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The resilience to averaging over an initial energy distribu
tion of reducibility and thermal scaling observed in nuclear 
multifragmentation is studied. Poissonian reducibility and 
the associated thermal scaling of the mean are shown to be 
robust. Binomial reducibility and thermal scaling of the ele
mentary probability are robust under a broad range of condi
tions. The experimental data do not show any indication of 
deviation due to averaging. 
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The complexity of nuclear multifragmentation under
went a remarkable simplification when it was empirically 
observed that many aspects of this process were: a) "re
ducible"; and b) "thermally scalable" [1-6]. 

"Reducibility" means that a given many-fragment 
probability can be expressed in terms ofa corresponding 
one-fragment probability, i.e., the fragments are emitted 
essentially independent of one another. , 

"Thermal scaling" means that the one-fragment prob
ability so extracted has a thermal-like dependence, i.e., 
it is essentially a Boltzmann factor. 

Both "reducibility" and "thermal scaling" were ob
served in terms of a global variable, the transverse en
ergy Et (defined as Et = I:i Ei sin2 0;, i.e. the sum of 
the kinetic energies E of all charged particles in an event 
weighted by the sine squared of their polar angles 0), 
which was assumed (see below) to be proportional to the 
excitation energy of the decaying source(s) [1-3]. 

In particular, it was found that the Z-integrated mul
tiplicity distributions P( n) were binomially distributed, 
and thus "reducible" to a one-fragment probability p. 
With higher resolution, it was noticed that for each in
dividual fragment species of a given Z, the nz-fragment 
multiplicities P(nz) obeyed a nearly Poisson distribu
tion and were thus "reducible" to a single-fragment 
probability proportional to the mean value (nz} for each 
z [4]. 

The one-fragment probabilities p showed "thermal 
scaling" by giving linear Arrhenius plots of ln p vs 1/ .JE; 
where it is assumed that .[E; exT. Similarly n-fragment 
charge distributions Pn(Z) were shown to be both "re
ducible" to a one-fragment Z distribution as well as 
"thermally scalable" [5]. Even the two-fragment angu
lar correlations P1 ,2 ( 11¢) were shown to be expressible 
in terms of a one-body angular distribution with ampli
tudes that are "thermally scalable" [6]. Table I gives a 
summary of the "reducible" and "thermal scaling" ob
servables. 

1 

reducibility hermal scaling eferencel 
P(n)--> p lnp oc 1(/Et (1] 
P(nz)--> (nz) ln (nz) oc 1/ .J"lh (4] 
Pn(Z) --> P1(Z) oc e-az a oc 1/.J"Jh (5) 
P1,2(llcf>}--> J Pl(cf>)P2(cf>+llcf>) amplitudeoc 1/Et (6] 

TABLE I. Summary of reducible and thermal scaling ob
servables in nuclear multifragmentation. 

Empirically, "reducibility" and "thermal scaling" are 
pervasive features of nuclear multifragmentation. "Re
ducibility" proves nearly stochastic emission. "Thermal 
scaling" gives an indication of thermalization. 

Recently, there have been some questions on the signifi
cance (not the factuality) of "reducibility" and "thermal 
scaling" in the binomial decomposition of Z-integrated 
multiplicities [7]. For instance, had the original distribu
tion in the true excitation-energy variable been binomi
ally distributed and thermally scalable, wouldn't the pro
cess of transforming from excitation energy E to trans
verse energy Et through an ( assumedly) broad transfor
mation function P(E, Et) destroy both features? 

Spe~ifically, under a special choice of averaging func
tion (Gaussian), for a special choice of parameters (vari
ance f~om GEMINI [8]), and for special input p (the ex
citation energy dependent one-fragment emission proba
bility) and m (the number of "throws" or attempts) to 
the binomial function, the binomial parameters extracted 
from the averaged binomial distribution are catastroph
ically altered, and the initial thermal scaling is spoiled 
[7]. . . 

It should be pointed out that, while the decompos1t10n 
of the many-fragment emission probabilities P(n) into p 
and m may be sensitive to the averaging process, the 
quantity (mp} is not [7]. However, both p and (mp} are 
known to give linear Arrhenius plots with essentially the 
same slope (see below). This by itself demonstrates that 
no damaging average is occurring. 

Furthermore, we have observed that by restricting 
the definition of "fragment", to a single Z, the multi
plicity distributions become nearly Poissonian and thus 
are characterized by the average multiplicity (mp} which 
gives well behaved Arrhenius plots [4]. Thus, the linearity 
of the Arrhenius plots of both p and (mp} extracted from 
all fragments, and the linearity of the Arrhenius plots 
of (mp} for each individual Z value eliminate observa
tionally the criticisms described above. In fact, it follows 
that no visible damage is inflicted by the true physical 
transformation from E to Et. Therefore, the experimen-
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FIG. 1. Upper left panel: the distorted Arrhenius plot 
for a value of B=40MeV1

/
2

, m=12, and a fixed ratio of 
r E, I Et=0.3. The open circles represent the apparent sin
gle fragment elnission probabilities extracted after a folding 
of the "thermal" binolnial elnission probabilities with a Gaus
sian distribution (see Eqs. (5)-(8)). The solid circles and open 
diamonds show the effect of truncating the Gaussian tails at 
2u and lu, respectively. The star symbols demonstrate results 
from folding with a square distribution of the same full width 
at half maximum as the Gaussian. The solid line,represents · 
the undistorted Arrhenius plot. The dashed line, represents 
an.experimental "soft" lilnit beyond which the transverse en
ergy may be unreliable as a measure of impact parameter [9) 
or deposited energy. Lower left panel: same as upper left but 
for rE, I Et=0.2. Upper right panel: the distorted values of 
the number of throws mapp as a function of Et for a value of 
B=40Me V 1

/
2 and a fixed ratio of r E, I Et=0.3. The solid line 

represents the undistorted value of m=12. Lower right panel: 
same as upper right but for rE./Et=0.2. 

tal Poisson "reducibility" of multiplicity distributions for 
each individual Z and the associated "thermal scaling" of 
the means eliminates observationally these criticisms. 

We proceed now to show in detail that: 1) binomial 
reducibility and thermal scaling are also quite robust un
der reasonable averaging conditions; 2) the data do not 
show any indication of pathological behavior. 

We first discuss the possible origin and widths of the 
averaging distribution. 

It is not apparent why the variance of P(E, Et) calcu
lated from GEMINI [8] should be relevant. GEMINI is a 
low energy statistical code and is singularly unable to re
produce intermediate mass fragment (IMF:3:::; Z :::;.20) 
multiplicities, the magnitudes of Et, and other multifrag
mentation features. There is no reason to expect that the 
variance in question is realistic. 

Apparently, Et does not originate in the late ·thermal 
phase of the reaction. Rather, it seems to be dominated 
by the initial stages of the collision. Consequently its 
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magnitude may reflect the geometry of the reaction and 
the consequent energy deposition in terms of the number 
of primary nucleon-nucleon collisions. This is attested to 
by the magnitude of Et which is several times larger than 
predicted by any thermal model. Thus, the worrisome 
"thermal widths" are presumably irrelevant. 

Since there is no reliable way to determine the actual 
resolution of the correlation between Et and E, exper
Imentally or via simulation calculations [7], instead of 
using large or small variances, we will show: 

a) which variables control the divergence assuming a 
Gaussian distribution, and in what range of values the 
averaging is "safe", i.e. it does not produce divergent be
havior; 

b) that the use of Gaussian tails is dangerous and im
proper unless one shows that the physics itself requires 
such tails. 

The input binomial distribution is characterized by m, 
the number of throws (assumed constant in the calcu
lations in [7]), and p which has a characteristic energy 
dependence of 

1 B 
log- ex--. 

p v'EJ. (1) 

We denote the one-to-one image of E in Et space with a 
prime symbol. 

The averaging in [7] is performed by integrating 
the product of an exponential folded with a Gaussian 
(Eq. (12) of [7]). 

, (p) ex I exp (- !!_ - (x- xo)2) dx. 
. v'x 20'2 

(2) 

If the slope of the exponential is large, there will be 1) a 
substantial shift E in the peak of the integrand, and 2) a 
great sensitivity to the tail of the Gaussian. 

The shifts E(p) and E(p2) can be approximately evalu
ated: 

0'2 B 
E(p2) = 2--:i/2. 

2x0 

(3) 

(4) 

This illustrates the divergence at small values of xo both 
'in the shift of the integrand in (p} and (p2 ) and the 

corresponding divergence in 0'; = (p2 ) - (p)2
• The scale 

of the divergence is set by the product 0'2 B. Thus one 
can force a catastrophic blowup by choosing a large value 
of 0'2 , of B, or of both. This is what has been shown to 
happen with large values of 0'2 and B. The counterpart 
to this is that there possibly exists a range of values for 
B and 0'2 which leads to a "safe" averaging process. 

In order to illustrate this, we have calculated the "ap
parent" values of the single fragment emission probabil
ity Papp for widths characterized by the ratio of the full 



width at half maximum r E, over Et. Specifically we have 
extracted Papp: 

u2 

Papp = 1- (;) 

(n) 
mapp = -

Papp 

by calculating the observed mean: 

(n) = J f: nP;:'(E;)g(E;}dE; 
n=O 

and variance: 

(5) 

(6) 

(7) 

for "thermal" emission probabilities P;:' folded with a 
Gaussian distribution g(Et)· We have assumed m is con
stant. 

For a value of rE,IEt=0.3, m=12, and B=40MeV112 

(consistent with the upper limits of the slopes observed in 
the Xe induced reactions (2,3] ), the onset of divergence is 
observed in the Arrhenius plot at small values of Et (top 
left panel of Fig. 1, open circles); For r E, I Et ~0. 2 (open 
circles in bottom left panel of Fig. 1), the divergent be
havior is "shifted" to even lower energies and the result
ing Arrhenius plo.t remains approximately linear. There
fore, the thermal signature survives. For both widths, 
the linear (thermal) scaling survives in the physically ex
plored range of 11$, :::; 0.08 (Et 2 150 MeV) shown 
by the dashed lines in Fig. 1. As we shall see below, 
the effect is weaker for even lower values of B which are 
commonly seen experimentally. 

The divergent behavior manifests itself as well in the 
parameter m, the number of "throws" in the binomial 
description. Values of mapp are plotted (open circles) 
as a function of Et in the right column of Fig. 1 for 
rE.; Et=0.3 (top panel) and rE,I Et=0.2 (bottom panel). 

While the distortions depend mostly on the variance of 
the energy distribution, distributions with similar widths 
can be associated with very different variances. For in
stance, a Lorentzian distribution with finite r has infinite 
variance. Its use would lead to a divergence even for in
finitely small values off. Thus, even innocent trimmings 
to the (non-physical) tails of a Gaussian can produce big 
differences in the variance of the distribution and in the 
ensuing corrections. We exemplify this point in two ways. 

a) We use a "square" distribution with a width equal 
to the full width at half maximum of the Gaussian. As 
can be seen by the star symbols of Fig. 1 this simple 
exercise dramatically extends the range over which the 
average can be performed safely. 

b) We truncate the tails of the Gaussian at 1u ( dia
monds) and 2u (solid circles) in Fig. 1. Already the cut 
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FIG. 2. Top panel: the divergence energy (the energy at 
which ma.pp and Pa.pp change sign) as a function of the slope 
parameter B for a fixed ratio of rE,/Et=0.3. Bottom pan!!l: .: 
the divergence energy as a function of the width rE,/Et for. 
a fixed value of B=40Me V1

/
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at 2u shows a dramatic improvement over a full Gaus
sian. The 1u cut actually makes things even better than 
the square distribution (as seen in Fig. 1). 

To illustrate the conditions under which the "thermal" 
scaling survives (i.e. linear Arrhenius plots as a func
tion of 11 v'E,.), we have traced the evolution of the "di
vergence energy" (or the point at which mapp and P~PP 
change sign) as a function of the two parameters whtch 
control the strength of the divergence: the slope parame
ter B and the variance u 2 (hereafter characterized by its 
full width at half maximum value rE, ~ 2.35#). 

A particular example for r E, I Et =0.3 is shown by the 
open circles in the top panel of Fig. 2. In addition, values 
of the divergence energy for 1cr and 2u truncations of the 
Gaussian as well as a square distribution are also plotted. 
For all intents and purposes, divergencies that occur at 
less than 100 MeV do not alter substantially the linear 
Arrhenius plots as they have been observed to date (1-3] 
in the Et range of 150 to 1600 MeV. 

In a similar manner, the dependence of the divergence 
energy can also be determined as a function of the relative 
width fE./Et (for a fixed value of B). This behavior is 
demonstrated in the bottom panel of Fig. 2. 

A more global view of the parameter space is shown 
in Fig. 3 where the divergence energy is plotted (contour 
lines) as a function of the width r E, I Et and slope B. The 
shape of the contour lines reflects the u2 B scale deduced 
in Eqs. (3) and (4). The calculation in ref. (7] sits nearly 
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FIG. 3. The divergence energies (contour line) as a function 
of the width r E, I Et and the slope B for m=12 and a Gaussian 
distribution truncated at 2u. 

in the upper right hand corner of the graph. But, as is 
clearly demonstrated, large regions exist where binomial 
reducibility and thermal scaling survive (roughly given by 
the region with divergence energies less than 100 MeV). 

From the above exercises it is concluded that there is 
abundant room for the survival of binomiality and ther-
mal scaling. · · '. , 

In this second part, we shdw that none of the symp
toms of divergence are present in the available experi
mental data [1-3]. Furthermore, the average fragment 
multiplicity (n) is expected to be "distortion free" [7]. 
As such, it provides a baseline reference with which to 
compare the "distorted" variable, Papp (to verify whether 
the label "distorted" is appropriate). In addition, we can 
force the divergence to appear in the data, by artificially 
broadening the Et bins, thus establishing that it is not 
present with ordinary (small) Et bins. Finally, we show 
that thermal scaling is present and persists in the data 
even when the divergence is forced. 

First, we draw attention again to the two pathologic 
features arising from excessive averaging. 1) The quan
tity m diverges near Et=O. 2) The quantity 1/p suffers 
a corresponding discontinuity at the same low energy. 

Inspection of the published data shows that: 
1) m never diverges near Et = 0. To the contrary 

m remains relatively constant or actually decreases with 
decreasing Et. This is particularly true for all of the Xe 
induced reactions [2,3] (see Fig. 6); 

2) log 1 I p is nearly linear vs. 1 I ..;E; over the experi
mental Et range without the indications of trouble sug
gested by the calculations in the previous section. 

Thus the experimental data do not show any signs of 
pathological features. 

The quantity (n) = mappPapp does not suffer from the 
distortions due to averaging. In fact, (n) is a ·suitable 
alternative for constructing an Arrhenius plot in those 
cases where m depends only weakly on Et (as observed 
in many of the data sets we have studied). A comparison 
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FIG. 4. The inverse of the single fragment emission prob
ability (solid circles} and the inverse of the average fragment 
multiplicity (open circles) as a function of 1/.;I§; for there
action Ar+Au at E/A=llO MeV. The solid lines are linear 
fits to the data. 

of the Arrhenius plots constructed from 1IPapp and 11 (n~ 
is shown in Fig. 4. The striking feature of this compari
son is that the 1/Papp values have the same slope as tbe 
"distortion-free" case of 11 (n). Similar observations can 
be made for all the other reactions studied so far. -As a· 
consequence both the "fragile" p and the "robust" (mp) 
survive the physical transformation P(E, Et) unscathed. 

When the probability becomes small, the binomial dis
tribution reduces to a Poisson distribution. This can be 
achieved experimentally by limiting the selection to a sin
gle Z [4]. The observed average multiplicity is now exper
imentally equal to the variance. Thus we are in the Pois
son reducibility regime and can check the thermal scal
ing directly on ( n z). For a Poisson distribution, log ( n z) 
should scale linearly with 11 ,flt;. This can be seen ex
perimentally for the average yield of individual elements 
of a given charge (see Fig. 5) for the reaction Ar+Au at 
EIA=llO MeV. For the case of a single species, there
ducibility is Poissonian, and the thermal (linear) scaling 
with 11 ..[E; is readily apparent. As pointed out at the 
outset of the paper, this evidence, together with that of 
Fig. 4 indicates that no significant averaging is occurring 
even in the case of binomial decomposition. 

The data can be "encouraged" to demonstrate the sort 
of catastrophic failures described here. By widening the 
bins in transverse energy (LlEt), we can induce an arti
ficial broadening to mimic a broad correlation between 
E and Et. For example, the behavior of Papp and mapp 
is shown in Fig. 6 for three different widths and two dif
ferent reactions. The divergencies of Papp and mapp are 
readily visible for large LlEt values, but are noticeably 
absent for small values. The spectacularly large bin
ning in Et (100 MeV!) necessary to force the anticipated 
pathologies to appear is reassuring indeed. Notice that 
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here the absolute width, not the relative width, was kept 
fixed even at the lowest energies! FUrthermore, the sta
bility of (n) is readily apparent from the complete overlap 
of the values of (n) extracted for different·windows of Et 
(opeq symbols of Fig. 6). 

In summary: 
a) Binomial reducibility and the associated thermal 

scaling survive in a broad range of parameter space. The 
single case shown in [7] is an extreme one based on un
supported assumptions about the averaging function. 

b) The experimentally observed simultaneous survival 
of the linear Arrhenius plot for parameter p and the ro
bust average (mp) suggests that no serious damage is 
generated by the physical transformation P(E, Et)· 

c) The multiplicity distributions for any given Z value 
are Poissonian and the resulting average multiplicity 
(n) = (mp) gives linear Arrhenius plots confirming the 
conclusion in b). . 

d) Finally, the data themselves do not show any in
dication of pathological behavior. This can be seen, for 
instance, by comparing the behavior of p with (n). The 
pathology can be forced upon the data by excessively 
widening the Et bins. Even then, the thermal scaling 
survives in the average multiplicity. 
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