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Abstract 

We show that the transformation of D-branes under T-duality on four­

torus is represented by N ahm transform of instantons. The argument for 

this allows us to generalize N ahm transform to the case of orthogonal and 

symplectic gauge groups as well as to instantons on Z2 orbifold of four-torus. 

In addition, we identify the isomorphism of K-theory groups that realizes 

the transformation of D-brane charges under T-duality on torus of arbitrary 

dimensions. By the isomorphism we are lead to identify the correct K-theory 

group that classifies D-brane charges in Type II orientifold. 



1 Introduction 

A Dp-brane wrapped on a circle is mapped under T-duality to a D(p-1)-brane where 

the U ( 1) Wilson line of the Dp-brane corresponds to the position of the D (p - 1 )-brane in 

the dual circle. This was known since the discovery of D-branes [1, 2] and this is actually 

how D-branes are discovered. However, the T-duality transformation rule is less obvious 

for more general configuration of D-branes in a more general string background. 

In superstring theory, D-branes are sources of Ramond-Ramond (RR) potentials [3]. 

Transformation of RR fields under T-duality was studied in [4, 5]. RR fields of the theory 

on Tn X M and those of the T-dual theory on f'n X Mare related as 

e--;;;;., = J ch('P) e-B F." (1.1) 
Tn 

Here, B is the Neveu-Schwarz B-field and F = l:P Fp+2 is the sum of gauge invariant RR 

field strengths where the sum is over,p = 0, 2, 4, ... for Type IIA and p = -1, 1, 3, ... for 

Type IIB.1 Also, ch('P) = exp(l:i=I dti 1\ dti) in which ti and ~ are coordinates of Tn and 

f'n dual to each other. As the mime suggests, ch('P) represents the Chern character of 

a complex line bundle over f'n x Tn - the so called Poincare bundle 'P - which has a 

U(1) connection with curvature -27ri Ei dti 1\ dti. 

The simplicity of the transformation rule (1.1) is intriguing and begs for an explanation 

which is independent of the supergravity or worldsheet computation. It is also interesting 

to ask whether similar rule exists for more general cases, such as the case with orbifold or 

orientifold projection. We note here that (1.1) looks like a formula which appears in the 

family index theory [6-8]; in particular, for a family of Dirac operators on Tn parametrized 

by f'n which is carried by a bundle over Tn x f'n determined by P. Since D-branes are 

RR sources, this suggests that there is a similar index-theoretic transformation rule for 

D-branes, which might lead to a simplest explanation for (1.1) and to its generalization. 

The purpose of this paper is to find such a transformation rule for D-brane configurations. 

Actually, it has been suspected that an index-theoretic transformation realizes T­

duality .on four-torus T 4 (and also Tn with n = 1, 2, 3) in the case where there are 

Dp-branes at points on T 4 within wrapped D(p + 4)-branes. In such a case, a D-brane 

configuration can be represented as an instanton configuration on T 4 , and it was suggested 

in [9] that T-duality may possibly be realized as a transform of representing instanton 

1 We choose the following field definitions. The gauge transformation for the R-R potential A = 
L Ap+l is given by oA = e11 da for a = Lap' and therefore the gauge invariant field strength is 
F = eBd(e-B A)= dA- H A A subject to the Bianchi identity dF = H A F. 
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configurations called Nahm transform (11-13] (or Mukai's Fourier transform (10]). Nahm 

transform uses a family of Dirac operators on T 4 parametrized by T4 which is carried 

by the Poincare bundle P, and the transformation of the topological numbers of the 

instantons is given by an index formula which looks like (1.1). In particular, the rank and 

the instanton number are interchanged. In terms of D-brane charges, this corresponds to 

the interchange of(p+4)-brane and p-brane charges which is exactly what T-duality does. 

However, there was no other argument showing why the Nahm transform can be identified 

with the T-duality on four-torus. In this paper, we provide a simple argument which shows 

that one can indeed identify the Nahm transform and T-duality. The argument is so simple 

that it can be easily generalized to the case with orbifold/orientifold projection, finding 

a generalization of the Nahm transform to, say, orthogonal/symplectic gauge groups. 

Based on recent analysis of brane-anti-brane systems (for example in (14]), it was 

argued by Witten (15] that, as has been proposed in (16], D-brane charge takes values 

in an appropriate K-theory group of the space-time X when X is large compared to the 

string scale. (See (17-19] for subseq_uent studies.) If this also holds for any size of X, 

T-duality should induce an isomorphism of a K-theory group of rn X M to another K­

theory group of the dual fn x M. In fact, brane-anti-brane systems naturally appear in 

our argument for "Nahm transform= T-duality", and an isomorphism between K-theory 

groups emerges very naturally. This seems to be actually not limited to four-torus; As 

another non-trivial application of our argument, we will construct the isomorphism of 

K-theory groups for T-duality on torus of other dimensions. During the course, we find 

the identification of the K-theory group for Type II Z2-orientifold: D-brane charges in 
the presence of an orientifold p-plane are classified by KR-(9-p) or KR-(s-p) for SO- or 

Sp-type orientifold respectively. 

This paper is organized as follows. In section 2, we give a simple argument which 

shows that Nahm-transform can indeed be identified as the transform of D-branes under 

T-duality on four-torus. We extend the argument to the case where the Nahm transform 

fails to become a vector bundle and give the interpretation of the resulting object as a 

certain bound state of D-branes and anti-D-branes. The basic argument of section 2 is 

applied in section 3 to string theory with orientifold or orbifold projections. This leads to 

the generalization of Nahm transform to instantons of orthogonal and symplectic gauge 

groups as well as to instantons on Z2 orbifold. In section 4, as an application of the 

picture of brane-anti-brane bound state, we obtain index-theoretic isomorphisms of K­

theory groups that realizes T -duality ·on four-torus. This is extended in section 5 to find 

isomorphisms of K-theory groups for T-duality on torus of other dimensions. There we 

also indentify the K-theory group that classifies D-branes in Type II orientifold. 
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T-duality was discussed in terms of K-theory also in [20, 21] which appeared after this 

paper. The former considers D-branes in algebraic varieties while the latter takes a close 

look at T-duality in Type II orientifold. They are closely related to sections 2 and 5 

respectively. 

2 D-branes on Four-Torus and T-duality 

In this section we study how D-brane configurations are transformed under T-duality 

on four-torus in Type II string theory. 

Let us consider Type II string theory on R 6 x T 4 with N D(p + 4)-branes wrapped 

on T 4
• We choose flat orthonormal space-time coordinates xM = x0

, ••• , x9_ and consider 

T 4 as R 4/A where R 4 is spanned by xll- = x\x2 ,x3 ,x4 and A= {nil-} C R 4 is a lattice of 

rank four. The theory contains U(N) super-Yang-Mills theory on the brane with sixteen 

supercharges. The supersymmetry transformation of the gaugino '1/J is given by 

', 1 . MN 
o'lj; = --FMNr € (2.1) 

4 
where f is an anticommuting parameter which is a positive chirality spinor in ten dimen­

sions and FMN is-the field strength of the (extended) U(N) gauge field. If the gauge field 

has a self-dual field strength on T 4 with non-zero instanton number, the supersymmetry · 

is broken to half and only those with positive chirality on T 4 are unbroken. ·This is be­

cause Fp.vrll-"' = !FJvrll-"' on spinors with chirality± on T 4 where F± = F ±*F. 1 This 

together with the fact that an instanton on D(p + 4)-branes carries a unit charge of the 

RR p-form potential through the Chern-Simons coupling [22] suggest that the instantons 

on T 4 can be identified with Dp-branes at points of T 4 • Namely, N D(p + 4)-branes 

with a -k-instanton configuration on T 4 can be considered ~s a classical bound state of 

N D(p + 4)-branes and k Dp-branes.2 This description of Dp-branes as instantons on 

D(p+4)-branes is of course valid only when the size of the torus is large compared to the 

string scale. 
1 In this paper, positive or + (resp. negative or -) chirality in four dimensions means r 1234 = 1 

(resp. -1) (and likewise, in 1+1 or 5+1 dimensions (spanning 09 or 012349 directions), it means r 09 

or r 012349 = 1 (resp. -1)). This convention in four-dimensions appears to conflict with mathematical 

notation where in 2n-dimension spinor bundles with inr12 .. ·2n = ±1 is denoted as s±. Nevertheless, we 

shall follow this mathematical convention as far as the notation s± is concerned. Thus, in this paper the 

bundle of positive (or+) chirality spinors (with r 1234 = 1) is denoted ass- whereas s+ is the bundle of 

negative (or-) chirality spinors (with r 1234 ~ -1). I hope that this does not .confuse the reader. 
2It was noted in [23] that (2.1) admits another term with values in the center of U(N) which relaxes the 

· self-duality condition for supersymmetry. In this section we do not consider the associated generalization 

which ~ecessarily involves the first Chern class or D(p + 2)-branes. 

3 



Now we address the following question: How is T-duality transformation of D-branes 

described in terms of gauge fields on T 4? We first have to note that T -duality inverts the 

size of the torus (when B-field is zero) with respect to the string scale. Thus, the question 

makes sense only when there is a natural one-to-one correspondence between D-brane 

configurations on large and small torus. In the present case, eight supersymmetries and 

non-renormalization theorm assures this, since parameters for D-brane configuration and 

the size of the torus belong to different supermultiplets. 

In what follows we provide an answer to this question. We will work in the case p = 5 

since we want to introduce branes of lower dimensions as probes. This means that we 

work .ln (unphysical) Type liB string theory with N D9-branes on R 6 x T 4 • Tadpole, 

anomaly and other sickness of the theory do not affect our argument which we are going 

to make. We could also work in the barely physical case of p = 4 in which most of our 

argument can be repeated, although it is less convenient compared to p = 5. 

2.1 Nahm Transform as T-dua~ity 

Probing by a Dl-brane 

Let us first probe this D9-brane system by a D1-brane which spans the coordinates 

x0•
9

, or x± = x0 ± x9 • The analysis of low lying spectrum of open strings ending on this 

probe (in the case where T 4 is large) is the same as the one for a D1-brane in Type I 

string theory [24] except that we do not impose invariance under worldsheet orientation 

reversal. The theory on the probe is a U(l) gauge theory in 1 + 1 dimensions with at 

most (0, 8) supersymmetry. It has an (8, 8) U(1) vector multiplet whose scalar components 

take values in R 4 x T 4 and also a positive-chirality fermion A with U(1) charge -1 which 

transforms in the fundamental representation of the flavor group U(N). The fermion A is 

coupled to the U(N) gauge field AJ.LdxJ.L on the D9-branes via the minimal coupling 

~ (a_ + a_X~-' AJ.L(X) - ia_) A (2.2) 

where ia±dx± is the U(1) gauge field and X~t are the scalar fields in the U(1) vector 

multiplet representing the position of the probe in T 4
• If the gauge field AJ.L is flat, the 

theory preserves the (0, 8) supersymmetry (generated by those f with f 0 f 1 = 1) but if 

it is in an instanton configuration with self-dual curvature, F~ = 0, the supersymmetry 

is broken to (0, 4) (generated by tho~e f with f 0 f 9 = f 1 f 2 f 3 f 4 = 1 ). For a finite size 

torus, there are actually infinitely many additional modes coming from the strings winding 

around 1-cycles of T 4
, but the effect of them is small when the size of T 4 is large and they 

simply decouple in the low energy limit. 
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Probing by a Wrapped D5-brane 

Next, let us probe the D9-brane system by a D5-brane wrapped on T 4 and spanning the 

x0•9 or x± directions. The analysis of low-lying modes on the D5-brane is almost identical 

to that in [25]. The theory of these modes is a U(1) gauge theory in 5 + 1 dimensions 

with at most (1, 0) supersymmetry. It has a (1, 1) U(1) vector multiplet and a (1, 0) 

hypermultiplet with U(1) charge -1 which transforms in the fundamental representation 

of the flavor group U(N). The flavor group U(N) has a background gauge field which 

is given by the gauge field AILdxiL of the D9-brane. Namely, the hypermultiplet fields­

scalars Qu (a = 1, 2) and a negative chirality spinor W - are minimally coupled to AIL 

VIa 

(2.3) 

(2.4) 

in which ia±dx±+iaiLdxJL is the U(1) .gauge field of the probe. When the U(N) gauge field 

AILdxiL is fiat, the theory preserves the (1, 0) supersymmetry but if it is in an i:ristanton 

configuration on T4 with self-dual curva~ure F;:v = 0, the supersymmetry is broken to 

half - only those with positive-chirality in T 4 (as well as in R 2 x T 4 ) is unbroken. We 

shall consider the case where the instanton number is k, namely AIL is a gauge field 

that defines a connection of a rank N complex vector bundle E over T 4 with the second 

Chern character ch2(E)= k. Then, the wrapped D5-brane is probing a bound state of N 

D9-branes wrapped on T 4 and k D5-branes at points in T 4• 

When the size of T 4 becomes small, it is natural to consider the theory of the wrapped 

D5-brane probe as 1 + 1 dimensional theory with a tower of infinite Kaluza-Klein modes. 

The theory is invariant under (0,4) supersymmetry which is generated by those E with 

f 0 f 9 = f 1 f 2 f 3 f 4 = 1. At long distances, massive modes simply decouple and only finitely 

many massless modes remain in the theory. From the six-dimensional (1, 1) U(1) vector 

multiplet, we obtain (0, 4) multiplets whose bosonic fields are the U(1) gauge field a± 

together with the scalar fields taking values in the space of solutions to the equations 

{}ILXP = 0, 

81La11 - 011aiL = 0, 

(2.5) 

(2.6) 

where XP (p = 5,6, 7,8) are the sc~ar component of the (1,1) vector multiplet. The 

solution space for the first equati~n is R4 since it is solved by XP =constant. The second 

equation is the equation for iaiLdxJL to be a fiat U(1) connection over T 4• Since we have 

a U(1) gauge symmetry, what we actually obtain as the target space is the moduli space 
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of flat U(1) connections. A flat U(1) gauge field can have aJJ. =constant, and aJJ. is gauge 

equivalent to aJ.I.+nJ.I. where nJ.I. belongs to the dual lattice 27rA* of A/27r so that the gauge 

transformation g( x) = einx is single valued on T 4 • The moduli space is therefore the 

dual torus T4 = {aJJ.}/{nJJ.} = (R4)*/27rA*. Thus, from the six-dimensional (1,1) U(1) 

vector multiplet, we obtain a 1 + 1 dimensional (8, 8) U(1) vector multiplet whose scalar 

components take values in R 4 x T4• 

Massless fields in 1 + 1 dimensions also come from the hypermultiplet in the bifunda­

mental representation and these break the supersymmetry to (0,4). They correspond to 

the fields on T 4 satisfying 

(2.7) 

where DJJ. is given by (2.4). For a generic instanton configuration, there is no covariantly 

constant section of the associated bundle in the fundamental representation. Therefore, 

there is no solution to DJJ.Qu = 0. In this case, there is neither positive-chirality Dirac zero 

mode since such a thing, if existed, would be covariantly constant in a self-dual instanton 

background as one can see from the Weizenbock formula f/Jt JfJ = nt D- FJJ.v"YJJ.v. However, 

as the index theorem shows, there are k Dirac zero modes with negative chirality (see 

section 4). Let us choose a family of orthonormal basis '1/JI(a), ... , '1/Jk(a) of the space of 

zero modes which varies smoothly as aJJ. is varied. Let us expand the field W as 

k 

W'(x±, xJJ.) = L '1/Ji(a(x±))(xJJ.) ® .Ai(x±), (2.8) 
i=l 

where Ai are positive chirality spinors in 1 + 1 dimensions (positive because W and '1/Ji( a) 
are negative in 5 + 1 and 4-dimensions respectively). Inserting this in the lagrangian (2.3) 

and integrating overT\ we obtain a lagrangian for A= (Ai) 

(2.9) 

where 

(2.10) 

This AJJ.(a) can naturally be considered as a U(k) gauge field on the parameter space 

(R4)* = { aJJ.} since the choice of orthonormal basis '1/Ji( a) is arbitrary and can be changed 

to other ones. Thus, we have obtained from the hypermultiplet a positive chirality fermion 

A with a unit U(1) charge which is ~oupled to the external gauge field A~-'(a) given by 

(2.10). In other words, A takes values-in the bundle E of Dirac zero modes provided with 

the unitary connection A; the fibre of E at a E (R4)* is the kernel of f/J. associated with 

DJJ. = 8"' +A"'- ia~-' which is provided with the natural inner product coming from the 
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integration over T 4• Note that the U(1) gauge transformation \l1 --7 einxw sends a zero 

mode 'ljJ at a to a zero mode ,(fiat a+ n defined by ;fi(x) = einx'lj;(x). Thus, E should be 

considered as a bundle over (R4 )* /2rrA* = T4 where we identify 'ljJ -:- {/;. It is clear that 

A in (2.10) defines a connection on it. 

We see that the 1 + 1 dimensional theory we obtained is exactly the same as the effective 

theory of a D1-brane in Type liB string theory on R 6 x T4 which probes D9-branes 

supporting the bundle E with connection A. 

The transform A 1---t A of a gauge field on T 4 to that of its dual T4 is nothing but 

what is known as the Nahm transform [11-13]. In particular, the U(k) gauge field A~tdaJL 
on T4 is actually an instanton with self-dual field strength F = *F, as expected from 

supersymmetry. As we will see in section 4 using the index theorem, the topological 

numbers of the bundle E is related to that of E as rank( E) = ch2 (E) = k and ch2(E) = 
rank( E)= N. Thus, the system of D9-branes wrapped on T4 supporting (E, A) can be 

considered as a system of k D9-branes wrapped on T4 and N D5-branes at points on T4 • 

To summarize, we have seen that the theory on the wrapped D5-brane probe is ef­

fectively the same as the effective theory on a D1-brane moving in R 6 x T4 and probing 

the system of D9-branes which support the gauge field configuration A~t( a )dal' on the 

dual torus T4 given by (2.10) (which represent a system of k D9 and N D5 branes). By 

definition, the effective theory of a D5-brane wrapped on a small T 4 is identified as the 

effective theory of the T-dual D1-brane moving in the large T4 • Then, the system of k 

D9 and N D5 branes emerged above must be identified as T -dual to the original system 

of k D9 and N D5 branes. Therefore, what we have seen shows that the the T-duality of 

D9-D5 brane system (or other (physical) D(p + 4)-Dp brane system with p = 0, 1, 2, 3, 4) 

is indeed given by the Nahm transform of instantons on T 4 and T4 • 

One important property ofT-duality is that if the T-duality is operated twice we get 

back in the same string background. It is indeed known as the inversi?n Atheorem [12, 13] 

that the square Nahm transform is the identity, (E, A) I--tA(~, A) 1---t (E, A)~ (E, A) (see 

also Appendix A for the expression of the isomorphism (E, A) rv (E, A)). 

Use of brane probe to study space-time geometry was initiated in [26] and has been an 

important method in string theory. The paper [26] considers D9-D5 system in flat non­

compact space-time probed by a D1-brane and obtains ADHM construction of instantons 

on R 4 (which is nothing but the S-dual of the heterotic worldsheet theory in [27]). Since 

Nahm-transform is in a sense the ADHM construction for four-torus, what we have done 

can be considered as a generalization of [26]. Indeed, similar argument had been used 
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in (28] where Nahm equation for monopoles on R 3 was considered. 1 Our argument is 

also close to the one in (31] where D3-branes wrapped on three-torus in a Calabi-Yau 

three-fold are identified with DO-branes at points in the mirror. 

2.2 The General Case - Emergence of Brane-Anti-Brane System 

In the above discussion, we have assumed that the Dirac operator IfJ = 111-( 811-+Ap.-iap.) 
has no positive-chirality zero mode at any value of aw In general, however, we encounter 

the cases where there are positive-chirality zero modes as well. This includes the simplest 

and important example of k = 0 where the connection A is flat, Ap. = diag(ia1, ... , ia:), 
in which there are both positive and negative chirality zero modes at all- = at. In such 

a case, the T -dualized system we obtain is not a vector bundle on T4 supported by D9-

branes, but something else which we now describe. 

Kaluza-Klein Modes and Interpretat!on 

Let us look at the lagrangian for the full Kaluza-Klein modes from the hypermultiplet 

of 5-9 strings. The scalar fields Qu can be considered as 1 + 1 dimensional scalar fields qu 

with values in the infinite dimensional vector space f(E) of sections of E. Likewise, the 

fermion 'II can be considered to consist of 1 + 1 dimensional spin or fields A+ and A_ of 

positive and negative chirality respectively which take values in the infinite dimensional 

vector spaces r(S+ 0 E) and r(S- 0 E). It is appropriate to consider these vector spaces 

of sections of E, s+ 0 E and s- 0 E as infinite-dimensional vector bundles £, £+ and 

&- over T4 provided with hermitian metrics and natural connections which we denote by 

A, A+ and A- respectively: Recall that the U(1) gauge symmetry of the probe D5-brane 

identifies a section '1/;( x) at a E (R 4 )* and a section einxV;( x) at a+ n E (R 4)* of any of the 

bundles E, s+ 0 E and s- 0 E. This defines the bundles £, £+ and &- over T4 • Since this 

identification is unitary and does not involve ap. explicitly, the hermitian products and 

the trivial connections of the trivial bundles over (R4)* descends to hermitian products 

and connections of the bundles over T4
• 

Note that the components n+ : r(S+0E) -t f(S-0E) and n- : f(S-0E) -t r(S+0 
E) of the Dirac operator IfJ are conjugate to each other and that the Weizenbock formula 

shows n+ n- = - flP. D w Then, denoting the operator n+ at a as 'D( a) : £+ Ia -t £-Ia, 

1Certain monopoles can be considered asinstantons on S1 x R 3 and [28) is closely related toT-duality 

on S1 . Nahm transform on S1 (and T 2 ) is also discussed in [29, 30] more completely than [28] but their 
argument is not applicable toT-duality on T 4 . 
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the lagrangian can be written as 

:E :E =FI(au + aua~A~(a)- iau)qof + :E quV(a)V(a)tqu 
a=1,2 u=0,9 a=1,2 

+.A+ (a-+ a_a~A~(a)- ia_ ).A+ + .A_ (a++ a+a~A~(a)- ia+ ).A-
+ .A_V(a).A+ + .A+V(a)t.A_. (2.11) 

We interpret (2.11) as the lagrangian for a D1-brane probing some bound state of infinitely 

many D9-br~ne and anti-D9-branes wrapped on T4 of the T-dualized system. This is based 

on the following consideration. 

If there are n D9-branes and a D1-brane, the 1-9 strings creates a positive-chirality 

fermion on the 1+1 dimensional worldvolume of the D1-brane which is charged under the 

bifundamental representation of U ( n) x U ( 1). Similarly, if there are ii anti-D9-brane and 

a D1-brane, the 1-9 strings create a negative chirality fermion in the bifundamental of 

U(n) x U(1). If there are n D9-brane and n anti-D9-branes, the analysis of open strings 

shows that, in addition to the U ( n) xU ( n) gauge fields created by 9-9 and 9-9 strings, there 

are tachyonic modes created by 9-9 strings which are charged under U(n) x U(n) as the 

bifundamentals (n, ii*) and (ii, n*). (In this paper, we denote the dual of a representation 

V by V*.) Therefore, the configuration without the tachyon expectation value is unstable 

and is expected to roll down toward a minimum of the tachyon potential. Since we do 

not have a correct decription of some stable bound state of a brane-anti-brane system, 

we do not precisely know what happends for the theory on a D1-brane probing such a 

system. However, we may expect that the low-lying spectrum is not very much different 

from the simple superposition of those for the 1-9 system and those for the 1-9 system. 

In particular, there will be positive and negative chirality fermions in (n, 1, -1) and 

(1, ii, -1) of U(n) x U(n) x U(1) respectively (and their duals). We may also expect that 

the tachyon vev will provide a mass term in the theory of D1-brane which couples the 

positive and negative chirality fermions created by the 1-9 and 1-9 strings. If it is the 

case, when the tachyon vev is non-zero the coupled fermions are irrelevant in the infra-red. 

This is consistent with the expectation that a D-brane and an anti-D-brane will annihilate 

via the tachyon condensation. 

Now, part of the interpretation of (2.11) is clear. The fermion .A+ is interpreted as 

the collection of fermions created by the 1-9 strings in the n -+ oo limit, whereas .A_ is 

interpreted as those created by 1-9 st:rings in the n -+ oo limit. The connections A+ of 

&+ and A_ of &- are the connections of the Chan-Paton bundles supported by the D9 

and anti-D9-branes respectively. The operators V : £+ -+ &- and vt : &- -+ &+ are 

interpreted as the tachyon fields. 
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However, it is not obvious how to interpret the scalar fields qu which become massless 

at the locus where 'D( a )t has a zero. Their charge under the symmetry of the system 

suggest that they are created from the 1-9 or 1-9 strings, but the standard analysis shows 

that the NS sector of the 1-9 or 1-9 strings has the lowest mass squared= ~and therefore 

the corresponding bosons can never become massless. We leave this as an open problem. 

In this paper, we consider the existence of qu as a consequence of the ( 0,4) supersymmetry 

(required from the supersymmetry of the bound state) which postulates the existence of 

the superpartner of the fermions of mass-squared matrix V(a)V(a)t. 

Localized Degrees of Freedom 

Irrespective of the interpretation as the bound state of D9-branes and anti-D9-bralies, 

it is clear that the modes with non-zero eigenvalues of the Laplace/Dirac operators -

V(a)V(a)t or V(a)tV(a)- are irrelevant in the infra-red limit and can be ignored. When· 

V( a) t has no kernel everywhere on T4
, we only have to take into account the kernel of V( a), 

and we are back in the cases considered in section 2.1: we obtain the Nahm transform E 
supported by k D9-branes of the T -dualized system. 

Something special happens when V(a)t has a non-trivial kernel (and the kernel of 

V(a) jumps) a~ some locus M in T4 • The mass of some supermultiplet (two complex 

scalars and two Dirac fermions) goes down toward M and vanish at M. In such a case, 

this multiplet can no longer be ignored at least in a neighborhood of M. In other words 

there are some degrees of freedom localied at M C T4
• 

We examine what this is in our favorite example of k = 0 and flat All. For simplicity 

we consider the case N = 1. In this case, E is the trivial complex line bundle over T 4 

and the flat connection is given by AJL = ia~ (constant). The Dirac operators are 

(2.12) 

where (jiL : s+ -+ s- and uiL : s- -+ s+ are. represented as 

( 0 i) 2 ( 0 1) 3 (i 0) 
i 0 ' (J' = -1 0 ' (J' = 0 -i ' (2.13) 

and (jiL = uJ.Lt under trivializations s+ ~ T 4 X C2 and s- I'V T 4 X C 2 • There is no kernel 

for both V(a) and 'D(a)t everywhere,~xcept a= a0 • At a= a0 , the constant sections of 

s+ I'V T 4 X C 2 and s- ~ T 4 X C 2 become the kernels of V(a) and 'D(a)t respectively 

and there are nothing else. Thus, we only have to look at the spaces Eci and £0 of these 
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constant sections in the vicinity of a = a0
• The operator 'D( a) sends £d" to £0 and behaves 

as 

(2.14) 

What these all mean in the 1 + 1 dimensional theory of the probe is that there are two 

complex bosons qg and two positive and negative chirality fermions Xf., >.~ which are 

localized near a= a0
• Their mass squared behaves as 'D(a)'D(a)t = Ia- a0 !2 • Note that 

qg transforms in the positive spinor representation of 80(4) in the x5678 directions while 

>.f. and>.~ transforms in the negative and positive spinor representations of S0(4) in the 

x1234 directions. These are clearly the properties of the 1-5 string in the system of D 1-

brane probing the D5-brane located at a = a0 • Thus, this localized degrees of freedom can 

be identified as the D5-brane at a0 E T4 of the T-dualized system. This is of course what 

is expected from the known relation of the Wilson line and the position of the D-branes 

under T-duality [1]. 

The same conclusion can be deduced also in the picture of D9-anti-D9-brane system. 

Although there are infinitely many D9 and anti-D9-branes, we may regularize the system 

by discarding infinite high level modes which are irrelevant in the infra-red limit. One 

obvious choice appears to be the one to discard everything but the constant modes. 

However, there is a technical difliculty. Because of the identification of the sections '1/J(x) 
at a and einx'lj;(x) at a+n, the space of constant sections (defined as £5= in a neighborhood 

of a0 ) does not extend as a globally defined finite-dimensional vector bundle over T4 • 

Instead of trying to find a finite-dimensional subbundle of £±, we can consider a more 

wild but reasonable regularization. Since the only relevant information is the behaviour 

of the lowest modes in the vicinity of a= a0 , we can approximate the infinite-dimensional 

bundles £± with the tachyon V : £+ -+ &- by rank two vector bundles £5= with a 

tachyon 15 : £t -+ £0 defined globally over T4 such that 15 : Ed" -+ £0 is the same as 

V: £d" -+ £0 when restricted to a neighborhood of a= a0 and is an isomorphism outside. 

Since V(a) : £d" -+ £0 given by (2.14) has a winding number one on the three-sphere 

surrounding a = a0 and 15( a) is an isomorphism outside, the instanton numbers of lt 
and E0 must differ by one, irrespective of the choice of the extension £i of &i. This 

together with the Chern-Simons coupling on the (anti-)D-brane shows that there is a 

single D5-brane. Since the degrees of freedom is localized at a = a0 , the D5-brane must 

be at a0 E T4 • 
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Mukai's Fourier Transform 

We have described what we obtain as the T-dualized system in the general case, using 

the effective theory on the probe. We have also gave an interpretation as some bound state 

of D9-branes and anti-D9-branes. However, we have not described it in a mathematical 

language except for the generic case where the kernel of V( a )t is constantly zero and the 

T-duality is described as the Nahm transform. In algebraic geometry, there is a transform 

called Mukai's Fourier transform [10) which can be considered as a generalization of the 

Nahm transform. It is a transform of an object in a category called derived category of 

sheaves [32) on an abelian variety X (a complex torus embedded in a projective space) 

denoted by D(X) to an object of D(X) where X is the dual torus of X (which is again an 

abelian variety). The category D(X) includes as its objects holomorphic vector bundles 

on X, and for the case where X is four• torus and in a region where there is a one to one 

correspondence between holomorphic bundles and (anti-)self-dual connections, Mukai's 

Fourier transform agrees with the Nahm transform. This suggests that the correct math­

ematical language to describe what we have obtained should not be far from the derived 

category of sheaves, at least in the case where T 4 has a structure of an abelian variety. 

Indeed, a general object of D(X) is a complex of sheaves which is reminiscent of our Dirac 

complex, and also, sheaves can localize on a subvariety of X. It is an interesting problem 

to find the precise relation (though we do not attempt to solve here). 

The Inverse Transform 

We have started from a connection of a vector bundle on T 4 supported by D9-branes 

and obtained, as its T-dual image, an object which is something more general than a 

connection of a vector bundle, presumably supported by D9 and anti-D9-branes. Then, a 

natural question is what happens when T -duality is applied to such an object. To test the 

interpretation as the D9-anti-D9 bound state, assuming some property of branes probing 

such a system, we consider the T-duality of the object which is obtained as the T-dual 

image of our favorite example of k = 0, N = 1 flat connection A~ = ia~. We must get 

back the original flat connection. We will work in the finite-dimensional approximation 

of V: £+ --+ &- introduced before and will focus our attention to a neigorhood of a= a0 , 

ignoring the global issue on T4 which yields only a subleading modification in the present 

discussion. 

Thus, our starting point is the two pairs of D9 and anti-D9-branes wrapped on T4 

supporting the rank-two Chan-Paton bundles E+ and E- and the tachyon field T: E+--+ 

E- which behaves near a= a0 as (2.14), T(a) = -i7f~(a- a0 )w We probe this system by 
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a D5-brane wrapped on T4• As in the case for a D1-brane probing the brane-anti-brane 

system, we assume that the low-lying fermionic spectrum on the D5-brane is the same 

as the superposition of those for the D5-D9 system and the D5-anti-D9 system. Also, 

we assume that the tachyon expectation value yields the fermion mass term. Thus, the 

probe theory has 5+ 1 dimensional negative and positive chirality fermions with values in 

E+ and E- which we denote by W _ and W + respectively. The lagrangian for these fields 

IS 

(2.15) 

where lfJ=F are the 5+ 1 dimensional Dirac operator associated with the covariant deriva­

tives D± = 8± - ia± and 

(2.16) 

where xP. stands for the flat U(1) gauge field on T4 • Here we have ignored the gauge fields 

of the bundles E±. 

Massless fermions in the reduced·, 1 + 1 dimensions would come from the solutions of 

the equations of motion on the T~ factor 

( 
T iJ- ) ( V;++ ) ( T b+ .) ( ~+-+- ) b+ rt V;-- = o, b- rt 'f/ 

=0, (2.17) 

for V;++ E r(S+ 0 E+), V;-+ E qs- 0 E+) etc, where 8± are negative and postitive 

spinor bundles on T4 and fJ± are the components of the Dirac operator associated with 

flP.. A solution to the equation on the left (resp. right) would lead to a positive (resp. 

negative) chirality fermion in 1 + 1 dimensions. 

Now let us take a closer look at these equations. We first recall some facts about 

the spinor _representations in four-dimensions. Let 2± be the spinor representation of 

Spin(4) = SU(2)+ x SU(2)_ which are sent to each other by the gamma matrices a~-' : 
2+ ---1- 2_ and aP. : 2_ ---1- 2+. We note that there are isomorphisms t:± : 2± ---1- 2± of 

SU(2)± representations such that cuP. = ta~'t:+· Now, using the metric we identify the 

tangent spaces of T 4 and, T4 , and thus we can consider both s± and §± as the trivial 

bundles with the common fibre 2±. In particular, the Dirac operators on T4 can be 

respresented as b+ = aP. flP. and b- = aP. flP.. On the other. hand, the bundles E± look 

like the bundles with fibres 2± in the vicinity of a = a0 where the tachyon is given by 

T(a) = -iu~-'(a-a0)w For convenien~, using the isomorphisms t:±, we shall consider E± 

to have fibres 2± and the tachyon is represented as 

(2.18) 
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Then, we can consider ¢++' '1/J.:.._, ¢...,+ and ¢+- as functions taking values in 2+ ® 2~, 

2_ ® 2:_, 2_ ® 2~ and 2+ ® 2:_ respectively, and the equations (2.17) look like 

{ 
(a~"- ixJL) aJL'!f; __ = i(a- a0 )JL¢++aJL, 

(a~"- ixJL) uJL¢++ = -i(a- a0 )JL'!f; __ uJL, { 
(a:" - ixJL) uiL'l/J+- = i( a- a0 L'l/J-+aJL, 

(a:"- ixJL) aiL'l/J-+ = -i(a- a0 )JL¢+_(fJL. 
(2.19) 

The equations on the left are solved by 

¢++ - b+ exp ( -~Ia- a0 l2 + ixa), (2.20) 

'1/J-'- i 12_ exp ( -~Ia- a0 l2 + ixa) , (2.21) 

while the equations on the right have no solution. This is true for any values of xJL E R 4 • 

Note that this solution is single valued as a function of xJL E T 4 since it obeys the correct 

periodicity with respect to xJL-+ xJL + nJL (n E A): 

'I/;( a) at x = eina'l/;(a) at x + n (2.22) 

which is dictated by the U(l) gauge symmetry of the probe D5-brane. 

Thus, we have a single positive-chirality fermion in the effective 1 + 1 dimensional 

theory. This is interpreted as the 1-9 string mode of the D1-brane probing a D9-brane. 

Since the above solution for ( ¢++, '1/J--) is ·single valued and non where vanishing over the 

whole space T\ the Chan-Paton bundle of the D9-brane is topologically trivial. The 

gauge field on this trivial bundle can be computed as 

A"(x) =IT< d4
a (.Pt+,.p!_) a:- ( ~~~) (2.23) 

when ¢++ and '1/J-- are correctly normalized. Thus, we have recovered the original fiat 

connection supported by a single D9-brane. 

3 Orientifold and Orbifold 

We apply the argument of the previous section to the case where the four-torus is at an 

orientifold fixed plane or is modded out by Z2 orbifold action. We describe the T-duality 

in terms of the gauge field configuration representing the system. This will lead us to 

find a Nahm transform for instantons_on T 4 with orthogonal/symplectic gauge groups or 

on orbifold T 4 /Z 2 • Here we only con~ider the generic case where the transformed object 

is a vector bundle, and more general case will not be presented since that would be a 

repetition of section 2.2. (However, the general case will be included in section 4.) 
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3.1 D-branes Wrapped on Z2 Orientifold/Orbifold of Four-Torus 

As preliminaries, we provide the gauge theory description of D-branes wrapped on Z2 

orientifold/orbifold of four-torus where Z2 acts on the torus via the inversion- the sign 

flip of all four flat coordinates. (For orientifold, we consider here the case where D-branes 

and orientifold-planes are parallel except the four-torus directions.) We apply the method 

of [33] to find the description. Similar analysis for orientifold has been done in [34, 35] 

and most close one is in [36], while the orbifold case was analyzed in [37, 38]. 

(i) Orientifold of SO-Type 

We first consider the case of orientifold of SO-type. Thus, we would like to find a gauge 

theory description of, say, 2k D4-branes in Type IIA orientifold on R x (T4 x R5)/Z2 

which are wrapped on the T4 directions. For this, we start with the T.:.dualized system 

of 2k DO-branes in Type IIA orientifold on R x T 4 x R 5 /Z2 and perform the Fourier 

transform as in [33]. ', 

If T 4 were R\ the theory on 'the DO-branes would be the supersymmetric quantum 

mechanics with eight supercharges which can be obtained as the dimensional reduction of 

four-dimensional N = 2 Sp(k) gauge theory with a hypermultiplet in the anti-symmetric 

representation. The bosonic fields in such a theory is Sp(k) gauge field A0 (which can 

be gauged away), the scalars XP (p = 5, 6, 7, 8, 9) in the adjoint representation, and the 

scalars XP. (J.L = 1, 2, 3, 4) in the anti-symmetric representation. The adjoint and anti­

symmetric representation fields, XP and XP., can be represented by 2k x 2k anti-hermitian 

and hermitian matrices respectively, both of which obey 

J X = X J, J = ( ~• - :• ) , (3.1) 

where X is the complex conjugation of X and lk is the k x k unit matix. 

For T 4 = R 4 / A, we must take into accout the open strings winding around 1-cycles 

(and ending on the DO-branes). Thus, as in [33], we must replace the Sp(k) gauge group 

to the symplectic group "Sp(kiAI)" of infinite rank. The bosonic fields in the theory can 

be represented by 2k X 2k matrices x~m' x::m parametrized by ( n, m) E A X A which 

obey X~"!n +X!:tn = 0, Xt:J'n = X~n and also (3.1) for each X= X~m,Xt:m· There are also 

periodicity conditions X(n+n')(m+n') = __ X~m and X(n+n')(m+n') = Xt:m + (n')P.Jn,m12k· Let 
us put 

(3.2) 
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AM(£) = i ~ ein:& x::o, (3.3) 
nEA 

where x = ( x M) are coordinates of the dual torus T4 = (R 4 )* /271" A*. Then, these are 

functions on T4 with values in 2k x 2k anti-hermitian matrices and satisfy 

JXP(x) = XP(-x)J, 

J AM(x) =-AM( -x)J. 

(3.4) 

(3.5) 

The Sp(kiAI) gauge transformation is represented as the transformation of the fields 

XP(x), AM(£) given infinitesimally by JXP(£) = [XP(x), a(x)] and JAM(£) = [AM(£), a(x)]+ 

8Ma(x) where a(x) is a function on T4 which satisfy the same conditions as XP(x). The 

lagrangian is the same as the one for the 4+ 1 dimensional N = 2 supersymmetric (sixteen 

supercharges) U(2k) Yang-Mills theory formulated on R x T4 • The number of unbroken 

supersymmetries are reduced to eight by the constraints (3.4) and (3.5) on the fields. 

This is the gauge theory description of wrapped D4 branes in the Type IIA orthogonal­

orientifold on R x (T4 x R 5)/Z2 • It is obvious how to generalize this to the system of 

wrapped D(p + 4)-branes in the Type II orientifold on RP+l x (T4 x R 5-P)/Z2 with 

Op-plane of SO-type at each of the sixteen fixed point. 

The conditions (3.4) and (3.5) can be restated in a way which applies also to the case 

where the gauge bundle on T4 is topologically non-trivial. Let E be a U(2k)bundle over T4 

(a rank 2k complex vector bundle provided with a hermitian fibre metric (, )). The fields 

XP(x) and AM(£) represent respectively a section XP of the adjoint bundle of E (an anti­

hermitian endomorphism of E) and a unitary connection '\7 of E (a connection preserving 

the hermitian metric). Now suppose we have a family of anti-liner maps J = (J:e) sending 

the fibre at x to the fibre at -£: 

J;e: E:e --+ E_;e, such that J_;eJ;e = -id:e (3.6) 

which is isometric in the sense that (J;ev,J;ew) = (w,v). We shall call such a family J 
a symplectic structure of E over the inversion x t-+ -x ofT\ and such a pair (E, J) a 

symplectic orientibundle over the (orthogonal) orientifold T4 /Z2 • Such anti-linear maps 

J can be locally represented by the matrix (Jii) in (3.1) as J:eei(x) = ej( -fi;)Jii where 

ei is an orthonormal frame of E defined in an open subset of T4 and ej is another one 

defined in the inversion image (we shall call such a pair of frames a symplectic frame). 

Then, the condition (3.4) means that_ XP commutes with J, J;eXP(x) = XP( -x)J:e, and 

the condition (3.5) requires that the connection '\7 preserves the symplectic structure J in 

the sense that J'Vxs = '\7(-x)Js for a (local) sections and a vector field X on T4 where 

Js is another section defined by J;es(x) = (Js)(-x) and -X is the image of X under the 
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inversion x 1--t -x. The gauge transformations are (local) unitary automorphisms of E 
which commute with the map J. 1 

One can show that a U(2k) bundle on T4 with arbitrary instanton number N admits 

a symplectic structure over the inversion. Let us choose a neighborhood D of x = 0 given 

by lxl ~ t: and let T4 \ D be the outside region. A U(2k) bundle E of instanton number 

N can be constructed by glueing the trivial bundles over D and T4 \ D at the boundary 

S3 = {lxl = t:} by a transition function g: S 3 -+ U(2k) of winding number N. We define 

the anti-linear map lx : Ex -+ E_x over T4 \ D as the complex conjugation followed by the 

multiplication by the matrix J in (3.1) with respect to the trivialization we started with. 

At the boundary S3
, the matrix to be multiplied is expressed as J(x) = g( -x)-1Jg(x) with 

respect to the trivialization that extends over D. We can extend Jx to the interior of D if 

J(x) can be extended to a function on D satisfying J( -x)J(x) = -1 and J(x)tJ(x) = 1. 

Let us embed Sp(1) in Sp(k) C U(2k) via h E Sp(1) 1--t diag(h, 1, ... , 1) E Sp(k). Then, 

a map X E S3 = Sp(1) 1--t XN E Sp(1) induces a map g: S3 -+ U(2k) of winding number 

N which yields J(x) = ( -1)N Jon $~· Thus, Jx extends to the interior of D and hence 

to all over T4 , defining a symplectic structure over the inversion. 

(ii) Orientifold of Sp-Type 

We next consider the case of orientifold of Sp-type. We shall find a gauge theory 

description of k D4-branes in Type IIA orientifold on R x (T4 x R5)/Z2 which are wrapped 

on the T4 directions. We start with. the T-dualized system of k DO-branes in Type IIA 

orientifold on R x T 4 x R 5/Z2 and proceed as in the previous case. The differece is that (in 

the case where T 4 is replaced by R4 ) the gauge group is now O(k) and the hypermultiplet 

is in the second rank symmetric tensor representation. The effect is to eliminate the 

matrix J in every formula in the previous case. 

Thus, the theory of D4-branes wrapped on T4/Z2 orientifold contains bosonic fields 

XP(x) (p = 5,6, 7,8,9) and AJL(x) (J..L = 1,2,3,4) with values ink x k anti-hermitian 

matrices obeying 

XP(x) = XP( -x), 

AJL(x) = -AJL( -x). 

(3.7) 

(3.8) 

1There is another way to state the conditions: Let us define a bilinear pairing (, } of the fibres at x and 

-x by (vii, w_.,) = (Jv.,, w_.,). Then, this. is a non-degenerate skew-symmetric form (skew-symmetric 

in the sense that (v.,, w_.,) = -(w_.,, v.,)). Then, the conditions (3.4) and (3.5) means that the gauge 

transformations and the connection "i1 should preserve the skew-form (, ). 
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The infinitesimal gauge transformation parameter a( x) obey the same conditions as 

XP(x). The lagrangian is the same as the one for 4 + 1 dimensional N = 2 U(k) 
super-Yang-Mills theory on R x T4 but the supersymmetries are reduced to eight by 

the constarints on the fields. 

We restate the conditions (3.7) and (3.8) in a general set up. Let E be a U(k) bundle 

over T4
• The fields XP(x) and A~-'(x) represent respectively a section XP of the adjoint 

bundle of E and a unitary connection \7 of E. Now suppose we have a family of anti-liner 

maps I= Ux) sending the fibre at x to the fibre at -x: 

Ix: Ex -----t E_x, such that Lxfx = idx (3.9) 

which is isometric in the sense that (fxv, fxw) = (w, v). We shall call such a family I an 

orthogonal structure of E over the inversion x -+ -x ofT\ and such a pair (E, I) an 

orthogonal orientibundle over the {symplectic) orientifold T4 /Z2 • Such anti-linear maps 

I can be locally represented as fxei(x) = e~( -x) where ei is an orthonormal frame of E 
defined in an open subset of T4 and' ej is another one defined in the inversion image (we 

shall call such a pair of frames a real frame). Then, the condition (3. 7) means that XP 
commutes with I and the condition (3.8} requires that the connection \7 preserves the 

symplectic structure I (in the similar sense as before). The gauge transformations are 

(local) unitary automorphisms of E which commute with the map I. 2 

One can show that a U(k) bundle on T4 admits an orthogonal structure over. the 

inversion provided the instanton number is even, say 2N. The construction is as in the 

previous case. Thus, we only have to show that the function I(x) = g( -x)-1g(x) on 

S3 = {lxl = E} extends to a function defined on lxl ~ E obeying I( -x)I(x) = 1 and 

I(x)ti(x) = 1 if g : S3 -+ U(k) is a map of even winding number 2N. Let us embed 

Sp(1) in SO(k) c U(k) via h E Sp(1) t-+ [(h, 1)] E (Sp(1) x Sp(1))/Z2 = S0(4) c 
SO(k). Then, a map x E S3 = Sp(1) t-7 xN E Sp(1) induces a map g : S3 -+ U(k) of 

winding number 2N. This yields I(x) = (-1)N which obviously extends to lxl ~E. Note 

that this construction applies only to the case of even instanton numbers (presumably 

there is no orthogonal structure over the inversion for odd instanton numbers because of 

1r3(U(k)jO(k)) = Z2). 

2 A bilinear pairing (, ) of the fibres at x and ..:..x defined by (Vi, w_i) = ( J Vi, w_i) is a non-degenerate 
symmetric form (symmetric in the sense that (vz,W-z} = (w-,&,v:&)). Then, the conditions (3.7) and 

(3.8) means that the gauge transformations. and the connection "V should preserve the form (, ). 
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(iii) Orbifold 

Finally, we provide a gauge theory description of D-branes wrapped on the orbifold3 

T 4/Z 2 • We consider here 2N D4-branes (the generalization top> 4 branes is obvious). 

We start with Type IIA string theory on the dual T4/Z2 with 2N DO-branes at points 

ofT\ and proceed as before following [33]. The bosonic fields in the theory of lowlying 

open string modes can be represented by 2N x 2N matrices X!m., XJ.J.,nm parametrized 

by (n,m) E 21rA* x 21rA* which obey the usual conditions X!l + X~n. = 0, .X!,n.m. = 
XJ.J.,mn, X(n+n')(m+n') = X!m. and .XJ.J.,(n+n')(m+n') = XJ.J.,nm + (n')J.I.on.,m12N· The z2 orbifold 

0 0 p p A A 

proJectiOn amounts to <I>X-nm.<I> = X-n-m' <l>XJ.I.,nm.<I> = -XJ.J.,-n-m., where 

(3.10) 

Here we assumed that the Z2 orbifold action on Chan-Paton factor is in a sum of copies 

of the regular representation, but we can relax this condition so that <I> is an arbitrary 

unitary matrix that squares to 1. Such matrices are classified by Tr <I> up to similarity 

transformation. 4 Let us put 

(3.11) 

(3.12) 

where x = (xJ.J.) are coordinates of the torus T4 • Then, these are functions on T 4 with 

values in 2N x 2N anti-hermitian matrices and satisfy 

<.PXP(x)<I> = XP( -x), 

<l>AJ.J.(x)<l> = -AJ.J.(-x). 

(3.13) 

(3.14) 

The gauge transformation is represented infinitesimally by oXP(x) = [XP(x), a(x)] and 

oAJ.J.(x) = [AJ.J.(x), a(x)] + 8J.J.a(x) where a(x) is a function on T 4 which satisfy the same 

conditions as XP( x ). The lagrangian is the same as the one for the 4 + 1 dimensional 

N = 2 U(2N) super-Yang-Mills theory on R x T\ but the number of supersymmetries 

are reduced to eight by the constraints on the fields. 

We restate the conditions (3.13) and (3.14) in a general set up where the gauge bundle 

on T 4 is not necessarily topologically trivial. Let E be a U(2k) bundle over T 4 . The fields 

3Here, we consider string theory based, on the orbifold CFT on the worldsheet. When T4 /Z2 is 

considered as a singular K3-surafce, NS-NS B-field has period 1r for each· of the sixteen vanishing two­

cycles. 
41fTr<P f; 0, there must be a fractional brane stuck at the Z2 fixed point (9]. 
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XP(x) and AJ.I(x) represent respectively a section XP of the adjoint bundle and a unitary 

connection \7. Now suppose We have a family of linear maps <.p = (<.px) sending the fibre 

at x to the fibre at -x: 

(3.15) 

which is unitary in the sense that (<.pxV,<.pxw) = (v,w). We shall call such a family <.p a 

lift to E of the inversion x r+ -x of T\ and such a pair (E, <.p) an orbibundle over the 

orbifold T 4/Z2.5 Then, the condition (3.13) means that XP commutes with <.p and the 

condition (3.14) requires that the connection \7 preserves <.pin the usual sense. The gauge 

transformations are (local) unitary automorphisms of E which commute with the map 

<.p. Two lifts of the inversion cannot be equivalent if the traces are different at any of the 

sixteen fixed points {xi}· We shall call a lift <.p traceless if Tr<px; = 0 at all of the fixed 

points. 

One can show that a U(2N) bundle on T 4 admits a traceless lift of the inversion 

provided the instanton number is ev~n, say 2k. As before, we only have to show that the 

function <P(x) = g( -x)-1<Pg(x) on S3 = {lxl = €} extends to lxl:::;; € as a function obeying 

<P( -x)<P(x) = 1 and <P(x)t<P(x) = 1, if g: S3 -+ U(2N) is a map of even winding number 

2k. We choose g(x) to be diag(g2(x), 1N-2,g2(x), lN-2) where 92(x) is a map S3 -+ SU(2) 

of winding number k such that g2(-x) = (-1)kg2(x) (it is easy to construct such g2(x): 

for example, identify x E S 3 as a unit quaternion and put g2(x) = xk E Sp(1) = SU(2)). 

Then, <P( x) is a constant unitary matrix <P' such that <P'2 = 12N and Tr <P' = 0, and 

therefore extends to lxl :::;; L 

3.2 Nahm Transform as T-Duality 

We now describe T-duality in terms of the gauge field configuration representing the 

system. We consider T-duality transform ofD(p+4) and Dp-branes on T 4 where T 4 is (i) 

at the fixed plane of orthogonal-orientifold, (ii) at the fixed plane of symplectic-orientifold, 

and (iii) divided by a z2 orbifold action. 

(i) Orthogonal Bundle ++ Symplectic Orientibundle 

We first consider an (unphysical) Type I string theory (or equivalently Type liB 
orientifold of SO-type) on R 6 x T 4 w~th N D9-branes wrapped on T 4 and 2k D5-branes 

5 A more standard terminology (after the Z2 quotient) is V-bundle over V-manifold. The name "orbi­

bundle" is due to K. Fukaya and K. Ono (as far as I know). "Orientibundle" which I introduced in the 

previous part of the paper simply follows this terminology. 
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at points on T4• 

The D9-branes support an SO(N) gauge field and the D5-branes can be represented 

by an SO(N) instanton on T4
• An SO(N) gauge field can be considered as a connection of 

a U(N) bundle E preserving an orthogonal structure I of E (i.e. anti-linear isometric in­

volutions lx: Ex-+ Ex)· Note that the embedding SO(N) c.......t U(N) has index 2, namely, 

it maps the generator of 1r3(SO(N)) "' Z to two times the generator of 1r3(U(N)) ~ Z. 

Therefore the 2k D5-branes, which are represented by a 2k-instanton of U(N) group, 

correspond to a k-instanton of SO(N). 

Probing by a Wrapped D5-brane Pair 

We probe this system by a pair of D5-branes wrapped on T 4 and spanning the x± di­

rections. The theory on the probe is a (1, 0) supersymmetric SU(2) gauge theory in 5 + 1 

dimensions with SO( N) flavor symmetry where the eight supersymmetries are broken to 

half by the instanton configuration <_>f the flavor group. The theory has an SU(2) vector 

multiplet, a singlet hypermultiplet and a half-hypermultiplet in the bifundamental repre­

sentation (N, 2*) of SO(N) x SU(2). The condition of half-hypermultiplet is important 

for our purpose and deserves a paragraph of digression as a reminder. 

If a hypermultiplet is in a pseudo-real representation of the flavorxgauge group, one 

can impose a half-hypermultiplet condition. Let JAB be the skew-form defining the psudo­

reality (so that the representation matrix 91 satisfies JABgif:J = giJBG in addition to 

unitarity), and let tur be the invariant tensor of the SU(2)R symmetry. Then, the half­

hypermultiplet conditions for the hypermultiplet fields (QuA, llfA) are 

QuA= JABtruQrB, 

wA = JAB(wBrs+l, 

(3.16) 

(3.17) 

where ( · ys+1 is the charge conjugation in 5+ 1 dimensions. 1 In particular, the fermion 

1 In 4n dimensional Euclidean or ( ( 4n + 1) + 1) dimensional Minkowski space, charge conjugation does 

not flip the chirality. The square of charge conjugation is 1 for even n while it is -1 for odd n. The 

5 + 1 dimensional spinor representation decomposes to the tensor product of the 4 and 1 + 1 dimensional 

spinor representations, and the 5 + 1 dimensional charge conjugation can be represented as the tensor 

product of the ones in 4 and 1 + 1 dimensions; 

' 

We shall write ( · )c for ( · )c4 • In the representation where the d = 4 Gamma matrices are given by 

I' _ ( 0 u~' ) 
'Y - (il' 0 ' u~' = ( iiT, 1), u~' = u~'t, 
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wa is a symplectic-Majorana-Weyl spinor (of negative chirality). Indeed, the conditions 

(3.16) and (3.17) are invariant under the (1,0) supersymmetry 

(3.18) 

generated by a symplectic-Majorana-Weyl spin or eu = Eur ( e'T )Cs+l of positive chirality. 

In our case, the flavorxgauge group is SO(N) x SU(2) and the representation (N, 2*) 
is indeed pseudo-real; if we denote the SU(2)-gauge indices by a, b, ... and the SO(N)­

flavor indices by i,j, .. . , the skew-form defining the pseudo-reality is t:abJii. In the present 

set-up, the SO(N)-flavor bundle is topologically non-trivial and the hypermultiplet fields 

are sections Qua and wa of the bundle E and E ® S5f-1 respectively where S5f-1 is the 

5 + 1 dimensional spin bundle of negative chirality. Let us define an antilinear map 

IcS+1 : E ® S5f-1 -+ E ® S5f-1 as the tensor product of the map I acting on E and the charge 

conjugation on S5f-1 • Then, the conditions of half-hypermultiplet are Qua = t:abt:ru I( Qrb) 

and 

w~ = t:ab ICS+l(\lfb)) (3.19) 

where IQ is defined by (IQ)(x) = IxQ(x) and the definition of IcS+1 \lf is similar. 

At long distances,· as in the case without orientifold projection, we obtain an effective 

1 + 1 dimensional theory with (0, 4) supersymmetry. The SU(2) gauge field on T 4 reduces 

to scalar fields taking values in the moduli space of flat SU(2) connections on T 4
• A flat 

SU(2) connection can be represented as a constant gauge field of the form 

SU(2) _ · ( aJL 0 ) ap. - z . • 
0 -ap. 

(3.20) 

Since there are SU(2) gauge equivalence relations ap. = -ap. = ap. + np. (n E 27rA*), the 

moduli space is (R4 )* /(27rA*xZ2) = T4 /Z2· Away from the z2 fixed points ofT\ the 

SU(2) gauge symmetry is broken to U(1) and we obtain from the SU(2) vector multiplet 

and the singlet hypermultiplet the 1 + 1 dimensional (0, 4) multiplets whose bosonic 

components are U(l) gauge field ia± (embedded in SU(2) as a;,u(2
) = diag(ia±, -ia±)) 

and scalar fieids taking values in R 4 x T4 modulo a Z2 action which simultaneously flips 

the sign of a± and the coordinates of T4
• At the sixteen Z2 fixed points, the SU(2) gauge 

symmetry is restored. 

the d = 4 charge conjugation is given by ,pc = C,P* (on both chirality) in which Cis a charge conjugation 

matrix given by C = iu2 and'¢* is the comp!ex conjugation of ,P. 
The d = 1 + 1 charge conjugation is simply the complex conjugation >.c1+1 = ).* in the representation 

where -y0 = -iu2 and -y9 = u1 in which -y0 -y9 = diag(-1, 1). In this paper, we often denote>.* by X. 
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Massless fields also come from the half-hypermultiplet in the (N, 2*) representation. 

They correspond to the fields on T 4 satisfying the equations as (2. 7) where now 

D = {) + A so(N) _ t asU(2) 
J.l J.l J.l J.l ' 

(3.21) 

in which a~U(2) is the flat SU(2) gauge field (3.20) and A~O(N) is the SO(N) instanton. 

Namely, they come from the zero modes of the Laplace and the Dirac operators on T 4 

associated with D1±a) = {)J.L + A~O(N) =F iaw Generically, there are nothing else than 2k 

negative-chirality zero modes for each of JjJ(a) and JjJ(-a). As in the previous section, we 

expand the field wa by the orthonormal basis 'lj; I( ±a) (I = 1, ... , 2k) of the space of zero 
modes of JjJ(±a) as 

2k 2k 

W1 = 2::>h(a) 0 .X11
' W2 = L 1/JI( -a) 0 .X21

, (3.22) 
1=1 I=l 

where ,xa = (.Xa1) are positive chirality spinors in 1+1 dimensions. The lagrangian for wa 
then becomes 

(3.23) 

where AJ.L(a)daJ.L is the U(2k) gauge field on T 4 (defined as in (2.10)) defining a connection 

of the bundle E of JjJ(a) zero modes. The bundle E has instanton number N and A = 

AJ.L( a )daJ.L has a self-dual curvature. 

The half-hypermultiplet condition constrains the fermions ,xa. We first note that the 

operator Ic'*1 induces in the T 4 factor a map sending JjJ(a) zero modes to JjJ(-a) zero 

modes and vice versa. Let Ic : E 0 S -+ E 0 S be the tensor product map of I on 

E and the charge conjugation on the spinor bundle S on T 4 • With respect to a (local) 

real-orthonormal frame of E, fC is represented simply as the charge conjugation. Since 

A~O(N) is represented by real anti-symmetric matrices in such a frame, the effect of Ic 
on the Dirac equation 'YJ.L({)J.L + A~O(N) - iaJ.L)'Ij; = 0 is simply to change the sign of aw 

Namely, if 'lj; is a zero mode of JjJ(a), then Ic'lj; (defined as (Ic'lj;)(x) = I~'lj;(x)) is a zero 

mode of JjJ(-a). Thus, Ic7/JI(a) can be spanned by o/1( -a)'s 

Ico/I(a) = L o/J( -a)Jf1. (3.24) 
J 

Then, the half-hypermultiplet condition W2 = IC<>t! W1 requires that 

(3.25) 
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The anti-linear map Ja : Ea -+ E_a induced by '1/J 1---t JC'IjJ defines a symplectic structure 

J over the inversion. Indeed, it squares to J_aJa = -1 due to the property '1/Jcc = -'1/J of 

charge conjugation in Euclidean four dimension, and it is isometric since (F'IjJ1)t JC'IjJ2 = 

'I/J~'I/J1 . A direct computation shows 

(3.26) 

which means that the connection A preserves J. Thus, we have a symplecticorientibundle 

(E, J) over the orientifold T4 /Z2 with a connection A. 

The theory we have obtained is exactly the same as the effective theory on a D1-brane 

pair probing the system of k pairs of D9-branes in Type liB orientifold on R6 x T4 /Z2 

which support the symplectic orientibundle (E, J) with the connection A. In fact, the 

condition (3.25) is nothing but the orientifold projection on 1-9 open string modes. By 

definition, this theory must be identifed as the effective theory of the D1-brane pair 

which is T-dual to the original D5-brane pair. Thus, we conclude that the T-duality 

mapping D9 and D5 branes in Type, I string theory on R 6 x T 4 to D9 and D5 branes 

in Type liB orientifold on R 6 X T4 I z2 is represented by the transform ( E' A SO(N)' I) M 

(E, A, J) of SO(N) instantons on T 4 of instanton number k to N-instantons in symplectic 

orientibundle on T4 /Z2 of rank 2k. 

The Inverse Transform 

The transform (E, A80(N), I) 1---t (E, A, J) may be considered as a generalization of 

Nahm transform to the case of orthogonal bundles. To fully establish this, we should 

provide the inverse transform. Thus, we consider D9-branes wrapped on the orthogonal 

orientifold T4 /Z2 supporting a rank 2k symplectic orientibundle (E, A, J) of instanton 

number N, and probe this by a wrapped D5-brane. 

The theory of lowlying modes on the probe D5-brane can be analyzed in the same 

way as we have done for wrapped D4-branes in orientifold on R X (T4 x R5)/Z2 . It is 

a 5 + 1 dimensional (1, 0) supersymmetric U(1) gauge theory on R 2 x T4 with U(2k) 
flavor symmetry where the eight supersymmetries are broken to half by constraints on 

the fields (written below) and by the instanton configuration A~'dx~' of the flavor group. 

The theory containes a U(l) vector multiplet, a free hypermultiplet and a hypermultiplet 

in the bifundamental representation (2k, -1) of U(2k) x U(1). The bosonic fields XP from 

the free hypermultiplet and the U(l) 'gauge field ia (and their superpartners) are subject 

to the constraints 

(3.27) 
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(3.28) 

and the U(1) gauge transformations are also constrained as g( -x) = g(xt1
• The hyper­

multiplet in the bifundamental (2k, -1), which consists of sections Qu and \ll of E and 

E ® S5t1, is subject to the "half-hypermultiplet" conditions: Qu = f.
7 u JQ7 and 

(3.29) 

where JQ and Jcst1 \ll are defined respectively by (JQ)(x) = J_xQ( -x) and (JCstt \ll)(x) = 

f 1234 J~5t \ll ( -x) (multiplication by f 1234 represents a lift of the inversion of T4 to the spin 

bundle). These conditions are invariant under the supersymmetry (3.18) generated by the 

symplectic-Majorana-Weyl spinor eu which is of positive-chirality also in four dimensions 

r 1234c _ c !,u-!,u• 

The Kaluza-Klein reduction on T4 leads to a 1 + 1 dimensional (0, 4) supersymmetric 

theory. The gauge symmetry reduces from U(1) to Z2 since g = ±1 are the only gauge 

transformations that are constant along T4 satisfying the constraint. The vector and 

the free hypermultiplets reduce to z2:._singlet (0, 4) multiplets whose bosonic components 

are scalar fields taking values in R4 x T 4 where T 4 appears here as the moduli space of 

(constrained) flat U(1) connections ixlldxiL on T4
• The hypermultiplet in (2k, -1) leads 

to Z2-nonsinglet positive-chirality fermions _x.i with values in the bundle E of zero modes 

of the Dirac operator associated with the covariant derivative fl1L = {)IL +AIL- ixiL. The 

bundle E has rank Nand instanton number 2k. The fermions ).i are coupled to the dual 

connection AA x ),j of E constructed as before, and are constrained as below. 

Let Jc : E ® S --+ E ® S be the anti-linear map covering the inversion of T4 defined 

as the tensor product of the map J : E --+ E and the charge conjugation followed by 

the 11234-multiplication on the spinor bundle S of T4 (the latter map is an antilinear 

lift of the inversion of T4 to S). In a (local) symplectic frame of E, it is represented as 

the charge conjugation followed by the multiplication by 11234 and the matrix J given 

in (3.1). Then, the Dirac equation 'YIL({)IL + AIL(x) - ixiL)'Ij;(x) = 0 is transformed to 

'YIL( {)IL + J AIL(x)J-1 + ix~L)'Y1234 Jtpc(x) = 0. In the symplectic frame, the gauge field AIL(x) 
satisfies (3.5); JAIL(x)J-1 = -A~'(-x). Thus, we see that Jc'lj; (defined as (Jc'lj;)(x) = 

J:x'I/J( -x)) is a 1fJ zero .mode, if 'ljJ is. If '1/Ji (i = 1, ... , N) are orthonormal basis of the 

space of 1fJ zero modes, Jc'I/Ji can be spanned by 'lj;j's 

(3.30) 

Then, the condition (3.29) constrains the fermions _x.i (associated with the base '1/Ji) as 

_x.i = j~ ,X.i. (3.31) 
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The anti-linear map lx: Ex -t Ex induced by '1/J H- Jc'lj; defines an orthogonal structure 

of E. Indeed, it is an involution 12 = 1 because '1/Jcc = -'1/J and J J = -1, and also it is 

an isometry, I Jc'l/JlJc'lj;2 =I '1/J~'l/;1 . It is easy to see that the dual gauge field A preserves 

this. Thus, we have an SO(N) bundle (E, l) with an SO(N) connection A. 

The effective theory we have obtained is exactly the same as the effective theory 

of a D1-brane probing the system of N D9-branes in Type I string theory on R 6 x 

T 4 which support the SO(N) bundle (E,i) and the connection A. Indeed, a Type I 

D1-brane has a Z2 gauge symmetry (24] and also, (3.31) is nothing but the orientifold 

projection on 1-9 string modes in such a system. Thus, we can conclude that the T­

duality mapping the D9-D5 system in Type liB orientifold on R6 x T4 /Z2 to the D9-D5 

system in Type I on R 6 x T 4 is represented by the transform (E, A, J) H- (E, A, J) of 

the gauge field configurations. Since T -duality squares to the identity, the transforms 

(E, A, I) -t (E, A, J) and (E, A, J) H- (E, A, J) must be inverse of each other. This can 

indeed be shown explicitly (see Appendix). 

Summary 

We have constructed a Nahm transform which is a correspondence of instantons of 

orthogonal bundle on T 4 and instantons of symplectic orientibundle on the orthogonal 

orientifold T4 /Z 2 • The orthogonal bundle of rank Nand instanton number k correspond 

to the symplectic orientibundle of rank 2k and instanton number N. By construction, 

the T-duality between the D9-D5 system of Type I string theory on T 4 and the D9-D5 

system of Type liB on orthogonal orientifold T4 /Z 2 is given by this Nahm transform. 

(ii) Symplectic Bundle B Orthogonal Orientibundle 

,We-next consider an (unphysical) Type liB string theory with Sp-type 09-plane on 

R 6 x T 4 with 2N D9-branes wrapped on T 4 and k D5-brane~ at points on T 4 . 

The D9-branes support an Sp(N) gauge field which can be considered as a connection 

of a U(2N) bundle E preserving a symplectic structure J of E (i.e. anti-linear isometries 

Jx : Ex -+ Ex such that J'; = -idx)· Since the embedding Sp(N) <-t U(2N) has index 

one, the k D5-branes correspond to a k-instanton of Sp(N) on T4 • 
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Probing by a Wrapped D5-brane Pair 

We probe the system by a pair of wrapped D5-branes as before. The theory on the 

probe is a (1, 0) supersymmetric 0(2) gauge theory in 5 + 1 dimensions with Sp(N) flavor 

symmetry where the supersymmetries are broken to half by the instanton configuration of 

the flavor group. The theory has an 0(2) vector multiplet, a hypermultiplet in the second 

rank symmetric tensor representation, and a half-hypermultiplet in the bifundamental 

representation (2N, 2*) of Sp(N) x 0(2). The conditions ofhalf-hypermultiplet are Qua= 

(.TO' JQTa and wa = JCS+! wa Where a, b = 1, 2 are 0(2) gauge indices, Qua and wa are the 

hypermultiplet fields which are sections of the bundle E and E ® S5+1 respectively, and 

J Q and JcS+1 \l1 are defined as before. 

At long distances, we obtain an effective 1 + 1 dimensional theory with (0, 4) super­

symmetry. The 0(2) gauge field on T 4 reduces to scalar fields taking values in the moduli 

space of flat 0(2) connections on T 4
• A flat 0(2) connection can be represented with re­

spect to a complexified 0(2) base (suc_h that the fermion ll1 is represented as w± -:- W1 =Fill12 

in the corresponding dual basis) as a' constant field 

0(2) - . ( aJ.£ 0 ) a -z . 
J.£ 0 -aJ.£. 

(3.32) 

Since there are 0(2) gauge equivalence relations a~-' = -a~-' = a~-'+ n~-' (n E 27rA*), the 

moduli space is T4 /Z2 • Away from the Z2 fixed point, the gauge symmetry is broken to 

80(2) = U(1) and the 0(2) vector multiplet plus the symmetric tensor hypermultiplet 

reduce to a U ( 1) gauge field a~(2) and scalar fields taking values in R 4 x T4 (with their 

superpartners) modulo a Z2 action which flips the sign of a~(2) and the coordinates of 

T4 (and their superpartners). At the sixteen fixed points, the 0(2) gauge symmetry is 

restored and a new branch R 4 /Z2 develops. , 

Massless fields also come from the half-hypermultiplet in the (2N, 2*) representation. 

They correspond to the fields on T 4 obeying the equations as (2. 7) where now 

D =a + ASp(N)- a0(2) 
J.£ J.£ J.£ J.£ ' 

(3.33) 

in which a~(2) is the flat gauge field (3.32) and A~P(N) is the Sp(N) instanton. Namely, 

they come from the zero modes of the Laplace and the Dirac operators associated with 

D~±a) = Op, + A~p(N) =f iaw GenericalJy there are nothing else than k Dirac zero modes 

of negative-chirality. We expand w± , ll1 1 =f ill12 by the orthonormal basis ¢r(±a) (I = 
1, ... ,k) of the space of JfJ(±a) zero modes as w± = E¢r(±a) ® _x±I where _x± = (.X±1) 
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are 1 + 1 dimensional positive-chirality fermions. Then, the lagrangian for w± becomes 

( >.+, >.-) (a_ +8-a• ( A~( a) -A•~-a) ) - a~<'l) c~ ) {3.34) 

where A~(a)da~ is the U(k) connection ofthe bundle E over T4 of f/J(a) zero modes defined 

as before. The bundle E has instanton number 2N and A = AIL( a )clap. has a self-dual 

curvature. 

The half-hypermultiplet condition w± = Jer.tl \liT constrains A±. Let Je : E 0 s -+ 
E 0 S be the tensor product map of J : E -+ E and the charge conjugation on the spinor 

bundle s on T4 ~ With respect to a (local) symplecticframe of E, Je is represented by 

the charge conjugation followed by the multiplication by the 2N x 2N matrix J as (3.1) 

under which the Dirac equation '"Y~(a,_, + A~p(N) - ia,_,)'lj; = 0 is transformed to 111-(8,_, + 
JA~p(N)J-1 + ia~)J'Ij;e = 0. In such a frame, the Sp(N) gauge field obeys JA~p(N) = 

A~p(N) J. Thus, if 'lj; is a zero mode of f/J(a), then Je'lj; (defined as ( Je'lj; )( x) = J~'lj;( x)) is a 

zero mode of f/J(-a). In particular, J~?/JJ(a) is spanned by '1/JI(-a)'s 

JC'Ij;~(a) = 'E'I/JJ(-a)Jfl. (3.35) 
J 

Thus, the half-hypermultiplet condition requires 

A-I = I 1J A+J. 
a (3.36) 

The anti-linear map Ia : Ea -+ E_a induced by 'lj; I-t Je.,p defines an orthogonal 

structure over the inversion of T4 • Indeed, it squares to Lala = 1 because .,pee = -.,P and 

JJ = -1, and is isometric since (Je.,pt)tJe.,p2 = 'lj;~'lj;1 • It is easy to see that the connection 

A preserves I. Thus, we have an orthogonal orientibundle (E, I) with a connection A. 

The theory we have obtained is the same as the effective theory on a D1-brane pair 

probing the system of k D9-branes in Type liB symplectic-orientifold on R 6 X T4 /Z 2 

which support the orthogonal orientibundle (E,I) with the connection A. In fact, the 

condition (3.36) is nothing but the orientifold projection on 1-9 string modes. Thus, we 

conclude that the T -duality mapping the D9-D5 system in Type liB symplectic-orientifold 

on R 6 x T 4 to the D9-D5 system in Type liB symplectic-orientifold on R 6 x T4/Z2 is 

represented by the transform (E,A8P(N),J) 1--t (E,A,I) of Sp(N) instantons on T 4 of 

instanton number k to 2N-instantons in orthogonal orientibundle on T4 jZ2 of rank k. 

The Inverse Transform 

To find the inverse transform, we consider D9-branes wrapped on the symplectic ori­

entifold T4 /Z2 supporting an orthogonal orientibundle (E, A,I) of rank k and instanton 
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number 2N, and probe it by a wrapped D5-brane pair. 

The theory on the probe is a 5+ 1 dimensional (1, 0) supersymmetric U(2) gauge theory 

on R2 xT4 with U(k) flavor symmetry where the eight supersymmetries are broken to half 

by constraints on the fields (written below) and by the instanton configuration AJLdxtt of 

the flavor group. The theory containes a U(2) vector multiplet, an adjoint hypermultiplet 

and a hypermultiplet in the bifundamental representation (k, 2*) of U(k) x U(2). The 

bosonic fields XP from the adjoint hypermultiplet and the U(2) gauge field au(2) (and 

their superpartners) are subject to the constraints 

XP( -x) = ~:XP(xl ~:-I, 

atr(2)(-x) = Wtr(2)(xl~:- 1 , a~(2)(-x) = -w~(2)(x)T~:- 1 , 

(3.37) 

(3.38) 

where f is the 2 x 2 matrix as J in' (3.1). The gauge transformations are also constrained 

as ~:g(x) = g( -x)E. The hypermultiplet in (k, 2*) consisting of sections Qua and wa of 

E and E ® S5f-1 (a= 1, 2 are U(2) gauge indices) is subject to the "half-hypermultiplet" 
conditions: Qua= fabfru IQrb and 

(3.39) 

where IQ and [C&tl \)!are defined by (IQ)(x) = LxQ( -x) and JC&tl w(x) = f 1234 I~'t1 W( -x). 
These conditions are invariant under the supersymmetry (3.18) generated by the symplectic­

Majorana-Weyl spinor eu which is positive also in four dimensions f 1234eu = eu· 
The Kaluza-Klein reduction on T4 leads to a 1+1 dimensional (0,4) supersymmetric 

theory. The U(2) gauge symmetry reduces to SU(2), since gauge transformations and 
U(2) ~ ~ 

the gauge field a± that are constant on T 4 belong to the SU(2) subgroup. The T 4 

components of the gauge field reduces to the scalar fields with values in the moduli space 

of flat U(2) connection on T4 subject to the constraint (3.38). Such a flat connection 

can be expressed as at,(2) = ixJL12 where xtt are parameters, and the moduli space is 

T4. because there are gauge equivalence relations xtt = xtt + ntt (n E A). The form 

of at,(2) shows that these scalar fields are SU(2) singlets. The adjoint hypermultiplet 

subject to (3.37) similarly reduces to S_U(2) singlet free scalar multiplet with values in R4
. 

The bifundamental hypermultiplet reduces to SU(2)-doublet positive-chirality-fermions 

_Aai with values in the bundle E over T4 of zero modes of the Dirac operator associated 

with the covariant derivative fltL = 8tt+A~'-ixtt. The bundle E has rank 2N and instanton 

number k. The fermions _Aai are coupled to the dual connection A.,j of E constructed as 

before, and are constrained as described below. 

Let Ic : E ® S -+ E ® S be the anti-linear map over the inversion of T4 defined 

as the tensor product of the map I : E -+ E and the charge conjugation followed by 
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the ')'1234-multiplication on the spinor bundle S. In a (local) real orthogonal frame of E, 

it is simply represented as the charge conjugation followed by the ')'1234-multiplication. 

This transforms the Dirac equation ')'p.(8P. + AP-(x)- ixP-)'ljJ(x) = 0 to ')'p.(8P. + AP.(x) + 
ixP.)1'1234~pc(x) = 0. In the real orthogonal frame, the gauge field AP-(x) satisfies (3.8); 

AP.(x) = -AP.( -x). Thus, we see that Ie.,p (defined as (JC'I/;)(x) = I:_:i:.,p( -x)) is a JfJ zero 

mode, if .,Pis. If 'l/Ji (i = 1, ... , 2N) are orthonormal frame of the space of JfJ zero modes, 

Ie'l/Ji can be spanned by '1/;/s 

(3.40) 

Then, the condition (3.39) constrains the fermions _xai (associated with the basis 'l/Ji) as 

(3.41) 

The anti-linear map Jc : Ex -t Ex induced by 'ljJ 1--+ Ie.,p defines a symplectic structure 

on E. Indeed, it squares to J2 = -1 due to .,pee= -.,P, and is isometric since Ie.,piJC.,P2 = 
'1/JJ'l/JI· It is easy to see that the dual, gauge field A preserves J. Thus, we have an Sp(N) 
bundle (E, J) over T 4 with an Sp(N) connection A. 

The effective theory we have obtained is the same as the effective theory of a D1-

brane probing the system of D9-branes in Type II symplectic orientifold which support 

the Sp(N) bundle (E, A, J) on T 4
• Indeed, (3.41) is nothing but the orientifold projection 

on 1-9 string modes. Thus, we conclude that the T -duality mapping the D9-D5 system in 

orientifold T4 /Z2 to the D9-D5 system in orientifold on T 4 is represented by the transform 

(E, A, I) I--+ (E, A, J) of the gauge field configurations. Since T-duality squares to the 

identity, the transforms ( E, A, J) 1--+ ( E, A, I) and ( E, A, I) 1--+ ( E, A, J) must be inverse 

of each other. This can indeed be shown explicitly (see Appendix). 

Summary 

We have constructed a Nahm transform which is a correspondence of instantons of 

symplectic bundle on T 4 and instantons of orthogonal orientibundle on the symplectic 

orientifold T4 /Z2 • The symplectic bundle of rank 2N and instanton number k correspond 

to the orthogonal orientibundle of rank k and instanton number 2N. By construction, 

the T-duality between the D9-D5 system of Type liB symplectic orientifold on T 4 and 

the D9-D5 system of Type liB symplectic orientifold on T4/Z2 is given by this Nahm 

transform. 
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(iii) Orbibundle 

As the final example, we consider Type liB string theory on orbifold R 6 x T 4/Z 2 with 

2N D9-branes wrapped on T 4 /Z2 and k D5-branes at points on T 4 jZ2 • This system is 

represented by a rank 2N orbibundle ( E, cp) on T 4 / Z2 of instanton number 2k with a 

self-dual connection A. 

Probing by a Wrapped D5-brane Pair 

We probe the system by a pair of D5-branes wrapped on· T 4/Z2 • The theory of 

low lying modes on the· probe can be analyzed in the same way as before. It is a 5 + 1 

dimensional (1, 0) supersymmetric U(2) gauge theory on R 2 x T 4 with U(2N) flavor 

symmetry where the eight supersymmetries are broken to half by constraints on the fields 

(written below) and by the instanton configuration Attdxtt of the flavor group. The theory 

containes a U(2) vector multiplet, an adjoint hypermultiplet and a hypermultiplet in the 

bifundamental representation (2N, 2'*) of U(2N) x U(2). The bosonic fields XP from 

the adjoint hypermultiplet and the U(2) gauge field aU(2) (and their superpartners) are 

subject to the constraints 

XP( -x) = <f>XP(x)</>, 

a~(2)( -x) = -<f>a~(2)( x )</>, a~(2)( -x) = </>a~(2)( x )</>, 

(3.42) 

(3.43) 

where 4> is a 2 x 2 matrix as <P in (3.10). The gauge transformations are also subject 

to the constraint <f>g( x )4> = g( -x ). The hypermultiplet fields in (2N, 2*), the sections 

Qua and q,a of E and E 0 S5f.1 (a= 1, 2 are U(2) gauge indices), are subject to the 

"half-hypermultiplet" conditions: Qua = <f>abcpQub and 

where cpQ and cpW are defined respectively by (cpQ)(x) 

(3.44) 

'P-xQ(-x) and (cpw)(x) = 

f 1234cp_x w( -x ). These conditions are invariant under the supersymmetry (3.18) generated 

by the symplectic-Majorana-Weyl spinor eu which is positive also in four dimensions 

r1234c _ c 
l,.u - l,.u• 

At long distances, we obtain an effective 1+1 dimensional theory with (0,4) super­

symmetry. Note that the gauge transformations and the± component of the gauge field 

that are constant along T4 are in the,U(l) x U(1) subgroup defined by the embedding 

( 
is it) e e 1 

( 

is+ it 

e ' e 1--t -2 . .t 
-e's + e' 

(3.45) 
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Thus, the effective theory has U(1) x U(1) gauge symmetry with the gauge field a~(l)xU(l). 
The T 4 components of the gauge field reduces to scalar fields taking values in the moduli 

space of flat U(2) connections on T 4 subject to the constraint (3.43). Such a flat U(2) 

connection can be expressed as a constant gauge field of the form 

U(2) - . ( a~ 0 ) a -z . 
~ 0 -a 

~ 

(3.46) 

Since there are (constrained) U(2) gauge equivalence relations a~ = -a~ = a~ + n~ 
(n E 2?TA*), the moduli space is T4/Z2 •. The adjoint hypermultiplet reduces to scalar 

multiplet taking values in the adjoint representation of the U(1) x U(1) subgroup. Away . 

from the z2 fixed point ofT\ the gauge group U(1) X U(1) is broken to its diagonal 

subgroup U(1), and we obtain (0,4) supersymmetric U(1) gauge theory which has singlet 

scalar fields taking values in R 4 x T4 /Z2 • At each of the fixed points, U(1) x U(1) is 

unbroken and a new branch develops. 

In any of these branches, massies~ fields also come from the "half-hypermultiplet" in 

the (2N, 2*) representation. They correspond to the fields on T 4 satisfying the equations 

as (2.7) where now 
D - o +A - taU(2) (3.47) 
~- ~ ~ ~ ' 

in which a~<2> is the flat U(2) gauge field (3.46). Namely, they come from the zero modes 

of the Lapiace and the Dirac operators on T 4 associated with Di±a) = {)~+A~ =f iaw 

Generically, there are nothing else than 2k negative-chirality zero modes for each of JfJ(a) 

and JfJ(-a). Let us expand the fermion wa by the orthonormal base '¢'i(±a) of the space 

of JfJ(±a) zero modes as 

'11 1 = 'L:'¢'i(a) 0 .X1
i, w2 =I: .,Pi( -a) 0 ,X2i, (3.48) 

' ' 

where .xa = (.Xai) are 1 + 1 dimensional positive-chirality fermions. The lagrangian for wa 
then becomes 

(3.49) 

where A~(a)da~ is the U(2k) connection of the bundle E over T2 of JfJ(a) zero modes 

defined as before. The bundle E± have instanton number 2N and A= A~(a)daiL has a 

self-dual curvature. 

The fermions .xa are constrained due to the "half-hypermultiplet" condition for wa. It 

is easy to See that, if .,P is a zero mode of JfJ( a), then cp'¢' (defined by ( cp'¢') (X) = cp -x '¢' (-X)) 
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is a zero mode of IjJ(-a). In particular t.p't/Ji( a) can be spanned by '1/Ji( -a): 

(3.50). 

Then, the "half-hypermultiplet" condition requires 

(3.51) 

The linear map cf;a : Ea -+ E_a induced by '1/J I-t t.p't/J defines a lift to E of the inversion 

of T4 • Indeed, it is involutive and unitary because t.p is. It .is also easy to see that A 
preserves cj;. Thus, we have an orbibundle (E,cj;) on T4 /Z2 with a connection A. 

The effective theory we have obtained is exactly the same as the effective theory of 

a D1-brane probing the system of 2k D9-branes on orbifold T4/Z2 which support the 

orbibundle ( E, A, cj; ). Indeed, (3.51) is nothing but the orientifold projection on 1-9 string 

modes. Thus, we can conclude that the T-duality mapping the D9-D5 system on orbifold 

T 4 /Z2 to the D9-D5 system on the ~ual orbifold T4 jZ 2 is represented by the transform 

(E, A, <p) 1--t (E, A, cj;) of the gauge field configurations. Since T-duality squares to the 

identity, the square of this transform must be identity. This can indeed be shown explicitly 

(see Appendix). 

It should be possible to extend T-duality on orbifold T 4/Z2 to T-duality on its reso­

lution- a smooth K3 surface. In [39], the transformation of D-branes under T-duality 

on K3 surface was proposed using Mukai's Fourier transform. It is interesting to derive 

it using our argument and to see the relation to the construction of the present section. 

See also [37] for a related discussion which focuses on the B-field. 

4 Reduction to Topology 

Recently, it was argued by Witten that D-brane charges take values inK-theory groups 

of the space-time [15]. Since T-duality is an equivalence of string theories which sends 

D-branes to D-branes, (if the identification of D-brane charge as K-theory element is 

valid for any size of the space-time) it should induce an isomorphism of relevent K-theory 

groups. One is then interested in what this isomorphism is in general. In this section, we 

determine this forT-duality on four-torus by reducing to topology the Nahm transforms 

obtained in the previous sections. This serves as a warm-up for the next section where 

we will determine the isomorphisms for tori of other dimensions. 
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4.1 D-branes, K-Theory, and Index Theory 

The basic assumption behind the identification of K-groups as D-brane charges [15] 

is that a Dp-brane and an anti-Dp-branes can annihilate by condensation of the tachyon 

field. 1 D-branes located at a submanifold W of the space-time support a complex vector 

bundle Eon W with a connection. Likewise anti-D-branes at W support another vector 

bundle F with a connection. The tachyon field is a complex linear map T : E -+ F 

(and its conjugate Tt : F -+ E). If T is everywhere at the minimum of the tachyon 

potential and hence is an isomorphism,then the system is considered to be equivalent to 

the vacuum; i.e. if E and F are isomorphic, the branes and anti-branes will annihilate. 

The set of pairs (E, F) modulo an equivalence relation (E, F)= (E', F') when there are 

H and H' such that (E E9 H, F E9 H) ~ (E' E9 H', F' E9 H') forms the K-theory group 

K(W). 

We have actually experienced in section 2 a phenomenon analogous to brane--anti-brane 

annihilation; it is the decoupling o~ brane--anti-brane pairs in the infra-red limit of the 

probe theory. We considered a vector'bundle Eon T 4 supported by D9-branes and probed 

the system with a D5-brane wrapped on T 4 • The effective theory on the D5-brane, which 

is a 1 + 1 dimensional theory with a tower of Kaluza-Klein modes, can be identified with 

the effective theory of a D1-brane probing the T-dualized system. The infinite Kaluza­

Klein modes from the 5-9 hypermultiplet are interpreted as the strings stretched between 

the D1-brane and infinitely-many D9 or anti-D9-branes of the T-dualized system. The 

fermion masses come from the Dirac operators on· T 4 and are interpreted as the tachyon 

vevs of infinite D9 anti-D9 pairs. Massive modes are irrelevant at long distances and 

can be simply ignored. We can interpret this as the pair annihilation of the D9 and 

anti-D9-branes via tachyon condensation. 

Now, as in [15], we can associate to this system of D9 and anti-D9-branes an element 

of an appropriate K-theory group which can be considered as the D-brane charge of the 

T-dualized system. Let £+ and &- be the spaces of sections of negative and positive­

chirality spinor bundles on T 4 coupled to E, as in section 2. The Dirac operator f/J 
defines a complex linear map V : £+ -+ &- and its conjugate vt : &- -+ £+. The 

spaces £+ and &- together with the operator V are parametrized by ap. E T4 and are 

1The tachyon is created by stretched strings and its condensation breaks the off-diagonal U(1) subgroup 
of U ( 1) X U ( 1). There has been a puzzle about the fate of diagonal U ( 1) which appears to remain unbroken 

[40, 15]. However, it can disappear by confifl.ement, namely, by condensation of the "magnetic tachyon" 

which is created by stretched (anti-)D(p- 2)-branes and is charged under the (p- 2)-form potential dual 

to the diagonal U(1). See [41] for some of the details. In the present context, these are simply invisible 
sectors and will not be mentioned. 
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considered as bundles over T4 and a map between them. We have interpreted them as 

the bundles supported by the D9 and the anti-D9-branes and the tachyon field of the 

T-dualized system. Thus, the desired element of a K-theory group is "(£+, &-)'' which 

belongs to K(T4
). 

One may wonder whether the fact that the bundles £+ and &- are infinite-dimensional 

causes some trouble. However, since the massive modes are irrelevant (or since brane­

anti-brane pair can annihilate via tachyon condensation), we can throw away the higher 

level modes and reduce the problem to finite dimension. Let us decompose t:+ and &­

as £+ = Ed" ffi Ei and &- = £0 ffi £} in such a way that V sends Et to Ei- ( i = 0, 1), 

Ed" and £0 are finite-dimensional, and V : Et -+ £1 is an isomorphism. Locally such 

a decomposition always exists as one can see, say, by taking the spectral decomposition 

and defining Ei and £1 as the modes whose Dirac eigenvalues do not vanish. If we could 

take such a decomposition· globally on T4
, we would be able to regularize "( £+, &- )" by 

(Eci",£0 ) defining an element of K(T4
). Such a global decomposition does not always 

exist, but we can glue the local dec?mpositions to obtain an element of K(T4
) which 

restricts locally to (Ed", £0 ). 2 This is actually exactly what the family index theory 

defines [6-8] as the index of V : £+ -+ &-. 

The operator V : £+ -+ &- is defined as the Dirac operator n+ : r( s+) -+ r( s-) 

coupled to the family of connections AJL- iaJL over T 4 parametrized by a E T4 • Its index 

actually depends only on the topology of the bundle V on T 4 x T4 which carries this 

family of connections (i.e. the bundle which has a connection which restricts on T 4 x {a} 

to the connection AJL- iaJL). The index can therefore be denoted as ind (D+, V). Thus, 

we need to find out what Vis. 

The Poincare Bundle 

The U(l) connection a~'- ia~' on T 4 is equivalent to a~'- i(a~' + n~') for ft~' E 2?TA* 

under the gauge transformation einx. Also, we recall from section 2 that the U(l) gauge 

symmetry of the probe D5-brane implies that the section '1/J(x) of S± 0 Eat a E (R4)* 

should be identified as the section einx'ljJ(x) at a+n E (R4)*. These motivate us to define 

a complex line bundle P over T4 x T4 as the quotient of the trivial bundle T4 x (R4)* x C 

2Here is the construction: Collecting the spaces &0 defined locally, using cut-off functions we obtain 
a finite-dimensional vector bundle V over T4 with a map f : V -+ &- such that V $ f : &+ $ V -+ &­
is surjective everywhere. The kernel of V $ f has a constant rank and defines a vector bundle over T4 . 

Then, we define "(&+ ,&-)'' by (Ker(V $f), V). 
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by the action of the lattice 271" A* given by 

A ( ) ( A inx ) n:x,a,c~x,a+n,e c. (4.1) 

We call this the Poincare bundle. The gauge potential -iaJLdx~' on T 4 x (R4)* is invariant 

under the transformation ( 4.1) and defines a connection w of P that restricts on T 4 x {a} 

to the flat connection aJL - iaJL of the trivial bundle. When restricted to {X} X T4
' the 

connection w yields a flat connection on T4· which is equivalent to a I 8aJL + ixJL. However' 

w is not flat over T 4 x T4 and has a curvature dw with a first Chern class 

4 da~' 1\ dxJL 4 ~ 
c1(P) = :;_ 271" = ~ 7J 1\ 7Ji, (4.2) 

where 7Ji and ft are basis of H 1(T\ Z) and H 1(T\ Z) respectively (more precisely, their 

image under the embedding of the integral to the real cohomology of the torus). 

The tensor product E ® P has a connection A® 1 + 1 ® w that restricts on T 4 x {a} to 

the connection AJL- iaw Also,£+ and£- are vector bundles whose fibres at a E T4 are 

given by £;t = f(T\ S+®E®Pia) and£;;= f(T\ s- ®E®Pia)· Therefore, E®P is the 

desired bundle over T 4 x T4 that carries the family of connections defining the operator 
1) : £+ --+ £-. 

Thus; we find that the T -duality transformation of the D-brane charge is given by 

E 1--+ E ® P 1--+ ind (D+, E ® P), which can be considered as the image of (E, 0) E K(T4
) 

under the composition of the maps of K-theory groups: 

(4.3) 

By abuse of language, we shall denote ind (D+, E ® P) by E. Since the Nahm transform 

squares to the identity transform of instantons, the above map, which is the topological 

reduction of the Nahm transform, must also square to the identity of K(T4
). Namely, the 

inverse of ( 4.3) is given by 

. K(T4 ) i~ K(T4 x T4 ) ;!!.__ K(T4 ), (4.4) 

where JJ+ is the Dirac operator of T4 and P is the dual of P with connection -w. 

To compute the index, we use the' formula 

ch(ind (D+, V)) = f ch(V)A(X) (4.5) 
X 
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which holds for the Dirac operator n+ : r( s+) -+ r( s-) on any even-dimensional spin 

manifold X coupled to any family of connections carried by a bundle V over X x Y where 

Y is a compact parameter space. Here, A(X) is the A-roof genus of X which belongs to 

H*(X, Q) and chis the Chern character, which is a group homomorphism 

ch: K(X) -+ neven(X, Q) (4.6) 

defined for a general topological space X. Note that ch0 = rank, ch1 = Ct, and ch2 = 
cV2- c2 etc. 

In the present case, we have (see the next section) 

(4.7) 

and the Chern character maps this isomorphically to the subgroup neven(T4
, Z) ~ Z8 

of Heven(T4 , Q) f'V Q8 where H 0 (T4 , Z) ~ Z, H 2(T4 , Z) f'V Z6 (generated by r/r/), 
H4 (T4, Z) ~ Z (generated by the v?lume form). In particular, no information is lost 

by looking only at the Chern character. Since we have V = E 0 P and A(T4
) = 1 

the character of the index is ch(E) -:- JT4 ch(E)ch(P). Since P is a line bundle we have 

ch(P) = ect('P). Then, (4.2) shows that the Chern numbers of E are related to that of the 

index E as 

. rank(E) = ch2(E), 

Ct(E) = -cr(ct(E)), 

ch2 (E) = rank(E), 

(4.8) 

(4.9) 

(4.10) 

where cr is a map of H2(T4, Z) to H2(T\ Z) sending r/'f/i to !Eijklf/kfj
1
• In particular, the 

map K(T4
) -+ K(T4

) given by ( 4.3) is an isomorphism. 

4.2 Orthogonal/Symplectic (Orienti)bundles and Z2 Orbibundles 

We next find the map of D-brane charges under the T-duality on T 4 in the presence 

of orientifold/orbifold projection, by considering the topological reduction of the Nahm 

transforms constructed in section 3. 

Structures of the Poincare Bundle 

The bundle P and the connection w has two basic properties which are useful for the 

present discussion (and which we have actually implicitly used in the construction of the 
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Nahm transform). One is the structure of an orthogonal orientibundle. We note that the 

anti-linear involution 

I: (x, a, c) r+ (x, -a, c) (4.11) 

of the trivial bundle over T 4 x (R4 )* commutes with the action (4.1) of 27rA*, and hence 

defines and orthogonal structure on P over (x,a) r+ (x, -a). We also note that the 

connection w coming from the gauge potential -ia~dx~-' is invariant under this Z2 action. 

Thus, (P,w, I) becomes an orthogonal orientibundle with a connection over T 4 x T4 with 

respect to the inversion of the T4 factor. The other is the structure of an orbibundle. The 

involution 

<p : (x, a, c) r+ ( -x, -a, c) (4.12) 

obviously commutes with the 27rA* action and preserves the connection w. Thus, (P, w, <p) 

is an orbibundle with a connection over T 4 x T4 with respect to the total inversion. 

Relevant K-theory Groups 

As we have seen in section 3.3; in theories with orientifold/orbifold projection the 

Chan-Paton bundles on D9-branes have various extra structures. Accordingly, the relevant 

K-theory groups vary. 

The K-theory group for orthogonal bundles over a space X is the KO-theory group 

of X denoted by KO(X). That for symplectic bundles is likewise denoted by KSp(X). 

Now let Y be a space with an involution cr. Then, the K-theory group for orthogonal 

orientibundles over Y with respect to cr is what is known as KR-theory group and is 

denoted as KR(Y). We can also define K-theory group for symplectic orientibundles 

over Y with respect to cr. We shall denote it by KpR(Y). 1 Finally, the K-theory for Z2 

orbibundles over Y with respect to cr is given by the Z2-equivariant K-theory and the 

group is denoted by Kz2 (Y). 

Note that orthogonal (orienti)bundles and Z2-orbibundles are closed under tensor 

product. Therefore KO(X), KR(Y) and Kz2 (Y) become rings. However, symplectic (ori­

enti)bundles are not closed and thus KSp(X) and KpR(Y) has no ring structure. Instead, 

the tensor product of two symplectic (orienti)bundles is an orthogonal (orienti)bundle, 

and the tensor product of an orthogonal arid a symplectic ( orienti)bundles is a symplectic 

(orienti)bundle. Thus, the sums KO(X) EB KSp(X) and KR(Y) EB KpR(Y) become rings. 

1The same group appears in [19] and is n~med as KH(Y). 
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We first consider the SO-type orientifold and find the transformation· of D-brane 

charges under T-duality on four-torus. As we have seen in section 3, D9-branes in Type 

I string theory support orthogonal bundles while those in Type liB orientifold on T 4/Z2 

support symplectic orientibundles over T4 with respect to the inversion. Thus, we must 

find a map from KO(T4) to KpR(T4
) and back. As in the previous subsection, we can 

find this by taking the topological reduction of the Nahm transform between orthogonal· 

bundles and symplectic orientibundles obtained in section 3. We recall that· the transform 

is based on the Nahm transform for the underlying unitary bundles. Thus, we basically 

follow the maps (4.3) and (4.4)~ 

Since the Poincare bundle P has an orthogonal structure over the inversion of T4
, the 

tensor product of an orthogonal bundle over T 4 (pulled back to T 4 x T4
) and P defines 

an orthogonal orientibundle over T 4 x T4 with respect to the inversion of the T4 factor. 

Thus, ®P defines a map from K0(~4) to KR(T4 x T4 ). On the other hand, the spinor 

bundles s± on T 4 (or on any four-di~ensional spin manifold) has a symplectic structure 

coming from the charge conjugation. Thus, tensoring an orthogonal orientibundle with 

s± (pulled back to T 4 X T4 ) makes a symplectic orientibundle. Then, the index of the 

Dirac operator on T4 becomes a symplectic orientibundle over T4
• Thus, ind n+ defines 

a map from KR(T4 x T4 ) to KpR(T4). By compo~ition, we obtain a map 

KO(T4
). ~ KR(T4 x T4

) ~ KpR(T4
). (4.13) 

In section 3, we have seen that the symplectic structure over the inversion of T4 obtained 

this way is exactly the same as the one for the T-dualized system. Thus, (4.13) is the 

desired map for the T-duality transformation of the D-branes charges. 

The inverse map can be obtained in a similar way. We only have to note that the dual 

Poincare bundle P also has an orthogonal structure over the inversion of the T4 factor and 

that the spinor bundles §± on T4 has a symplectic structure over the inversion coming 

from the charge conjugation followed by the multiplication by f 1234
• The result is 

KO(T4
) ~· KpR(T4 x T4

) ~ KpR(T4
). (4.14) 

The two maps (4.13) and (4.14) must be the inverse of each other, since the Nahm 

transforms are. In particular, these mlJ.st be isomorphisms of groups. Indeed these groups 

are isomorphic (see the next section) 

(4.15) 
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We next consider T-duality on four-torus of the Sp-type orientifold. As before, we 

obtain the map of D-brane charges, fr.om KSp(T4) to KR(T4) and back, by topological 

reduction of the Nahm transform of section 3. We use the orthogonal structure of P (P) 
over the inversion of the T4 factor and the symplectic structure of the spinor bundles s± 
(§±). The result is 

( 4.16) 

and the inverse is 

( 4.17) 

The two groups are indeed isomorphic 

( 4.18) 

Finally we obtain the map from Kz2 (T4 ) to Kz2 (T4 ) by reducing the Nahm transform. 

What we use here is the fact that the Poincare bundle P has a complex linear lift of the 

inversion of T 4 X T4 and that the spinor bundles s± also have a linear lift of the inversion 

given by the multiplication by f 1234• Then, the map is easily obtained. It is 

(4.19) 

The inverse map is similar. 

5 Generalizations 

In the final section, we identify the isomorphism of appropriate K-theory groups that 

realizes the map of D-brane charges under T-duality on torus of arbitrary dimensions. 

5.1 Relevant K-theory Groups 

As argued in [15] and as we have. experienced, D-branes that can be represented as 

bound states of Dp-branes and anti-Dp-branes wrapped on a (p+ I)-dimensional subman­

ifold Ware classified by an appropriate K-theory group of W. In string thoery, it seems 
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common that any D-brane can be represented as a bound state of the highest dimen­

sional D-branes (and anti-D-branes) filling the ten-dimensional space-time X. Therefore, 

the entire D-brane charges of a string theory on X can be classified by an appropriate 

K-theory group of the full space-time X. 

The relevant K-theory group for Type liB string theory on X is K(X) while it is 

KO(X) for Type I string on X [15]. It was also proposed in [15] that D-brane charge in 

Type IIA string theory takes values in K-1(X)- the subgroup of K(S1 x X) consisting 

of elements that are trivial on z0 x X where z0 is a point in S 1 . This proposal was 

supported by Horava in [17]. He first argued that any Type IIA (BPS) D-brane can 

possibly be represented as a certain bound state of the unstable non-supersymmetric 
\ 

D9-branes [42, 17] and then identified the Chan-Paton bundle E with the tachyon field 

T: E-+ E of D9-branes as the pair (E,eiT) which determines an element of K-1(X) via 

another version of the definition of K-1 (X). See [19] for another discussion. 

However, the precise K-theory group has not yet been identified for Type II orientifold 

except for the cases where one knows 'the Chan-Paton bundles on ninebranes; for example 

it is KR(X) (KR-1(X)) when the Chan-Paton bundles on D9 and anti-D9-branes (IIA 

ninebranes) are orthogonal orientibundles [15]([17]).1 Here, we consider the Z2 orientifold 

group generated by an involution r of the space-time X times the worldsheet orientation 

reversal. 2 Dp-branes on top of an Op-plane w· support orthogonal Chan-Paton bundle 

over W if W is of SO-type while they support symplectic bundle over W if W is of 

Sp-type. Away from orientifold planes, physics in the quotient space X/Z2 is locally the 

same as the underlying Type II string theory and in particular D-branes locally support 

unitary bundles. Thus, the relevant K-theory group of X must satisfy the two conditions: 

(i) The group corresponding to D-branes localized on an orientifold plane W must be 

KO(W) or KSp(W) if W is of SO-type or of Sp-type respectively. 

(ii) For a region R in X/Z2 covered by two separate copies of R in X, the group corre­

sponding to D-branes in R must be K(R) for liB and K-1(R) for IIA orientifold. 

We shall propose K-groups which satisfy these conditions. In order to present it, we 

need to introduce some notions and facts inK-theory. See [43-45] for details. 

1 It was also proposed in [15] that it is KR± (X) for a different kind of Chan-Paton bundles. K-theory 

for orientifolds was also studied in [19] with an extension to symplectic Chan-Paton bundles. 
2The generator is (-1)cpFLr0 with Cp = (9-pys-p) in the standard notation, where we assume that 

there are Op-planes for a single p- odd f9r liB, even for IIA ((-1YpFL is for the group to be Z2). 

As before, an Op-plane W is a (p + 1)-dim{:nsional submanifold of X consisting of fixed points of the 

invoiution r which acts near W as the sign flip of (9- p) normal coordinates. It is of SO-type or Sp-type 
depending on the sign of the surrounding RP2 diagram of fundamental string. 

41 



The Groups KR-n(Y) and KpR-n(Y) 

Let Y be a space with an involution a. Let Dp,q be the unit disc in RP+q on which 

we let the involution act trivially on the first p coordinates but by sign-flip on the last 

q coordinates. We consider orthogonal orientibundles over Dp,q x Y with respect to 

the involution acting on Y by a and on Dp,q as dictated above. We define the group 

KR-p,-q(Y) = KR(Dp,q x Y, {)Dp,q x Y) as the KR-group for bundles over Dp,q x Y 

that vanish on {)Dp,q X Y. Here "bundle over A that vanishes on B C A" stands for a 

pair (E, F) where E and F are bundles over A that are isomorphic on B, EIB ~ FIB· 

Replacing "orthogonal" l;>y "symplectic" we o~tain the group KpR-p,-q(Y). We denote 

KR-n(Y) = KR-n•0 (Y) and KpR-n(Y) = KpR-n•0 (Y). The following relations between 

these groups are known as Bott periodicity 

KR-v.-q = KR-v-1,-q-1 , 

KR-n = KR-n-8 , 

KpR-n = KR-n±4. 

(5.1) 

(5.2) 

(5.3) 

Using these, we define KRn etc for n > 0. We see that any of these groups is equal to 

KR-n for some n. We also define KR-n(Y, Z) for a Z2-invariant subspace Z C Y as the 

KR -n -group for bundles over Y that vanish on Z. 3 

When the involution a acts trivially on Y, we have KR(Y) = KO(Y) and KpR(Y) = 

KSp(Y), and we define Ko-n(Y) := KR-n(Y) and KSp-n(Y) := KpR-n(Y). When Y 

is a disjoint union of two copies of a space R and the involution a is the exchange of the 

copies, we have KR-n(Y) . K-n(R) where K'-n is defin~d in a similar way and obeys 

Bott periodicity K-n = K-n-2 so that K-n = K for even -n, and K-n = K-1 for odd n. 

The proposal 

We now propose the relevant K-theory group: D-brane charges of Type II orientifold 

on X/Z2 are classified by 

KR-(9-P)(X) if there are Op-planes of SO-type only, 

KpR-(9-P)(X) if there are Op-planes of Sp-type only. 

(5.4) 

(5.5) 

Let us show that this proposal satisfy the conditions (i) and (ii). We only consider 

SO-type orientifold (since Sp-type orientifold is similar) and we put n = 9- p. Condition 

3More precisely, KR-n(Y, Z) is the KR-group for bundles over sn A (Y/Z) that vanish on the base 

point, where A A B is the smash product defined by (Ax B)f((A x b0 ) U (a0 x B)) (see [43]). 
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(ii) is easy to check by using the relation noted above, KR-n(R U R) = K-n(R), and the 

fact that n is even (p odd) for liB and n is odd (p even) for IIA. 

To test (i), let W be an orientifold p-plane. For the moment, we assume that the normal 

bundle of W in X is trivial so that a neighborhood of W in X looks like a product space 

D0•n x Won which r acts on the sign-flip of the disc factor. From our proposal, the group 

corresponding to D-branes localized on w can be identified as KR-n( D0·n X w, ano,n X W) 

which is the KR-n-group for bundles over D0·n X w that vanishes on ano,n X w. Namely, 

the KR-group for bundles over nn,O X D0·n x" w that vanishes on ann,O X D0·n X wand 

nn,O X ano,n X w, i.e. on 8(Dn,O X D0·n) X w. Since nn,O X D0 ·n ~ nn,n this is identified 

with KR(Dn,n X w, ann,n X W) = KR-n,-n(W). By the Bott periodicity (5.1), this is 

equal to KR(W) which is indeed KO(W) since the involution acts trivially on W. Even 

when the normal bundle is non-trivial, this is true at least locally. Glueing such local 

realtions is a generalization of the proof of Thorn isomorphism theorem, and we expect 

that this is also true globally. 

The proposed group also has another desirable property that could have been added 

to the conditions (i) and (ii). Before showing it, we comment on a related fact about the 

condition (i) itself. When D(p- 4)-branes are wrapped on a submanifold W' of an Op­

plane W of SO-type, they support symplectic bundle over W'. Thus, D-branes localized 

·in W' must be classified by KSp(W'). Since a neighborhood of W' in W locally looks like 

D4 x W', the condition (i) shows that the relevant group is KO(D4 X W', 8D4 x W') which 

can be identified with K0-4(W'). This is indeed KSp(W') by Bott periodicity (5.3). Now 

we go back to our proposal. If W" is a Z2-invariant submanifold of X of dimension p + 5 

including all the Op-planes (of SO-type), as we have seen in section 3, D(p + 4)-branes 

wrapped on W" support symplectic orientibundle over W". Thus, D-branes localized in 

W" must be classified by KpR(W"). In fact, a neighborhood of W" in X looks locally like 

D0•5-P xW" and the relevant K-group is identified as KR-(9-P)(D0 •5-P xW", 8D0•5-PxW"). 

As in the test of (i), this is equal to KR-(9-p),-(S-p)(W") which is indeed KR-4 (W") = 
KpR(W") by Bott periodicity (5.1), (5.3). 

We have shown that our proposal does satisfy all three requirements ((i), (ii) and 

another) but we have not shown that it is the only possibility. In the next subsection, 

we will show that it is the one that naturally appears when applying T-duality to Type I 

string theory (for SO-type orientifold). 4 

Note that the proposal does not coyer the most general cases. For example, there are 

orientifolds including SO-type and Sp-type 0-planes at the same time. There could also 

4Chronologically, that is the way I found the proposaL 
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be cases where there are 0-planes of mixed dimensions. In this paper, we do not attempt 

to specify the relevant K-theory group for such exotic (but sometimes interesting) models. 

5.2 The T-duality Isomorphism 

Now we identify the isomorphism of K-groups that realizes T-duality on n-torus. 

We start with the basic example of n = 1. Consider a n,.brane configuration in Type 

liB string theory on T 1 x M where M is a nine-dimensional manifold. We represent it 

as a bound state of D9 and anti-D9-branes which support Chan-Paton bundles E± with . 

connections At and the tachyon field T : E+ --7 E-. We probe it with a D1-brane 

wrapped on T 1 . Then, Kaluza-Klein reduction of the probe theory is identified with 

the quantum mechanics of a DO-brane probing the T-dualized system on T1 x M. We 

coordinatize T 1 and T1 by x and a respectively. Mass matrix of the fermions in the 

quantum mechanics originating from 1-9 and 1-9 strings are given by the operator 

::_ ( D+ -Tt ) V- . 
T -D_ 

(5.6) 

Here D± = 8x +A;-ia is the Dirac operator D on T 1 coupled to the family of connections 

A; - ia carried by E± 0 P where P is the Poincare bundle over T 1 x T1 with curvature 

-ida/\dx. This is interpreted as the tachyon field of Type liA ninebranes ofthe T-dualized 

system. 

For instance, consider (unphysical) Type liB string theory on T 1 xR9 with a single D9-

brane with Wilson line ia0dx where x is the coordinate on T 1 with periodicity x = x + 1. 

Then the Dirac operator on T 1 for the fermion of the probe D1-brane is V(a) = 8x+ia0 -ia. 
Kaluza-Klein modes on T 1 consist of functions einx, n E 271"Z, with V( a) eigenvalues 

-i( a - ( a0 + n )). One interpretation of these modes is as the 0-8 strings for a DO­

brane probing a D8-brane at the point a = a0 of the dual torus T1 (or equivalently 

infinite array of D8-branes at a = a0 + n in the covering space). Alternatively, these 

can also be interpreted as 0-9 strings for a DO-brane probing Type IIA D9-branes where 

V( a) = -i( a - ( a0 + n)) are interpreted as the tachyon fields of D9-branes as appeared 

in [17) which represent the infinite array of D8-branes. One can also start with (physical) 

Type liB string theory with Dp-brane (pis odd say 9- 2m) wrapped on T 1 with Wilson 
' 

line ia0dx. The Dp-brane can be represented as a D9-anti-D9 bound state with tachyon 

field T = -ix. r where X = (x1'. :-. 'x2m) are the coordinates transverse to the Dp­

brane and r = (f1 , ••• , r 2m) are the Gamma matrices mapping positive chirality spinors 

to negative chirality spinors in 2m-dimensions. Then, 1-9 and 1-9 fermions reduce to 
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fermions with mass matrix 

(5.7) 

This can be expressed as 'D(x) = -i(x- x11 ) • f where f are the Gamma matrices for 

the (2m + 1 )-dimensions of x = ( x, a) and x11 = ( 0, a0 + n). This can be interpreted as 

the tachyon fields of Type IIA D9-branes representing infinite array of D(8 -2m )-branes 

located at x = 0, a = a0 + n. Thus we have recovered the fact that a Dp-brane wrapped 

on a circle is T-dual to a D(p- 1)-brane in the dual circle wher~ the Wilson line on the 

Dp-brane corresponds to the position of the D(p- 1)-brane [1]. 

As in T 4 case, the interpretation of the operator 'D as the tachyon field of ninebranes 

in the T-dualized system would lead to an index-theoretic map of K-theory groups that 

realizes transformation of D-brane charges under T-duality. Note that the operator 'D 
(as well as the Dirac operator D on odd-dimensional space) is skew-adjoint and therefore 

its family index always vanishes as ~n element of the K-group of the parameter space. 

However, Atiyah and Singer in [8] 1 'studied index theory of such families and found that 

the index naturally takes values in K-1-group of the parameter space. This is actually 

what we wanted because T-duality maps Type liB on T 1 x M to Type IIA on T1 x M 

whose D-brane charges are classified by K-1(T1 x M) where T1 x M appears in the present 

set-up as the parameter space. The construction in [8] is as follows. If 'D(y) is the family 

of skew~adjoint operators parametrized by y E Y, we define a family over [-~, ~] x Y by 

V(t, y) ~ -sin t + 'D(y) cost. (5.8) 

This is no longer skew-adjoint and therefore can have distinct kernel and cokernel. Since 

V(- ~, y) = - V( ~, x) = 1, kernel and cokernel are isomorphic at t = =f ~ and therefore 

the index of i5 belongs to K([-~, ~] x Y, 8[-~, ~] x Y) = K-1(Y). 

The element of K-1 (T1 x M) obtained in this way in our set-up can be identified as the 

D-brane charge of the T-dualized system. We show this in the example ofD(9-2m)-brane 

considered above where we put a0 = 0 for simplicity and we compactify the transverse 

space R 2m to S2m, requiring triviality at infinity oo E S 2m (we thank the authors of [21] · 

for pointing out omission of this requirement in the previous version of thepaper). The 

operator i5(t, x) = -sin t + V(x) cost has zero for constant modes at (t, x) = (o, o), and 

there are no zero modes everywhere else. In a neightborhood of this point, V(t, x) on the 

constant modes behaves as 

f>(t, x) - sint- ix. fcost ~ -(t + ix. r). (5.9) 

1 We thank I.M. Singer for explanation of essential points which are relevant in the present discussion. 
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This has winding number one on the (2m+ I)-sphere surrounding (t,x) = (0,0), and 

therefore the index of i5 has cho = · · · = ch2m = 0, ch2m+2 = 1 as an element of 
K(S1 X fl;s2m). This is the generator of K-1(T1 X S2m,f'1 X oo) rv z which represents 

Txoo · 
the charge of the D(8- 2m)-brane of the T-dualized system.2 

In the framework where the space-time is compactified by attaching infinity,3 the 

change of the off-diagonal part of (5.6) is a small perturbation and does not affect the 

index. Therefore, the index depends only on the K-theory class of (E+ 0 P, E- 0 P) 
where E- 0 P gives a negative contribution because the Dirac operator D_ enters in 1J 

with minus sign. In particular, it can be denoted as ind (D, (E+ 0P, E-®P)). Thus, the 

map that realizes the transformation of D-brane charges under T-duality can be identified 

as 
1 ®'P 1 ~ indD ~ 

K(T X M) ---+ K(T X T 1 
X M) ---+ K-1(T1 

X M). (5.10) 

In [8] orientibundles were also considered and it was shown that the index of a family 

of skew-adjoint operators on a real Hilbert space takes values in KR-1 of the parameter 

space via the same construction. Th:us, we also have 

(5.11) 

where the involution acts trivially on T 1 but as the inversion on T1 . 

What if we started from an element of K-1 (T1 x M)? Such an element can be con­

sidered as an element of K( S1 x T 1 x M) th~t vanishes on z0 x T 1 x M. Tensoring with 

P and taking the index do not affect the triviality at z0 E S 1 • Thus, its image under the 

map (5.10), which a priori belongs to K-1(S1 x T1 x M), actually belongs to the subgroup 

K-2(T1 x M). Such a consideration leads to the following generalizations of (5.10) and 

(5.11) 

K-i(T1 X M) ~ K-i(T1 X T1 X M) ~ K-i-1(T1 X M), 

KR-i(T1 x M) ~ KR-i(T1 x T1 x M) ~ KR-i-1 (T1 x M). 

(5.12) 

(5.13) 

2In [17], the element of K- 1(X) corresponding to the (anti-hermiaitin) tachyon field I: E -t E of 

IIA ninebrane is identified as (E, e7 ) in the definition of K-1(X) in [45]. It is (Eer, Eid) in the standard 
definition of K-1 (X) as the subgroup of K(S1 x X), where Ecp for an auatomorphism IP : E -t Eisa 

bundle over S1 x X defined as [0, 1] x E modulo the identification (0, v) := (1, ipV). In our set-up, after 

a suitable regularization of 7 = 'D, eT has winding number one on a disc D2m+l containing x = 0 (i.e. 
it is constant on 8D2m+l and the induced ~ap on S2m+l = D2m+l f8D2m+l has winding number one). 

Therefore Eer and Eid differ in ch2m+2 by one, determining the same element as the index ofV. 
3Triviality at infinity is imposed as usual but, as in [15], is not explicitly indicated in the general 

formula since what "infinity" means depends on (and is clear in) the particular situation one considers. 
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By composition, we obtain maps 

K-i(Tn x M) -+ K-i-n(fn x M), 

KR-i(Tn x M) -+ KR-i-n(fn x M), 

(5.14) 

(5.15) 

representing T-duality on n-torus where now M is a (10 - n )-dimensional manifold. In 

the latter case, the involution acts trivially on Tn and as the inversion on fn while M is 

assumed to have a suitable involution so that i can be chosen appropriately. 

As a consistency check, let us consider Type I string on Tn X M which T-dualizes to 

Type II orientifold on fn /Z2 X M of SO-type. Type I D-brane charge takes values in 

KO(Tn x M) = KR(Tn X M). Therefore, by (5.15), we see that D-brane charges of Type 

II orientifold on fn /Z2 X M must be classified by KR-n(fn X M), thus reproducing our 

proposal (for SO-type orientifold). Also, when involution acts on M with only R 8 /Z2-

type fixed points, according to our proposal, D-brane charges of orientifold on Tn x M/Z2 

are classified by KR-i(Tn x M) with i = s or s + 4 for SO- or Sp-type respectively. Then 

(5.15) shows that D-branes in orientifold on (Tn x M)/Z2 is classifiedby KR-i(fn x M) 
with j = s + n or s + n + 4, which is consistent with our proposal since there are only 

Rn+s /Z2 fixed points. 

Since T-duality squares to the identity, the maps we have obtained must be isomor­

phisms. Here we do not attempt to compute these isomorphisms. Instead, we show that 

the groups are indeed isomorphic. 

K-theory Groups of Tn x M 

A subspace B of a topological space A is said to be a retract of A if there is a continuous 

map f : A -t B that restricts on B to the identity. In such a case, there is a relation 

K(A) = K(A, B) EB K(B) which holds also for K-i and KR-p,-q. Now let us apply this 

to z0 x M C T 1 x M which is obviously a retract. Noting that K-i(T 1 x M, z0 x M) = 

K-i-1 (M), we have 

(5.16) 

To consider the case with invoultion, as before we let Z2 act on Tn trivially and on fn 

as the inversion. Then, z0 X' M C T 1 x M and z0 x M C T1 x M are both retracts 

where Zo is a z2 fixed point. Noting that KR-p,-q(T1 X M, zo X M) = KR-p-1·-q(M) and 

KR-p,-q(T1 x M,z0 x M) = KR-p,-q:-:1(M), we have 

KR-p,-q(T1 x M) = KR-p-1,-q(M) E11 KR-p,-q(M), 

KR-p,-q(T1 x M) = KR-p,-q-1 (M) E11 KR-p,-q(M). 
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Using these relations repeatedly, we obtain the binomial identities 

K-i(Tn X M) = EfJ K-i-k(M)ffi(~)' 
k=O 

KR-p,-q(Tn X M) = EB KR-p-k,-q(M)ffi(~), 
k=O 

KR-v.-q(fn x M) = EB KR-p,-q-k(M)EB(~), 
k=O 

(5.19) 

(5.20) 

(5.21) 

where M is any space (with an involution in the latter two). Using Bott periodicity 
K-i-2 :- K-i, KR-p-1,-q-1 = KR-p,-q, we see from these that 

K-i(Tn x M) "' K-i-n(fn x M), 

KR-i(Tn x M) ~ KR-i-n(fn x M). 

(5.22) 

(5.23) 

Thus, the groups in tl?-e left hand side and the right hand side of the T -duality maps 

(5.14) and (5.15) are indeed isomorphic. 

Applying the binomial identities \5.19)-(5.21) to the case where M is a point, let us 

compute some K-groups of torus. We first note that K(pt) = Z and K-1{pt) = 0. Then , 

we immediately obtain from (5.19) 

K(Tn) ~ zEB2n-1' K-1(Tn) "'zEB2n-1. (5.24) 

These are mapped isomorphically by the Chern character maps ch: K(X)--+ Heven(X, Q), 
K-1(X) --7 Hodd(X, Q) ·to the even and odd dimensional integral cohomology groups of 

the torus respectively (or more precisely their images in the rational cohomology). Note 

that 2n-1 is the dimension of the (positive or negative) spinor representation of S0(2n ). 
In fact, it is known that the T-duality group O(n, n; Z) acts on the RR potentials in the 

spinor representation, where IIA potentials belong to, say, positive spinor representation 

while liB potentials belong to negative spinor representation which are interchanged under 

odd number ofT-duality on circles [46]. This fact may be explained by showing that our 

T-duality maps for D-brane charges (together with the mapping class group of Tn and 

some operation corresponding B-field shift) generate spinor representation of O(n, n; Z). 

To compute KR-i(Tn), we need to know KR-i(pt) = KO-i(pt). Non-zero groups of 

them are KO(pt) = Z, K0-1(pt) = Z2 , K0-2(pt) = Z2 and K0-4(pt) = Z. Inserting 

these into the identities (5.20) and (5.21) we obtain for example 

KO(T4
) = Z E9 Z~4 E9 Z~6 E9 Z = KpR(T4

), 

KSp(T4
) = Z·E9 Z = KR(T4

). 

(5.25) 

(5.26) 

It is intereting to investigate what the full T-duality group is and in which representation 

the D-brane charges (and RR fields) belong to. 
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Appendix 

A The Inversion Theorem 

In this appendix we show that square Nahm transform is the identity operation for 

orthogonal/symplectic (orienti)bundles over T 4 (T4/Z2 ) or for unitary orbibundles over 

orbifold T 4/Z2 • Namely, we prove that there is an isomorphism 

(E,A,~) ~ (E,A,~f 

where ~is either one of 

(i) the orthogonal structure defined by anti-linear maps lx :Ex-+ Ex 

(ii) the ·symplectic structure defined by anti-linear maps Jx: Ex-+ Ex 

(iii) the Z2-orbifold action defined by linear maps 'Px: Ex-+ E_x 

(A.1) 

on the unitary bundle E over T4, and "A" and "v" are the Nahm transforms which we 

have constructed in sections 3 C is equal to A for the case (iii)). It is already known that 

there is an isomorphism (E, A)~ (E, Ar [10, 12] (see also[13l) if we ignore the respective 

structure ~. Therefore, what we need to do is to show that this isomorphism sends the 

structure~ to that of the square Nahm transform. We present the proof for the case (i) 

in some detail, and only indicate the essential points for the cases (ii) and (iii). 

We first recall the definition of the isomorphism u : E -+ E [12]. Let us denote by 

Ga the inverse of the Laplace operator D(a)t D(a) associated with the covariant derivative 

D1a) = all-+ Ap, - iaw Then for v E Ex, u( v) E (En X is given as the section of the bundle 

E 0 s+ defined by 

(A.2) 

where {¢!a)} is an orthonormal basis of the kernel of the Dirac operator lfJ(a) (representing 

an orthonormal basis {[¢~a)]} of Ea), Cis the charge conjugation matrix and (, ) is the 

hermitain metric of E which is anti-linear in the left-entry and linear in the right-entry. 

(The pha(:;e J=I in front is simply for later convenience.) To be precise, (A.2) defines a 

section of E ® .Cx ® s+ where .Cx is a flat bundle defined as the quotient of (R4)* X c 
with the trivial connection by the 27rA* action (a, c) M (a+ n,e-inxc). (This is because 

¢<a>(x) E KerlfJ(a) and ¢<a+n>(x} = einx¢(a)(x) E KerlfJ(a+n) are identified as an element of 

Ea.) However, .Cx· is topologically trivial and is isomorphic as a flat bundle to the trivial 

bundle T4 x C with the connection D = d - ix~-'daw By this identification, we consider 
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u(v) as a section of E ® s+. One can show, as in [12], that u(v) is annihilated by the 

Dirac operator associated with the covariant derivative a I aaJ.L + AJ.L - ixJ.L' thus showing 

that u(v) belongs to ("Evt· Moreover, it was shown in [12] that u sends the hermitian 

metric of E to that of Ev and the connection A to A. 

Now let us show that u sends the orthogonal structure I of ( E, A) to that i of ( E, A f. 
Namely we show that 

lr:u(v) = u(/xv), 

for each v E Ex. By definition, we have iu(v)L = J.:a(u(v)l-a), and therefore 

iu(v)L -HJ-a([1fJ}-a)]) ® ')'1234[C((G-a1/J}-a))(x), vW 

H[/c1/J~-a)] ® CC(v, (G-a1/J}-a))(x)) 

- yCT[JC1fJ}-a)] ® CC(/x(G-a1/J}-a))(x), fxv) 

(A.3) 

yCT[/c1/JJ-a)] ® C(C(/G_a1/J}-a))(x), lxv), (A.4) 

where I is considered as an operator:acting on the section s(x) of E as (Is)(x) := lxs(x). 
Note that /G_a =Gal which follows from I n<a> = n<-a> /. Then, we see that 

Inserting this to (A.4), we have shown (A.3): 

thus proving (A.1). 

yCT[JC1fJ}-a)] ® C((GafC1/J}-a))(x), fxv) 

- u(/xv)la, (A.5) 

The proof for the cases of (ii) and (iii) are similar. The essential points in these cases 

are JG_a = GaJ for (ii) and c.pG-a = Gac.p for (iii), where J and c.p are considered as 

an operator acting on the sections of E as (Js)(x) = Jxs(x) and (c.ps)(x) = 'P-xs( -x) 
respectively. 
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