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A unified framework is developed to overcome simulta-
neously three major limitations on acceleration distance and
hence on the feasibility of two classes of laser acceleration.
The three limitations are due to laser diffraction, acceleration
phase slippage, and structure damage by high power laser if
solid-state optical waveguide is used. The two classes of laser
acceleration are direct-field acceleration and ponderomotive-
driven acceleration. This letter and its companion [1] provide
solutions that are crucial to all mainstream approaches for
laser acceleration, either in vacuum, gases or plasmas.

PACS numbers: 41.75.Jv, 41.75.Lx, 41.75.Ht, 52.40.Fd

I. INTRODUCTION

The tremendous growth in accelerator energy of this
century has been truly remarkable. However, the
workhorse behind this success, microwave powered struc-
ture, has more or less reached its known limit in acceler-
ation gradient. To continue the role well into next cen-
tury as a primary instrument for exploration of funda-
mental physics in high energy frontier, accelerator has
to be powered by electromagnetic (EM) wave of much
shorter wavelength. Scaling current technology such as
structure dimension down with wavelength is not an at-
tractive pass, at least in the long run. The demand for
high gradient acceleration has stimulated widespread in-
terest and research on laser accelerations that operate
under fundamentally different concepts and principles.

Yet, despite the impressive progress made in recent
years [2], high gradient has been demonstrated only over
very short acceleration distances, up to a couple of cen-
timeters. Standing in between proof of principles and
real-world applications are three major limitations [3–10].
First of all, the distance of laser-particle interaction is
limited by laser diffraction. Secondly, the distance over
which a particle can continuously gain energy from a
wave is limited by acceleration phase slippage due to the
difference between particle speed and phase velocity of
the wave. Finally, an acceleration structure, if capable of
both guiding laser field and harnessing energy transfer,
has to withstand high power laser, and its effectiveness
is limited by laser damage threshold. Evidently, the key
entry for a breakthrough is at the last point.

In this letter and its companion [1] we present a uni-
fied framework to overcome all three major limitations
on laser acceleration. Based on interaction mechanism,

laser acceleration can be divided into two classes: direct
acceleration with the longitudinal field, and acceleration
driven by ponderomotive force of the transverse field of a
laser. Accordingly, the two classes will be treated sepa-
rately by the two letters. However, the following discus-
sion on optical waveguide applies to both.

II. PROPERTIES OF WAVEGUIDE MODES

The capillary waveguide considered here is made of a
hollow core with an index of refraction ν1 and radius R,
embedded in a medium of dielectric or metal with a com-
plex index of refraction ν2. We are interested in oversized
waveguide satisfying λ1/R ¿ 1, where λ1 = λ/ν1 and λ
is the wavelength in vacuum. As a result, EM wave in
the core is dominantly transverse. Capillary waveguide
of this type has been used widely for industrial and medi-
cal applications to transport lasers of high average power
[11]. More recently, it has also been tested at high peak
power [12,13]. In this section we explore and elaborate
the mode properties important for laser acceleration.

The eigenmodes of the waveguide can be solved follow-
ing the same procedure by Marcatili et al. [14] under the
condition |

√
ν̂2 − 1| À λ1/R, where ν̂ = ν2/ν1. Express-

ing the eigenmodes in the following form{
E(r, φ, z, t)
H(r, φ, z, t)

}
=
{

Elm(r, φ)
Hlm(r, φ)

}
ei(βlmz−ωt)−αlmz , (1)

the eigenvalues are given by

βlm = k1(1− 1/2γ2
g) , αlm = Re(Λ)/γ2

gR , (2)

where k1 = ν1k, k = 2π/λ, γg = 2πR/Ulmλ1 À 1, and
Ulm is the mth root of the equation Jl−1(Ulm) = 0. There
are three types of modes, corresponding to

Λ =


1√

ν̂2 − 1
: TE0m (l = 0)

ν̂2
√
ν̂2 − 1

: TM0m (l = 0)
ν̂2 + 1

2
√
ν̂2 − 1

: EHlm (l 6= 0) .

(3)

For laser acceleration, we are interested primarily in two
low-order modes: TM01 mode for direct-field accelera-
tion in vacuum and gases with its on-axis Ez component,
and EH11 mode for ponderomotive-driven acceleration in
plasmas. Accordingly, we consider three cases: δν1 = 0
when the core is in vacuum, δν1 > 0 and δν1 < 0 when
the core is filled with uniform gases and plasmas, respec-
tively, where δν1 = ν1 − 1 and |δν1| ¿ 1.
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The electric fields within the core r ≤ R are given by

TM01 :
{

Ez = EaJ0(kr1r)
Er = −i(Γ/kr1)EaJ1(kr1r) ,

(4)

EH11 :
{

Ey = E0J0(kr1r)
Ez = −i(kr1/Γ)E0J1(kr1r) sinφ ,

(5)

where Ea is the peak acceleration field for TM01 mode,
E0 is the peak transverse field for EH11 mode, Γ =
βlm+ iαlm and kr1 = (Ulm− iΛ/γg)/R. To leading order
Γ/kr1 = γg, since by definition k2

1 = Γ2+k2
r1. Given elec-

tric field, magnetic field of a mode can be determined by
Ht = ẑ× (ΓEt + i∇tEz)/kZ0, Hz = (i/Γ)∇t ·Ht, where
subscript t denotes transverse component of a vector or
operator, ẑ is a unit vector in z-direction, and Z0 is the
vacuum impedance. As seen from Eqs.(4,5), the trans-
verse fields dominate over the longitudinal ones by a large
factor γg. For TM01 mode, Er is peaked at r/R = 0.481
with a maximum value Emax

r = 0.582γgEa. For EH11

mode, Ey is peaked on the axis. To evaluate surface field
Es at r = R, we expand Bessel functions in the trans-
verse fields of Eqs.(4,5) using the expression for kr1 and
keeping the larger one of the two components

Es/Ea = max{1, |Λ|}|J0(U01)| : TM01 ,
Es/E0 = max{1, |Λ|}|J1(U11)|/γg : EH11 .

(6)

Here we come upon one of the most important advantages
of the capillary waveguide: for TM01 mode, surface field
can be smaller than peak acceleration field, superior to
other schemes [4–10] including even microwave structure;
and for both modes, surface fields are much smaller than
peak transverse fields. According to experimental data
on dielectrics at λ = 1µm [15], damage threshold in terms
of surface field is around 5 ∼ 10 GV/m for pulse length of
1 ps or shorter, thus making acceleration in GV/m scale
possible. Within the cladding r ≥ R, all field components
have the radial dependence eikr2r/

√
r, where to leading

order kr2 = k1

√
ν̂2 − 1. A non-vanishing imaginary part

of ν̂ due to dielectric loss would give rise to exponential
decay in radial direction. Hence power in each mode
is distributed dominantly within the core and it can be
expressed as P (z) = P0e

−z/Lattn , where Lattn = 1/2αlm
is power attenuation length and to leading order

P0 =
{

πR2γ2
gE

2
aJ0(U01)2/2Z0 : TM01

πR2E2
0J1(U11)2/2Z0 : EH11 .

(7)

It is noted that EH11 mode is linearly polarized,
whereas TM01 mode is radially polarized. A linearly po-
larized mode with non-vanishing on-axis Ez can be con-
structed by a proper mixing of TM01 with EH21 mode
[16]. Electric field for the mixed mode is given by

Ez = Ea[J0(kr1r) + J2(kr1r) cos 2φ ]
Ey = −2i(Γ/kr1)EaJ1(kr1r) sinφ .

(8)

To preserve the same acceleration field Ea as TM01 mode,
the mixed mode requires a factor of two more power.

For the three modes we have U11 = 2.405, U01 = U21

= 3.832, J0(U01) = −0.403 and J1(U11) = 0.519. Cou-
pling between the waveguide modes and Gauss-Laguerre
modes, also known as TEMpl modes [11], can be very
efficient. When focused at waveguide entrance, power
coupling from a radially polarized TEM01 mode to the
TM01 mode reaches a maximum of 97% at w0/R = 0.56.
This is true also for coupling from a linearly polarized
TEM01 mode to the mixed TM01 + EH21 mode. Cou-
pling from a TEM00 mode to the EH11 mode is 98% at
w0/R = 0.64, where w0 is the Gaussian mode waist.

The on-axis intensity for a TEM00 mode falls as
I(z)/I(0) = 1/[1 + (z/ZR)2] away from the waist due
to diffraction, and the on-axis longitudinal field for a
TEM01 mode also falls as Ez(z)/Ez(0) = 1/[1+(z/ZR)2],
where ZR = πw2

0/λ1 is the Rayleigh length. Assuming
a TEM00(TEM01) mode is coupled to a EH11(TM01)
mode at the optimal condition, the effectiveness of guid-
ing can be measured by taking the ratio of the relevant
e-folding lengths of the waveguide mode to the free-space
mode, yielding LEH11/LTEM00 = LTM01/LTEM01 =
2R/Re(Λ)λ1. Despite the fact that the waveguide modes
are leaky, optical guiding can be made quite effective to
overcome diffraction for low order modes with sufficiently
large R/λ1. In addition, for waveguide material with
anomalous dispersion at certain wavelength, it is possible
to have Re(Λ) ¿ 1. For example, we have Re(Λ) = 0.1
for sapphire at λ = 10.6µm with ν2 = 0.67 + i0.04 [17].

III. ACCELERATION IN VACUUM

According to Eq.(2), phase velocity of the TM01 mode
is vp = ω/β01 = c/(1 − 1/2γ2

g), larger than the speed of
light. We define an acceleration phase slippage length by

La =
λ

1/γ2
g + 1/γ2

, (9)

over which a relativistic electron with energy W0 = γmc2,
while being accelerated, slips π phase with respect to the
fast acceleration wave. Energy gain of the electron on the
axis is ∆Wa = eEa

∫ La
0

sin(πz/La)dz = eEaLaTa, where
Ta = 2/π is a transit factor. Here we have neglected
the small waveguide attenuation over the distance La.
In parallel, we may also define a deceleration slippage
length over which the electron slips another π phase while
losing energy amounted to ∆Wd = eEaLdTd. Average
acceleration during a period of 2π phase slippage is then

G =
∆Wa−∆Wd

La + Ld
=

eEaTa[1−(Ld/La)(Td/Ta)]
1 + Ld/La

. (10)

To have net acceleration, the ratio Ld/La should be made
small. Two methods are proposed here for this purpose.
The idea is to enhance phase slippage during the half
period of deceleration, thus taking a shorter distance Ld.
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The first method works on reducing the longitudinal
velocity of an electron by introducing a static transverse
magnetic field during deceleration. Without loss of gen-
erality, we assume the magnetic field is sinusoidal as in a
wiggler By = B0 cos(2πz/λw) with a period λw. Hence
by definition Ld is determined through the condition[

1
γ2
g

+
1
γ2

+
a2
w

γ2

]
πLd
λ
− a2

wλw
4γ2λ

sin
[
4πLd
λw

]
= π , (11)

where aw=eB0λw/2π
√

2mc. If we set λw = Ld, then

Ld =
λ

1/γ2
g + 1/γ2 + a2

w/γ2
, (12)

here now aw = 3

√
Q1 +

√
Q2

1 + Q3
2 + 3

√
Q1 −

√
Q2

1 + Q3
2,

with Q1 = eB0λγ2/4π
√

2mc and Q2 = [1 + (γ/γg)
2]/3.

Due to longitudinal oscillation in electron orbit, Td/Ta =
1
2

∫ π
0

sin[θ− sin(4θ)(1−Ld/La)/4]dθ, which varies within
the range {0.92↔ 1} for Ld/La in the full range {0↔ 1}.
The radiative energy loss per wiggler period is ∆Wr =
(8π2mc2/3)(re/λw)a2

wγ2, where re is the classical radius
of electron. The maximum possible energy that can be
accelerated with this method is restricted by the condi-
tion ∆Wa > ∆Wd + ∆Wr.

Table 1. Example in Vacuum with Magnetic Field.

λ [µm] 1 P0 [TW] 50 Ea [GV/m] 1.8

R/λ 300 B0 [T] 3 Es [GV/m] 1.5

ν2 1.5 aw 22 Is [TW/cm2] 0.3

γg 492 ∆Xmax/R 0.37 G [GeV/m] 0.45

W0 [GeV] 5 La [cm] 24 ∆Wa [MeV] 283

βt [cm] 46 Ld [cm] 11 ∆Wd [MeV] 124

Lattn [m] 18 Td/Ta 0.96 ∆Wr [keV] 16

Transverse EM force on a relativistic electron does not
vanish to order of 1/γ2 in a waveguide mode or when the
index of refraction differs from unity. For the TM01 mode
with magnetic field Hφ = (1+1/2γ2

g + δν1)Er/Z0, trans-
verse force is Fr = −e(1/2γ2−1/2γ2

g−δν1)Er, which may
lead to either focusing or defocusing depending on accel-
eration phase φa. Correspondingly, the beta function for
an electron near the axis in vacuum is

βt = γgλ

√
(γmc2/πeλEasinφa)/[1− (γg/γ)2] . (13)

The condition for an electron to remain near the axis
may not be satisfied in the deceleration section, where
the maximum orbital offset in x-direction is ∆Xmax =√

2awλw/πγ. To avoid strong nonlinear transverse EM
force while an electron is deflected far off-axis by the
wiggler field, the mixed mode TM01+EH21 may be used,

for it has zero transverse field along x-axis. An example
is given in Table 1 for acceleration in vacuum with TM01

mode, where in calculating βt we set sin φa=1, and Is is
laser intensity on waveguide inner surface.

Instead of tempering electron orbit, the second method
works on enhancing phase slippage by increasing phase
velocity of the wave during deceleration. This can be
done by introducing a plasma layer of thickness

Ld =
λ

1/γ2
g + 1/γ2 + 1/γ2

p

, (14)

where γp = ω/ωp À 1, ωp = c
√

4πren0 is the electron
plasma frequency and n0 is the plasma density. Here
we have used for the plasma an index of refraction ν1 =
1−ω2

p/2ω2. In this case, Td = Ta. The dominant energy
loss for an ultrarelativistic electron traversing a plasma
is due to bremsstrahlung [18]. The rate of energy loss is
given by dW/dz = −W/LR, where LR is the radiation
length defined by 1/LR = 4αr2

eniZ(Z + 1) ln(233/Z1/3),
ni is density of ions with atomic number Z, and α is
the fine structure constant. For Hydrogen plasma with
density ni = n0 = 1017/cm3, LR is as long as 4× 106m.
Reflectance of laser power off a sharp interface between
vacuum and an underdense plasma at normal incidence
is also negligible, according to the Fresnel formula Rp =
(1 − ν1)2/(1 + ν1)2 = 1/16γ4

p . Two examples are given
in Table 2 and Table 3 for highly relativistic electron
satisfying (γ/γg)2 À 1 and (γ/γp)2 À 1.

Table 2. Example in Vacuum with Plasma Layer (I).

λ [µm] 1 P0 [TW] 10 Ea [GV/m] 1.9

R/λ 200 n0[1017/cm3] 1.1 Es [GV/m] 1.5

ν2 1.5 Lattn [m] 5.3 G [GeV/m] 1

γg 328 La [cm] 10.8 ∆Wa [MeV] 127

γp 100 Ld [cm] 0.91 ∆Wd [MeV] 11

Table 3. Example in Vacuum with Plasma Layer (II).

λ [µm] 10.6 P0 [TW] 5 Ea [GV/m] 2.0

R/λ 50 n0[1017/cm3] 0.11 Es [GV/m] 0.8

Re(ν2) 0.67 Lattn [m] 18 G [GeV/m] 1

Im(ν2) 0.04 La [cm] 7.1 ∆Wa [MeV] 90

γp 30 Ld [cm] 0.84 ∆Wd [MeV] 11

The assumption of a sharp vacuum-plasma interface is
not necessary. More rigorous treatment can be obtained
with WKB method [19]. For underdense plasma, the only
modification required is to replace the factor exp(iβ01z)
by exp[i

∫
β01(z)dz]. Assuming a density profile ne =

n0fp(z), where fp(z) = 1/[1 + e−(z+Ld/2)/δ] − 1/[1 +
e−(z−Ld/2)/δ], the phase advance for the mode can be
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calculated by making use of the integral
∫∞
−∞ fp(z)dz =

2δ ln[(1 + eLd/2δ)/(1 + e−Ld/2δ)]. It is seen here that
Eq.(14) is accurate enough as long as Ld/2δ À 1. In ad-
dition, the validity of WKB method requires |dν1/dz| ¿
2πν2

1/λ [19], which gives δ À λ/16πγ2
p for dfp/dz|max =

1/4δ, also easily satisfied. To implement plasma layers in
sections of a waveguide, side access is preferred. This can
be done by inserting sections of open iris-loaded waveg-
uide [20] wherever necessary. The mode profile in such a
waveguide is nearly identical to that of a capillary waveg-
uide, allowing significant minimization of mode coupling
loss due to waveguide interruption.

IV. ACCELERATION IN GASES

The phase velocity of the TM01 mode in a core of
uniform neutral gases is vp = ω/β01 = c/(1 − 1/2γ2

g +
δν1), corresponding to a phase slippage length La =
λ/|1/γ2

g + 1/γ2 − 2δν1|. The phase matching condition
for synchronous acceleration is obtained by making the
denominator zero, thus δν1 = 1/2γ2

g + 1/2γ2. This con-
dition suggests an alternative way to maintain phase
matching as γ increases during acceleration: instead of
varying δν1 by adjusting gas pressure along the waveg-
uide, γg may be changed by tapering waveguide radius.
For highly relativistic electron satisfying (γ/γg)2 À 1, a
steady-state phase matching condition, δν1 = 1/2γ2

g , is
approached. An example is given in Table 4 in this limit.
The beta function is smaller by a factor of

√
2 than that

given for vacuum by Eq.(13). The maximum accelera-
tion gradient achievable is limited by various processes
occurring in gases in the field of high power laser, such
as gas breakdown. Here we assume the limit is set on the
maximum field for the TM01 mode by Emax

r ≤ 10GV/m.

Table 4. Example in Gases.

λ [µm] 10.6 Re(ν2) 0.67 Ea [GV/m] 0.21

R/λ 50 Im(ν2) 0.04 Es [GV/m] 0.085

P0 [GW] 56 δν1[10−5] 7.4 Lattn [m] 18

Among other schemes of synchronous acceleration, one
uses a line focus from an axicon in gases [7,8]. In compar-
ison, our approach requires less laser power and provides
much longer acceleration distance for the same γ, δν1

and Ea. Another scheme uses a dielectrically lined per-
fect conductor tube as a lossless waveguide for TM modes
[9,10]. This scheme, first of all, belongs to the class of
acceleration by evanescent field near a surface of dielec-
tric [3] and its scaling, Ea/Es = λ/πR, is unfavorable
for laser acceleration. Furthermore, the assumption of
perfect conductor is no longer valid for metals at wave-
length as short as λ = 10.6µm, where circular metallic
waveguide is known to be very lossy for TM modes [18].

V. CONCLUSIONS

I have introduced the concepts and techniques that are
crucial for advancing the current development of laser
acceleration into a new, more realistic stage. Of what
being accomplished here, the most notable is the dra-
matic increase in single-stage acceleration distance com-
paring with other schemes [4–10] for direct-field accelera-
tion. This breakthrough is achieved in two critical steps.
First, the diffraction limit is overcome with the capillary
waveguide. Second, the phase slippage limit is overcome
in vacuum with two new mechanisms for energy transfer.
The two steps in combination succeed in harnessing high
power laser to achieve high gradient with durable struc-
ture. In comparison, other schemes are severely limited
for having components being blasted by full laser power
in close range, head-on [4–6]. Furthermore, the approach
taken here has the following advantages: oversized struc-
ture dimension is favorable for more accelerated particles;
electromagnetically open waveguide suppresses higher or-
der modes in favor of better beam quality; efficient cou-
pling between waveguide and free-space modes simpli-
fies mode handling such as injection, transport and re-
cycling, leading to better overall system efficiency; last
but not least, all aforementioned features are achieved
without sacrificing a virtue of practical importance: the
simplicity. Beam dynamics and collective effects will be
addressed in a forthcoming series of papers. This work
was supported by the U.S. Department of Energy under
contract No.DE-AC03-76SF00098.
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