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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.
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Abstract

It has been proposed recently that the scale of strong gravity can be very close to the
weak scale. Dimensions of sizes anywhere from ~mm to ~TeV~1 can be populated by
bulk gravitons, vector bosons and fermions. In this paper the one-loop correction of these
bulk particles to the muon magnetic moment (MMM) are investigated. In all the scenarios
considered here it is found that the atural value for the MMM is O(10~8—10"°). One main
result is that the contribution of each Kaluza—Klein graviton to the MMM is remarkably
finite. The bulk graviton loop implies a limit of ~ 400 GeV on the scale of strong gravity.
This could be pushed up to ~ 1 — 2 TeV, even in the case of six extra dimensions, if the
BNL E821 experiment reaches an expected sensitivity of ~ 107°. Limits on a bulk B — L
gauge boson are interesting, but still allow for forces 10% — 107 times stronger than gravity
at mm™! distances. The correction of a bulk right-handed neutrino to the MMM in one
recent proposal for generating small Dirac neutrino masses is considered in the context of
a two Higgs doublet model, and is found to be close to 10™°. The contributions of all
these bulk particles to the MMM are (roughly) independent of both the total number of

* extra dimensions and the dimension of the subspace occupied by the bulk states. Finally,
limits on the size of “small” compact dimensions gotten from the MMM and atomic parity
violation are determined and compared.

1This.worl; was sﬁﬁported in part by the Director, Office of Energy Research, Office of High Energy and
Nuclear Physics, Division of High Energy. Physics of the U.S. Department of Energy under Contract DE-ACO03-

76SF00098. The author was also supported by NSERC '
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1 Introduction.

In the past year there has been a remarkable proposal by Arkani-Hamed, Dimopoulos and
Dvali (ADD) for solving the hierarchy problem [1, 2, 3]. In their vision the scale of strong
quantum gravity is lowered to the weak scale. A weak-scale valued Planck scale M, and Newton’s
constant are reconciled by allowing gravity to propagate in n extra large compact dimensions.
An application of Gauss’ Law quantifies the relationship between M3, = (87Gy)~!, M,, and
the volume of the compact space V,, = R", to be

2M2, = M™2R". (1)

In the case of 2 extra dimensions and the phenomenologically preferred value M, ~TeV, R ~mm
and future short-distance experiments may observe a transition in Newton’s Law from a =2 to
r—4 force law. In the case of 6 extra dimensions and M, ~TeV, R~! ~MeV, which is large com-
pared to M, ~TeV. The non-observation of Kaluza-Klein (KK) towers for the Standard Model
(SM) particles, for example, requires that the SM particles not propagate in the large extra
dimensions. This requires that they be fixed to a 3—dimensional wall, with a thickness smaller
than ~ O((700 GeV)™"). This may be accomphshed using purely field-theoretic techniques [1],
or by using the D-branes of string theory [2]. This remarkable proposal allows for many new
interesting phenomena to be discovered at future experiments. These include dramatic model-
independent signals at high-energy colliders from bulk graviton production [4, 5], signatures of
the spin-2 structure of the KK gravitons [6], distortions in the Drell-Yan energy distribution [6],
and enhancements in the f*f~, WW, ZZ, vy production cross-sections at linear colliders [6, 7],
as well as other interesting collider signatures [8] and implications for gravitational processes at
high energies [9]. Future colliders may also discover Kaluza-Klein and string excitations of the
Standard Model particles [10, 11, 2]. The existence of either large or TeV~! sized dimensions also
opens new territory for model-building. In an important early paper [10] by Antoniadis, the au-
thor advocates the existence of TeV ™! sized dimensions to break supersymmetry at low-energies.
Other prospects include new ideas for obtaining gauge coupling unification [12, 13], suppressing
proton decay, and flavor physics[14, 15]. Existing phenomena already strongly constrain M,.
These include astrophysical processes (such as SN1987A in the case n = 2) [3], bulk graviton
production [4, 5], and WW, ZZ production at LEP2 [7].

In this paper the bulk contributions at the one-loop level to the anomalous magnetic moment
of the muon (MMM) are computed. These include contributions from bulk gravitons, bulk B— L
gauge bosons, and, in a two Higgs doublet model, those from bulk right-handed (RH) neutrinos.
The correction to the MMM is found to be ~ m2 /M2, and is therefore in a first approximation
independent of n, or, in the case of bulk fermions or vector bosons, independent of the dimension
of the subspace inhabited by the bulk states.

Now it may seem strange to compute a one-loop correction to the MMM when a correction
from a TeV-scale suppressed operator may be present at tree-level. The important point is that
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the tree-level operator contains an unknown coefficient, whereas the one-loop corrections are
present, calculable and essentially model-independent. They thus represent a lower value to the
full bulk correction to the MMM.

In this paper it is found that the “expected” one-loop correction to the MMM is typically
O(1078 — 1079) for values of M, from ~ 400 GeV to ~ O(TeV). For comparison, this is the same
magnitude as the correction expected in low-energy supersymmetry at large tan § [16]. The bulk
correction to the MMM should be compared to its extremely well-measured value of [17]

2 .
ac = 9—2— = (116592.30 £ 0.8)) x 1075, (2)

The BNL experiment (E821) hopes to lower the error to 40 x 107! [18], a factor of ~ 20 below
the existing sensitivity. The prediction in the SM is [19, 20]

g™ = 116591.739(154) x 107, (3)

and is in very good agreement with the current measurement. The theoretical error is dominated
by the hadronic contributions. The error in the lowest order hadronic contribution is ~ 60 ppm
of a,, but there is hope that this error can be reduced to ~ 0.5 ppm [18, 21]. Another large
source of theoretical error is the hadronic “light—on-ligh " scattering correction to a,. This
error is estimated to be ~ 0.15 ppm [20]. These translate into an expected theoretical error of
~5x 10710,

A main result of this paper is the computation of the one-loop correction from bulk gravitons
and radions to the MMM. The corrections from a single KK graviton and KK radion are found to
each be miraculously finite. The full one-loop bulk contribution is gotten by summing over all the
KK states, and results in a correction to the MMM which is essentially model-independent and
independent of n, depending only on the scale of strong gravity. Requiring that the correction
is smaller than the present experimental error implies, in the case n = 6, for instance, that the
lower limit on M, is competitive with limits gotten from other physical processes. It is also found
that as a general rule the @, constraint provides a comparable limit to M, for larger numbers of
extra dimensions. This is in contrast to astrophysical or terrestrial constraints gotten from the
direct production of gravitons, where the effect of a physical process with characteristic energy
scale E typically decouples as ~ (E/M,)". As such, the a, constraint provides complementary
information. ‘ |

Bulk RH neutrinos were proposed in Ref. [15] to generate small Dirac neutrino masses, and
can naturally account for the required mass splitting needed to explain the atmospheric neutrino
anomaly. It is found that the correction to the MMM from the tower of RH neutrinos in a two
Higgs doublet model is close to the future experimental sensitivity.

1t is also found that while the constraint on the B — L gauge coupling is quite impressive,
a B — L vector boson can still mediate isotope-dependent forces 106 — 107 times stronger than
gravity at sub-mm distance scales. -~




Finally, KK excitations of the SM gauge bosons are also probed by the MMM and atomic
parity violation measurements. It is found that the stronger limits on the size of extra “small”
dimensions are gotten from the atomic parity violation experiments. The limit is ~ 1 TeV (~ 3.6
TeV ) for KK excitations into 1 (2) extra dimensions.

The outline of the paper is as follows. Section 1 discusses some machinery necessary to
perform the one-loop graviton correction to the MMM. Section 2 discusses the results and limits
gotten from the one-loop graviton computation. Section 3 discusses the bulk B — L and KK
photon contributions to the MMM, and concludes with a discussion of the KK Z; correction
to atomic parity violation measurements. Section 4 discusses the correction to the MMM in
a recent proposal for generating small Dirac masses within the context of a two Higgs-doublet
model.

2 Preliminaries and Some Machinery.

The effective field theory approach described by Sundrum in Ref. {22] allows one to determine the
couplings of the higher dimensional gravitons to some matter stuck on a wall. The interactions
are constrained by local 4-dimensional Poincare invariance (which interestingly enough, arise
from the coordinate reparameterisation invariance of the wall embedding) and the full (4 +
n)—dimensional general coordinate invaiiance, as well as any local gauge symmetries on the wall.
At lowest order in 1/M,, all the higher dimensional gravitons interact only through the induced
metric on the wall. Since the interaction of the induced metric with on-the-wall matter is fixed by
4—D general coordinate invariance, the lowest order couplings of the KK gravitons to the on-the-
wall matter are fixed by the ordinary graviton coupling to matter, and are obviously universal.
This is important, since the interactions of matter to the KK gravitons are therefore determined
by replacing h,, — X, hﬂ,‘) in the ordinary gravity-matter interactions. With ¢ = 9 + xh,
where & = /327Gy, hu(z) = 3, A (zx), the gravitons couple to the conserved symmetric
stress-energy tensor with normalisation

—Kkh*T,,[2. (4)

There is one subtlety though. The 4—D decomposition of the 4 + n dimensional graviton
results in a KK tower of spin-2 gravitons, n — 1 vector bosons, and n(n — 1)/2 spin-0 bosons.
The vector bosons correspond to fluctuations in g;,. In the linearised theory they couple only
to T*, which vanishes if the wall has no momentum in the extra dimensions. The zero mode
of the vector bosons acquires a mass ~ M2/Mp;, from the spontaneous breaking of translation
invariance in the extra dimensions [23]. The zero mode of one of the spin-0 bosons corresponds to
fluctuations in the size of the compact dimensions (the “radion”) and couples to T). It acquires
a mass ~ 1073V to MeV from the dynamics responsible for stabilising the size of the extra
dimensions [23]. The remaining spin-0 fields do not couple to T [4, 24]..
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The end result is that only the tower of KK gravitons and radions couple to the matter on
the wall. Since T} is proportional to the fermion masses, it is important to include the radion
and its tower of KK states in computing the correction to g — 2. A careful computation [4, 24]
determines the normalisation of the coupling of the radion to T#. The correct prescription is
then to replace

huu(@) = 3 (2 (@) = Vemud™ (@) (5)

For a canonical normalisation of ¢, w = (n — 1)/3(n + 2). The couplings of the KK tower of
gravitons and radions to matter is then gotten from the ordinary graviton coupling to matter by
using the substitution in Eqn. 5. -

Next I present some of the machinery which is needed to perform the‘;i’)ne-loop bulk graviton
correction to the MMM. The reader is referred to References [25] for a far more careful treatment
of this subject, and for early quantum gravity computations. Thé recent References [4, 24] present
a clear discussion of the proper procedure for determining the bulk graviton couplings to matter.

The Lagrangian coupling gravity to on-the-wall photons and fermions is
1 vo 1 v Tin,G 7 : |
V—9L=+—g (—Zg“”g FuFp - 52(9“ D,A))? + ivieh Dyh — mW) : (6)

with D, A, = 6,4, I, A,, I'isthe Christoffel symbol, and £ is the U(1) gauge fixing parameter.

ub

The e* fields are the v1elbe1ns satlsfymg g = efn®e’ and n® = = et*g,,e”°. The fermionic

ab
covariant derivativeis D, = 0, —ieA,— §w“

Oab, With 0a4 = £[7,, 7). Finally, the spin connection
is 1
W = 5 ( e (Ouel — (1 & 1/)) —(a b)) L €ud (Bueg —ve p)) : (7)

Inserting guy = Ty + £huw, €ua = Nua + Khye/2, and expanding Eqn. 6 to O(h) gives
1
L = Lh=0)+ %nh’“’ (nP"F,,,,FW ~ Znﬂ,F"ﬂFaﬂ)
1 1
+gh(0-4) (—ah(a CA) 4 B (B Ay 4 1 V) + AT (R + s — h,w,a))

+g ((hn“" — W )iy,Dytp — mhidyp + %(a,,h - a"huu)zZify“np)) : (8)

The minimal coupling of gravity to the matter stress-energy tensor, Eqn. 4, is gotten by inte-
grating Eqn. 8 by parts to remove the derivatives on h.
The propagator for a massive spin-2 particle, with mass my, is

: 1. 3P S S
2 _ pv,po . \
. D(k ’mb{_){w,gé T o2 ‘m%v G (9)

The tensor ‘structure in the numeratoris

Rk kk k. k k. k
e e )

2 kA Kok,
D=1 (77'“’ - m ) (UP" m?v)
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and is uniquely fixed by several requirements [25]. The first is that the graviton is the excitation
of the metric, so P is symmetric in u < v and (uv) <> (po). Next, unitarity implies that on-
shell P is positive-definite and that the spin-1 and spin-0 components are projected out. Finally,
the unitarity requirement P(k* = m%, m%) .0 = L5 €5,€5,, Where €, is one of 5 polarisation
tensors, fixes the normalisation of P.

It will be useful to compare the ordinary massless graviton one-loop correction to a, [26] to
the massive spin-2 one-loop correction in the limit my — 0. The massless spin-2 propagator is
required for the former computation. In the harmonic gauge it is

] 2
Dl = 515 5o
It will be important to note that the coefficient of 7,,7,, in the numerator of the graviton

s P(E*)wpo = MupTvo + Muo"lvp — 2 Muv oo~ (11)

propagator differs between the massless and massive cases.
Each Kaluza-Klein (KK) mode n of a bulk graviton contributes to a,. It is conveinent to
express the contribution of a Feynman diagram ¢, with internal KK mode =, to a, as

Do) = A®) (g — 2),/2 = GymBA™ [2m. (12)

The fermion mass is mp. The total correction to a, is then gotten by summing over all the KK
modes and Feynman diagrams. The final result is

G n ' n .

Em ZA(")(mF,mN) AW = AP 4. AP for K diagrams. (13)
This formula can be tr1v1ally modified to include bulk fermion or vector boson corrections to
the MMM. Since the coupling of matter to the KK graviton, vector boson or fermion modes is
universal 3, the only dependence of a,(-") on the KK quantum number n enters through the mass
of the KK mode, my = n/R. Replacing the sum in Eqn. 13 with an integral gives the final

result
GN R 2 n/2

o FT(n/2]
This is a good approximation since the mass splitting is tiny: ~ 1073 eV for n = 2, ~ 5 MeV

Aa, =

/ dm?(m?)™2~D Ap(m2, m?) . a9

for n = 6.
In evaluating the one-loop contributions to the MMM, the dominant correction will occur
from those states in the loop with masses close to the cutoff. This is a direct consequence of
the large multiplicity of states at large KK masses. The total correction to the MMM is then
well-approximated by substituting into'Eqn. 14 the large my limit of Ar, and cutting off the
(power-divergent) integral over m% at KK masses my = M,. For the cases considered in this
paper, in the large my limit Ap — ¢/(m%)" with W = 0.or 1. Then using the relation
(4rGy)™! = M*2R", a good apprommatlon to Eqn. 14 is, for W = 0 say,
| ' A 22 m}
8n2 nF[n/z] Mz

31 assume for simplicity that the SM fen_ﬁibns do not have KK excitations.

Aag, = (15)
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The unknown coefficient A is a gross parameterisation of our ignorahce about what is regulating
the integral, and can only be computed in a finite theory of quantum gravity, e.g. string theory.
The expectation is that A ~ O(1) since, for example, in string theory the amplitude Ar becomes
exponentially suppressed at KK masses larger than the string scale. So whereas A is an unknown
O(1) coefficient, the limits on M, gotten from the bulk graviton loop scale as A/? and are

nf2

therefore not so sensitive to its value. Finally, it is consistent to keep the factors of 7™/#, etc.

in Eqn. 15, since this factor counts the degeneracy of states, which can only increase in the full
theory.

3 Bulk Gravity.

a. Spin-2 Graviton

Using the Lagrangian in Eqn. 8 the Feynman rules for the graviton and fermion, photon

interactions can be gotten®.

Using this, and the massive graviton propagator, Eqn. 9, it is
straightforward although tedious to compute the one-loop correction to a,. The Feynman di-
agrams relevant to the calculation are shown in Fig. 1. Those terms in the numerator of the
graviton propagator containing two or:more k,s do not contribute to a, at this order in Gy
because of the gravitational Ward identity. I have also verified this by an explicit computation.
With this in mind, naive power counting implies that the contribution of each Feynman diagram
and for a given KK mode n to a, is logarithmically divergent in the ultraviolet. The explicit
calculation presented below reveals though that these divergences cancel in the sum, so that the
total contribution of each KK mode to a,, is remarkably finite! A similar miraculous cancellation
was observed in the ordinary (massless) graviton one-loop correction to a, [26}.

In the notation of Eqn. 12 (AE"‘) = a{™), the partial amplitudes o™ are (D =4 — ¢)

)=o) = g inm = [ a T A 19

2

L(z, m%,m%)

mf

n n 4 '

o - 21 E(x))( 8)

asl .= —_——— 4 = +"1an /dx( z mF7mN)D(m)+

Je L(z,m%,m%)

where L(z,m%,m%) = z?m% + (1 — z)m% contains the only dependence of a{™ on the KK
‘quantum nirhber. The other functions are R(z, m%, m%) = (2sm%—m%)/L(z, m%, m%), A(z) =
43— %/3, B(z) = 1422/3 —.20z/3, C(z) = 5° — 23/2, D(z) = 322/2 — 523/3 + 2/2, and
E(z) = 16x%/3 — 202%/3 + 3z* — z°/2. As promised above, the sum over all the 5 diagrams is
finite: the coefficient of 1/¢ is —22/3 + 8 — 2/3 = 0! The final result is
2

o = ol +al =22 [ zam;m mN)H(m) [ et P, (1)

4See referénces [4; 24] for-an exphmt presentation of the Feynman rules. ' :
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where H(z) = z(1 — z)(—28/3 + 3z/2 — z?/2) and P(z) = —2°/2 + 3z* — 442°%/3 + 642%/3.
An interesting limit is m% > m%. In this case the last term in Eqn. 19 can be neglected, and
ag?) =223/24—-14/3+1/2—1/8 = 5. Note that the heavy KK states exhibit non — decoupling.
A short comment about this will be made later.

The one-loop correction from the ordinary massless graviton was computed years ago in Ref.
[26]. A comparison of the massive spin-2 correction, Eqns. 16, 17, 18, in the limit m% - 0 to
their results provides a non-trivial check on the calculation. Naively the contribution of each KK
bulk graviton to a, in this limit should equal the ordinary massless graviton. This is because
the coupling of matter to all the graviton KK modes is universal, including the zero mode.
This expectation is incorrect though, since the tensor structure of the massive and massless
graviton propagators are different. Essentially there are more helicity states flowing around the
massive graviton loop than there are in the massless graviton loop. Specifically, the coefficient
of the 7,,7,, term in the numerator of the graviton propagator is —1/(D — 1) and —1/(D — 2),
respectively, and they are not the same. Also note that the 7,,7,, contribution is proportional
to the radion correction, discussed below. The massless graviton correction to a, is then gotten
by adding and subtracting this “np — " contribution evaluated at m% = 0, weighted by either
—1/(D —1) or —1/(D — 2). That is, the ordinary graviton correction to (g — 2)/2 should be

I
bi(massless graviton) = a™(m2 — 0) + Do 161(»") B 2~f ) (20)
e ™m0y L am
= a4 (mN 0) D—-1D- 21 ’
where a7 is the contribution to (g—2)/2, evaluated at m% = 0, of the 7, 7,, term in the massive
graviton propagator. That is, a(") = w‘lr("’) (m?% = 0) where r( ™) is the contribution of a KK

radion, discussed below.

In this limit Eqns. 16, 17 and 18 reduce to a{® = a{® = —11/3¢ — 32/9 + 11/61nm2,
a§” = a{ = 4/e + 20/3 — 2lnm2, and a{® = —2/3¢ — 26/9 + 1/3 Inm?. Now an explicit
computation gives & = & = 0, & = a™ = —2, @™ = 3. The correction from each
diagram is evidently finite! Using Eqn. 21 and the m2 = 0 limit of Eqns. 16, 17 and 18
presented above, one gets by = by = —11/3¢ — 32/9, bs = by = 4/e +20/3+2/6 = 4/e + 7 and
bs = —2/3¢—26/9—1/2 = —2/3e—~61/18. These results are in agreement with the computation
given in Ref. [26].

- b. Radion

. The contribution of the tower of KK radions to a, is gotten by computing the Feynman
diagrams in Fig. -1, using the Lagrangian in Eqn. 8 and the expansion. of the induced metric,
Eqn. 5. It is remarkable that, .before sumining over the KK states, the contribution of each
Feynman diagram to a,, is finite! In the notation of Eqn. 12 (.Ag") = r§")), the result is

r&") = ré") = 0, | -
2
-1 _ 1) _ /
wiry =W, 4-2 d:c( a:mF,mN)F(:c)—l-L( mF,mN)G(:I;))
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( as)

Figure 1: Bulk gravity contribution at the one-loop level to the anomalous magnetic moment.
Dashed lines denote either bulk spin-2 graviton or bulk spin-0 radion. Wavy and solid lines
denote on-the-wall photons and fermions, respectively.

2 mi

m
wir® = —1—3/da: (R(x,mzp,m?v)K(ngm

@), @

where /w is the coupling of the radion to the trace of the stress-energy momentum tensor,
w = (n—1)/3(n+2). The functions are: F(z) = z(1—z)(3z/2+1), G(z) = 7*(3z%/2 ~ 22— 2),

and K(z) = 2z2(1 — z). In the limit m% — 0, wr™ 5 &, In the limit m2 > m2,
w i = w1r{Y - ~2, and w™r{Y = 0. So in this limit r{ = —4w.

c. Applications _ ‘

To constrain M, it is useful to consider the cases my < mr and my > mp. In the former
“case a + --- + a? reduces to 10/3, and 7} + --- + r? reduces to —w. In the my > mp case
al+---+a? —5,and r} + - - + 72 - —4w. In view of the final sum over KK states, and the
fact that ‘the sum in either limit is O(1), the (by far) dominant contribution to a, occurs for
those KK modes with large n, since the degeneracy of states is much greater. In this case the

BT 82 3\n+2// nl[n/2] M2
T (my\?
m (M*) = 2 ’
_ 257 my 2 3
~ 288 (M) »n =6 (@




The first contribution is from the tower of spin-2 KK states, and the second is the contribution
from the tower of KK radion states. Note that this result scales as M2, and is independent
of n. The presence of the factor 27™/2/nI'[n/2] from the phase space integration substantially
enhances the correction. For instance, for n ~ 6 this factor is ~ 7°/6 and compensates the loop
suppression. Requiring that Aa, is less than the current 20 limit of 2 x 0.8 x 1078 gives the
following 20 limits :

(current limit) n =2: M, > 340 GeV A2, n=4,6: M, > 410 GeV \/2.  (23)

Note that since the limit on M, ~ A2, it is not so strongly sensitive to the value of A\. The
limit for n = 2 is considerably weaker than existing accelerator limits. ‘For instance, the good
agreement between existing LEP2 data and the predicted SM cross-section for v+ missing energy
final states constrains the bulk graviton production rates [5, 4], and implies M, > 1200 GeV for
n = 2. The a, constraint for n = 6 is competitive with the limit from bulk graviton production
which for n = 6 is M, > 520 GeV [4, 5]. |

The future prospects are more promising though. The BNL E821 experiment plans to de-
crease the experimental error in a™ by a factor of ~ 20, i.e., down to Aag™ = 4 x 107'°. This
should be compared to the KK graviton and radion contribution to the MMM. Inserting the
relevant numbers into Eqn. 22 gives for n = 2 (upper) and n = 6 (lower):

2 _ r‘I‘eVz
Aa,,:(s)xlogx,\x(M*). (24)

So an O(1079) correctlon to the MMM is not unreasonable. ,

Finally, the final formulas for the correction to MMM, and the non—decoupllng of the KK
states, can be understood by computing the one-loop diagram in the full theory. Recall that the
correction to the MMM requires a helicity flip. This pulls out a factor of p,y®p,, lowering the

degree of divergence by two. Then naive power counting. gives

2 A" “I'%'
~NMp———— ~ ——
Py = M2

* *

Ag, ~ M v / dkk™ 3k 2k kk 2 (25)
for A ~ M,. The other factors appearing in the integrand are also easily understood. The first
factor k™3 is the 4 + n dimensional phase space factor. The factors of k=2 and k™ are from the
the grav1ton and muon propagators Finally, the third factor counts the momentum factors at
the gravn:on vertlces, for example, in Flg l(a) the grav1ton—ferm10n~fermlon mteractlon contams
~ k. This naive explanatlon_ then reproduces Eqn. 22. The KK states exhibit non-decoupling

since their couplihg to matter is stronger at higher energies.



4 Bulk_ Vector Bosons

a. Bulk Vector Bosons

In this Section I compute one-loop correction of a bulk X gauge boson to the MMM. A U(1) x
gauge field in the bulk that couples to leptons contributes to a, by the one-loop diagram in Fig.
2a. It could be a gauged B — L, or the higher KK modes of the photon, for example. As with the
bulk gravitons, the bulk vector boson interactions are constrained by the measured value of a,.
In this case the limits are more model-dependent. Each KK mode couples universally to leptons
with an unknown 4-dimensional gauge coupling gx. This bulk vector boson also does not have
to live in the full n-dimensional bulk. It could instead live in a pfdimensional subspace with
volume V. It will be shown though, that those regions of parameters resulting in O(10~8 —1079)
corrections to the MMM will also be probed by future short-distance force experiments.

While the limit from'au implies that the gauge coupling must be microscopic (see Eqn. 36
below), it is also quite natural for the 4—dimensional coupling to be small [3]. In the full 4+ p
dimensional gauge theory the gauge Acoupling between a vector boson and fermions is g()?) JME /2,
Confining the fermions to a 3—dimensional wall, by either a topological defect or just using a
p—dimensional delta function, and performing the usual KK decomposition of the vector boson
results in a universal coupling gx of each KK mode to fermions. It also gives

ax = o) /(M2V}), (26)

the relation between the fine structure constants in the 4-D effective theory and the fundamental
p—dimensional theory. As a result, it is very natural for the vector boson to be very weakly
coupled. For example, in the case p = n, ax = a%’)Mf /MZ2;, independent of n. In this case
ax ~2x 1073 x o{® x (M,/3 TeV)2,
This also makes it very natural for the X boson to be extremely light. Note that even if
-a B — L gauge boson is lighter than the proton (as will be the case here), the proton remains
stable since the B — L gauge boson does not carry B — L charge. These facts were pointed out
in Ref. [3], where it was argued that a B — L vector boson could mediate forces at the sub-mm
distance scale 107 — 10® times stronger than gravity. To avoid conflicts with these short-distance
force experiments, the mass of the zero mode of a new U(1)x coupled to baryons must be larger
than ~ 10~%eV. This requires that the gauge symmetry is spontaneously broken in the bulk by
the vev v of some scalar field ¢. The mass term for the gauge field in the full theory, written
using '4-D canonically normalised fields, is

e /dﬁpxl:gg;pﬁAX,,’A‘,}
2 MEV, \/17“/17;

Inserting the vev, the usual KK expaflsion for Ax, integrating over the p—volume, and using
Eqn. 26 gives

@

My = gxv R - (28)
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for the mass of the zero mode. If instead the scalar field ¢ is confined to a distant 3—D wall, then
in Eqn. 27 I should replace ¢2/V, — ¢? and insert the approximation [15] ¢(z,y) ~ 6P (y)e(z).
This results in the same expression for the mass, Eqn. 28. Consistency of this field theoretic
approach requires that the vev must satisfy v < M,. This implies an upper bound of gx M,
to the mass of the zero mode. When this is combined with the constraint on gx from a,, an
interesting upper bound to the mass of the zero mode is gotten. The masses of the other KK

states are )
2 n

My —-gx'U + = R2

An evaluation of Fig. 2a gives the contribution of one KK state to a,. The result is finite

(29)

and
2

Ao = ‘-"ﬁ/d f(a-:%n—iﬁzz(l ~ ). (30)
The normahsatlon of the U (1)x charge is chosen such that the X charge of a lepton is 1. The
function L(z,m?,m%) is defined in the previous section. In the limit my — 0 Eqn. 30 reduces
to the famous result from Schwinger [27).

I now want to consider performing the sum over all the KK states. The contribution
from those states my<mp is obviously finite. In the opposite limit my > mp, Aa(") —
(ax /3m)m%/m?%. In this case the correction decouples as mj?. Since the degeneracy of the KK
states increases as (m%)?/2~, however, the resultant sum is power divergent as (m%)P/2=! for
p > 2, logarithmically divergent for p = 2, and finite for p = 1. As in the case of the bulk
graviton loop, a cutoff A = M, is used to regulate these divergences, and an overall factor of
A ~ O(1) is inserted to parameterise the result of an actual one-loop computation in a more
complete theory of quantum gravity. The contribution of those modes my > mp to a, is then,
using a trivial modification of Eqn. 15,

ox w2
_ ax 2 7Tp/2 PLTT MPV
Aa, = 2)\37r (p—ZI‘[p/2]) ( M? MoV, ) p>2 (32)
(p) /2
_ ax 2 7P (_rripl)
= 2\ 3 (p—2F[p/2]> , D> 2 (33)
Ag, = ,\TmFRZ lan/mF p=2 : | (34)

To arrive at Eqn. 31, p = 1, I have neglected the mass of the zero. mode.. Also.note that in
this case the result is finite. For p > 1 the. symmetry breaking contribution is irrelevant since
the resulting sum is divergent. To get from Eqn. 32 to Eqn. 33, I have used the relation
2M2%; = M?**%V,, and the relation Eqn. 26 between the 4—dimensional and (4 + p) —dimensional
fine structure constants. . ,

These expressions for the bulk vector boson contribution to a, can also be understood by
considering computing the one-loop diagram in the full theory. Recall that the correction to the
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a) ‘\/Lz” - b
Figure 2: One-loop correction to the anomalous magnetic moment from: a) abelian bulk vector

bosons (dashed wavy line), b) charged Higgs (dotted line) and bulk RH neutrinos. Wavy and
solid lines denote on-the-wall photons and fermions, respectively.

MMM requires a helicity flip in the loop diagram. This pulls out a factor of DoP*Ya, lOowering
the degree of divergence by two. Then naive power counting gives for p > 2

(p)
~ m> 7 M”

o
/ dkkPHE~2k~2k2 ~ m2 X AP-2, ‘ (35)

Aa, F

The first two factors of k72 in the integrand are for the KK vector boson and fermion propagators.
Substituting A ~ M, further simplifies this result to Aa, ~ ag’(’)m% /M2, which is Eqn. 33. Note
that this result is independent of the dimension of the subspace. This implies that the correction
to MMM is independent of V},, and depends only on M, and a the fine structure constant in
the full theory. The dependence on V; only enters once the correctlon to the MMM is expressed
in terms of the 4—dimensional fine structure constant.

b. Applications

Requiring that Aa, < 2 x 0.8 x 1072 gives the following 20 limits for the interesting cases
p=n=2,and p=n=6: '

1/ M\ | 1/ M,
p=n=2: ax<3.3x10"32x;\-( ),p=n'=6:ax<2.4x10—31xX(TV) (36)

TeV
The limit in the case n = 2 is ~ 10 below the “natural” value of ~ 2 x 1073! for M, =1 TeV. I
emphasize that these tiny limits apply only to the situation where the vector boson occupies the
whole bulk. The limits on ax are considerably weaker if the vector boson lives in a subspace.
That is, for other choices of p < n, the limit on ax is weakened by the amount MV, /MPV,,.
The limits in Eqn. 36 translate into the following 20 upper bounds on the mass of the zero
mode, using mx < gxM,:

1 . )3
p=n=2: mx <LT%x10?x ﬁ (3']"’1/{ev) eV, (37
. . | . 1n—2 1 ! M* . 3
p:'n,::6. mx < 4.7 x 107° x —_\/X (3 TeV) eV. (38)

" In the case that X = B = L, the gauge bosofi ¢an mediate an isotope dependent force at
sub-mm distance scales. Even:though the gauge-coupling is-microscopic; the force can still be
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huge compared to the gravitational force at those distance scales. The limits in Eqn. 36 quantify
an upper limit to this signal. From the upper bound on the gauge boson mass, Eqn. 38, it is

1

clear that there is still an allowed region where mx < mm™". Then the ratio of the forces is,

forp=n=2top=n==5,
M 4
TeV)'

The conclusion is that even though the (g — 2) constraint is strong in the case p = n, the B— L

FX Fgra,v = OzX GNmnuclSIOG -7 ( (39)

gauge boson can still mediate forces 10 — 107 times stronger than gravity at sub-mm distances.

Next T apply these results to the scenario of [12], where KK excitations of the SM gauge
particles and Higgs bosons (and their superpartners) result in a powet law evolution of the
gauge couplings. This allows for a unification scale as low as few decades above the TeV scale.
In this picture the SM gauge bosons, for example, have KK excitations in one or two extra
dimensions. These will all contribute to the MMM. In what follows however, I only concentrate
on the contribution from the KK photons for the reason that their contribution (and hence also
those from KK Z’s and W’s) is rather small (see Eqn. 40 below). It is then seen that the
constraint from a, provides a rather weak upper limit to R, the size of the subspace that the
gauge bosons occupy. Using Eqns. 31,34, o} = 137, M, ~ 10 TeV, and the 20 experimental
error on the muon (g — 2)/2 gives '

=1: R'>30GeV, p=2: R > 100 GeV. (40)

The limit for p = 1 is finite, whereas the case p = 2 is logarithmically sensitive to the cutoff.
Since these two constraints satisfy R~! > m,, the use of Eqns. 31 and 34 is consistent. The
rather weak bound for p = 1 is due to the agps suppression, and the constant density of KK
states. ’

Finally, KK excitations of the Z, gauge boson result in a tree-level correction to the theo-
retical predictions for atomic parity violation parameters. The measurement of atomic parity
violation therefore constrain the size of some extra “small” dimensions. These experiments mea-
sure a quantity QQw which is the coherent sum of the Z boson vector couplings to the nucleus.
The measured value for Cesium is [17]

P — _72.41 + 0.25 % 0.80, (41)
which agrees very well with the theoretical prediction [17]
- QSM = —73.12 4 0.06 + 0.01. - (42)

The exchange of a tower of K_K Zy bosons trivially modifies (at tree-level) the SM prediction to®

n

’ 1
W = Q= QW + Qi = QY (1 +m§R2Z7—{2-) . (43)

;ST sssume-that thé SM fermions do not have:any KK excitations below M,.
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The myz contribution to the KK mass n/R has been neglected. Note that the KK correction
to Qw pushes the theoretical prediction farther away from the measured value. To limit R, I

exp

require that Q57 — Q% < 20, or —QEX < 0.89. Using the measured value given above, and

performing the sum over KK states results in the following 2¢ limits

In M.R
In20 °

p=1: R°!>1100GeV; p=2: R!>36TeV (44)

So it is quite clear that the stronger limits on TeV—sized extra dimensions are gotten from
atmoic parity violation rather than the MMM. Compare the results in Eqn. 44 to Eqn. 40.

5 Bulk Right—Handed Neutrinos

The authors of Ref. [15] proposed several mechanisms for generating ~ O(eV) sized neutrino
masses. In one of their models which is the attention of this section, small Dirac neutrino masses
are generated by introducing bulk RH neutrinos. I now briefly explain their idea. The interaction

/ d*z kLHY o™ , (45)

gitres a Dirac mass kv/v/2 to the LH and RH zero mode neutrino. The higher KK states also
mix with the LH neutrino, but what will eventually concern us for the MMM are the extremely
heavy KK states, which have very tiny mass mixing with the LH neutrinos. In their model this
interaction arises from a higher dimension operator in the full theory. More specifically, the

k | v’(z,y)
4 0 H il Sud 224
/ d'zdPy Mf,zL(w,y) (z,y) v, (46)

operator

where I have allowed the fields to propagate in p extra dimensions, and ko is a dimensionless
constant. Inserting the approximation s (z,y) ~ 1/0®)(y)¢sm(z) for the SM zero modes [15],
and the usual KK mode expansion for v¢ gives the relation between k and kq:

1 M, \*/
k= = ko (2 ) , 47
ko Yz 0 ( Mo (47)

.,S

where to obtain the second relation I used (47Gy)~! = MP*2R" and assumed V, = RP for
simplicity. Consequently, the couphng k can be very tmy, and neutrino masses of the correct
order ‘of magmtude reqmred to explaln the atmospherlc ‘and’ solar neutrlno anoma.hes can be
obtained. o ) ’

~To obtain a correction to the MMM at the one—loop level, I assume:

) the muon neutrino obtams a Dlrac mass by mixing with a sterile neutrino, as in Eqn. 45;

11) the nggs sector 1s extended to 1nclude an extra nggs doublet Wthh also a.cqulres a vev.
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The second assumption is realised in low-energy supersymmetric extensions to the SM, for
example. The point of this assumption is to obtain a trilinear coupling between the physical
charged Higgs, the muon, and the bulk RH neutrinos. Consequently, these interactions contribute
to the MMM at one-loop, as shown in Fig. 2b.

An evaluation of Fig. 2b gives the following correction to the MMM:

o 2k? m?
AV = 5 | dz= > F2 > (1 -x), - (48)
16m L(z, mf, mj4, mg)

where I have denoted by k the trilinear coupling of the physical charged Higgs, charged LH
fermion, and bulk RH neutrinos. It is related to a linear combination of the trilinear couplings
in the gauge basis. The function L is L(z, m2, M+, my) = —x(1 - T)m¥ + amiy + (1 — z)m%,
where mgy+ is the mass of the charged Higgs. In the limit m%, > m}, m3,, .

2 k2 m?
m - 2 K mp
Aa” = 3 T6mEm

As in the case of the bulk gravitons and bulk vector bosons, the dominant correction to the

(49)

MMM occurs from the superheavy KK RH neutrinos. In fact, the sum over KK states is identical
(ip to numerical factors) to the KK sum for the vector bosons. Integrating Eqn. 49 for p > 2,
and using trivial modifications to Eqns 14 and 15, gives

2 A 2 7l'p/2 m2 MPL /n
Aa, = =k? —E=== .

% = 3% 8ap— 2T[p/2] M? ( M, (50)

Note that since k = ko(M./M pL)P/™, the strong dependence on M, /Mp,, cancels, leaving

| 2., A 2 @2 md '
. — _k2 : ___F_'
Aty = Sk 3 Tlp/2] M2 (51)
Choosing p = 5, for example, gives

10 (TeV\2 _o (TeV\2 - |

Aay ~ 82X x 10 1°(M*) ~k§/\x109(M*) . (52)

So since both ky and A ~ O(1), it is possible to get Aa, ~ 107°. This may be within the reach
of the BNL E821 experiment.
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