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Three-dimensional electromagnetic modeling in the Laplace domain 

Introduction 

In modeling electromagnetic responses, Maxwell's equations in the frequency domain are 
popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 
1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite 
difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient 
electromagnetic interactions in the conductive medium. 

This paper presents a new technique to compute the electromagnetic response of three­
dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's 
equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are 
discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting 
system of equations is then solved for the fields using the incomplete Cholesky conjugate 
gradient (ICCG) method. 

The new method is particularly effective in saving computer memory since all the 
operations are carried out in real numbers. For the same reason, the computing speed is faster 
than frequency domain modeling. The proposed approach can be an extremely useful tool in 
developing an inversion algorithm using the time domain data. 

Maxwell's equations in the Lapl~ce domain 

The coupled space and time dependent electromagnetic fields are described by Maxwell's 
equations as 

" E( ) aH(r, t) aM(r, t) 
v x r,t =-Jl - Jl _ __:___:_ 

at at (1) 

aE(r,t) 
VxH(r,t)=& +CT(r)E(r,t)+J(r,t) at (2) 

where E and Hare the electric and magnetic fields respectively, M and J are the impressed 
magnetic and electric currents density, respectively, J.Lis the magnetic permeability, ais the 
electric conductivity and &is the electric permittivity. 

If we perform a Fourier transformation on equations ( 1) and (2), we obtain Maxwell's 
equations in the frequency domain 

V x E(r,m) = -iwpll(r,m)- iwpM(r,m) 

V x H (r, m) = {CT(r) + im&}E(r, OJ)+ J (r, m) 

(3) 

(4) 

Equations (3) and (4) are well-known formulas and widely used for electromagnetic modeling. 
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In this paper Laplace transformation is used instead of Fourier transformation. The Laplace 
transform of the time domain function F(t) is defined as 

f(s) = r F(t)e-sr dt 

If we perform Laplace transformation to equations (1) and (2) with the following initial 
condition, 

E(r,O) = H(r,O) = M(r,O) = J(r,O) = 0 

we obtain Maxwell's equations in the Laplace domain (Chen, 1985) 

V x e(r, s) = -,ush(r, s)- ,usm(r,-s) 

V x h(r, s) = {i:r(r) + G:S"}e(r, s) + j(r, s) 

where e, h, m andj denote the Laplace transforms ofE, H, M and J, respectively. 

Electromagnetic ~elds in a homogeneous half space 

(5) 

(6) 

(7) 

(8) 

Let us consider a homogeneous half space model with a vertical magnetic dipole (VMD) 
source illustrated in Fig.l. We write Maxwell's equations in the air (z<O) 

V x eA (r, s) = -,u0 shA (r,s)- ,u0 sm(r, s) (9) 

(10) 

where eA and hA are the electric and magnetic fields in the air, respectively, ,u0 , a 0 and &0 are the 

magnetic permeability, the electric conductivity and the electric permittivity in the air, 
respectively. We can also write Maxwell's equations in the earth (z>O) 

(11) 

(12) 

where eE and hE are the electric and magnetic fields in the earth respectively, ,u1 , 0'1 and &1 are the 
magnetic permeability, the electric conductivity and the electric permittivity in the earth 
respectively. j 

In the case of a VMD source illustrated in Fig.2, we obtain the following Helmholtz equations 
from equations (9) through (12). 
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x(North) 
• P (x, y, z) 

VMD 

Air (z<O) 
c:p S (x',y~ z~ 

y (East) 

Earth (z>O) 

z (Depth). · 

Fig.l Homogeneous half space model with vertical magnetic dipole source. 

M(t) 

m 

0 M(t)=mH(t) 

m: magnetic dipole moment 
H(t): Heviside's 'step function 

t 

Fig.2 Magnetic dipole function used as a VMD source. 
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2 2 s: V FA +k0 FA =-p0mu(x-x')t5(y- y')t5(z-z') 

where k0 and k1 are given by 

Here FA and FE denote the scalar potentials in the air and the earth, respectively. 
Using boundary conditions at the air-earth interface, the theoretical formulas for scalar 

potentials are obtained as follows: 

FA= Jlom r[e-rolz-z'l +Yo -yl ero(z+z')]~lo(Ar)dA 
47r Yo + Yt Yo 

where y 0 and y 1 are defined as 

and the horizontal distance r is given by 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Each component of the electric and magnetic fields can be derived using the following relations. 

8FA 
eA,x =- 8y ' 

8FA 
eA,y = ax ' eA =0 .z 

hA,x =-1_82FA, hA,y =-1_82FA' hA,z =-~-( 822 +ko2JFA 
f-loS 8x8z f-l0S 8y8z f-l0S 8z 

8FE 
eE,x = ---;;;-, 

8FE 
eE,v =-a ' - X 

eE =0 .z 

5 
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(24) 

where eA.x. eA . .v and eA.z denote the x, y and z components of electric fields in the air, hA.x. hA . .v and hA.z 
denote the x, y and z components of magnetic fields in the air, eE.x. eE . .v and eE.z denote the x, y and z 
components of electric fields in the earth, hE.x. hE.y and hE.z denote the x, y and z components of 
magnetic fields in the earth respectively. 

Assuming f11 = flo and £ 1 = £ 0 , we obtain the theoretical formulas for the electromagnetic 

fields both in the air and earth using the relations in equations (21) through (24) as follows. 
In the air (z<O), we obtain 

eA,x = Jlom(y- y') r[e-rolz-z'l +Yo -yl er0(z+z')]3!_ 11 (Ar)dA, 
4w Yo +y1 Yo 

(25) 

(26) 

eA =0 .z (27) 

(28) 

hA , = m(y- y') r[ Z- z' e -rolz-z'i _Yo - Y1 ero<z+z'l l A,z ]
1 
(Ar)dA, 

,) 4ws lz- z'l Yo+ Y1 
(29) 

hA,z =~ r[e-rolz-z'l +Yo -yl er0 (z+z')]A
3 

lo(Ar)dA, 
4w Yo +Y1 Yo 

(30) 

ln the earth (z>O), following equations are obtained 

(31) 

(32) 

eE,z = 0 (33) 
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(34) 

h = m(y- y') r Yi e-rtz+roz'/1? 1 (lr)dl 
E,y I 

2ws Yo+ Y1 
(35) 

(36) 

Finite difference method using Staggered grid 

We applied the finite difference method using a staggered grid to discretize the three­
dimensional subsurface structure. In the discretization, Maxwell's equations for the secondary 
electromagnetic field are used because the source for the secondary field is smoother than that for 
the primary field, and fine spatial discretization is not required around the primary source. 

Maxwell's equations with an impressed magnetic source in the Laplace domain become 

Vxe=-,ush-,usm (37) 

Vxh=(a+&s)e (38) 

The total electromagnetic fields are expressed as the sum of the primary field and the secondary 
field. 

(39) 

(40) 

where suffix (P) and <SJ represent the primary and secondary fields, respectively. The primary 
electromagnetic fields satisfy the following equations. 

V x e<P> = -,u sh<P>- ,u sm (41) 

Vxh<P> =(a. +&s)e<P> (42) 

where a. is the "normal" (layered-earth) conductivity with the body not present. Substituting 

equations (41) and (42) into equations (37) and (39), we obtain Maxwell's equations for the 
secondary fields as 

\7 X e(S) = -,U Sb(S) (43) 

(44) 
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Taking the curl of equation (44) and substituting the result into equation (43), we obtain the 
second-order partial differential equation for the electric field 

(45) 

Using the relationship V x V x A= -'\7 2 A+ V(V ·A), equation (45) can be rewritten as 

(4()) 

Each component of equation ( 46) can be given by 

(47) 

a2 (S) 
eY 

a2e (S) 8 2 (S) 8 2 (S) 
). e e ~> 

-""""'-:--- + x + z + Jl s(CY + 8 s)e, 
az 2 ayax ayaz y ) (48) 

8
2 (S) 

8
2 (S) 82e (S) 

e z + ex + Y + Jl s( CY z + 8 s )e /s> 
ay 2 azax azay (49) 

=0 

In this paper the integral form of equation (47), (48) and (49) are used to discretize 3-D structure. 

(50) 

~ 
82 (S) 82 (S) a2e (S) 8 2 (S) ] 

ff - aexy2 ey ez (S) ---=----
2

- + x + + Jl s(CY Y + 8 s)e Y dxdydz 
az ayax ayaz (51) 

= Jffl- Jl s(CY Y - CY. )e Y<P> }txdydz 
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n{- a;::" --"z'--- + x + Y + Ji s( a z + & s )e z <Sl dxdydz 
aze (S) aze (S) aze (S) ] 

ay 2 azax azay (52) 

=0 

z 
(k) 

(i+J,j, k) ey(i+I,j, k) (i+l,j+l, k) 

I 

hz{i,j, k): 

ez(i+l,j, k) (i,j,kJ i (i,j+l, k) 

(i,j, k+ I) 141•---

Fig.3 Staggered grid for electromagnetic modeling. 

Using the staggered grid illustrated in Fig.3, we can obtain the approximated equations 

[
&(i)dZ(k) + &(i)dZ(k) + JLS{ (j X (i, j, k) + G S }&(i)~y(j)dZ(k) 
~y(j -1) ~y(j) 

+ z Y1 + z Y1 e<Sl(i,j,k) &o~-< ·) &o~-< ')] 
&<k -1) &(k) X 

_ 8.x(i)dZ(k) (S) (' . _
1 

k) _ 8_x(i)dZ(k) ~S) (' . 1 k) 
ex z, 1 , ex z, 1 + , 

~y(j - 1) ~y(j) 

&( ')~ -( ') &( ')~ -( ') 
- l Y1 (S)(. 'k-1)- l Y1 (S)(''k 1) ex 1,1, ex 1,1, + 

&(k -1) &(k) 

+ dZ(k){e /s) (i + 1, j, k)- e Y <sl (i + 1, j -1, k)- e Y (Sl (i, j, k) + e /s) (i, j -1, k) } 
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+ A-('){ (S)( .. I . k) (S)(. I . k I) (S)( .. k) + (S)( .. k I) t Lly) ez t+ ,), -ez t+ ,], - -ez l,j, ez l,j, - J 

= -p s{ ax (i, }, k)- a. }ih(i)Ay(J)L\Z(k) ex <P> (i, }, k) (53) 

[
Ay(J)L\Z(k) + Ay(j)L\Z(k) + JJS{a ,, (i, J, k) + £ s lA.,..,(i)Ay(j)L\Z(k) 

f..x(i -I) f..x(i) - .fLU 

+ 1 y 1 + 1 y 1 e cs>(i,J,k) LlXC)A ( ') LlXC)A ( ')] 
/).z(k -1) /).z(k) y 

A ( ')M(k) A ( ')L\Z(k) - y 1 (S)(.-I . k)- y 1 (S)(. 1 . k) eY 1 ·1· eY 1+ ·1· 
f..x(i -1) f..x(i) 

Lli( ')A ( ') til( ')A ( ') 
_ I Y 1 (S) (' . k _ 1) _ I Y 1 (S) (' . k 1) ey 1,1, ex 1,1, + 

/).z(k -1) /).z(k) 

+ L\Z(k){ex (S) (i,j + 1,k)- ex (S) (i -I, j + 1,k)- ex (S) (i, j,k) +ex (S) (i -1, j,k)} 

+ A::::('){ (S)( .. 1 k) (S)(. . 1 k I) (S)( .. k) + (S)( .. k 1) t 
~I ez 1,1+' -ez 1,1+'- -ez 1,1, ez 1,1,- J 

=-ps{aY(i,J,k)-a. }til(i)Ay(J)L\Z(k)eY<P>(i,J,k) (54) 

[
Ay(j)/).z(k) + Ay(j)/).z(k) + JlS{ a~ (i, }, k) + £ s }AX(i)Ay(j)/).z(k) 

f..x(i - I) . f..x(i) 

til(i)/).z(k) til(i)/).z(k)] (S) . . 
+ + ez (1,1,k) 

Ay(j -1) Ay(j) 

A-( ·)11.z(k) A-( ')11.z(k) - y 1 (S)('-I . k)- y 1 (S)(. I . k) ez I ,1, ex 1+ ,1, 
f..x(i- 1) f..x(i) 

- til(i)/).z(k) (S) (. • -1 k)- til(i)/).z(k) (S) (. . 1 k) 
ez 1,1 ' ez 1,1+, 

Ay(j -1) Ay(j) 

A-(·){ (S)(. 'k 1) (S)(. 1 'k 1) (S)(. 'k)+ (S)(. 1 'k)t +LlY1 ex 1,1, + -ex 1- ,1, + -ex 1,1, ey 1- ,1, j 

+ til(i){e/S) (i, j,k +I)- e/S) (i, j -I,k + 1)- e/S) (i, j, k) + e/S) (i, j -1,k)} 

=0 (55) 

where 

til i = f..x(i -1) + f..x(i) A- . = Ay(J -1) + Ay(J) M(k) = &Ck -1) + 11.z(k) 
( ) 2 ' y(1) - 2 ' 2 (56) 
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- 0 0 O"(i, j -1, k -1)i1y(j -1)Az(k - 1) + O"(i, j, k -1)i1y(})Az(k -1) 
O"x(l,j,k)= { lf } 

L1y(}- 1) + L1y(J) nAz<k -1) + Az(k) 

O"(i, j -1, k)i1y(j -1)Az(k) + O"(i, j, k)i1y(})Az(k) 
+----~----------~----------~---

{L1y(J -1) + L1y(j) H&<k -1) + &<k)} 

(57) 

0 0 O"(i - 1, j, k - 1)Llx(i - 1)Az(k - 1) + O"(i, j, k - 1)Llx(i)Az(k - 1) 

a y (!, 
1' k) = {ilxu - 1) + Llx(i) H&<k - 1) + &<k)} 

O"(i -1, j, k)Llx(i -1)Az(k) + O"(i, j, k)Llx(i)Az(k) 
+----~--------~~----------~--

{ilx(i -1) + Llx(i)}{Az(k -1) + Az(k)} 

(58) 

- 0 0 O"(i - 1, j - 1, k)Llx(i - 1)i1y(j- 1) + O"(i, j - 1, k )Llx(i)i1y(j - 1) 
O"z(l,j,k)= { }{ } 

Llx(i -1) + Llx(i) L1y(} -1) + L1y(j) 

O"(i -1, j, k)Llx(i -1)i1y(j) + O"(i, j, k)Llx(i)i1y(j) 
+----~--------~7-----~----~~ 

{ilx(i- 1) + Llx(i) }{L1y(j- 1) + L1y(j)} 

(59) 

In previous equations (57) through (59), o-x, o-Y and o-z mean the average conductivity in x, y 

and z directions respectively. 

Calculation proeedure and boundary conditions 

Combining Equations (53) through (55) and boundary conditions result in a linear set of 
equations that can be written in matrix form 

Ax=b (60) 

where A is the coefficient matrix, x is the electric field vector which consists of e , e and e , and b 
X V Z 

is the source vector obtained from the primary electric fields. We use the Dirichlet boundary 
condition in which the secondary field is assumed negligible at the boundary, so 

e (s) = e (S) = e (S) = 0 
X )' Z 

(61) 

on the six boundary surfaces (x = ±oo, y = ±oo, z = ±oo). 

New digital linear filters (Guptasarma and Singh, 1997) are used to calculate source terms 
given by equations (31) and (32). Figures 4 and 5 show the numerical examples of the primary 
electric and magnetic fields due to the VMD source on the surface of the homogeneous half 
space. The rp component of electric fields in the air is given by (equations (25) and (26)) 

y- y' x-x' 
eA,q> = ---eAox + ---eA.v 

r r · 
(62) 

The z component of magnetic fields is calculated using equation (30). 
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· Laplace variable, s 
(cr=0.01S/m, r=100m) 

Fig.4 Horizontal electric fields in t_he Laplace domain due to the VMD source (1A-m2
) 

on the homogeneous (O.OlS/~) half space. · 
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(cr=0.01S/m, r=100m) 

Fig.5 Vertical magnetic fields in the Laplace domain due to the VMD source (1A-m2
) 

on the homogeneous (O.OlS/m) half space. 
- ' 
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The coefficient matrix A becomes a large sparse matrix. In order to solve the set of linear 
equations, the incomplete Cholesky conjugate gradient (ICCG) method is used (Smith, 1996, for 
example). It is well known that the ICCG method is effective in solving a set of linear equations 
that has a large sparse matrix. In this work, FORTRAN subroutines for ICCG method developed 
by Dongarra et al. ( 1982) are used to solve the linear equations. The method used in the ICCG 
solver uses a preconditioner based on an incomplete LU factorization. These subroutines can be 
used to solve symmetric as well as non-symmetric systems. 

After calculating the secondary electric fields, the secondary magnetic fields can be obtained 
using integral form of equation (43) 

(63) 

Each component of magnetic fields can be calculated by the approximated equations 

· { (S) (. . k 1) (S) (. . k) (S) . . (S) . . } 
(S). . _ 1 ey I,J, + -ey I,J, ez (I,J,k)-ez (1,]+1,k) 

hx (l,j,k)-- +--"-------"-----
J.L s &_(k) 11y(j) 

(64) 

1 
{ 

(S)(. "k) (S)( . . k 1) (S)(. 1 .k) (S)( .. k)} 
y (l, ], k)-- + --"----------"------'--h 
(S). . _ ex l,j, -ex. l,j, + ez l+ ,], -ez l,j, 

J.L s &<~ ~ 11x(i) 
(65) 

{ 

(S) . . (S) . . (S)( .. k) (S)(. 1 . k)} 
(S) .. _ 1 ex (l,j+l,k)-ex (l,j,k) ey l,j, -ey 1+ ,], 

hz (1, ], k)-- + --=-------=-----
J.L s 11y(j) 11x(i) 

(66) 

Finally total electric and magnetic fields can be calculated by equations (39) and (40). 

Numerical examples 

In order to test the computer program we developed, a simple three-dimensional model 
illustrated in Fig.6 is used. An equally spaced grid model (20 x 20 x 20) is used to calculate the 

electromagnetic fields. As each grid spacing has a length of 20m, the model space becomes 
380m x 380m x 380m in volume. In electromagnetic modeling, we have to consider the air region 
above the ground surface. The upper 380m x 380m x 120m volume is used as the air region that 
has a conductivity of 0 S/m, and the lower 380m x 380m x 260m volume is used as the earth 
region (0.01S/m) that contains an anomalous body (1 S/m). 

Fig.7 shows the relation between the number of iterations and ICCG residual. We can see that 
the ICCG residual decreases smoothly. With the convergence criterion of ICCG residual set to w· 
10

, 300 iterations are required and CPU time is about 260 sec to complete the calculation using a 
PC (266MHz Pentium II, 128MB memory). 

The distributions of the secondary electric fields of x and y directions on the ground surface are 
shown in Fig.8 and Fig.9. The total electric fields on the ground surface are shown in Fig.10 and 
Fig.11. 
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x (North) 

0 VMD 
y (East) 

y (East) 
m=O.Ol (S/m) 60m 

------lOOm 
40m 

I -- ----

' VMD - -- -- ---- --0 
(x=-75, y=l 00, z=O) z (Depth) 

Plan view 
Section view 

Fig.6 Three-dimensional conductivity body (lOOm x lOOm x 40m) in a homogeneous half space. 
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Fig.7 The relation between number of iteration and ICCG residual. 
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Fig.8 The secondary electric fields of x~direction on the ground surface, ex <s) x 1 o-12 (s = 104
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Fig.9 The secondary electric fields of y-direction on the ground surface, e Y <S) x 10-12 
( s = 104

). 
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Fig.lO The total electric fields of x-direction on the ground surface, ex x 10-12 (s = 104
). 
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Fig.12 The second magnetic fields of z~direction on the ground surface, hz (S) X 10-12 (s = 104
). 
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Fig.13 The total magnetic fields of z-direction on the ground surface, hz x 10-12 (s = 104
). 
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In Figures 8 through Fig.11, the dashed-line-square indicates the location of anomalous 
conductive the body and black star indicates the location of the VMD source. From the 
distributions of the secondary electric field illustrated in Fig.8 and 9, we can see that a positive 
anomaly appears on the conductive body between two negative anomalies and maximum positive 
anomaly occurs at the nearest comer of anomalous conductive body. 

In Figures 10 and 11, the total electric fields, both e and e, are almost divided into two 
X y 

(negative and positive) parts across the line y=100m and x=-75m respectively. There is no 
evident anomaly in the distributions of total electric fields because the magnitude of the 
secondary fields is very small compared to that of the primary field. However, we can see the 
distorted contour lines around the edges of anomalous conductive body. 

Using equation (66) and the secondary electric fields on both the x andy directions (Figures 8 
and 9), we can calculate the secondary magnetic field illustrated in Figure 12. In Figure 12, the 
maximum negative anomaly appears at the nearest comer of anomalous conductive body and the 
maximum positive anomaly appears at the opposite comer. 

Figure 13 shows the total magnetic field in the z-direction on the ground surface due to 
anomalous conductive body. The distribution of the total magnetic fields becomes concentric 
circles with the center at the VMD source, because the secondary magnetic field is too small 
compared to the primary field. 

Conclusion 

We have developed a new technique to' simulate electromagnetic fields of three-dimensional 
structures. The new technique is based on Maxwell's equations in the Laplace domain. The 
discretization of Maxwell's equations in the Laplace domain is performed by the finite difference 
method using a staggered grid. A numerical modeling code has been written based on the new 
approach to calculate electromagnetic fields due to 3-D anomalous body. The program can.handle 
the permittivity distribution as well as the conductivity distribution and is applicable to 3-D 
transient electromagnetic inversion study in the future. 

The new method requires less computer memory (almost half) than that used in other methods 
based on Maxwell's equations in the frequency domain. The computing speed is also faster than 
the frequency domain modeling using the same three-dimensional grid. This is because all 
components of electromagnetic fields in the Laplace domain are real numbers and all 
computation are performed in real arithmetic. 

We believe that this technique will become an important tool for analyzing data obtained from 
transient electromagnetic survey in the future. 
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