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Abstract 

We study the steady-state motion of mode III cracks propagating on a lat

tice exhibiting viscoelastic dynamics. The introduction of a Kelvin viscosity 

TJ allows for a direct comparison between lattice results and continuum treat

ments. Utilizing both numerical and analytical (Wiener-Hop£) techniques, 

we explore this comparison as a function of the driving displacement ~ and 

the number of transverse sites N. At any N, the continuum theory misses 

the lattice-trapping phenomenon; this is well-known, but the introduction of 

TJ introduces some new twists. More importantly, for large N even at large 

~'the standard two-dimensional elastodynamics approach completely misses 

the 17-dependent velocity selection, as this selection disappears completely in 

the leading order naive continuum limit of the lattice problem. 
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I. INTRODUCTION 

Recently, there has been renewed interest in the subject of dynamic fracture [1]. This has 

been sparked in large part by a set of experiments [2,3] that have called into question some 

of the predictions of the traditional, continuum mechanics approach to fracture propagation. 

Specifically, it has been shown that cracks exhibit a branching instability long before they 

reach the predicted limiting speed of advance; this instability leads to enhanced dissipation 

and effectively prevents much additional acceleration. Although there are some hints of this 

instability in the continuum approach [4], attempts at a systematic analysis [5] have been 

inconclusive. 

In this work, we adopt the philosophy of Marder and Gross [6] and consider lattice 

models of fracture. These models provide an invaluable test-bed for deciding when and if a 

continuum formulation is appropriate. After all, if the tip of a brittle crack really occurs at 

the scale of the lattice, there is no a priori reason for suspecting that a continuum approach 

could get the correct behavior. It is already clear, for example, that lattice models exhibit 

a sharp (sometimes discontinuous) jump from static cracks to propagating ones; this is not 

reproducible if one neglects lattice scale effects. One might hope, though, that at larger 

velocity there is some effective continuum description, perhaps utilizing the cohesive zone 

approach of Barenblatt [7]. From our perspective, it is an open issue as to whether any such 

model can accurately predict the behavior of some specific microscopic dynamical system 

exhibiting fracture. 

Historically, lattice models of fracture received a maJor impetus from the work of 

Slepyan [8], who used the Wiener-Hop£ technique to solve for steady-state propagation. 

In his work, he considered the case of infinitesimal dissipation. This fact made it difficult 

to carry out explicit comparisons between lattice results and 'continuum predictions thereof, 

inasmuch as the latter allows steady-state motion only at the limiting wave speed. One 

needs dissipative terms so as to introduce a new macroscopic velocity scale in order to al

low more general steady-state continuum solutions. Subsequent analyses by Marder and 
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collaborators [6,9] did introduce dissipation in the form of a Stokes term; however, they 

did not explicitly consider the lattice-continuum comparison. In this paper, we introduce 

dissipation in a different form by adding a Kelvin viscosity term to the equation of motion. 

We will see that the advantage of this choice is that the continuum model is in fact an 

accurate approximation to the lattice dynamics at large enough 'f/V. Note too that from a 

physics perspective; this type of viscoelasticity appears to have a marked effect on the crack 

stability [10] and is therefore interesting in its own right. 

In this paper, we choose the simplest nonlinear form for the lattice springs, namely that 

the spring becomes completely broken (with no residual force) once it is stretched beyond 

some threshold. In a future publication, we will extend our analysis and results to a more 

general nonlinear force law. This generalization appears to change very little qualitatively 

with respect to the steady-state problem, although it is crucial in allowing for a direct 

calculation of the linear stability of the propagating fracture. As mentioned above, this 

stability issue is perhaps the one of most immediate relevance as far as the connection to 

experiments is concerned. But, as we shall see, the steady-state problem we solve here offers 

quite a few subtle and interesting aspects. 

The organization of the paper is as follows. First, we introduce the lattice model, and dis

cuss its basic energetic thresholds. We also briefly discuss the static arrested crack solutions. 

In the next section, we generalize the procedure we employed for finding the static solutions 

to solve for steady-state moving cracks for the case of one row of mass points (N = 1), 

employing as a foundation the Slepyan ansatz for the form of the discrete steady-state solu

tion. We analyze the dependence of the velocity on the driving displacement, studying the 

effect of the various parameters. The most important of these parameters is the viscosity. 

In the following section, we compare these results to a naive continuum limit, finding that 

whereas this naive continuum limit successfully reproduces the large-velocity regime, it fails 

to account for the nonexistence of solutions below a driving threshold. We then extend our 

method to arbitrary N, again solving for the dependence of the crack velocity on the driving 

displacement, as a function of the other parameters. Subsequently, we again compare our 
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results to those of our naive continuum limit. In particular, we focus on the large N limit, 

demonstrating how in this limit the standard continuum calculation is recovered. We find 

the surprising result that whereas the large-scale structure of the displacement field is al

most completely insensitive to the crack velocity for velocities less than the wave-speed, the 

small-scale structure is extremely sensitive. Thus the whole velocity selection is completely 

a function of the lattice-scale dynamics, which no continuum theory can reproduce correctly. 

We conclude with directions for the future and some general observations. 

IL MODEL, ENERGETICS AND STATICS 

We study in this paper the Slepyan lattice model [8] for Mode III fracture, generalized to 

include Kelvin viscosity. The model consists of N infinitely long rows of mass points (with 

unit mass) coupled horizontally and vertically by damped "springs". The bottom and top 

rows are anchored by "springs" to lines. The system is loaded by extending the top row a 

distance ~. The springs all have spring constant 1, except for the bottom row, which has 

spring constant k. All the springs have a viscous damping 'f/. The bottom springs break 

when there extension exceeds some threshold c. We label the (scalar) displacement of the 

(i,j) mass from its unstressed equilibrium position as Ui,j The equation of motion for Ui,j 

reads 

Ui,j = (1 + 'fJ !)(ui+l,j + Uu-l,j + Ui,j+l + Ui,j-1- 4ui,j) 

for j =/= 1 with Ui,N+l = ~' and 

(1) 

ui,l = (1 + 'fJ !)(ui+l,i + Ui-l,j + Ui,2- 3ui,j) + kO(c- Ui,t)(1 + 'f/ !)ui,l. (2) 

Of particular interest is the case k = 2, which is equivalent to the problem of an up-down 

symmetric crack, joined at the fracture line by springs of strength 1. 

There are a number of important strain thresholds which can be understood from en

ergetics and statics. The first is the point at which the uniformly stressed state cracks 
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catastrophically. For our model in which the bottom spring has spring constant k and the 

other vertical springs has spring constant 1, for a (horizontally) uniform state, the equilib

rium displacements are given by 

u"f! = (j _:_ 1 )k + 1 ~ 
'i Nk + 1 

(3) 

the strain of each spring is k~/(1 + Nk), except for the bottom 'k' spring which has strain 

~/(1 + Nk). The system will fail catastrophically if the strain of the k spring exceeds E and 

this gives us our first threshold, 

~u = t(Nk + 1) (4) 

The second strain threshold is the Griffith's criterion, which is the ~ at which the 

uniformly strained state becomes metastable with respect to the cracked state. The energy 

per column of the cracked state, Ui,j = ~' is just the energy to stretch the k spring to 

cracking, ~<:2 , whereas the energy of the uniformly stressed state is 

k~2 

£u = 2(Nk + 1) (5) 

The cracked state is thus energetically favored when ~ exceeds 

(6) 

Note that this is much smaller than ~u for large N. 

This system is known to possess a stationary solutions which represents a semi-infinite 

arrested crack. For completeness, and to begin to build the machinery we will need to treat 

the moving crack, we briefly outline the solution for this arrested crack. We choose x = 0 

to be the position of the last uncracked spring. We solve separately the problem in the 

uncracked (x > 0) and cracked (x < 0) regions and then tie the answers together. To solve, 

we need to know the normal modes of the vertical springs in the two regions. We define the 

general N x N coupling matrix as 
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-(m+1) 1 

1 -2 1 

1 -2 1 

1 -2 1 

1 -2 

(7) 

The coupling matrix on the uncracked side is MN(k) while on the cracked side it is MN(O). 

Denote the eigenvectors of MN(O), MN(k) as en, Bn, with eigenvalue An, An, i = 1, ... 'N. 

(Here and in the following lower (upper) case symbols refer to quantities on the cracked 

(uncracked) side). 

The equation of equilibrium on either side reads 

(8) 

The general decaying solution on the uncracked side, i ;::: 0, is 

(9) 

where uu is the uniformly strained solution presented above and 

(10) 

governs the spatial decay of the nth mode, and satisfies (fi)2
- (2- Ai)ri + 1 = 0. 

The solution on the cracked side, i ::; 0, is similar: 

(11) 

where 

(12) 

This solution has 2N unknowns, {An, an}. The equality of the two different expressions 

for uo,j provides N equations. The equation of motion for x = 0 provides the other N 
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equations. Solving this 2N x 2N inhomogeneous system yields the desired answer. The 

range of validity of this solution is determined by the conditions that u0 ,1 < E < u_1,17 so 

that the spring at i = 0 is the last unbroken spring. 

Doing this, we find that the possible ~'s span a range, ~A < ~ < ~1 that encompasses 

the Griffith's value ~G· Above ~1 the crack has to run, for it has no other alternative. 

Below ~A:, any initial crack would head itself. 

- -,k=0.2 

1.8 - +,k=0.2 
---- -, k.=2 
--- +, k.=2 

1.6 
/--------------------------

I 
\.:> 1.4 I 

~ 
I 
+ 1.2 
<1-.: 

lr 
1.0 1'-

----------------------------~ 
0.8 

\ 

' ----------------------------------------
N 

FIG. 1. t::..1/ b..G vs. N for the case k = 2, 0.2 

In Fig. 1, we look at ~1/ ~G as a function of width for the natural case, k = 2, and 

the case k = .2, where the material has been weakened along the incipient crack surface. 

As can be seen, the effect of the width, N, is to widen the window, but the effect is quite 

small, once things are normalized to ~G· The convergence is numerically consistent with a 

0(1/N) behavior. We see that k, on the other hand, has a dramatic effect, closing the size 

of the allowed window significantly. 

III. MOVING CRACKS, N = 1 

We now look at moving cracks, starting for simplicity with the case N = 1. The key is 

the Slepyan traveling wave ansatz 

ui(t) = u(t- xfv) (13) 
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We thus only need to find the function of one variable u(t). Plugging this ansatz into the 

equation of motion, we get a differential-difference equation which is non-local in time: 

u(t) = (1 + 'fJ ~)[u(t + 1/v)- 3u(t) + u(t- 1/v)]- kO(€- u(t))(1 + ~)u(t) + ~ (14) 

We choose t = 0 to be the moment at which u exceeds f, so we can replace the step function 

above by 0( -t). As in the static case, we solve the equation separately in the cracked (t > 0) 

and uncracked (t < 0) regions. It is convenient to discretize time with a small time-step dt, 

so that ti = i dt. Then the solution for the uncracked side is 

u(ti) = uu + L Al(rl)i 
l 

where now the rare given by those roots of 

(15) 

(16) 

which lie outside the unit circle. The number nb = 1/( vdt) is constrained to be an integer, 

which implies that our resolution in v is limited by our resolution in dt. There are 2nb + 1 

roots of this polynomial, (for 'fJ # 0), some number, nu, of which lie outside the unit circle 

and thus give rise to au which converges as t-+ -oo. Thus, the solution for negative t is 

parameterized by nu coefficients At, l = {1, 2, ... , nu}· Similarly, we solve in the cracked 

region, and the solution is now parameterized by nc coefficients a1 corresponding to the roots 

of Eq. (16) (with k set to zero) which lie inside the unit circle. It can also be shown that 

for sufficiently small dt, nu + nc = 2nb + 1. Thus the entire solution is parameterized by 

2nb + 1 parameters. As in the static case, the two solutions overlap, this time for 2nb values 

of ti, i = -nb, -nb + 1, ... , nb - 1, so the last uncracked equation at i = -1 fixes u out to 

i = nb - 1 and the last cracked equation at i = 1 likewise fixes u down to i = -nb. The 

identity of the two expressions for u in the overlap region give us 2nb equations. The last 

equation we need comes from the equation of motion at the crack point i = 0. Solving this 

inhomogeneous system gives us our desired solution. Reading off u1(0) = f gives•us the 

relation between v and ~/ f we need. 
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Again, as in the static problem, there is a consistency constraint on the solution, namely 

_that u1 (t) not reach E before t = 0. In the TJ = 0 problem studied by Marder, this happens 

for too small v. This holds true, as we shall see, for TJ < 1. 

---- tt=0.2 
4 ----- T)=2.0 

3 

2 

1.2 1.4 1.6 1.8 
A/AG 

FIG. 2. v versus !::J.f l::J.a for TJ = 0.2, 2 for N = 1, k = 2. The calculation was done with 

dt = .05. The solid lines are the naive continuum results for the same parameters. 

In Fig. 2, we present data on v versus b./ b..a for a two values of TJ = 0.2, 2 with k = 2. 

Two striking features present themselves. First is the divergence of the velocity, which occurs 

for both values of TJ at flu which we calculated in Sec. 2 as the displacement for which the 

entire system wants to break apart. Note that in this model, there is nothing wrong with 

v > 1, the wave speed in our units. The second important feature of these curves is the 

different behaviors exhibited at the left edge of the graph. The low TJ graph exhibits the 

typical behavior of a subcritical bifurcation which ends at a square-root type cusp. The 

continuation past the cusp to even lower velocities is a numerical artifact of finite dt and 

vanishes in the dt -+ 0 limit. This feature persists in the TJ = 0, and for smaller velocities the 

solutions are inconsistent with the condition mentioned above that u( i) < E for t < 0 and 

so are unphysical. For larger TJ, where the system is sufficiently overdamped, the solutions 

persist to zero velocity. However, the dependence on b./ b..a is very singular, and the graph 

approaches zero velocity at D..1 exponentially in 1/v. Before proceeding to a full survey of 
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parameter space, it is useful to develop a naive continuum limit for our system, which is 

analytically more tractable and serves as a useful benchmark for our discussions. We do this 

in the next section. 

IV. NAIVE CONTINUUM LIMIT 

We now develop the naive continuum limit of the equation of motion for N = 1 steady

state moving cracks. We obtain this limit by simply replacing the finite difference by a 

derivative, yielding: 

(17) 

The solution for t < 0 is 

(18) 

where Q1 is the unique root with positive real part of the polynomial P( -(1 + k); Q1 ) where 

in general P(A; Q) is defined by 

(19) 

In general, for A < 0, P has one positive root, with the other roots having negative real 

parts. Similarly, the solution for t > 0 is 

(20) 

where -q2, -q3 are the two roots with negative real part of P( -1; q) One can solve for At, 

a 2 , and a3 by using the continuity of u and its first two derivatives at t = 0. 

One can learn a few things from these equations. As pointed out by Langer in his study 

of a related model [11], vanishing 'TJ in the continuum is a singular limit, since it controls 

the highest derivative. Secondly, the special role of the wave speed v = 1 is clear. Most 

interesting, however, is the question of when we expect this continuum limit to be valid. 

The condition is that at least some of the exponential decay rates are small, such that the 
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solution will look smooth on the lattice scale. For small v, Q1 "' v'k+T, q2 "' 1, and 

q3 "' 1/(TJv), so none of the q's are small and the 'continuum limit is not reliable. For large 

v, things are different. Here, Q1 rv vfTJ, Q2,3 rv (TJ ± JTJ2 - 4)/(2v). The large value of 

Q1 corresponds to the existence of a boundary layer which allows fbr the matching of the 

highest derivative term. If this boundary layer does not affect the lower order matches (as 

is fairly typical), then we would expect that the continuum result will agree with the lattice 

answer. 

It is straightforward to work out the small velocity limit of the continuum theory. 

Using the limiting values of the q's above, and solving the linear system, one gets that 

c "' 1:!:./ y'k+T + 0( v ), so that 1:!:. "' l:la + 0( v ). Thus, the continuum solution starts at 

the Griffith's point !la with zero velocity and the velocity grows linearly as 1:!:. is increased. 

Continuing the calculation to first order in v, we find v = (!:!:./ l:la - 1)/[( v'k+T- 1)TJ]. 

Thus, the velocity is inversely proportional to TJ· This is as expected, since for v ~ 1, the 

velocity only enters in the combination TJV. 

The large velocity limit is also analyzable. Again using the q's found above, we obtain to 

leading order that v = [(1- l:lu)/(kTJ2)r114 so that v diverges at l:lu. Note also that in this 

regime v scales as vfii, so that as viscosity increases so does the velocity. This is because the 

only reason that propagation at v > 1 is possible is because of the viscosity, so the larger 

the viscosity the more efficient the propagation. 

As TJ goes to zero, the continuum limit must break down. The velocity increases very 

rapidly (at a rate proportional to 1/ TJ) to near 1, and stays there till 1:!:. is near l:lu, whence 

it rapidly diverges. The velocity crosses unity at 1:!:. = (1 + k)213 with slope of order TJ 213 • 

Thus, with vanishingly small TJ, steady-state propagation is only possible at the wave speed 

v = 1. 

We are now in a position to compare our iattice calculation to the continuum results. 

For example, Fig. 2 above also displays the continuum curves. We see that in general 

the continuum calculation is very good only at the largest velocities. The agreement gets 
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progressively worse for smaller velocities and breaks down completely for ~ less than the 

arrest value ~&. This must be since the continuum calculation has the velocity going 

smoothly to zero at ~G, which it never does due to the existence of arrested solutions. 

Also, the agreement is better at larger q; above some critical q, (about eta ~ 0.5 for 

k = 2), the continuum curve serves as an upper bound on the lattice curve and thus is a fair 

approximation until we start getting close to the arrest value. All of this is to be contrasted 

to what would have been obtained had we set 'fJ = 0 and introduced instead a Stokes velocity 

term proportional to it. Then, the continuum theory has a limiting velocity of v = 1 and 

since this feature is not shared by the lattice dynamics, the continuum approximation would 

be nowhere accurate. 
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FIG. 3. qv versus b./ b..a for 'TJ = 1, 1.5, 2, 4, 8 for N = 1, k = 2. The calculation was done 

with dt = .05. 

We saw from the continuum calculation that for velocities v ~ 1, the relevant parameter 

for the continuum calculation is qv. We can test this for the lattice model by plotting qv 

versus ~. This is presented in Fig. 3. We see that asymptotically for large 'fJ this scaling 

sets in, but for finite q, the existence of the lattice length scale ruins the simple scaling. 

It is interesting to see what happens for smaller k. We saw that the window of arrested 

soluti<:ms is significantly smaller for smaller k. In Fig. 4, we present the analog of Fig. 2, 
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but this time with k = 0.2. We see that the results are as far from the continuum limit as 

they were with the larger k. While the window of arrested solutions is smaller, so is the 

value of /:::,.u /!::,.a, so the entire picture is just shrunk to a smaller range of !:::,., 

A. Wiener-Hopf Solution 

Before we turn to general N, we will present the equivalent Wiener-Hop£ solution of the 

N = 1 problem. This method is more involved for the case N = 1, but it is a model for the 

Wiener-Hop£ solution we will present for general N, which we allow us to draw analytical 

conclusions in the large N limit. The basic method follows that of Marder and Gross [6], 

but the presence of viscosity adds some new twists which are worthy of comment. 

5 

---- 11=0.2 I 
4 ----- 11=2.0 I 

I 
3 

;::. 

2 

1.12 
!l/AG 

FIG. 4. v versus ~/ ~G for 1] = 0.2, 2 for N = 1, k = 0.2. The calculation was done with 

dt = .05. The solid lines are the naive continuum results for the same parameters. 

To begin, we define the Fourier-transform u± of the right- and left-hand pieces of the u 

field as follows: 

u± = 1: vdt O(±t)eiKvtu(t) (21) 

It should be noted that u± are analytic in the upper and lower half-planes respectively. The 

Fourier transform of the u field, u is just the sum of the two parts: u(K) = u+ + -u-. In 

terms of these fields, the equation of motion reads 
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The last term is noteworthy, and arises because the time derivative does not act on the 

0-function in the last term in Eq. 17. Expressing u in terms of its component pieces, we rec

ognize that the coefficients of u± are nothing put P( -1; -iK), P( -k -1, -iK) respectively, 

that we encountered in our solution above, so that the the equation of motion reads 

0 = P( -(1 + k); -iK)u- + P( -1; -iK)u+ + b:..8(K)- k17vu(O) 

Next, we factor the P's in terms of their roots 

P( -(1 + k); -iK) = i17v(K- iQ1)(K + iQ2)(K + iQ3) 

P( -1; -iK) = i17v(K- iq1)(K + iq2)(K + iq3) 

Dividing through by i17v(K- iq1)(K + iQ2)(K + iQ3) we obtain 

(23) 

(24) 

0 = K- iQ1 __ (K + iq2)(K + iq3 ) -+ _ b:.. b(K) ik (O) 
K- iq1 u + (K + iQ2)(K + iQ3) u 17vq1Q2Q3 + (K- iq1)(K + iQ2)(K + iQ3) u 

(25) 

where we have used the 8(K) to simplify its prefactor. We use the fact that q1q2q3 = 

-P(-1;0)/("lv) = 1/"lv to rewrite our equation as 

O = K- iQ1 -u- + (K + iq2)(I< + iq3) -+ _ b:..q2q3 b(K) + ik (O) 
K- iq1 (K + iQ2)(K + iQ3) u Q2Q3 (K- iq1)(K + iQ2)(K + iQ3) u 

(26) 

To proceed, we have to decompose the two inhomogeneous terms into pieces analytic in 

either the upper- or lower- half-planes. The result is 

(27) 

The key to the Wiener-Hop£ method is the realization that the sum of the terms analytic in 

either half-plane have to vanish, allowing us to solve for u±. We find 
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Notice that the poles in u± give rise to exactly the same exponential terms in u that we found 

previously. It can be explicitly verified that the two f<mns of the solution are equivalent. 

For our purposes, it is sufficient to examine what happ~ns in the small v limit. Then, as we 

have already noted q3 , Q3 ~ 1/('Tlv). The first,~' term on the right-hand sides approaches 

a finite limit, with 0( v2 ) corrections, whereas the second u(O) term vanishes linearly in 'f/V. 

More explicitly, we find 

-+ i~qzq3(K + iQz) 
u ~ QzQ3(K + iO+)(K + iqz) 

(29) 

Using q1 = qz = 1, Q1 = Qz = .Jf+k, and q3 = Q3 = 1/'f/v, and using the inverse Fourier 

transform to evaluate this in the limit X-+ o+, we obtain 

~ 
u(O) =VITI 1f-

' 

Recognizing u(O) = c and .Jf+k = ~a/c, after reorganizing we obtain 

'f/V = ( ~ - 1) 1 + .Jf+k 
~G k 

(30) 

(31) 

which is easily seen to be equivalent to what we obtained from the direct method. As can 

be appreciated, the Wiener-Hop£ method is much more involved than the direct method. 

Nevertheless, it will be the essential tool for analyzing the Iarge-N limit. 

V. GENERAL N 

It is straightforward to extend the lattice calculations to arbitrary N. The basic method 

is the same: we solve the problem on the two sides of the crack tip position and patch the 

two solutions together. The solution on either side is again a sum over modes, which are a 

direct product of modes in the vertical direction, given by the eigenmodes of MN(m = 0, k), 
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with the modes in the horizontal direction. Thus there are a total of Nnu and Nne modes on 

the uncracked and cracked sides, respectively. The solutions on either side have to overlap 

for each value of the vertical component j, so there are an appropriate number of equations 

for the unknown coefficients of each mode. As for N = 1, the condition u(O, 1) = e: is used 

to determine the driving~ corresponding to a given velocity. 

1.5 

;::.. 1.0 

----- N=2 
--- N=5 

0.5 ---- N=IO 
-- N=l5 

1.5 2.0 2.5 3.0 3.5 4.0 
/::J f1G 

FIG. 5. v versus b../ !:!..a for 'TJ = 2 for N = 1, 2, 5, 10, 15; k = 2. The calculation was done 

with dt = .1. The solid lines are the naive continuum results for the same parameters. 

We can also generalize our continuum calculation to finite N. As in theN= 1 case, we 

replace finite differences in t with derivatives, giving us N coupled third-order differential 

equations. Again, we can solve these exactly on either side of the crack tip t = 0, and 

match the functions and their first and second derivatives at this point. The functions are 

characterized by N modes on the uncracked side, with decay rates Q1 ,n, and 2N modes 

on the cracked side, with decay rates q2,n, q3,n· For each n, Q1,n is the positive root of of 

the polynomial P(An) defined in Eq. (19) above. Let us denote the other roots of this 

polynomial, which we will need later, by -Q2,n, -Q3,n· Similarly, -q2,n, -q3,n are the 

two negative (real part) roots of P(> .. n)· with the third, positive, root being labeled by 

q1 ,n· Implementing these procedures, we again calculate the crack velocity as a function of 

~/ ~G- Again, we compare this data to that of our naive continuum (in x) calculation for 

the same value of N. We present in Fig. 5 the results for our overdamped case ~ = 2, for 
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N = 1, 2, 5, 10. Qualitatively, not much changes with N. The most important feature in 

that the middle section of the curves get progressively flatter as N increases. This must be 

the case, since the point of divergence, /::).u, measured in terms of /::).G, increases as N 112• We 

also note that the data for low velocities seems to converge fairly rapidly as N increases, and 

the rate of convergence slows as v increases. Again, as in the N = 1 case, the continuum 

results accurately reproduce the lattice calculations for large v and are completely wrong 

for small v, missing the lattice-induced arrest phenomenon. 

VI. LARGEN 

The physical problem of cracking a macroscopic object corresponds to the limit of large, 

but finite, N. The lattice calculations are prohibitively expensive for too large N. However, 

our naive continuum calculations can be carried out for fairly large N's. Using the fact that 

for small v, the convergence inN is rapid, and for larger v, the naive continuum results are 

reliable, we can piece together a fairly complete picture of what we expect in the macroscopic 

limit. In particular, it is interesting to compare this with the standard continuum theory in. 

order to understand the limitations and successes of that theory. 

2.0 .-----.----.-.------..-----,-1 ~---, 
I 

1.5 

;::. 1.0 

0.5 

I 
I 

I 
·I 
I I ,,,' //// 

.1 ,"' ...... // 
/ - -

/;:~.::.-::::..~:-:.-:.~------

-N=!O 
-N=50 
---- N=200 
--- N=400 

8 16 24 
MAG 

FIG. 6. v versus b./ b..a in the continuum approximation for for N = 10, 50, 200,· 400, with 

7] = 2, k = 2. 
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To begin, we present in Fig. 6 the results of our naive continuum theory, extended to 

larger values of N. The most striking feature of this graph is the slow convergence that sets 

in near v = 1. Exploring numerically, we find that for fixed v < 1, the data converges with 

large N as N-112 • However, the coefficient of this N-1/
2 correction becomes ever larger as 

v approaches unity. Looking at the value of 1::1/ !:1a where v = 1, it appears to be.diverging 

as N 116 as N -t oo. Thus, in the macroscopic limit, the crack speed is effectively bounded 

by the wave speed. 

To proceed further in studying our naive continuum theory at large N, it is useful to 

derive the Weiner-Hop£ solution. To do this, we first Fourier transform the fields, writing 

(32) 

The equations for all j =/= 1 are translationally invariant in t, and become algebraic. The 

structure of these equations is 

(33) 

Defining f(K) = (i"lvK3
- (1- v2)K2)/(1- i"lvK) and denoting then x n identity matrix 

as In, we can using Cramer's rule explicitly solve for u2 in terms of u1 as follows 

u
2 

= _ detN-2 (f(K)I + M(1)) u
1 

_ ( -1)N 1::1 b(K) . 
detN-1 (f(K)I + M(1)) detN-1M(1) 

(34) 

where in the last term we have used the 8(K) to simplify the determinant. To treat the 

j = 1 with its step functions we define 

(35) 

so that u1 = u+ + -u-. The j = 1 equation now reads 

. [ _ detN-2 (f(K)I + M(1)) _ --] 
0 = (1- 'l'f/vK) (f(K)- 1)u1 - detN-l (f(K)I + M(1)) Ut- ku (36) 

( -1)N /:1 
-k'f/VU1(0)- d M( ) 8(K) 

etN-1 1 
(37) 
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Multiplying through by detN_1 (f(I<)I + M(1)) /(1- iTJvi<), we get 

0 = detN(f(I<)I + M(O))u- + detN(f(I<)I + M(k))u+ 

_ k'fJvu1(0)detN-1~J(I<)I + M(1)) _ ( _ 1)N tl.S(I<) 
1- 't'fJVJ{ (38) 

The determinants are easy to calculate in the diagonal bases of the M's, and have zeros 

at I<'s corresponding precisely to i times the roots of the polynomials P(An), P(>..n) we 

encountered in our original real-space calculation. We can thus write 

N 

detN(f(I<)I + M(k)) = (1- iTJvi<)fN II P(An; -ii<) 
n=1 

( 
· )N N 

= 
1 
_:~;vi< Q (I<- iQ1,n)(I< + iQz,n)(I< + iQ3,N) (39) 

and similarly 

N 

detN(f(I<)I + M(O)) = (1- iTJvi<)-N II P(>..n; -ii<) 
n=1 

(40) 

Similarly, if we denote the eigenvalues of MN_1(1) by Rm, m = 1, ... , N-' 1, we can express 

detN_1(J(I<)I +M(1)) in terms of the roots X1,m, -xz,m, and -X3,m of P(Rm) 

N-1 

detN-1(f(I<)I+ M(1)) = (1- iTJvi<)-N-1 II P(Rm; -ii<) 
m=l 

We can then re-express Eq. 38 as 

19 



where in the last step, we applied the identity 

IT q1,nq2,nq3,n = ( -qv)-N detMN(O) = (qvtN . (45) 
n 

and where we have used the easily verified fact that detM N( m) = ( -1 )N ( mN + 1). Note 

that this product result nicely reduces to the result we previously obtained for N = 1. 

Again, as in the N = 1 case, to proceed with the Wiener-Hop£ method, we need to break 

up the last two terms into pieces analytic in the upper and lower half-planes. The u1 (0) 

piece does not appear to have a simple breakup. However, for large N, the effect of this 

term becomes irrelevant, since u1(0) is a factor N 112 smaller than~- The last term is easily 

broken up as we did in the N = 1 case. We find that to leading order 

(46) 

In the large N limit, we can use this to evaluate u explicitly. (We need not concern 

ourselves with v.-, since for t < 0, u1 (t) is always smaller that u 1 (0), and so does not 

contribute to leading order.) To proceed, we need the explicit form of the q, Q's to leading 

order. As we shall see, the behavior is controlled by modes where n << N. For these 

modes, we may approximate the eigenvalues of MN(k) by A1,n = A2;n = -n21r 2 jN2
, so that 

Ql,n = Q2,n = N~' Q3,n = (1- v2 )j(qv). (Here we have assumed that vis less than 

and not too close to 1.) Similarly, for MN(O), we find .A1,n = .A2,n = -(n- ~) 2 1r 2jN2 , so 

that ql,n = q2,n = ~~' q3,n = {1- v2 )j(qv). Notice that since Q3,n ~ q3,n, the factors 

involving these quantities cancel. This has the immediate consequence that the viscosity 'TJ 

has completely dropped out of the problem in this limit. 

The remaining expression has poles at -io+ and at -iq2 ,n· We can evaluate the residue 

of each of these poles explicitly. The residue at -io+ is immediately seen to We find 

(47) 

Evaluating the residues at the other poles is more complicated. To proceed, let us cut-off 

the product at some large n - Nc << N. Then, our approximate expressions for the q's 

and Q's are valid. This leads to 
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<n-i>,..vt f(Nc + l)f(n - l)f(Nc + !! - n) 
Res(e-iKvtu+)l · =-iN e N•./1-v2 2 2 2 

-tq
2

,n c (n- ~)f(Nc + l)f2(~)f(n)f(Nc + 1- n) 
- (n~!)1rvt r( 1) 1 

"'-ie NJ1-v2 n- 2 + 0(-) (48) 
(n- ~)1r~f(n) Nc 

We then take the limit of Nc ---+ oo to find the final answer for the macroscopic displacement 

field 

(49) 

1.0 

0.8 

0.6 
~ -;::-

-- N=25 
---- N= ro 

'-
:::!-

0.4 

0.2 

0.0 
0 2 3 

vt/N 

FIG. 7. u1 (t)/!:l. versus vt/N in the continuum approximation fork = 2, 1] = 2, N 25, 

compared with the large-N analytic result, Eq. (49). 

This final answer exhibits the well-known square root br;tnch cut at the crack tip location, 

t = 0. It is worth noting that this behavior of the displacement gives rise to a macroscopic 

stress filed which actually diverges as x}12 (recall the extra derivative due to the Kelvin 

viscosity) near the crack tip. This surprising finding renders invalid the 2-d continuum 

calculation of Langer [11) who studied this problem with the additional complication of 

a finite length cohesive zone. A correct continuum formulation which does reproduce the 

essential formula Eq. 46 is presented in the Appendix. 
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---· N=2 

2.0 ----- N=5 
-- N=lO 
-- N=25 

1 0 - ---~ ------------= . ~;:.-:::.- ----

0.5 L-~--'-~--'--~---'--~--''--~__J 
0 2 4 6 8 10 

vt 

FIG. 8. Ut(t)/uAsympt(t) versus vt in the continuum approximation where UAsympt IS the 

large-N analytic result, Eq. ( 49), for N = 1, 2, 5, 10, 25. Again, k = 2, 'T} = 2. 

A comparison of the above prediction with the numerically computed' displacement is 

shown in Fig. (7) f?r the case N = 25, plotted as a function of the macroscopic scale vtjN. 

We see that our large N analytic result correctly reproduces the large-scale structure of 

the crack displacement. It does worse, though still quite accurate, close in to the crack 

tip. To demonstrate this more quantitatively, we present in Fig. (8) the ratio of the crack 

displacement u1(t) to the large-N analytic result, for various N. Now the data is plotted as 

a function of the microscopic scale vt. We see that curves are all quite similar. They have 

a square-root divergence at the origin, since the analytic prediction is that u(t) vanishes 

at t = 0, whereas the true answer is finite. By N = 25, they have converged to a limiting 

curve. This means that the finite-N theory possesses a well-defined microscopic structure, in 

addition to the universal macroscopic structure defined by the standard continuum theory. 

This microscopic structure is on the scale of the lattice constant (in the y-direction) and is 

of course invisible to the standard continuum theory. 

This observation implies that the entire issue of velocity selection via the condition that 

u(x = 0, y = 1) be fixed to equal the breaking displacement is out of reach of the leading 

order macroscopic limit. Thus, as an example, the velocity depends explicitly on 7J (as 

opposed to the macroscopic displacement which explicitly does not) even for arbitrarily 
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large N. Conversely, calculating the macroscopic field in the continuum limit does not 

suffice for determining the crack speed which is always fixed at the lattice scale. Situations 

with equivalent macroscopic fields can have arbitrarily different crack velocities. 

VIL SUMMARY 

In this paper, we have studied in some detail the steady-state motion of mode III vis-

coelastic cracks in a lattice model of the microscopic dynamics. The most important finding 

are 

1. The existence of a minimum velocity for crack propagation is dependent on the vis-

cosity. At low 'fJ (and indeed in the lattice models without dissipation that have been 

studied to date), the steady-state branch starts at finite v. For highly damped systems, 

on the other hand, the branch extends all the way to v = 0 at the upper end of the 

allowed range of .6. for arrested cracks. 

2. For finite N, a continuum approach (in x) for the crack does accurately predict the 

lattice results for values of the driving away from the lattice trapping (low or zero 

velocity) regime. 

3. Taking the macroscopic limit (N-+ oo) allows us to recover the expected macroscopic 

behavior that the displacement grows as Jx - Xtip once we leave an inner core region 

of the lattice scale. The coefficient of this term can be calculated by using a continuum 

theory with the proper boundary conditions. A key feature of this macroscopic theory 

is that the viscosity becomes irrelevant. 

4. However, the velocity selection as a function of the imposed displacement is wholly 

controlled by the core and cannot be accurately arrived at by any theory which does 

not explicitly consider the lattice scale. In particular, viscosity plays a crucial role in 

this feature of the physics. 
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As mentioned in the introduction, the next step in our research program will be to 
\. 

consider the modifications introduced into the aforementioned results by having a continuous 

but nonlinear force law. In particular, having a ~orce which immediately drops to zero means 

that there is no way that the system could dynamically decide to create a "cohesive" zone 

of mesoscopic (i.e., scaling as a positive power of N) proportions. In such a zone the 

displacement would be such that the force law would be beyond the linear spring regime but 

not so large that the force would be effectively zero). If it were of large size, it would lead to a 

more complex continuum theory along the lines suggested by Langer and co-workers [11',12]; 

if it were purely on the lattice scale, it would change nothing. Our initial evidence suggests 

the latter, and we hope to report on this in the near future. 

As far as the physics of fracture is concerned, we must address several issues that go well 

beyond the studies in this paper. Since most of the experiments concern mode I cracks, we 

need to extend our results to that situation; this is technically challenging but should not 

lead to any significant surprises. Next, we must explicitly investigate the stability of our 

steady-state equations. Finally, all lattice models leave out the possibility of ductile behavior 

involving the emission of dislocations from the crack tip; comparison to experiment and to 

molecular dynamics simulations will enable us to learn when these additional phenomena 

are crucial or alternatively when one can get by with a purely "brittle" model. 
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APPENDIX: THE DIRECT CONTINUUM CALCULATION 

In this appendix, we present a direct continuum (in x and y) calculation of the steady

state crack. We will see that it recovers directly the leading-order results of the Iarge-N 

limit calculation presented in section VI above. 

To begin, we write the displacement field u(x, y, t) = u(t- xjv, y) in Fourier space: 

( ) 
A Y 100 dK -(K) -iKvtsinh(ky(W- y) u t, y = L,l.- + -u e 

W -oo 27r sinh( ky W) 
(A1) 

where ky satisfies the dispersion relation 

(A2) 

The crack is chosen to begin at x = 0 ·so u(x < 0, 0) = 0. On the crack surface y = 0, 

x > 0, we must set dujdy = 0. Note that this condition implies that the normal stress on 

the free surface, (1 + 7JV d:) ~~ vanishes. However, it is incorrect to assume, as Langer [11] 

did in a parallel calculation, that the vanishing of the normal stress is a sufficient condition, 

as this allows for (unphysical) displacement fields that do not have dujdy = 0. As we have 

seen, the macroscopic field possesses a square-root singularity at the origin, while Langer's 

condition eventually results in a much weaker x312 singularity (in the absence of Barenblatt 

type surface stresses). Our condition implies 

j oo dK _ .6. 
-u(K)(-ky)coth(kyW) = -W +0(-t)G(t) 

-oo 2?r 
(A3) 

or, Fourier-transforming this equation: 

(A4) 

where{;- is the transform of 0( -t)G and has no zeros or roots in the lower-half-plane. To 

proceed, we use the identity · 

00 1 + c::~1r r 
kyW coth(kyW) = IJ 2 

n=l 1 + c~~) 
(A5) 
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Now, we can use the dispersion relation to eliminate ky in favor of K. If we define An _ 

-[(n- !)·n-jW]2 and An= -(mr/W)2
, then we find that 

) II
oo AnP(An; -iK) 

kyW coth(kyW = n=l AnP(An;iK) (A6) 

Notice that An, An are precisely the same as those in the finite-N calculation for n ~ N, if 

we identify W = N. Expressing the P's in terms of their roots, we get 

Plugging this into Eq. (A4), and reorganizing, we obtain 

u+ II Q2,nQ3,n(K ~ iq2,n)(K +_iq3,n) + -u- II ql,n(K- i~l,n) = D.8(K)- we- II ql,n(K- i~l,n) 
n q2,nq3,n(K + zQ2,n)(K + zQ3,n) n QI,n(K- zqt,n) n Qt,n(K- zqt,n) 

(A8) 

Decomposing the 8-function as in the finite-N case, and separating out the pieces analytic 

in the upper-half plane, we get 

so that 

-+ _ ifl II q2,nq3,n(K + iQ2,n)(K + iQ3,n) 
U - K + iO+ n Q2,nQ3,n(K + iq2,n)(K + iq3,n) 

(A9) 

(AlO) 

That this result is the direct equivalent of our leading-order finite-N result, Eq. (46) is clear. 

One word of interpretation is called for, however. To achieve the macroscopic limit of our 

· finite-N result, we needed to take the width N large. This in turn implied that viscosity 

was irrelevant in the macroscopic limit (unless we scaled it by a power of N with no obvious 

physics justification). If we work directly in the continuum, however, we obtain the same 

final result without having to take W large. Thus, the ratio of the viscous length scale to 

W is arbitrary in this continuum calculation. Nevertheless, if we examine the large-W limit 

of our continuum calculation, we again will find that viscosity becomes irrelevant. It is also 

worth reiterating that this continuum calculation has no sign of the subdominant pieces 

which control velocity selection. 
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