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ABSTRACT 

How colloidal particles interact with each other is· one of the key issues that 

determines our ability to interpret experimental results for phase transitions in colloidal 

dispersions, and our ability to apply colloid science to various industrial processes. The 

long-accepted theories for answering this question have been challenged by results. from 

recent experiments .. Here we show from Monte-Carlo simulations that there is a short

range attractive force between identical macroions in electrolyte solutions containing 

divalent counterions. Complementing some recent and related results by others, we 

present strong evidence of attraction between a pair of spherical macroions in the 

presence of added salt ions for the conditions where the interacting macroion pair is not 

affected by any other macroions that may be in the solution. This attractive force follows 

from the ii~~emal-energy contribution of counterion mediation. Contrary to conventional 

expectations, for charged macroions in an electrolyte solution, the entropic force is 

repulsive at most solution conditions because of localization of small ions in the vicinity 

of macroions. Both Derjaguin-Landau-Verwey-Overbeek theory and Sogami-Ise theory 

fail to describe the attractive interactions found in our simulations; the former predicts 

only repulsive interaction, while the latter predicts a long-range attraction that is too weak 

and occurs at macroion separations that are too large. Our simulations provide 

fundamental "data" toward an improved theory for the potential of mean force as 

required for optimum design of new materials including those containing nanoparticles. 
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Introduction 

The potential of mean force between colloidal particles in electrolyte solutions 

plays a central role in describing the phase behavior and the kinetics of agglomeration· in 

colloidal dispersions (1-2). It is of fundamental importance for understanding the 

properties of inorganic materials (e.g. ceramics composed of nanoparticles), foods such 

as milk, and solutions of biomacromolecules including globular proteins (3-5). After 

decades of theoretical and experimental efforts, some aspects of colloidal interactions 

remain puzzling, in particular the issue of attractive electrostatic forces between like

charged colloidal particles in an electrolyte solution. Experimental evidence for such 

attraction has been indirect, and largely complicated by boundary or polydispersity 

effects (6-8). Classical theories are not satisfactory because they are based on the mean

field approximation that neglects the effects of excluded volume and Coulombic 

correlations among small ions. Depending on simplifying assumptions, these theories 

have led to qualitatively different results. For example, theories based on the Derjaguin

Landau-Verwey-Overbeek (DLVO) approximation describe the electrostatic interaction 

between macroions of the same charge as screened repulsion (9-10, 12-13), while others, 

represented by Sogami-Ise (SI) theory, predict a universal long-range attractive 

interaction (11, 14 ). Likewise, the possibility of an electrostatic attraction is envisaged in 

various integral-equation theories based on the Omstein-Zernike equation (15-18). With a 

notable exception of the Inhomogenous Hypemetted Chain theory for the planar 

geometry(19), however, the results from integral-equation theories, are not conclusive 

because they become less accurate when the colloidal suspension has a high charge/size 

asymmetry (20-21 ). 
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Simulations for attractions between like-charged plates or cylinders have been 

reported earlier (22-27) but, to our best knowledge, simulations for interactions between 

two isolated spherical macroions in electrolyte ·solutions, as reported here, are new. The 

geometric shape may have a major effect on interaction between like-charged colloids; 

e.g., while the interaction between two like-charged plates is always more repulsive as 

the sizes of small ions separating them increase, that conclusion is not necessarily correct 

for interaction between two spherical colloids because of size-exclusion effects. On the 

other hand, at finite macro ion concentrations, the pair correlation function of like-charged 

macroions may show attractions (28-30). However, this attraction is partly due to 

correlation among many macroions and that is very different from the pair interaction 

between two isolated macroions in a salt solution. In addition, when standard methods are 

used, the average hard-sphere force between isolated macroions is much harder to 

calculate than that for two walls. Only very recently (after our work was completed), we 

noticed that Allahyarov and coworkers reported attractive interactions between two 

isolated like-charged macro ions (31 ). But they investigated interactions between 

macroions surrounded only by their counterions, and they did not consider conditions 

where we expect attractive forces in aqueous colloids. Our calculation techniques are 

different from those used by Allahyarov et al.. Further, we direct attention at interaction 

between macroions in the presence of coions as well as counterions in an aqueous 

medium. 
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Simulation Method 

Our Monte-Carlo simulations were carried out using the NVT ensemble in the 

framework of McMillan-Mayer theory, i.e., the solvent is represented by a continuous 

dielectric medium. We use a cubic simulation box containing two identical macroions 

fixed at various separations, and simple ions of symmetric or asymmetric electrolytes. 

Only hard~sphere repulsion and Coulombic interactions were considered; the total energy 

is calculated using the Ewald-sum method (32). Because the cubic-box length (100 A) is 

much larger than the Debye screening length (- 5 A), macroions from different 

simulation boxes are assumed to be uncorrelated. 

The force between macroions includes n,-o contributions: the electrostatic 

interaction, and the hard-sphere or collision term··_ The electrostatic force can be 

calculated directly; however, because the hard-sphere interaction is discontinuous, direct 

sampling of average force is not straightforward. Considering the derivative of the 

configurational integral with respect to macroion separation, the average hard-sphere 

force <Fh5(r12)> can be related to the average number of collisions, <Nc>, due to a small 

macroion displacement &12: 

= . kr[(<Nc>) (<Nc>) ] 
~~~0 IL1rt2l L1rt 2 <0 - L1rt2 Lir12 >0 

[1] 

where r12 denotes separation between two macroions 1 and 2; k is Boltzmann's constant 

and T the absolute temperature. The two terms on the right side of Eq. (1) correspond to 

two opposite directions of displacements. Using trial displacements, &12, about two 

•• In systems containing many macro ions, the potential of mean furce between macroions is easily 
calculated from the pair distribution function. With only two macroions, however, this approach becomes 
inefficient. A direct sampling ofmacroion-macroion force is therefore carried out here. 
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orders of magnitude smaller than the macroion size, Eq.(l) provides good statistics for 

sampling interionic forces. We obtained excellent agreement with known results for 

ordinary electrolytes. Very long runs, typically of the order of 100 millions 

configurations for each macroion separation, were required to obtain good statistical 

accuracy (within 2-3%). This requirement follows from the fact that we sample the force 

between a single pair of macroions, unlike the procedure used in previous simulations for 

systems with many macroiops (28, 29). 

At 25 °C, we investigated interactions between identical negatively-charged 

macroions (the diameter of macroions crM = 20 A and the charge ZM = -20) in 1:1, 1 :2, 2:1 

and 2:2-electrolyte solutions at various small-ion concentrations (The diameters of all 

small ions are 4A). We find that negatively charged macroions attract each other in the 

presence of divalent counterions (i.e., in 2:1 and 2:2 electrolytes). Figure 1 shows the 

collision and electrostatic contributions as well as the total force between macroions in a 

2:2-eleetrolyte solution. Similar results apply to a solution of negatively charged 

macroions with a 2:1 electrolyte, indicating only a small effect of the valence of the 

coion. The collision force is purely repulsive even when the two macroions are in contact. 

The electrostatic force is also repulsive at small macroion separations but it declines 

quickly as the separation increases, and passes through a negative minimum at about 1.2 

macroion diameters, corresponding to a separation sufficient to accommodate a 

monolayer of counterions. The strength of the electrostatic force becomes insignificant at 

about 1.5 macroion diameters. When the counterions are monovalent, i.e. in 1:1 and 1:2-

electrolyte solutions, the total force as well as its hard-sphere and electrostatic 
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contributions are everywhere repulsive, and approach zero at separations beyond about 

twice the Debye-screening length. 

Discussion 

The potential of mean force between macroions is obtained by integrating the 

force as a function of separation (33). Figures. 2a and 2b show the potential of mean 

force between the two macroions in 1:1 and 2:2-electrolyte solutions. For comparison, we 

include predictions of DLVO and Sl theories. In DLVO theory, based on a linearized 

Poisson-Boltzmann equation, the electrostatic interaction between two macroions in an 

electrolyte solution is given by (9-1 0) 

[2] 

wherezMand crM are charge number and diameter ofthe macroions, respectively; lB is the 

Bjerrum length, viz. the separation of two unit charges where the electrostatic energy 

equals the thermal energy kT; and K is the Debye screening parameter depending on 

small-ion concentrations Pi and valence Zi 

[3] 

The summation in Eq. (3) includes cowiterions of the macroions and all added small ions 

of electrolyte. The Debye-screening length is K-
1

• 

SI theory is also based on a linearized Poisson-Boltzmann equation. However, 

because it uses Gibbs energy (instead of Helmholtz energy) for interaction between two 

macroions, it includes an additional (attractive) term due to the volume change of the 
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system associated with the varying distance between the macroions. The SI potential for 

interaction between two identical macro ions in an electrolyte solution is given by (11) 

WS
1
(r) _ 2 l [sinh(Ka)]

2
[1+Kacoth(Ka). K] ( ) - z M B -- exp -Kr 

kT Ka r 2 
[4] 

where a = crM/2. Eq.(4) predicts a universal attractive interaction at large macroion 

separations. Contrary to our Monte-Carlo-simulation results, neither DL VO nor SI theory 

distinguishes between divalent and monovalent electrolytes at identical ionic strength 

because the only parameter depending on small ions is the Debye screening parameter K. 

Figure 2a shows that DLVO theory agrees approximately with simulation results 

for the potential of mean force between macroions in a 1: 1-electrolyte solution except at 

small separations. We find that DLVO theory also provides a good approximation for 

negatively charged macroions in a 1 :2-electrolyte solution that contains only monovalent 

counterions. This good agreement is partly due to cancellation of errors in DL VO theory 

that ignores two opposing effects: finite ion size, and correlated fluctuations in ion 

distributions. Our results also show that SI theory significantly underestimates repulsive 

interaction between macro ions over all distances in both 1: 1 and 1 :2-electrolyte solutions. 

A weak long-range attraction predicted by Sl theory is inconsistent with our results for 

monovalent electrolyte solutions. 

Figure 2b shows the potential of mean force between macrmons m a 2:2-

electrolyte solution where the ionic strength is the same as that of the 1: 1-electrolyte 

solution. Both DLVO and SI theories fail to reproduce the attractive well observed at 

intermediate macroion separations. Although SI theory predicts an attractive interaction 
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between macroions of like charge, this predicted attractive potential is nearly one order of 

magnitude weaker, and appears at much larger separations. 

We find that the attractive interaction between like-charged macroions is caused 

by preferable internal energy (in the primitive model) at small macroion separations. 

Figure 3 shows ~E(r) in 1:1 and 2:2-electrolyte solutions. Here ~(r)=E(r)-E(oo) is 

defined as the total internal energy of the system when the two macroions are separated 

by distance r relative to that of the system when the macro ions are infinitely apart. Figure 

3 indicates that even for macroions in the monovalent electrolyte, ~E(r) has a pronounced 

minimum located at about 1.2 macroion diameters. This distance corresponds to the 

separation where only a single counterion can be simultaneously in contact with both 

macroions. The total energy at very small separations is higher than that at large 

separations because the screening counterions are squeezed out from the intervening 

region between the macrions. The internal-energy profile in the divalent-electrolyte 

solution is notably different from that in the monovalent-electrolyte solution. The energy 

minimum is much deeper and occurs at a slightly smaller distance than that in the 

monovalent-electrolyte solution. Unlike in the 1: !-electrolyte solution, the contact energy 

of the two macroions is significantly lower than that when they are far apart. Our 

simulations show that divalent counterions persist in the proximity of the macroions 

despite the restrictions imposed by the excluded-volume effect. 

From the potential of mean force (Figure 2} and from the total energy (Figure 3), 

we conclude that the entropic force between macroions is entirely repulsive. It has been 

known for many years that in a solution of big and small spheres, there exists an 

entropically-driven attraction between big particles (34) [a recent overview is given by 
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Kestenbaum (35)]. However, this result for hard uncharged spheres is not applicable to a 

solution of macroions and electrolyte. The difference in behavior of uncharged and 

charged hard spheres becomes apparent when we compare the distribution of sinall 

particles in a system containing neutral macroparticles with a system containing 

macro ions. Figures 4a and 4b show, respectively, 3 dimensional distributions of divalent 

counterions when the macroions are close to each other, and that when the macroions are 

replaced by two neutral . hard spheres of the same size. The two peaks of counterion 

distribution make the overall pressure in the region between macroio~s higher than that 

outside, leading to a repulsive interaction. On the other hand, even though small ions 

distribute almost evenly around large neutral hard spheres, the absence of small ions 

between large neutral spheres when they are close to each other causes a net attractive 

force. The entropy loss due to the accumulation of small ions is much smaller in divalent

counterion solutions than that in monovalent-counterion solutions because to neutralize 

the charges of macroions, the number of divalent counterions is only one half of that 

needed with monovalent counterions. As a result, the entropic repulsive force is much 

weaker in divalent-counterion solutions. Therefore, an attractive potential of mean force 

occurs in solutions containing divalent counterions, but not in solutions containing 

monovalent counterions. 

The interaction between macroions in electrolyte solutions is due to complicated 

many-body effects. Our simulation results indicate that any theory using only the Debye

screening parameter is insufficient to describe colloidal interactions. To describe the 

attraction force successfully, we need to consider correlations among ion-density 

fluctuations, and finite-size effects of small ions. The double-layer interaction between 

10 



two parallel charged walls has been successfully described by an anisotropic hypemetted

chain equation (19,36) and by a non-local density-functional theory (25). Variations of 

these theories appear promising for deriving a successful theory for interactions in 

colloidal dispersions as required for optimum design of new materials including those 

containing nanoparticles. 
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Figure Captions 

Figure 1 Average force (F) between identical macroions in a 2:2-electrolyte solution. 

J'he charge number and diameter of macroions are -20 and 20 A, respectively. 

Counterions and coions have the same size, 4 A. The electrolyte concentration 
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is 0.125 M. r12 denotes center-to-center separation between macroions; crM is 

macroion diameter; and 18 is the Bjerrum length. Lines are to guide the eye. 

Figure 2 Comparison between analytic theories and Monte-Carlo simulations for the 

dimensionless potential of mean force between macroions W(r)/kT. a. 1:1-

electrolyte solution; the diameter of small ions is 4 A and the electrolyte 

concentration is 0.5 M. b. 2:2-electrolyte solution with the same ionic strength 

and small-ion diameter. The charge number and diameter ofmacroions are -20 

and 20 A, respectively. 

Figure 3 Total dimensionless internal energy, L1E(r)lkT as a function of the macroion 

separation in 1:1 and 2:2-electrolyte solutions at the same ionic strength 

(0.5M). All small ions have the same diameter (4A). The charge number and 

diameter of macroions are -20 and 20 A, respectively. Lines are to guide the 

eye. 

Figure 4 Distribution of divalent cations around two isolated, negatively-charged 

macroions (a); and around two neutral hard spheres that have the same size as 

that of the macro ions (b). Here the charge number of macro ions is -20 and the 

anions are monovalent. The diameters of the small ions and the macro ions are 

4 A and 20 A, respectively. The electrol~te concentration is 0.125 M. g(r) 

stands for the distribution function of cations in the vicinity of two macroions 

(or neutral hard spheres). The x-y plane contains the symmetric axis. 
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