical examples from information retrieval applications. 

1 Introduction 

Low rank approximation of a large, sparse matrix A E nmxn is very important 
in many applications as discussed by H. Simon and H.Zha 10 . Generally A is a 
rectangular matrix with m » n or m ~ n. Suppose the rank of A is r, then 
the singular value decomposition (SVD) of A is written as: 

A= u~vT, ~ = diag(a1,·· .,amin(m,n)), 

where a1 ~ ... ~ Ur ~ Ur+1 = amin(m,n) = 0, and U E nmxn, V E 
nnxn, uTu = vTv =In. The singular values of A are defined as the diagonal 
elements of~- The problem we discuss here is: 

Problem: Given a large and/or sparse matrix A, determine the k-largest 
singular triplets of A, i.e., the best rank-k approximation of A. 

In this paper, we explore one approach that can be used to compute the 
dominating k singular triplets. The algorithm we discuss here is bidiagonal 
Lanczos reduction which has been use to compute a few dominating singular 
triplets of large sparse matrices as in 2,5 . Our purpose here is to propose a 
new strategy to restart the bidiagonal Lanczos reduction. Compared to the 
restarted bidiagonal Lanczos proposed by Bjorck etc 3 , our algorithm does 
not depend on the shifted QR decomposition. Instead, we first truncate the 
Lanczos reduction and then restore the truncated equations into the standard 
form of the bidiagonal Lanczos reduction by a procedure based on the idea we 
developed in 12 . 
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The rest of this paper is organized as follows: Section 2 gives a brief 
review of the bidiagonal Lanczos reduction. Our restart algorithm and its 
implementation are given in section 3. Reorthogonalization of the Lanczos 
vectors and the stopping criteria are discussed in section 4. In section 5, 
some numerical results are provided and the conclusion remark will be given 
in section 6. 

2 The Bidiagonal Lanczos Process 

Given a rectangular matrix A E nmxn, without loss of generality, we may 
assume m 2: n. Briefly speaking, the bidiagonal Lanczos can be described as 
follows 2 •5•10 : Given bE nm as the starting vector, in matrix form, this process 
can be written as: 

Uk(f31e1) = b, 
AVk = UkBk + f3k+luk+le[, 
ATUk = VkBf, 

Here, uk = (ul,u2,···,uk), vk = (v!,V2,···,vk), Bk = bidiag ((Jal a(32 ... a(Jk) 
2 3 . . . k 

and rk = f3k+l uk+1 satisfy U'[Uk = vtvk = Ik and U'[ rk = 0. 
After we get the bidiagonal Lanczos reduction Bk of A, we can use the 

singular values of Bk to approximate those of A. This can be seen as follows: 
Let (t, O", 8) be a singular triplet of Bk, we have 

Bk8 = O"t, B[t = 0"8. 

Let 8 == (81, 82, ... , 8k)T and denote by ii = Ukt, v = Vk8, (u, O", v) can be used 
to approximate a singular triplet of A and the accuracy is 

tal= IIAii- O"ull = lh11·18kl, 

since ATu- O"V = 0. If tal is sufficiently small, then (ii,O",ii) can be accepted 
as an a singular triplet of A. 

3 A New Implicitly Restarted Algorithm 

As we know in the case of computing the eigenvalues by Lanczos reduction, if 
we can perform the bidiagonal Lanczos reduction for sufficiently many steps, 
we can get a good approximation of the dominating singular triplets. But here 
we face the following problems: (i) The effort to maintain the orthogonality 
level of the Lanczos vectors; (ii) The storage for the Lanczos vectors and (iii) 
The expense for the computation of the SVD of Bk· To avoid these problems, 
restart is necessary. As we know for eigenproblem, implicit restart is prefered 
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to explicit one, the same thing is true for singular value problem. The main 
point for the preference of implicitly restart scheme is that many steps of 
matrix-vector multiplication can be saved,and we know when the size of the 
matrix is large, the matrix-vector multiplication is the heavy burden of the 
Lanczos reduction. 

Inspired by the work of D. Sorenson 11 and Bjorck etc 3 , we want to extend 
our idea in 12 to the case of singular value problem. Our algorithm can be 
described as follows: 

lmplictly Restarted Bidiagonal Lanczos Algorithm(IRBL) 

1. For a given starting vector b, perform k + p steps of bidiagonal Lanczos 
reduction on A to get matrices uk+p> vk+P> Bk+p and a vector rk+p such 
that 

AVk+p = uk+pBk+p + rk+pe'{+P' ATuk+p = vk+pB'[+P' 

2. Until convergence 

(a) Compute the k dominating singular triplets {Tk, 8k, Sk} of Bk+p, 
here 8k = diag(B1 , · · · ,Bk)· 

(b) Denote by s = S'{ek+P> compute two orthogonal matrices Q1, Q2 
and a low bidiagonal matrix ih of size k x k such that 

(c) Let (h = UkTkQ2, Vk = VkSkQl> fk = llslh+P> we get the following 
new length-k bidiagonal Lanczos reduction 

~ ' ~ ' T T ~ ' ~T 

AVk = UkBk + rkek, A Uk = VkBk, 

and extend it to length-(k + p) bidiagonal Lanczos reduction. 

In the above algorithm, the main problem here is how to perform step 2(b). 
In the early restart algorithm by Bjorck etc 3 , this step is realized by bulge 
chasing using the shifted QR-decomposition on the matrix Bk+P> and after the 
truncation, one step of the Lanczos reduction was lost, resulting in relatively 
high complexity. Here we want to avoid these problems by using the idea we 
developed in 12 for eigenproblem. As we can see later, our algorithm is straight 
forward and easy to implement. Here two ways to achieve this point are pro­
posed. The first way is a direct method and can be carried out as below, we call 
it the inverse Lanczos process. Suppose we start with vector s and a matrix 
B of dimension k x k. Denoted by Q1 = (q1, q2, ... , qk], Q2 = [th, q2, ... , qk] 

and B = bidiag (a/31 a/32 · · · af3k). This algorithm can be described as: 
2 3 . . . k 
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Inverse Lanczos Algorithm 
Given nonzero vector s and a matrix B : 
Qk = s/iisib akqk = Bqk. 
for i = k - 1 to 1 

end; 

/3i+ 1 Qi = BT iiiH - ai+1 Qi+l· 
ai{ji = Bqi- f3iHiii+1· 

Instead of using the inverse Lanczos algorithm as above, another way is to 
use the one way chasing scheme introduced in 1 . Here we want to use its 

generalization by H.Zha in 13 to transform the matrix of the form ( ~;) into 

the form of bidiagonal matrix. The detail of this process can be found in 13 . 

One important observation of this process is that the last row of the matrix 
is never touched during the chasing consisting of Givens rotations as pointed 
out in 13 . 

Now let's see how the one way chasing scheme works. After the truncation, 
we have: 

- - T r- -
AVk = Ukek + rks , A Uk = Vkek. 

Taking Uk+l = rk/lirkli and s = !hils = (s1 , s2 , ... , sk)T, the first equation 
can be written as: 

AVk = [JkHih+1, 

where Uk+l (u1 , u 2 , ... , uk+1) and Bk+l = ( ~;) . The one way chas­

ing consists of a sequence of Givens rotations {Si}f=1 and {Ti}}=1 such that 

Bk+l = (S1 · · · Ss)T BkH (T1 · · · Tt) is bidiagonal. 
Denoted by Q1 = S1 · · · Ss and Q2 = T1 · · · Tt, the first equation can be 

written as: 
- - A T 

AVk = UkHQ1Bk+lQ2, 

i.e., AVkQ2 = UkHQ1Bk+1 and Bk+1 has the form: 

B, b"d" (a1 a2 ... ak ) ( Bk ) k+1 = z zag f3 f3 f3 = f3 T . 
2 3 ·. · k+1 k+1ek 

As we mentioned above, the Givens rotations corresponding to Si never touch 

the last row of the matrix Bk+1, thus each si has the form: si = ( si 1). So 

Q1 can be written as ( (h 
1

) . These observation results in: 

- - - T 
A(VkQ2) = (UkQi)Bk + f3k+1uk+1ek. 
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If we take the new vk and uk as vk = vkQ2 and uk = [h[JI, we have· 

AVk = UkBk + f3k+1Uk+lef, 

The first equation of the bidiagonal Lanczos reduction is restored. 
For the second equation AT[h = VkE>k. Multiplying both sides by Q1, we 

get 
ATUk = VkE>kQl, 

A T- -T AT 
From Bk+l = Q1 Bk+lQ2, we see Bk+l Ql = Q2Bk+1 , i.e., 

This implies 
E>kQl = Q2BkJ 

Thus the second equation after the truncation is reduced to: 

ATuk = vkekQl = VkQ2Bk = VkBk· 

By now, we have restored both of the truncated equations to the standard 
form of the bidiagonal Lanczos reduction. 

4 Reorthogonalization of the Lanczos Vectors and Stopping Crite­
ria 

As we· know, in finite precision arithematic, the orthogonality of the Lanc­
zos vectors get lost very quickly if no reorthogonalization is performed. This 
phenomenum results in the appearance of spurious singular triplet. To avoid 
this, reorthogonalization of the Lanczos vectors during the bidiagonal Lanczos 
reduction are necessary. As is pointed out by H. Simon and H.Zha 10 , the or­
thogonality level of the left and right Lanczos vectors are closely related. This 
can be seen by the following proposition. Denote by 

Then we have: 
Proposition:If Bk is nonsingular, then 

ry(Uk) ~ 11Bk'1 112 ·11Bkll2. ry(Uk+I) + 0(11Bk'1 ll2 ·IIAIIF. EM), 

ry(Uk+l) ~ l1Bkll2 · ry~Vk) + O(IIA!!F ·_EM). 
2amin(Bk) amin(Bk) 
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Here, EM is the precision of the machine and ih = ( Bk ) 
f3kHef · 

The proof of this proposition can be found in 10 and we omit it here. 
From this proposition, we see if we can maintain the orthogonality level of the 
columns of either uk or vk under some level, the orthogonality level of the 
other one should be tolerable and the analysis in 10 shows this point. This is 
the so-called one-sided reorthogonalization of the Lanczos vectors. Here we 
also use this approach to treat the orthogonality level of the Lanczos vectors. 

As we know form tridiagonal Lanczos reduction for symmetric matrix, 
keeping the orthogonality level of uk and vk to full machine precision is not 
necessary, thus we can use the semi-orthogonality among Uk or Vk to control 
the orthogonality level. Our discussion is based on the recurrence formula in 
9•10 and we sketch it here. 

Since we are using one-sided reorthogonalization technique, we want to 
control the orthogonality level of either Uk or Vk. Without loss of general­
ity, let's consider vk. Define Wij = u'{ Uj = uJ Ui, 8ij = v'{ Vj = vJ Vi,El = 
EMVm,Er = EMVn, then we have 10

, 

Wii = 8ii = 1, 
wi+1,k = (ak8ik + f3k8i,k-1 - aiwik + tz) / f3i+1, for k = 1, 2, ... , i 
8i+1,k = (f3k+1wi+1,k+l + akwi+1,k- f3i+l8ik + Er)/ai+l, 

where j = 1, 2 ... , i and 8i0 = 0. Thus the one-sided reorthogonalization can 
be described as following: 

Algorithm One-side Semi-Orth 

Using bidiagonal Lanczos recurrence to compute 
ui+1,Vi+1,ai+1,f3i+1 and do 

Update the w - 8 recurrence as above. 
Let ~i+1 = (81,82, ... ,8i+1). 
If ll~i+11i2 > ..fiM then do 

Orthogonalize vi+1 against Vi . 
Reset thew- 8 recurrence with 8i+1,j = Er , j = 1, 2, ... , i. 

end 
In the above algorithm, we use the ll~i+ 1 ll 2 as the criteria to decide whether to 
perform reorthogonalization of the Lanczos vectors instead of the infinity-norm 
as is used in 10 If the reorthogonalization of vi+l with respect to the previous 
Lanczos vectors is needed, we use Graham-Schmidt procedure to achieve it. 

About the stopping criteria, once we have k approximate singular triplets 
(Uh :Ek, Vk), we can use the difference of AVk and Uk:Ek to control the accuracy 
since it's always true that ATUk = Vk:Ek from our procedure. This value can 
be obtained from the process of the bidiagonal Lanczos reduction without extra 
computation. 
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Table 1· The largest 10 singular values of MEDLINE by IRBL and IRL 
Number of singer value IRBL IRL 

1 6.210792091961386 6.210792091961375 
2 3.980420006133190 3.980420006133188 
3 3.383805043683148 3.383805043683148 
4 3.078064428388271 3.078064428388259 
5 2.998105596001940 2.998105596001936 
6 2.762547312516954 2.762547312516948 
7 2.707227682527872 2.707227682527876 
8 2.627467647986986 2.627467647986989 
9 2.463307556859210 2.463307556859209 
10 2.435207038023210 2.435207038023206 

5 Numerical Results 

In this section we report some numerical results based on the above algorithm. 
We test three matrices from the information retrieval, the matrices MEDLINE 
and CRANFIELD that can found in Cornell Smart system 4 and the last one is 
provided by 0. Marques 7 . For the first two matrices, we compare our algorithm 
with the method of computing the eigenvalues of AT A by implicitly restarted 
Lanczos(IRL) method. The results show that the restarted bidiagonal Lanczos 
reduction has almost the same convergent history as the IRL method. In these 
examples, we set the error tolerance to be .10-10 and we use the one side 
reorthogonalization to mauitain the orthogonal level of the Lanczos vectors. 
For each method, we tabulate the singular values that are computed by this 
two methods. All the computations are done on Sun Ultra I workstation using 
MATLAB 5.0 except exapmle 3. 

EXAMPLE 1. We use the MEDLINE text collection from 4 . This is a 
term-document matrix of order 3681 x 1033. To this matrix, we are trying to 
compute 10 dominating singular triplets. The maximal length of the Lanczos 
reduction for both the bidiagonal Lanczos and the IRL is 20, and we always 
keep 10 singular triplets after the truncation. The results from these two 
algorithms are summarized in table 1: 

For both method, the numbers of restart are the same, both of them need 
6 steps of restart to achieve the accurancy 10-10 and the final error of these 
two methods are 2.8364417x10- 12 for IRBL and 1.7380783x10-12 for IRL. 

EXAMPLE 2. In this experiment, we perform the same work as above to 
CRANFIELD collection from 4 . This is also a term-document matrix of order 
2331 x 1400 and this time we want to find 5 dominating singular triplets. In 
this case, we perform 10 steps of Lanczos reduction before we truncate it and 
we always keep 5 singular trilpets when we restart the IRBL. All these singular 
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Table 2: The largest 5 singular values of CRANKFIELD by IRBL and IRL 

Number of singer value IRBL IRL 
1 13.67540981336799 13.67540981336800 
2 5.89221597986800 5.89221597986801 
3 5.64398483359925 5.64398483359926 
4 4.81863954716185 4.81863954716184 
5 4.25876402496324 4.25876402496324 

Table 3: Time distribution for the computation of 180 singular values 

II Matrix Vector prod. Reorth I Ritz 
Time II 2.77E +02 1.06E + 03 I 2.37E + 2 

percentage II 16.8% 64.4% I 14.4% 

values for these two methods can be found in table 2. 

The steps of restart for both methods are 2 and the corresp<mging error 
after 2 steps of restart are 5.3803216 x 10-14 and 2.5472307 x 10-13 , respec­
tively. 

EXAMPLE 3. (PRELIMINARY) The matrix we encounter here has the size 
846968 x 96300 and was provided by 0 .Marques 7 . The number of nonzeros 
of this matrix is 28587210. It is also a term-document matrix. This part of 
the computation was performed on Cray-T3E at NERSC, Lawrence Berkeley 
National Lab. In this example, we are using the BLZPACK package which was 
implemented by 0. Marques to compute as many singular values as possible. 
If we denote this matrix by A, what we did here was to compute the a subset of 
the largest eigenpairs of AT A since A is a thin matrix, then we used these data 
to compute the singular triplets of A. At this time, the maximal number of 
dominating singular triplets that can be computed is 180 and the distribution 
of all these 180 singular values are recorded in 1. The maximal step of Lanczos 
reduction we use here is 300. The number of restart steps is 3. As we can 
see from table 3 where the time of the running is recorded, in the case of 
large sparse matrix and if we have to compute a moderate large number of 
dominating singular values, most of the time is spent on the reorthogonalization 
of the Lanczos vectors. The implementation of our algorithm on Cray-T3E is 
still under way and we hope we can report the result from our algorithm in 
the near future. 
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Figure 1: 180 Singular value distribution of the 846968x96300 term-document matrix 

6 Concluding Remarks and Future Work 

In this paper, we studied the implicitly restarted bidiagonal Lanczos reduction 
to compute a subset of the dominating singular triplets of a rectangle matrix. 
We proposed a direct and effective method that can be used to restore the 
standard form of bidiagonal Lanczos reduction after we truncated the bidiag­
onal Lanczos reduction. Compared with the traditional restarted scheme that 
made use of the QR decomposition, our scheme is easier to implement and the 
computational complexity can be maintained at least at the same level. In the 
future, we plan to use the restart strategy in this paper to compute a small 
number( about 5) of dominating singular triplets of a hypertext link structure 
matrix which has the siz~ of 20 million by 20 million. 
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