
LBNL-42548 
Preprint 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 

T-Duality and Ramond-Ramond 
Backgrounds in the Matrix Model 

Daniel Brace, Bogdan Morariu, and Bruno Zumino 

Physics Division 

November 1998 
Submitted to 
Nuclear Physics B 

' . ~ ~-.· .. ( ...... ·--- .;:.., 

' . -~. 

"""-' e 

~ L. ..... ·~). "·· 

~ 

..... 

---

I 
CJJ 
:z 
I 
I 

+:> 
N 
c.r. 
+:> 
CJJ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



\ 

T -Duality and Ramond-Ramond Backgrounds 
in the Matrix Model 

Daniel Brace, Bogdan Morariu, and Bruno Zumino 

Department of Physics 
University of California, Berkeley 

and 

Physics Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, California 94 720 

November 1998 

LBNL-42548 

This work was supported in part by the Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE­
AC03-76SF00098, and the National Science Foundation under Grant No. PHY-95-14797. 



November 1998 

UCB-PTH-98/56 

LBNL-42548 

T -Duality and Ramond-Ramond Backgrounds 
in the Matrix Model* 

Daniel Bracet, Bogdan Morariu+ and Bruno Zumino§ 

Department of Physics 

University of California 

and 

Theoretical Physics Group 

Lawrence Berkeley National Laboratory 

University of California 

Berkeley, California 94 720 

Abstract 

We investigate T-duality of toroidally compactified Matrix model 

with arbitrary Ramond-Ramond backgrounds in the framework of 

noncommutative super Yang-Mills gauge theory. 

PACS: 11.15.-q, 11.25.-w 

Keywords: Matrix model, Noncommutative super Yang-Mills, T-duality 

*This work was supported in part by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Depart­

ment of Energy under Contract DE-AC03-76SF00098 and in part by the National Science 

Foundation under grant PHY-95-14797 

t email address: brace@thwk2.lbl.gov 

temail address: morariu@thsrv.lbl.gov 

§em~il address: zumino@thsrv.lbl.gov 



1 Introduction 

The original Matrix model conjecture [1], which required taking the large 

n limit, was further refined in [2] by Susskind who conjectured that the 

discrete light-cone quantization (DLCQ) of M-theory is given by the finite n 

Matrix model [3]. Upon compactification on a torus Td there are additional 

degrees of freedom, which correspond to winding states in the auxiliary Type 

IIA string theory [2, 4]. The compactified Matrix model is described by a 

super Yang-Mills gauge theory on the dual torus. Alternatively, one could 

also ask directly if compactified Type IIA string theory in the n DO-brane 

charge sector is equivalent to a U(n) super Yang-Mills gauge theory. An 

equivalence between string theory and a finite rank gauge theory is only 

possible in the limit of decoupling string excitations which requires taking o/ 

to zero. To keep the winding excitations finite this implies we must also take 

the small volume limit. This is exactly the limit in which the Hamiltonian 

of the auxiliary Type IIA string theory equals the DLCQ Hamiltonian of 

M-theory [4]. 

For d ~ 2 besides the compactification metric there are additional moduli 

which, in terms of the auxiliary Type IIA string theory [4], correspond to 

the 2-form of the NS-NS (Neveu Schwarz-Neveu Schwarz) sector and the 

R-R (Ramond-Ramond) forms. In the seminal paper [5] Connes, Douglas 

and Schwarz conjectured that the 2-form of the NS-NS sector corresponds to 

the deformation parameter of a noncommutative super Yang-Mills (NCSYM) 

gauge theory. Further studies followed in [6, 7, 8, 9, 10, 11, 12]. 

In this paper we continue our investigation started in [9] ofT-duality of 

the DLCQ of toroidally compactified M-theory and its realization i_n terms of 

NCSYM gauge theory. In [9] we gave an explicit description of the relation­

ship proposed in [7, 8] between T-duality of string theory and the duality of 

the NCSYM gauge theory known in the mathematical literature as Morita 

equivalence [13]. Here we extend the previous results by allowing arbitrary 

R-R backgrounds. 
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In general two NCSYM theories are dual to each other if there exists an 

element A of the duality group SO(d, d IZ) with the block decompositiona 

A= (A B) c v ' (1) 

such that their defining parameters are related as follows 

e (A8 + B)(C8 + v)-1
, (2) 

(Jij (C8 + V)ik(C8 + V)i1 Gk1
, (3) 

-2 
9sYM J I det(C8 + V)l g~yM, (4) 

ij S(A)ry, (5) 

x S(A)x. (6) 

Here S(A) denotes the Weyl spinor representation of A and 1J is an integral 

chiral spinor containing the Chern numbers of the bundle. For compactifi­

cation on a three torus 1J contains the rank of the group and the magnetic 

fluxes. 

The first four relations can be found in [7, 8, 9]. Deriving (6) in the 

context of NCSYM gauge theory is the main thrust of our paper. The chiral 

spinor x in (6) determines the parameters of the Chern-Simon type terms 

which we will add to the NCSYM action. In the auxiliary Type IIA string 

theory xis closely related to the R-R moduli. 

In Section 2 we review the transformation properties of the R-R moduli 

under the duality group. The dimensionally reduced action of Type IIA su­

pergravity is invariant under the T-duality groupb SO(d, d). By deriving the 

nonlinear sigma model which describes the scalar fields of the supergravity, 

we can extract the transformation properties of the R-R backgrounds un­

der the duality group. In particular we will show that appropriately defined 

aThe SO(d, d IZ) subgroup of the T-duality group O(d, d IZ) is the subgroup that does 

not exchange Type IIA and JIB string theories. 

bThe equations of motions are invariant under the full U-duality group Ed+l(d+l)· 
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fields, which are combinations of the R-R forms and the NS-NS two-form, 

transform in a spinor representation of the duality group. 

In Section 3, we identify the Chern-Simon parameters of the gauge theory 

with the R-R moduli. Then, we show that the duality transformations relat­

ing different NCSYM theories can be extended to include these terms. In' the 

process we obtain the transformations properties of the parameters and show 

that they coincide with the transformations expected from string theory and 

derived in Section 2 using the dimensional reduction of 10-dimensional Type 

IIA supergravity. 

Finally in the Appendix we present some results, used in the main text, 

regarding transformation properties under the T -duality group in the limit 

of small compactification volume and decoupling of string excitations. 

After obtaining these results we received an e-print [10] containing a sim­

ilar proposal for the additional terms in the noncommutative action. 

2 Duality of Seven Dimensional Supergravity 

Type IIA superstring theory compactified on a d-dimensional torus is in­

variant under the T-duality group SO(d, d IZ). The low energy supergravity 

effective action describing this compactification is in fact invariant under 

the continuous group SO(d, d). This action can be obtained directly from 

the 10-dimensional Type IIA supergravity by dimensional reduction. In this 

section we are interested in obtaining the transformation properties of the 

R-R moduli under the discrete duality group. Since this is a subgroup of 

the corresponding continuous group which is a symmetry of the low energy 

10-dimensional supergravity action, we can obtain these transformation prop­

erties by analyzing the symmetries of the the nonlinear sigma model which 

describes the dynamics of the scalars in the supergravity action. 

The NS-NS scalars are described locally by an O(d, d)/ O(d) x O(d) non­

linear sigma model. Taking into account the T-duality group, the NS-NS 
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nonlinear sigma model is in fact defined on 

O(d, d IZ) \ O(d, d) I O(d) X O(d). 

On the other hand simple counting arguments suggest that the R-R scalar 

fields transform in a chiral spinor representation of the duality group. This 

statement is almost correct except that the fields which transform in the 

spinor representation are some redefined fields involving not only the R-R 

fields but also the NS-NS two form. 

The 10-dimensional supergravity action written in terms of the string 

metric is given by 

S =I d10x.fi e-2
cf> (R + 4('\7¢?- -

1
-H2

) 
2. 3! 

- ldwx..;g (-l_p2 + _1_p'2) 
2. 2! 2. 4! 

-~ I F(4) 1\ F(4) 1\ B + ... ' 
where we have not written the terms containing the fermionic fields. The 

first line contains only NS-NS fields while the second contains the kinetic 

terms of the R-R forms. The various field strengths are defined as follows 

H dB, 

F dA(l), 

F(4) dA(3), 

F' F(4) + A(1) 1\ dB, 

where the subscript indicates the rank of the form. Note that R-R fields 

couple to the NS-NS fields through the metric and through the F'2 term, 

which depends on the antisymmetric NS-NS two-form. 

Next we perform the dimensional reduction along coordinates xi fori= 

1, 2, 3. The massless scalars from the NS sector can be organized in the 
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symmetric matrix [14] 

M- , ( 
c-1 -G-1B ) 

- BG-1 G- BG-1B . (7) 

Note that M is also an element of the group S0(3, 3). Using a result from 

the Appendix, we can obtain the Weyl spinor representation of M 

( 
det c-112 

S(M) = det c-112 b 
det Q-1/ 2 bT ) 

det Q 1/ 2 Q-i + det Q-1/ 2 b bT ' 

where b = *B, and the star denotes the operator which transforms an an­

tisymmetric matrix into its dual column matrix. The star operator always 

dualizes only with respect to the compactified coordinates. 

We obtain additional scalars from the dimensional reduction of R-R forms. 

As mentioned above these fields do not have simple transformation properties 

under the T-duality group but we can define the following odd rank forms 

A(l), (8) 

A(3) - A(1)/\ B, 

and organize them in a column matrix which, as we will see shortly, trans­

forms in a chiral spinor representation of the duality group 

x= 

The other fields can also be organized in representations of the dual­

ity group such that the action obtained by dimensional reduction from 10-

dimensional supergravity is explicitly invariant. The six vectors obtained 

from the dimensional reduction of NS-NS fields transform in the fundamental 

representation while the 7-dimensional dilaton and the 7-dimensional space­

time metric and 2-form are singlets. The four vectors obtained from the R-R 
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forms transform in a chiral spinor representation and, after dualizing the · 

3-form, the rest of the bosonic fields form a chiral spinor of 2-forms. 

For our purpose, it will be enough to consider the nonlinear sigma model 

part of the action containing the kinetic terms of the scalar fields of the 

theory 

S = ~ J d7 
X /§ ( e-2

<1? g~'-v tr (8p.M- 18vM) + g~'-v Op.XT 8(M) Ov X) + ... , 

where gp.v and <P are the 7-dimensional metric and dilaton, and we have not 

written the kinetic term for the dilaton. The nonlinear sigma model part of 

the action is written in a form that is explicitly invariant under 80(3, 3) and 

in fact the whole supergravity action could be written in invariant form. The 

duality transformations of the scalar fields are given by 

8(A)x. (9) 

To prove the invariance of the action we used 8(AT) = 8(Af. 
The main purpose of this section was to obtain the relations (8) which 

show how the fields x with simple transformations properties under the T­

duality group are related to the R-R forms. 

3 T-duality of the Chern-Simon Type Terms 

In this section we show how to modify the NCSYM action so that it de­

scribes the DLCQ of M-theory in the presence of arbitrary moduli. In the 

auxiliary Type IIA string theory the additional moduli are constant R-R 

backgrounds corresponding to generalized Wilson lines. Then we show that 

the action which includes the new terms is also invariant under the dual­

ity group 80(3, 3IZ) and that the parameters of the new terms transform 

exactly as expected from string theory. 
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First we guess the form of these terms using our experience with the 

commutative case which corresponds to a vanishing NS-NS background 2-

form B. In this case the compactified Matrix model corresponding to n 

DO-branes is described by a U(n) supersymmetric Yang-Mills theory. This 

is obtained by performing aT-duality transformation along all the compact 

directions. However, for nonvanishing R-R moduli, the action contains an 

additional Chern-Simon type term [15] 

Scs = 
1 

3 
J tr (e2

1r:F L A(k)) , 
4(2n) k odd 

where A(k) are the the T-dual R-R fields. Note also that under T-duality in 

all directions the dual of B also vanishes if B was zero. This is why only 

:F appears in the exponent while in general we would also subtract the dual 

of B. 

Next we will conflider the effect of a nonvanishing B on this action. If 
'Yij represents a two cycle wrapped around directions xi and xi, then the 

deformation parameters are defined by 

eij = (2~)2 iij B. 

In the super Yang-Mills part of the action the only change required by a non­

vanishing B was to make the coordinates noncommutative with deformation 

parameter 8. The metric and gauge coupling constant are the same as those 

obtained by T-duality from the Matrix model for a vanishing NS-NS 2-form. 

We emphasize that the metric of the NCSYM gauge theory is not the T-dual 

metric obtained by first taking the inverse of E = G + 8 and then extracting 

the symmetric part. The NCSYM metric Gii is just the inverse of the orig­

inal metric. Thus we must distinguish between aT-duality in all directions 

and the noncommutative Fourier transformation relating the Matrix model 

and the NCSYM gauge theory. 

Let us explain why the NCSYM metric is 8 independent. To compact­

ify the Matrix model on a torus we first consider the Matrix model on the 
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covering space and then impose a quotient condition. If the B modulus is · 

nonvanishing, once we go to the topologically trivial covering space, we can 

gauge it away. However this gauge transformation does not leave the wave 

functions of strings invariant and thus we must transform the translation op­

erators implementing the quotient condition. The new translation operators 

do not commute and their noncomutativity is measured by e. 
Imposing the new quotient conditions on the Matrix action results directly 

in the NCSYM gauge theory. The only difference with the B = 0 case is 

that we have to use noncommutative Fourier transformations instead of the 

standard Fourier transformations when we go from the Matrix model to the 

NCSYM gauge theory. This however does not result in a different metric and 

gauge coupling constant. The main point of this discussion was to show that 

we can trade a nonvanishing B field for noncommutative coordinates on the 

dual super Yang-Mills gauge theory. 

We will assume that the parameters of the Chern-Simon terms are also 

the same as for vanishing 8, except that the new terms are defined on a 

noncommutative torus. In particular for compactification on a three torus 

we have 

Just as in the commutative case these terms are topological, supersymmetric 

and gauge invariant. In this action 8 only appears through the noncom­

mutativity of the coordinates and A(o) and A(2) are the T-dual R-R formsc 

calculated as if the NS-NS 2-form vanishes 

The 1-form R-R field A(l) has a lower index and should not be confused with 

the Yang-Mills gauge field Ai. With this distinction in mind we can write the 

cwhen we write the R-R forms in components we will drop the rank of the form as it 

is possible to identify the form from the position and number of indices. 
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action (10) in the dual Matrix theory language using the R-R backgrounds 

on the original torus 

Scs = J dtTh ( XiAi + 2~ _kixj xk Aijk)' 

where Th is the formal trace over infinite dimensional matrices divided by the 

infinite order of the quotient group [16]. It is convenient to write the action 

in component notation 

1 j j d
3
a ( ( o· ·k 2-r-0· ·k )) Scs = 2 dt (21r)3 tr Eijk 21r:F zA3 + (21r) .rz:F3 A , (11) 

where the magnetic and electric field strengths in the temporal gauge are 

In the original conjecture [1], the large N limit of Matrix theory describes 

the infinite momentum frame of M-theory. LargeN corresponds to a decom­

pactification of the light-cone direction and in this limit the 8 and A(l) can 

be set to zero. Note that in M-theory these moduli correspond to C-ij and 

9-i and can be eliminated by a gauge transformation and a reparametrization 

when x- is noncompact. In that case only the last term in (11) survives, the 

action becomes commutative and reduces to the action considered in [17, 18]. 

We now show that the action (11) is invariant under the S0(3, 3jZ) 
duality group of t~e auxiliary string theory. Consider a Chern-Simon type 

action defined on a 77-bundle. Here 7J is a S0(3, 3jZ) spinor containing the 

rank of the group and the magnetic flux numbers 

7]= 

We will perform the same sequence of field redefinitions used in [9], where 

it was. shown .explicitly for the case of vanishing R-R moduli, that the U(n) 
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NCSYM action is equivalent to a U(q) NCSYM action on a trivial bundle, · 

where q is the greatest common divisor of n and the magnetic fluxes M. 

Let H = (C8 + V)-1 be the matrix defined in [9], where C and V are 

the lower block components of the S0(3, 3IZ) transformation relating the 

original NCSYM gauge theory to the theory on the trivial bundle with U(q) 

gauge group. Then we make the following constant curvature connection and 

field redefinitions 

Vi der (H-1 )~ \Ji, fii def (H-1 )~Ai, 

J5i def (H-1 )~Di, 

:ftkl = [vk, fill - [vl, fik]- i[fik, fil]. 

The curvature can be split into a constant term and a fluctuating piece 

pi _ :F}i + Hi Hi :ftkl 
- (0) k l ' 

;:ok = H1 :ftOl. 

(12) 

Using the matrices Q and R defined in [9] we perform a change of integration 

variables & = aQR, which introduces a Jacobian factor 

I d3atr\ll(a) =I d3& det(Q-1)trw(&(QR)-1
). {13) 

Making the substitutions (12), (13) and collecting similar terms we find 

Scs = 
2

(
2
1
1r)2 I dt I d3&; tr (cijk (:ftOiA'ik + 21f:ft0i:ftik A')), 

where 

qA' = (ndet Q-1 det H) A, 

A'ii - H1 d t Q-1 (Aii + 2 -rii A) Eijk q - k Eijl n e 1r .r(o) . 

One can now rewrite the action in terms of new operators a~, oli, and U', 

and a q dimensional trace. See [9] for a more detailed discussion of this 

substitution. 

Scs = 
1 J tr (21r ;:i 1\ A'(2

) + ! 21r :F' 1\ 21r :F' 1\ A'(o)) 4(27r) 3 q 2 . 
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More generally the action is invariant under duality transformations if · 

the Chern-Simon parameters are related as follows 

(14) 

*(A(2l + 27rF(o)_A(O))n det Q-1 = (C8 + 'D)-T * (A(2) + 27rF(o)A(0))n det Q-1, 

where C and 'D are the lower block components of the 80(3, 3JZ) matrix 

relating the two theories, and the star operator is the duality operator acting 

only with respect to the compact coordinates. 

Next we write the Chern-Simon parameters in term of the fields C dis­

cussed in Section 2 

A(o) = *(C(3) + C(1) A 8), 

A(2
) = - * c(1)· 

(15) 

(16) 

To obtain a compact form first define the column matrices u and v with 

components 

1 "k 
2M3 Cijk- nCi, 

-Mijcj. 

If x transforms as a spinor, u and v are the block components of a 80(3, 3JZ) 

vector as shown in the Appendix (27). Then using the identities (28) listed 

in the Appendix, the transformation (14) can be written as 

c(3) + c(1) A e = 1 det(C8 + V)l-1
;
2 

(c(3) + c(1) A 8), (17) 

(u- f:>v) = (C8 + 'D)-T(u- 8v). (18) 

Comparing (17) and (18) with (25) and (23) in the Appendix we see that the 

R-R fields must transform in a spinor representation of 80(3, 3JZ) 

X= 8(A)x. 
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Thus the duality transformations of all the parameters of the NCSYM, · 

including those of the Chern-Simon type terms, coincide with the transfor­

mation of moduli of the Type IIA strings compactified on a torus in the limit 

of vanishing a' and G ij. 

Using the transformation properties of 9s~M and A(o) it follows that the 

complex coupling 
T = A(O) + 41ri 

9~YM 
also transforms simply under the T-duality group with the same 8 dependent 

factor appearing in (14). 

Finally note that the BPS spectrum corresponding to the electric fluxes 

obtained in [11] is modified in the presence of nonvanishing R-R moduli 

This result agrees with the small volume limit of the spectrum formula in [ 10 ]. 

In [12] it was shown that shifts in the electric flux spectrum correspond to in­

equivalent geometric quantizations. These different quantizations are equiv­

alent to the standard canonical quantization if one also includes topological 

terms in the action. 
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Appendix 

In this Appendix we present some mathematical results regarding the spinor 

representation of the T-duality group and duality invariant quantities in the 

small volume limit. The group 80(d, d) is the group of 2d-dimensional ma­

trices A satisfying AJ AT = J where J is a matrix with the block form 

J=(~ ~)· 
It will be useful to know how to calculate the Weyl spinor representation 

matrix of an 80(3, 3) group element A with the block form 

A=(:~)· 
First note that if A is invertible A has a block Gauss decomposition 

( 
1 0 ) ( A 0 ) ( 1 A-

1
B ) 

A= CA-1 1 0 A-T 0 1 ' 
(20) 

where one can show using the group relations that CA-1 and A-1B are anti­

symmetric. This decomposition is in fact true for generic 80(d, d) matrices. 

For d = 3 we can give the explicit spinor representation matrices for each 

factor in (3) thus obtaining the spinor representation of a generic 80(3, 3) 

matrix A 

( 
1 0) ( detA

1
1

2 0 ) ( 1 *(A-
1Bf) 8 

= *(cA-1) 1 o detA-112A o 1 . (
21

) 

The star denotes the duality operator. When acting on antisymmetric 3-

dimensional square 'matrices it gives the dual column matrix. 

We can form invariants using two column matrices transforming in the 

vector representation of 80(d, d IZ) and the symmetric 80(d, d IZ) matrix M 
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In the limit when G goes to zero, using the block Gauss decomposition of M · 

M = ( 1 0 ) ( G-
1 

0 ) ( 1 -B ) 
B1 0 G 01' 

(22) 

and after identifying B with 8 we obtain the following invariantd 

Using the transformation of Gunder the duality group (3) we can write the 

transformation of u - ev 

(u- f>v) = (C8 + V)-T(u- 8v). (23) 

The spinor representation matrix of M can be calculated using (21) 

( 
1 o ) ( det c-1

/
2 o ) ( 1 br ) 

S(M) = b 1 0 det G112G-1 0 1 . 

Then we can also form the invariants 1JT S ( M) x using two chiral spinors 

x= 

Xo 

X1 

X2 

X3 

' 1] = 

1Jo 

171 

1]2 

1]3 

In the limit of vanishing G, the invariant becomes 

1 .. k . I 1 .. k 
(1Jo + 2c~3 8ii1Jk) v det G-1 (Xo + 2c~3 8ijXk). 

From (24) we obtain the following transformation law 

(24) 

1 .. k- 1/2 1 .. k 
Xo + 2CZJ eijXk =I det (C8 +'D) I- (xo + 2c23 eijXk)· (25) 

dTo obtain a finite result, one should insert appropriate factors of a' in (22) and also 

take a' to zero as discussed in the Introduction. 
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One can also check the relations(23) and (25) directly using the trasforma- · 

tions (2) of e. 
Given two chiral spinors x and 7J we first write them as Dirac spinors 

Then using the same definition for ai and a! as in the Appendix of (9] we can 

form the S0(3, 3jZ) vector 

(26) 

where ijv = rytT. Here Tis a matrix acting on Dirac spinors and plays the 

same role as 'Yo when we form barred spinors in Minkowski space. It is given 

by 

T = (ai + a1 )(a~ + a2 )(a~ + a3
). 

Writing out all the spinor components in (26) we have 

(27) 

Then u- 8v transforms as in (23) under the duality group. Such an expres­

sion, involving two chiral spinors and 8, is used in the main text. 

Finally we list some useful identities presented in (9] 
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