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Abstract 

A U(2) flavor symmetry can successfully describe the charged fermion masses 
and mixings, and supress SUSY FCNC processes, making it a viable candidate for 
a theory of flavor. We show that a direct application of this U(2) flavor symmetry 
automatically predicts a mixing of 45° for v!L =? v8 , where v8 is a light, right-handed 
state. The introduction of an additional flavor symmetry acting on the right-handed 
neutrinos makes the model phenomenologically viable, explaining the solar neutrino 
deficit as well as the atmospheric neutrino anomaly, while giving a potential hot dark 
matter candidate and retaining the theory's predictivity in the quark sector. 
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1 Introduction 

The pattern and origin of the quark and lepton masses and mixings remains a challenging 
question for particle physics. Although a detailed description of this pattern requires a 
theory of flavor with a certain level of complexity, the gross fe.atures may be described 
simply in terms of a flavor symmetry and its sequential breaking. 

One simple flavor structure is motivated by four facts about flavor: 

• The quarks and leptons fall into three generations, '!f;1,2,3 , each of which may even­
tually have a unified description. 

• The top quark is sufficiently heavy, that any flavor symmetry which acts on it non­
trivially must be strongly broken. 

• The masses of the two light generations imply a phenomenological description in 
terms of small dimensionless parameters, { € }. 

• In supersymmetric theories, flavor-changing and C P violating phenomena suggest 
that the squarks and sleptons of the first two generations are highly degnerate. 

It is attractive to infer that, at least at a phenomenological level, there is a non-Abelian 
flavor symmetry which divides the three generations according to 

2 EB 1 : (1) 

The four facts listed above follow immediately from such a structure, with { €} identified 
as the small symmetry breaking parameters of the non-Abelian group. These control 
both the small values for quark masses and mixing angles, and also the small fractional 
non-degeneracies of the scalars of the first two generations. 

The Super-Kamiokande collaboration has provided strong evidence for an anomaly in 
the flux of atmospheric neutrinos, which may be interpreted as large angle oscillations of 
Vp. predominantly either to v7 or to v8 , a singlet neutrino [1]. This observation provides a 
challenge to the non-Abelian 2 EB 1 structure: 

• V 7 is expected to have a very different mass from that of Ve,p., and to only weakly 
mix with them. 

• If the atmospheric oscillation is Vp. -+ V 8 , what is the identity of this new singlet 
state, why is it light, and how could it fit into the 2 EB 1 structure? 

There are a variety of possible reactions to this challenge. One possibility is to drop 
the 2EB 1 idea; perhaps the C P and flavor violating problems of supersymmetry are solved 
by other means, or perhaps supersymmetry is not relevant to the weak scale. Another 
option is to retain the 2 ffi 1 structure for quarks, but not for leptons, where the flavor· 
changing constraints are much weaker. 
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In this paper we study theories based on the flavor group U(2), which immediately 
yields the structure (1), giving the 2 EB 1 structureto both quarks and leptons [2]. The 
masses and mixings of the charged fermions and scalars resulting fron U(2) have been 
studied in detail, and significant successes have been identified [3]. We add a right­
handed neutrino to each generation, and find that the symmetry structure of the neutrino 
mass matrix automatically chooses vf.L to be a pseudo-Dirac state coupled to one of the 
right-handed neutrinos, resulting in vf.L --+ V 8 with a mixing angle close to 45°. 

2 U{2) Theories of Quark and Charged Lepton Masses. 

The most general U(2) effective Lagrangian for charged fermion masses, at leading order 
in the U(2) breaking fields, is 

(2) 

where cpa is a doublet, sab a symmetric triplet, Aab an antisymmetric singlet of U(2), and 
h are Higgs doublets. Coupling constants have been omitted, and M is a flavor physics 
mass scale. An entire generation is represented by 'ljJ, so that each operator contains terms 
in up, down and charged lepton sectors, but unification is not assumed. For example, this 
theory follows from a renormalizable Froggatt-Nielsen model on integrating out a single 
heavy vector U(2) doublet of mass M (see the second of [3]). 

The hierarchical pattern of masses and mixings for charged fermions is generated by 
breaking U(2) first to U(1) with vevs ¢2

, S 22 ~ tM, and then breaking U(1) via the vev 
A 12 ~ t' M. The symmetry breaking 

U(2) ~ U(1) ~ 1 (3) 

produces the Yukawa coupling textures 

€

1 0) 
€ € • 

€ 1 
(4) 

3 General Effective Theory of Neutrino Masses. 

Without right-handed neutrinos, the most general U(2) effective Lagrangian for neutrino 
masses, linear in U(2) breaking fields, is 

(5) 
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where la, h are lepton doublets. The term laAabhhh vanishes by symmetry; hence the 
above vevs give the neutrino mass texture 

ML£= ~ G : D . (6) 

so that the lightest neutrino is massless.1 The mixing angle for vJ.L -+ v.,. oscillations, ()11-n 

is of order E - the same order as mixing of the quarks of the two heavier generations, Vcb 

-and is much too small to explain the atmospheric neutrino fluxes. However, in theorjes 
with :flavor symmetries, the seesaw mechanism typically does not yield the most general 
neutrino mass matrix in the low energy effective theory. This apparent problem requires 
that we look more closely at the full theory, including the right-handed neutrinos. 

4 The Seesaw Mechanism: A Single Light VR 

Adding three right-handed neutrinos to the theory, Na + N3 , the texture for the Majorana 
mass matrix is: 

0 
E 

E D· (7) 

with the 12 and 21 entries again vanishing by symmetry. In supersymmetric theories the 
zero eigenvalue is not lifted at higher order in the flavor symmetry breaking. This presents 
a problem for the 3 x 3 seesaw mechanism in U(2) theories, since MLL = MLRMR.AM[R 
and MRR cannot be inverted. 

One approach (4] is to allow further flavor symmetry breaking vevs, for example¢} =/= 0, 
so that MRR has no zero eigenvalues. Remarkably, taking ¢} / M ~ E

1
, the seesaw gives 

Ow ~ 1, as needed for the atmospheric neutrino anomaly. On the other hand, this 
pattern of neutrino masses cannot explain the solar neutrino fluxes, and the additional 
flavor breaking vevs remove two of the highly successful mass relation predictions of the 
quark sector. 

In this paper we keep the minimal U(2) symmetry breaking vevs and pursue the 
consequences of the light Ne state which results from (7). The singular nature of MR.A is 
not a problem; it is an indication that Ne cannot be integrated out of the theory. However, 
N7 and NJJ. do acquire large masses, and when they are integrated out of the theory the 
low energy 4 x 4 neutrino mass matrix is: 

(8) 

0 
1 Including operators higher order in the U (2) breaking fields, the lightest neutrino remains massless in 

a supersymmetric theory, but not in the .non-supersymmetric case , where operators such as laAab¢>blahh 
occur. 

3 



where MLL is a 3 x 3 matrix in the (va, v3) space, determined from seesawing out the two 
heavy right-handed states, and has one zero eigenvalue. 

Because the Ne-Vp. mixing is weak scale, while all other couplings to Vp. are suppressed, 
Ne and Vp. are maximally mixed. Thus, we note that a direct application of the U(2) theory 
to the neutrino sector predicts a 45° mixing between Vp. and v8 ! 

There is a significant phenomenological difficulty with this model. The mass of the 
Ne- Vp. pseudo-Dirac state is of order E'v. Using a value for E1 extracted from an analysis 
of the charged lepton sector, this is of order 1 Ge V, well in excess of the 170 ke V limit 
obtained from direct searches. One simple solution is to restrict the couplings of the 
right-handed neutrinos by an additional U(1 )N approximate flavor symmetry. Each N 
field carries N charge +1, while the symmetry is broken by a field with charge -1, leading 
to a small dimensionless breaking parameter EN. The entries in the neutrino mass matrices 
receive further suppressions 

(9) 

which, for the 4 x 4 light neutrino matrix, simply leads to the replacement E'v ~ ENE'v 

in the Ne - vf.L entry, giving 

(<"if 
1v2 1 v 2 

'N{V l 7"M E- E-M M 
1 v 2· v2 v2 

M(4) = f. M E- f_-

(10) M M 
f v2 v2 v2 
E- f.-

M M M 
0 ENE

1
V 0 

It is understood that all entries have unknown 0(1) coefficients. 
Note that MLL is unchanged. There is a simple reason for this. If we modify our 

right-handed couplings by the replacements MLR -t MLRT, MRR -t TT MRRT, where T 
is any diagonal matrix, then 

(11) 

It is interesting that the observed value of om~ can give the appearance that right-handed 
neutrinos receive GUT-scale masses, while their masses are in fact much lower. 

If the Ne - v~-' entry dominates the mass of v~-', i.e. if EN » J:t, this 4 x 4 matrix 
splits approximately into two 2 x 2 matrices, and maximal mixing is preserved. One 2 x 2 
matrix describes the pseudo-Dirac state 

(12) 

while Ve ~ Vr mixing is described by 

2 ( ,2 V L 
- € 

M E' i) (13) 
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ffi[ight ffiheavy Jm2 Omix 

(1) Heavy states 1 · v2 1 v 2 3 

Vf.Nf. - f.2M Vf.Nf. + f.2M ~f.Nf.f.' 45° 

(2) Light states €12 v2 v2 (~)2 f.' 7"M M 

Table 1: General Theory: the masses, mixings, and splittings of the two sets of neutrinos. 

The resulting masses and mixings are given in Table 1. 
Since f. and f.

1 are determined by the charged fermion masses, in the neutrino sector 
there are two free parameters, f.N and M, which describe five important observables: 80, 
Oatm, Jm~, Jm~tm and mv, the mass of the pseudo-Dirac muon neutrino. However, the 
various predictions of the theory have varying levels of certainty. Because there are a large 
number of order one constants in the original formulation of the theory, we can end up 
with a prediction which has a coefficient of a product of some number of these quantities. 
To assess the level of certainty, we will include a quantity i, which we term the "stability 
index" of the prediction, which is simply the power of unknown order one coefficients 
appearing in the prediction. 

Two of the three resulting predictions are the mixing angles 

. o ' Sill 0 ~f. (i = 4] , Oatm = 45° (i = 0]. (14) 

The postdiction of a maximal mixing angle for atmospheric oscillations is an important 
consequence of the U(2) theory. The value of f.1 extracted from the charged fermion sector 
is 0.004, within an order of magnitude of the central value 00 = 0.037 of the recent BP98 
fit to the solar data, and within a factor of 4 of the minimal acceptable value of 0.016 
(5]. Such a discrepancy is not a great concern,as we gain a comparable contribution from 
the charged lepton matrix. Furthermore, the prediction of 00 involves the fourth power 
ofunknown order one coefficients, thus i = 4, and is somewhat uncertain. 

The relevant mass splitting for the Ve -7 V 7 oscillations occuring in the sun is 

Om~'"(~)' (15) 

While this is not a prediction of the theory, it is intriguing, as has been noticed elsewhere 
in other contexts, that if M is taken close to the scale of coupling constant unification, 
om~~ 10-5 eV2 , in the right range for either small or large angle MSW oscillations. 

The final free parameter EN is fixed by the observed mass splitting for atmospheric 
oscillations · 

3 
i" 2 I V I ~ 
umatm ~ f.f. f.N M ~ f.f. f.NVV om0 

giving f.N ~ 10-8
- the U(1)N symmetry is broken only very weakly. 
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The final prediction is for the mass of the heavy pseudo-Dirac vJ..tNe state: 

f>m2 
mv:::::::: E

1
ENV:::::::: 5 ~ 10°'4eV- 102eV, 

tyf>m~ 
[i = 4] (17) 

where the given spread in mass is due to ~ncertainty in 8m~tm and 8m~. While it is 
tempting to interpret this as a good candidate for hot dark matter, we will see later that 
KARMEN places stringent limits on the acceptable values of mv. 

5 A Variant Theory 

A variation on this breaking structure was explored in a particular model (see the second 
of [6]), and it is interesting to explore whether this same approach for ~eutrino masses 
can work within that model. In this variation, there is no sab field present, and the RR 
and LR masses are given by 

(18) 

generating a light 4 x 4 mass matrix 

( 

t'2 v2 1 v2 t' v2 

f2M f. M -;M 

M(4) = t'~ 0 t~ 
t 1 v 2 v 2 v 2 

-;M f_M M 

0 f.Nf-
1
V 0 

(19) 

This matrix is problematic, because the 2 x 2 submatrix for the atmospheric neutrinos 
does not contain a splitting term. Of course, a splitting would be generated through 
interactions with the other left-handed states, we estimate 

(20) 

Consequently our atmospheric splitting is 

2 
£ 2 2( v )2 umatm:::::::: f_ M . (21) 

Since we have(~ )2 = 8m~, this would predict 8m;tm < 8m~, which is unacceptable. One 
simple solution is to allow the appearance of the operators 

( ~ ) 2 ¢hf} NaNbMauT 

( ~) 2 </>a </>b NavbH. 
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ffilight mheavy om2 
()mix 

(1) Heavy states 
2 2 

~t:Nt:2t:' Vt:Nt' - t:2 .2!._ Vt t 1 + t:2 .2!.._ 45° 2M N 2M 

(2) Light states (~)2~ v2 (~)2 ~ 
M f 

Table 2: Without S field: The masses, mixings, and splittings of the two sets of neutrinos. 

The inclusion of one or both of these operators in our Lagrangian has the same effect 
on our final mass matrix, inducing M~V ~ e:2 x; and yielding the 2 x 2 submatrix 

2 

( 
E2 ~ f.Nf.'v) 

tNf.
1
V 0 

(24) 

describing the pseudo-Dirac state, while Ve ::::} Vr mixing is now described by 

(25) 

The resulting masses and mixings are given in table 2. 
The mixing angles in this variation are predicted to be 

[i = 5] , Batm = 45° [i = 0] (26) 

As the pseudo-Dirac muon neutrino is still present, the atmospheric angle is unchanged. 
However, the solar angle is changed somewhat. We should note that values for f. and 
e:' extracted for a fit of this model are different than for those of the previous model. 
Using values from fits in the charged fermion sector, we have f.~ 0.03 and f.'~ 5 x 10-4 

or f.
1 ~ 2.~ X w-4 (depending on certain signs), yielding ()0 ~ 0(1.5 X w-2). Given 

the number of 0(1) parameters involved, this is again quite consistent with the BP98 
small-angle MSW solution. 

The solar splitting scale is unchanged, while the atmospheric splitting is further sur­
pressed by a factor of c 

(27) 

We fit this splitting again with the free parameter t:N ~ 10-6 -10-7. The resulting muon 
neutrino mass is then 

[i = 5] (28) 
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Thus, while the explanations of the solar and atmospheric neutrinos remain, the neu­
trino becomes potentially dangerous in its cosmological implications. However, given the 
large stability index of this prediction, there are large uncertainties in the prediction for 
its mass. 

6 KARMEN and LSND 

The presence-of an additional sterile state makes it possible that a signal would be seen in 
short baseline Zip, -+ lie oscillations, such as has been reported-at LSND [7]. An estimate of 
the LSND mixing angle from the neutrino sector gives a.'8m~f8m~tm' a very small result. 
Hence, this mixing originates from the charged lepton sector 

[i = 0]. (29) 

The precise pred!ctions for 1 - 2 mixing angles in the charged sector is an essential feature 
of the U(2) flavor symmetry. In the quark sector it is highly successful. In the lepton 
sector, OLsND = {fff;:. is only useful if the neutrino mixing is either predicted or small, ymJ.' 
as in this theory. Recently, the KARMEN experiment has placed limits on the allowed 
region for such oscillations, giving a limit mv S 0.6 eV [8]. While the prediction for mv 
has a large stability index in both the general theory as well as the variant theory, because 
the initial range for mv is so high in the variant theory, it is disfavored by this bound. 

The general theory is much safer, however. As we discuss in the appendix, the uncer­
tainty due to order one coefficients would allow it to satisfy the KARMEN bound. Such 
a result would likely coincide with higher values of 8m~ and lower values of 8m~tm· 

7 Astrophysical and Cosmological Implications 

There are three important cosmological implications of our theory. 

1. We predict a small, but potentially significant amount of neutrino hot dark matter. 
The KARMEN bound limits us to a 0.6 eV neutrino, but because there are two massive 
states, it is still within the interesting region for HDM. 
2. We predict abundances for light nuclei resulting from four light neutrino species. While 
newer data suggest D / H ratios lie in the low end of the range previously thought, and 
thus Nv < 4, this is still an open question. 
3. There may be two further singlet neutrino states, dominantly NJ.£ and Nn at or below 
the weak scale. Successful nucleosynthesis requires that they decay before the era of 
nucleosynthesis. Because the mass eigenstates are slightly left-handed, the primary decay 
mode will be through the process shown in figure 1. This is similar to muon decay, which 
we us~ as a benchmark. For the lighter of the two states, we estimate its lifetime to be 
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TN,..~ c'-2 (8m~~m) 2 ( mJ.L) 5 TJ.L 8m0 mN,.. 
(30) 

The mass of this particle is 

[i = 12] (31) 

for the general theory and 

[i ~ 11- 16] (32) 

in the variant theory. The stability index is approximate because it involves sums of order 
one coefficients of different powers. Furthermore, i will change depending on which of (23) 
are included. 

The more dangerous case, the general theory, then has a mass 0(100MeV) and thus a 
lifetime TN,..::::::: 103s, which is far too long to be acceptable. However, because the lifetime 
has a fifth power dependence on the mass, and because the prediction for the mass has 
index 12, deviations in the order one quantities could very easily push the lifetime down 
to an acceptable level. As we explore in the appendix, even conservatively we can only 
reasonably estimate the mass of this particle to be in the range (17MeV, 40GeV), which 
means that the lifetime could easily be 10-9 s, without even beginning to push the limits 
of the order one quantities. The details are presented in the appendix. 

8 Models 

The theory described in this paper has a low energy effective Lagrangian of (2) for charged 
fermion masses, while the neutrino masses arise from the U(2) x U(1)N effective La­
grangian 

W = : N3l3h + ~ ( N3<fyalah + l3<j;a Nah + Na(Sab + Aab)hh) 

+ ~ (N3N3M + N3Na<Pa M + NaNbSab M) (33) 

where N3 and Na have U(1)N charges +1, while ¢N has U(1)N charged -1. The field 
tPN gets a vev, breaking U(1)N and establishing an overall scale for these coefficients: 
<tJ> = EN. This effective theory can result from a renormalizable model by integrating 
out heavy states, both singlet and doublet under U(2), in the Froggatt-Nielsen mechanism. 

This symmetry structure on the right-handed singlet sector is far from unique. Another 
possibility is for Nato carry U(1)N charge, while N3 is neutral under U(1)N· This has no 
effect on any of our predictions, since the form of (10) for the light neutrino mass matrix 
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Figure 1: Principal decay mode for Nw 
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is unchanged. The only change is that N3 has a mass of the order of the unification scale 
M rather than of order t'fv M. 

Another possible symmetry structure for the theory is U(2).p x U(2)N, where U(2).p 
acts as usual on all the matter with non-trivial SU(3) x SU(2) x U(1) quantum numbers, 
while U(2)N acts only on the three right-handed neutrinos, with N3 a singlet and Na a 
doublet. The matrix MRR now has the form of (7), and arises from the renormalizable 
interactions 

(34) 

with vevs for S22 and q} being of order tM and breaking U(2)N-+ U(1)N. The interac­
tions for MLR are 

(35) 

where RaA transforms as a (2,2). The vev for R22 is also of order tM, since this is the 
scale of breaking of U(2).p x U(2)N -+ U(1).p x U(1)N· The breaking scale for U(1).p is 
t 1 M, so the vev of R12 takes this value. On the other hand, U(1)N is broken by R21 • We 
choose this scale to be smaller by a factor of tN, < R21 >~ tNt'M, giving 

( 
0 t' 0) 

MLR = v t
1 
tN t t 

0 t 1 
(36) 

Integrating out the heavy states N2 and N3 , which now have masses of order the unification 
scale, this theory now reproduces (10) for the mass matrix of the four light neutrinos. 

The common features of these models, which are inherent to our scheme, are: 

• There is a U(2) symmetry, which acts on the known matter as 'l/J3 t:B'l/Ja, and is broken 
sequentially at scale tM and t' M. 

• A U(2) symmetry also acts on the three right-handed neutrinos with N3 a singlet 
and N1,2 a doublet. This U(2), together with the symmetry of the Majorana mass, 
implies that N1 does not have a Majorana mass and becomes a fourth light neutrino. 

• There is an addition to the flavor group, beyond the U(2) which acts on '1/J. At least 
part of this additional flavor symmetry is broken at a scale very much less than M, 
leading to a small Dirac mass coupling of vi-£Ne. Such a small symmetry breaking 
scale could be generated by the logarithmic evolution of a scalar m2 term. 

9 Conclusions 

There are several theories with sterile neutrinos [ 9, 10, 11] some of which have 4 x 4 textures 
that split into two 2 x 2 matrices. Such theories provide a simple picture for atmospheric 
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oscillations via VJL --t V 8 , and solar oscillations via Ve --t Vn with Om~~ ~ ~ 10-5eV2 for 
M ~ Munif· However, theories of this kind typically do not provide an understanding for 
several key points: 

• Why is the Majorana mass of the singlet state v8 small, allowing V8 in the low energy 
theory? 

• Why does Vs mix with vJL rather than with Ve or Vr? 

• Why is the V 8 - vJL state pseudo-Dirac, leading to 45° mixing? 

• How can this extended neutrino sector be combined with the pattern of charged 
quark and lepton masses in a complete theory of flavor? 

• What determines the large number of free parameters in the neutrino sector? 

In the theory presented here, all these questions are answered: the key tool is the 
U(2) flavor symmetry, motivated several years ago by the charged fermion masses and 
the supersymmetric flavor problem. The simplest pattern of U(2) symmetry breaking 
consistent with the charged fermion masses does not allow a Majorana mass for one of 
the three right-handed neutrinos. Furthermore, it is precisely this right-handed state that 
has a Dirac coupling to vJL but not to Ve or vr, guaranteeing that vJL is pseudo-Dirac with 
a 45° mixing angle. 

Our theory provides a unified description of both charged fermion and neutrino masses, 
in terms of just three small symmetry breaking parameters and a set of order unity coef-
ficients. Some predictions, such as IKb/Vcbl = Jmu/mc and Batm = 45° are independent 
of the order unity coefficients and are precise. Other predictions, such as IVcb I ~ ms/mb 
and 00 ~ JmemJL/m;. involve the order unity coefficients and are approximate. In the 
appendix we have introduced the "stability index" which attempts to quantify the uncer­
tainty in such predictions according to the power of the unknown order unity coefficients 
appearing in the prediction. 

There is one further free parameter of the theory-the overall mass scale M setting 
the normalization of the right handed Majorana mass matrix. If M is taken to be the 
scale of coupling constant unification om~~ 10-5eV2 • 

The value of om~tm is not predicted- this is the largest deficiency of the theory. It can 
be described by a very small flavor symmetry breaking parameter. Once this parameter 
is set by the observed value of om~tm' it can be used to predict the approximate mass 
range of the pseudo-Dirac vJL to be in the range 10°.4- 102eV, with significant additional 
uncertainty due to order one coefficients. This, even with the KARMEN bound, allows 
for a neutrino of cosmological interest with Li mv; ~ 1 eV. Such a neutrino could be 
seen at short baseline experiments, and may have already been seen by LSND. Searching 
for VJL --t Ve, with sin2(2()) = 2 X 10-2

, below the current limit of Om2 is an important 
experiment for the U(2) theory, since it is this prediction which differentiates U(2) from 
several other theories with a light singlet neutrino. 
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Exper~ment Mode Signal 

Present solar v exp. lie --+ 117 All data consistent with 2-f:l.avor MSW 

SNO lie --+ 117 Confirm SK measurement of B8. Measure ~ =I= 1 cc 

Borexino lie --+ Vr Consistent with small-angle 2-f:l.avor MSW 

KAMLAND lie --+ 117 No signal 

LSND,KARMEN 1/J.L --+lie sin2 (20) = 2 X 10-2 

K2K 1/J.L--+ Ne 11"' disappearance. No e appearance 

MINOS, ICARUS 1/J.L--+ Ne 11"' disappearance. No T appearance. 

Atmospheric 11 exp. IIJ.L--+ Ne Confirm 2 flavor 11"' --+ lis with 45° mixing. 

Table 3: Experimental signals. 

Predictions of the theory for experiments sensitive to neutrino oscillations are listed 
in table 3. We expect a small angle MSW solution to the solar neutrino anomaly, through 
a Ve =} 117 oscillation. The atmospheric neutrino anomaly is from 11"' =} lis· This will be 
distinguishable from v"' =} 117 through a number of means: LBL experiments will see 11"' 

disappearance, but no lie or 117 appearance. Improved statistics from Super-Kamiokande 
will be useful in distinguishing 11"' =} 117 and 11"' =} lis, for example via inclusive studies of 
multi-ring events [12]. 

A "Formalism" of the Stability Index 

It is difficult to establish a formalism for the stability index, because it involves an in­
herently ill-defined quantity, namely, what constitutes an order one quantity. However, 
the potential instability of various predictions to variations in these order one parameters 
makes some attempt to quantify this necessary. Such a quantification should be relatively 
insensitive to what precisely constitutes an "order one quantity". 

Therefore, we demand the following quantities of the index: 
• An "order one" quantity should be defined as a quantity x with some probability 

distribution P(x) to occur in an interval about 1. For reasons that will become clear later, 
it will be useful to consider instead the quantity P(y ), where x = lQY. 

• This distribution should be "sensible", namely 

1. P(x) should be an even function in Log(x), that is, P(y) is even in y. 

2. P(y) should achieve its maximum value at 0. 
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3. P(y) should have a spread characterized by its variance, 

the variance then quantifying what "order one" is ~umerically. 

4. A product of two sensible distributions, correlated or uncorrelated, should be 
sensible. 

• The index should have similar implications regardless of P(y), so long as it is sen­
sible. 

• The definition of P(y) should be the only necessary input. 

We shall explore the motivation for these assumptions and will shortly see that the 
presented index nearly meets the requirements, and with minor modifications can meet · 
them enitrely. 

We assume that the expectation value of x, and of any products of x, is unity. It 
follows immediately that P(y) should be even in y. We do not have strong arguments in 
favor of this assumption, and if it were relaxed, the formalism could be suitably modified. 

For instance, consider the seemingly sensible distribution 

P(x) = { ~' 
0, 

if!< X< 3· 
3- - ' 

otherwise. 

which has been normalized to give total probability 1. The expectation value of a product 
of n uncorrelated variables with such a distribution would be 

(37) 

Such a numerical pile-up of the central value of a product of order unity coefficients is 
excluded by our assumption. 

What constitutes a "sensible" distribution is, of course, a judgement call. Examples 
of what we consider sensible distributions would be 

• Flat distributions taking on the value 1/a from -a/2 to a/2 

• Exponential distributions with standard deviation u 

• Linearly- decreasing distributions of the form 

P(y) = { Cb)( -~IYI +b), 
0, 
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In fact, it can be shown that the last case it just the product of two uncorrelated quantities 
of the first type. 

In all of these cases, the next moment (x4 ) is irrelevant in quantifying the likelihood 
of the variable being within a particular region about zero. Requirement 3 is then simply 
a statement that a sensible distribution should simply have one quantity, its variance, to 
determine how confident we are that the variable is within that region. This will then 
allow us to be more confident in deducing the significance of the variance of some product. 

This being stated, we can actually go about constructing some approximation of con­
fidence intervals. The ability to describe the distribution of one variable by its variance is 
useful in allowing us to calculate the variances for higher products. We begin by writing 
the formal expression for the probability distribution of n uncorrelated variables Xi = lQYi 

with probability distributions Oi P(yi). We have 

P(z) = J dny(ij Pi(Yi))o(z- ~ Yi) 
~ ~ 

(38) 

This expression is tedious to calculate for given P (y), particularly for large n. However, 
its variance is a relatively simply calculation. 

v; = j dzP(z)z 2 = J dz dny(~Yi)2(ij Pi(Yi))o(z- ~Yi) 
~ t ~ 

(39) 

Expanding the squared term we find terms 

(40) 

giving 

( 41) 

For n correlated variables, a similar calculations yields 

(42) 

where v6 is the variance of the original variable. 
Thus, a product of n correlated order one quantities is far more unstable than a product 

of n uncorrelated order one quantities. Simply counting the total number of order one 
coefficients is not sufficient. Thus we will refer to a product of the form 

II n· 
X·' t (43) 

as having index o=i ni) of type (n}, n2, ... , nm)· If some of the ni are repeated, we use the 
shorthand of writing nj, if n is repeated j times. We ass~me all order one quantities have 
the same distribution. A product of type (n 1 , n2 , ..• , nm), has variance 
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(44) 

This works extremely well for products of order one coefficients. However, a sum of 
order one coefficients is not necessarily order one. In these cases, it is usually best to 
perform a Monte Carlo to determine the distribution. 

B Sensible distributions 

To characterize the probability of a general product to be within a certain region about 1, 
it is necessary to explore the particular forms of various distributions. We consider three 
reasonable distributions to be i) the fiat distribution, ii) the Gaussian distribution, and 
iii) the linearly decreasing distribution. 

A product of two equal width fiat distributions yields a linear distribution, so we need 
only consider the fiat and Gaussian cases. Gaussian distributions are well understood: 
products of variables with Gaussian P(y) functions are again Gaussian, allowing standard 
statistical techniques to be applied. 

Products of fiat distributions very quickly become characterized by Gaussian distri­
butions. We have performed explicit Monte Carlos for n = 1, 2, 3, 5, 7, 9 uncorrelated 
variables. Even by n = 2 the Gaussian approximation is good, and for n 2: 3 it is very 
good. We thus believe it is reasonable to simply use Gaussian distributions, making a 
statistical interpretation of the variances simple. 

For a standard, we propose using a distribution with variance v = /£, which cor­

responds to the variance of a fiat distribution for -! :::; y :::; !· Changing the width of 
such a distribution from 1 to a would amount to multiplying this variance by a. Such 
generally mild sensitivity of the index to variations in the initial distribution is one its 
desirable qualities. We can then take "1-v" and "2-v" regions with IYI :::; v and IYI :::; 2v, 
respectively. As should be clear, these should not be interpreted as the precise 67% and 
95% 1 and 2-a regions, because a is not precisely defined. They are simply regions of 
medium and strong confidence, respectively. 

As an example, consider a prediction with an unknown coefficient of order one quan­
tities of the form x~x2x3 • We say this has index 2 + 1 + 1 = 4 of type (2, 1, 1), which 
we will write in shorthand as (2, 12). Assuming the standard variance given above, this 

coefficient has variance v = V22+~;+12 
= /f. Thus, we can have medium confidence that 

the prediction for x is known within a factor of 10v = 5, and strong confidence the the 
prediction is within a factor of 102

v = 25. 
We can also see that this reduces to the expected prediction in the case of a variable 

of index 1 of type ( 1). It will have variance v = /'[; which gives medium confidence that 
the prediction is known within a factor of 1.9, and strong confidence it is known within 
a factor of 3.8. This is a good consistency check that the index predicts what we would 
expect in the case of a single order one coefficient. 
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quantity type Sign Range of Med Range of Strong 

(*=approx type) convention Confidence Confidence 

Batm 0 n/a ~exact exact 

()0 4* + (0.002, 0.03) (0.0006,0.1) 

()0 4* - (0.005, 0.012) (0.0001, 0.06) 

mv (2, 12
) none (2, 50)eV (0.4, 250)eV 

ffiNL (4,3,22 ,1) none (17MeV, 40GeV) (300keV, 1.9TeV) 

ffiNH ( 4, 24
) none ( 470MeV, 870GeV) (llMeV, 37TeV) 

Table 4: General Theory: uncertainties in predicitions. The regions listed here are simply 
for the uncertainty due to order one coefficients. Additional error due to uncertainty in 
input quantities, in particular in mv, can also be significant. 

C Reassessing the uncertainties in the U(2) neutrino 
model 

In lieu of the preceding analysis, we address the index type of the predictions already 
presented, and thus assess strong and medium confidence regions of each prediciton. We 
list all uncertainties for the general theory in table 4. 

In the general theory with the S-field, the atmospheric mixing angle is completely 
stable, while the solar angle is of approximate type (14 ) = (1, 1, 1, 1). However, it involves 
a sum of order one coefficients, motivating the use of Monte Carlos. Since a sum is 
involved, the relative sign of the order one quantities becomes relevant, and we list those 
cases seperately. These Monte Carlos allow us to claim that we have medium confidence 
that 00 lies within (0.002, 0.03) and strong confidence that it lies within (0.0001, 0.1 ), 
giving large overlap of the BP98 region. 

The mass of the pseudo-Dirac neutrino has stability index 5 of type (2, 13 ), giving 
a medium confidence to know this within a factor of 5, and strong confidence within a 
factor of 25. Given the uncertainty in om~tm and om~, which determine the prediction, 
mv could conceivably be as low as 0.1eV. 

The masses of the right-handed states are not known so well. The mass prediction is, 
for the heavier state, of type (4, 24

), and, for the lighter state, of type (4, 3, 22, 1). This· 
would give medium confidence to know the masses at factors of 43 and 48, and strong 
confidence at factors of 1800 and 2300, respectively. The cosmological implications of 
these neutrinos are very uncertain, given that the lighter could be well over a TeV in 
mass. 
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Without the S field, certain uncertainties change. The precise nature of the changes 
depends on which splitting operators are included and what sign convention is taken. 
Because of the large number of permutations, we list only the basic results. The atmo­
spheric angle is, as expected, completely certain. The solar angle becomes slightly more 
uncertain, but still overlaps BP98 well. The heaviest two righthanded masses typically 
become less certain by a factor of roughly 100, but the uncertainty is so large that the 
phenomenological predictions remain the same .. The only dramatic difference in the vari­
ant theory is that v,_,. has a medium confidence region on its mass of (24eV, 4keV), and a 
strong confidence region of (2e V, 48ke V). Including the uncertainties in the input quan­
tities, the mass could be as low as 0.4e V, which escapes the KARMEN bound, although 
narrowly. 
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