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Abstract 

It has been proposed recently that the scale of strong gravity can be very close to the 

weak scale. Dimensions of sizes anywhere from "'mm to "'TeV-1 can be populated by 

bulk gravitons, vector bosons and fermions. In this paper the one-loop correction of these 

bulk particles to the muon magnetic moment (MMM) are investigated. In all the scenarios 

considered here it is found thatthe'Iiatural value for the MMM is O(lo-s -10-9). One main 

result is that the contribution of ~ach Kaluza-Klein graviton to the MMM is remarkably 

finite. The bulk graviton loop implies a limit of "" 400 Ge V on the scale of strong gravity. 

This could be pushed up to "" 1 - 2 Te V, even in the case of six extra dimensions, if the 

BNL E821 experiment reaches an expected sensitivity of "" w-9 • Limits on a bulk B - L 

gauge boson are interesting, but still allow for forces 106 -107 times stronger than gravity 

at mm-1 distances. The correction of a bulk right-handed neutrino to the MMM in one 

recent proposal for generating small Dirac neutrino masses is considered in the context of 

a two Higgs doublet model, and is found to be close to w-9 • The contributions of. all 

these bulk particles to the MMM are (roughly) independent of both the total number of 

extra dimensions and the dimension of the subspace occupied by the ~ulk states. Finally, 

limits on the size of "small" compact dimensions gotten from the MMM and atomic parity 

violation are determined and compared. 
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1 Introduction. 

In the past year there has been a remarkable proposal by Arkani-Hamed, Dimopoulos and 

Dvali (ADD) for solving the hie:archy problem [1, 2, 3]. In their vision the scale of strong 

quantum gravity is lowered to the weak scale. A weak-scale valued Planck scale M* and Newton's 

constant are reconciled by allowing gravity to propagate in n extra large compact dimensions. 

An application of Gauss' Law quantifies the relationship between M~L = (87rGN)-I, M*, and 

the volume of the compact space Vn = Rn, to be 

(1) 

In the case of 2 extra dimensions and the phenomenologically preferred value M* rvTeV, R rvmm 

and future short-distance experiments may observe a transition in Newton's Law from a r-2 to 

r-4 force law. In the case of 6 extra dimensions and M* rvTeV, R-1 rvMeV, which is large com­

pared toM* rvTeV. The non-observation of Kaluza-Klein (KK) towers for the Standard Model 

(SM) particles, for example, requires that the SM particles not propagate in the large extra 

dimensions. This requires that they be fixed to a 3-dimensional wall, with a thickness smaller 

than rv 0((700 GeV)-1
). This may be accomplished using purely field-theoretic techniques [1], 

" or by using the D-branes of string theory [2]. This remarkable proposal allows for many new 

interesting phenomena to be discovered at future experiments. These include dramatic model­
independent signals at high-energy colliders from bulk graviton production [4, 5], signatures of 

the spin-2 structure of the KK gravitons [6], distortions in the Drell-Yan energy distribution [6], 

and enhancements in the j+ f-, WW, ZZ, 'Y'Y production cross-sections at linear colliders [6, 7], 

as well as other interesting collider signatures [8] and implications for gravitational processes at 

high energies [9]. Future colliders may also discover Kaluza-Klein and string excitations of the 

Standard Model particles (10, 11, 2]. The existence of either large or TeV-1 sized dimensions also 

opens new territory for model-building. In an important early paper (10] by Antoniadis, the au­

thor advocates the existence of TeV-1 sized dimensions to break supersymmetry at low-energies. 

Other prospects include new ideas for obtaining gauge coupling unification [12, 13], suppressing 

proton decay, and flavor physics[14, 15]. Existing phenomena already strongly constrain M*. 

These include astrophysical processes (such as SN1987 A in the case n = 2) [3], bulk graviton 

production (4, 5], and WW, ZZ production at LEP2 [7]. 

In this paper the bulk contributions at the one-loop level to the anomalous magnetic moment 

of the muon (MMM) are computed. These include contributions from bulk gravitons, bulk B-L 

gauge bosons, and, in a two Higgs doublet model, those from bulk right-handed (RH) neutrinos. 

The correction to the MMM is found to be rv m!/M~, and is therefore in a first approximation 

independent of n, or, in the case of bulk fermions or vector bosons, independent of the dimension 
~ 

of the subspace inhabited by the bulk states. 

Now it may seem strange to compute a one-loop correction to the MMM when a correction 

from a TeV-scale suppressed operator may be present at tree-level. The important point is that 
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the tree-level operator contains an unknown coefficient, whereas the one-loop corrections are 

present, calculable and essentially model-independent. They thus represent a lower value to the 

full bulk correction to the MMM. 

In this paper it is found that the "expected" one-loop correction to the MMM is typically 

O(lo-s -10-9 ) for values of M* from"' 400 GeV to rv O(TeV). For comparison, this is the same 

magnitude as the correction expected in low-energy supersymmetry at large tan f3 (16]. The bulk 

correction to the MMM should be compared to its extremely well-measured value of (17] 

a~xp = g; 2 
= (116592.30 ± 0.8)) X 10-8. (2) 

The BNL experiment (E821) hopes to lower the error to 40 X w-ll (18L ~a factor of rv 20 below 

the existing sensitivity. The prediction in the SM is (19, 20] 

a~M = 116591.739(154) X 10-8 , (3) 

and is in very good agreement with the current measurement. The theoretical error is dominated 

by the hadronic contributions. The error in the lowest order hadronic contribution is "' 60 ppm 

of ap., but there is hope that this error can be reduced to "' 0.5 ppm (18, 21]. Another large 
I 

source of theoretical error is the hadronic "light-on-light" scattering correction to aw This 

error is estimated to be rv 0.15 ppm [20]. These translate into an expected theoretical error of 
rv 5 X 10-10 . 

A main result of this paper is the computation of the one-loop correction from bulk gravitons 

and radions to the MMM. The corrections from a single KK graviton and KK radion are found to 

each be miraculously finite. The full one-loop bulk contribution is gotten by summing over all the 

KK states, and results in a correction to the MMM which is essentially model-independent and 

independent of n, depending only on the scale of strong gravity. Requiring that the correction 

is smaller than the present experimental error implies, in the case n = 6, for instance, that the 

lower limit on M* is competitive with limits gotten from other physical processes. It is also found 

that as a general rule the ap. constraint provides a comparable limit to M* for larger numbers of 

extra dimensions. This is in contrast to astrophysical or terrestrial constraints gotten from the 

direct production of gravitons, where the effect of a physical process with characteristic energy 

scale E typically decouples as"' (E/M*)n. As such, the aP. constraint provides complementary 

information. 

Bulk RH neutrinos were proposed in Ref. [15] to generate small Dirac neutrino masses, and 

can naturally account for the required mass splitting needed to explain the atmospheric neutrino 

anomaly. It is found· that the· correction to the MMM from the tower of RH neutrinos in a two 

Higgs doublet model is close to the futu~e experimental sensitivity. 

It is also found that while the constraint on the B - L gauge coupling is quite impressive, 

a B - L vector boson can still mediate isotope-dependent forces 106 - 107 times stronger than 

gravity at sub-mm distance scales. 
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Finally, KK excitations of the SM gauge bosons are also probed by the MMM and atomic 

parity violation measurements. It is found that the stronger limits on the size of extra "small" 

dimensions are gotten from the atomic parity violation experiments. The limit is rv 1 Te V ( rv 3.6 

TeV) for KK excitations into 1 (2) extra dimensions. 

The outline of the paper is as follows. Section 1 discusses some machinery necessary to 

perform the one-loop graviton correction to the MMM. Section 2 discusses the results and limits 

gotten from the one-loop graviton computation. Section 3 discusses the bulk B - L and KK 

photon contributions to the MMM, and concludes with a discussion of the KK Zo correction 

to atomic parity violation measurements. Section 4 discusses the correction to the MMM in 

a recent proposal for generating small Dirac masses within the context· pf a two Riggs-doublet 

model. 

2 Preliminaries and Some Machinery. 

The effective field theory approach described by Sundrum in Ref. [22] allows one to determine the 

couplings of the higher dimensional gravitons to some matter stuck on a wall. The interactions 

are constrained by local 4-dimensionai Poincare invariance (which interestingly enough, arise 

from the coordinate reparameterisation in variance of the wall embedding) and the full ( 4 + 
n) -dimensional general coordinate in variance, as well as any local gauge symmetries on the wall. 

At lowest order in 1/M*, all the higher dimensional gravitons interact only through the induced 

metric on the wall. Since the interaction of the induced metric with on-the-wall matter is fixed by 

4-D general coordinate invariance, the lowest order couplings of the KK gravitons to the on-the­

wall matter are fixed by the ordinary graviton coupling to matter, and are obviously universal. 

This is important, since the interactions of matter to the KK gravitons are therefore determined 

by replacing hp.v 4- En h~r:} in the ordinary gravity-matter interactions. With g = 1J + r;,h, 
where K, . v327rGN, hp.v(x) = En h~r:}(x), the gravitons couple to the conserved symmetric 

stress-energy tensor with normalisation 

(4) 

There is one subtlety though. The 4-D decomposition of the 4 + n dimensional graviton 

results in a KK tower of spin-2 gravitons, n- 1 vector bosons, and n(n- 1)/2 spin-0 bosons. 

The vector bosons correspond to fluctuations in 9iw In the linearised theory they couple only 

to 'fiP., which v~njshes if the wall has no momentum in the extra dimensions. The ,zero mode 

of the vector bosons acquires a mass rv M; / MPL from the spontaneous breaking of translation 

invariance in the extra dimensions [23]. '!he zero mode of one of the spin-0 bosons corresponds to 

fluctuations in the size of the compact dimensions (the ''radion") and couples to TJ:. It acquires 

a mass "' w-3e V to MeV from the dynamics responsible for stabilising the size of the extra 

dimensions [23]. The remaining spin-0 fields do not couple to Tt [4; 24]. 
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The end result is that only the tower of KK gravitons and radians couple to the matter on 

the wall. Since Tff is proportional to the ferm~on masses, it is important to include the radian 

and its tower of KK states in computing the correction to g - 2. A careful computation [4, 24] 

determines the normalisation of the coupling of the. radian to Tff. The correct prescription is 

then to replace 

hJJv(x)-+ L (h~r:}(x)- VW'fJJJv</>(n)(x)). (5) 
n 

For a canonical normalisation of¢, w = (n- 1)/3(n + 2). The couplings of the KK tower of 

gravitons and radians to matter is then gotten from the ordinary graviton coupling to matter by 

using the substitution in Eqn. 5. 

Next I present some of the machinery which is needed to perform the'"one-loop bulk graviton 

correction to the MMM. The reader is referred to References [25] for a far more careful treatment 

of this subject, and for early quantum gravity computations. The recent References [4, 24] present 

a clear discussion of the proper procedure for determining the bulk graviton couplings to matter. 

The Lagrangian coupling gravity to on-the.:.wall photons and fermions is 

..;=:g.c, = ..;=:g ( -~g!JPg"0"FJJvFpu- 21~(g!J" DJJAv? + ifii''/e~DJJ'¢- mifi'lj;), (6) 

with DJJAv _:. 8JJAv-r~vAP, f is the Christoffel $ymbol, and~ is the U(l) gauge fixing parameter. 

The e~ fields are the vielbeins satisfying gJJ" = e~TJabe(; and 'flab = eJJa9JJve"b. The fermionic 

covariant derivative is DJJ = 8JJ -ieAI'- ~w~ba-ab, with Uab = H'Ya, 'Yb]· Finally, the spin connection 

is 

w~b = ~ ( e"a(a#e~- (J.L t-+ v)) - (at-+ b)) - ~e"aepbeJMl ( 811e~- (v t-+ p)) . 

Inserting gl'" == 'f/pv + r;,h~'"' eJJa = 'fJJJa + r;,hJJa/2, and expanding Eqn. 6 to O(h) gives 

£ = .C(h = 0) + ~r;,h!J" ( 'f/pu F!JpFvu - ~'fJJJvFa.B Fa.a) 

+ 2~r;,(8. A) ( -~h(8. A)+ h~'"(8!JAV + J.L t-+ v) + A0 TJJJV (hap,v + hav,p- hjJv,a)) 

+~ ((hTJ!J"- h~'")ifii')'JJDv'¢- mhifi'I/J + ~(8JJh- 8"hJJv)ifii')'JJ'I/J)). 

(7) 

(8) 

The minimal coupling of gravity to the matter stress-energy tensor, Eqn. 4, is gotten by inte­

grating Eqn. 8 by parts to remove the derivatives on h. 

The propagator for a massive spin-2 particle, with mass mN, is 

(9) 

(10) 
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and is uniquely fixed by several requirements [25]. The first is that the graviton is the excitation 

of the metric, so P is symmetric in J.L +-+ v and (f.Lv) +-+ (pCJ). Next, unitarity implies that on­

shell Pis positive-definite and that the spin-1 and spin-0 components are projected out. Finally, 

the unitarity requirement P(k2 = m'jy, m'jy )J.Lv,pu = I:s t~v<=:u, where t~v is one of 5 polarisation 

tensors, fixes the normalisation of P. 

It will be useful to compare the ordinary massless graviton one-loop correction to aJ.L [26] to 

the massive spin-2 one-loop correction in the limit mN ---7 0. The massless spin-2 propagator is 

required for the former computation. In the harmonic gauge it is 

(11) 

It will be important to note that the coefficient of 'fJJ.Lv'fJpu in the numerator of the graviton 

propagator differs between the massless and massive cases. 

Each Kaluza-Klein (KK) mode n of a bulk graviton contributes to aw It is conveinent to 

express the contribution of a Feynman diagram i, with internal KK mode n, to aJ.L as 

(12) 

The fermion mass is mp. The total co~,rection to aJ.L is then gotten by summing over all the KK 

modes and Feynman diagrams. The final result is 

GN 2 ~A(n)( 2 2 ). 
-2 mFL... F mp,mN' 

7r n 
A~) = A in) + · · · + A~), for K diagrams. (13) 

This formula can be trivially modified to include bulk fermion or vector boson corrections to 

the MMM. Since the coupling of matter to the KK graviton, vector boson or fermion modes is 

universal 3 , the only dependence of a~n) on the KK quantum number n enters through the mass 

of the KK mode, mN = n/ R. Replacing the sum in Eqn. 13 with an integral gives the final 

result 

(14) 

This is a good approximation since the mass splitting is tiny: rv 10-3 e V for n = 2, rv 5 MeV 

for n = 6. 

In evaluating the one-loop contributions to the MMM, the dominant correction will occur 

from those states in the loop with masses close to the cutoff. This is a direct consequence of 

the large multiplicity of states at large KK masses. The total correction to the MMM is then 

well-approximated by substituting int9 Eq:n. 14 the large mN limit of AF, and cutting off the 

(power-divergent) integral over m'jy at KK: masses 'inN = M*. For the cases considered in this 

paper, in the large mN limit AF ---7 cf(m'jy)w with W = 0 or 1. ~Then us~:ng the relation 

(47rGN)-1 = M:+2Rn, a good approxim~tion to Eqn. 14 is, for W = 0 say, 

A 21rnl2 m~ 
D.ap. = 81r2 c nr[n/2] M; · 

------------------------------
(15) 

31 assume for simplicity that the SM fermions dO not have KK excitations. 



The unknown coefficient >. is a gross parameterisation of our ignorance about what is regulating 

the integral, and can only be computed in a finite theory of quantum gravity, e.g. string theory. 

The expectation is that>. rv 0(1) since, for example, in string theory the amplitude AF becomes 

exponentially suppressed at KK masses larger than the string scale. So whereas>. is an unknown 

0(1) coefficient, the limits on M* gotten from the bulk graviton loop scale as >.112 and are 

therefore not so sensitive to its value. Finally, it is consistent to keep the factors of 1rnl2 , etc. 

in Eqn. 15, since this factor counts the degeneracy of states, which can only increase in the full 

theory. 

3 Bulk Gravity. 

a. Spin-2 Graviton 

Using the Lagrangian in Eqn. 8 the Feynman rules for the graviton and fermion, photon 

interactions can be gotten4 • Using this, and the massive graviton propagator, Eqn. 9, it is 

straightforward although tedious to compute the one-loop correction to aw The Feynman di­

agrams relevant to the calculation are shown in Fig. 1. Those terms in the numerator of the 

graviton propagator containing two or: more ko.s do not contribute to aJ.& at this order in G N 

because of the gravitational Ward identity. I have also verified this by an explicit computation. 

With this in mind, naive power counting implies that the contribution of each Feynman diagram 

and for a given KK mode n to aJ.& is logarithmically divergent in the ultraviolet. The explicit 

calculation presented below reveals though that these divergences cancel in the sum, so that the 

total contribution of each KK mode to aJ.& is remarkably finite! A similar miraculous cancellation 

was observed in the ordinary {massless) graviton one-loop correction to aJ.& (26). 

In the notation of Eqn. 12 (~n) = a~n)), the partial amplitudes a~n) are (D = 4 - t:) 

a (n) _ a(n) 111 + 1 + lllnm2 1 ldxR(x,m~,m~)A(x) 
1 - 2 --3 - -3 -6 F - -2 L( 2 2 ) ' 

f x,mp,mN 
{16) 

a(n) - a(n) 
3 - 4. ~+4-2lnm~-ldx(R(x,m~,m~)B(x)+8L( m[ 2 )C(x)), {17) 

f x,mp,mN 

(n) 
as 21 5 1 2 I ( 2 2 ( ) m~ ( ))( ) -3~ + 8 + 3lnmp- dx R(x,mp,mN)D x + L(x,m},m~)E x 18 

where L(x, m~, m~) = x2m~ + {1 - x )m~ contains the only dependence of a~n) on the KK 

quantum number. Tbeother functions are R(x,m~, m~) = (2xm~-m1v )/ L(x, m~, m~ ), A(x) = 
4:tt- x3/3, -B(x)' = 14x2/3-,20x/3, C(x) = x2 - x3/2, D(x) = 3x2/2- 5x3/3 + x4/2, and 
E(x) ·= 16x2/3- 20x3 /3 + 3x4 - xs /2. As promised above, the sum over all the 5 diagrams is 

finite: the coefficient of 1/t: is -22/3 + ~- 2/3 = 0! The final result is 

(n) _ (n) (n) _ 223 I 2xm~ - m~ I m~ 
ap - a1 +···+as - 24 - dx L( 2 2 ) H(x)- dx L( 2 2 ) P(x), 

x,mp,mN x,mp,mN 
(19) 

4See references [4;;24] for·a.Il explicit presentation of the Feynman rules. 
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where H(x) = x(1- x)( -2813 + 3xl2- x2 12) and P(x) = -x5 12 + 3x4
- 44x3 13 + 64x2 13. 

An interesting limit ism~ >> m~. In this case the last term in Eqn. 19 can be neglected, and 

a';> = 223124-1413 + 112-118 = 5. Note that the heavy KK states exhibit non- decoupling. 

A short comment about this will be made later. 

The one-loop correction from the ordinary massless graviton was computed years ago in Ref. 

(26]. A comparison of the massive spin-2 correction, Eqns. 16, 17, 18, in the limit m~ --+ 0 to 

their results provides a non-trivial check on the calculation. Naively the contribution of each KK 

bulk graviton to aJ.t in this limit should equal the ordinary massless graviton. This is because 

the coupling of matter to all the graviton KK modes is universal, including the zero mode. 

This expectation is incorrect though, since the tensor structure of the,,_massive and massless 

graviton propagators are different. Essentially there are more helicity states flowing around the 

massive graviton loop than there are in the massless graviton loop. Specifically, the coefficient 

of the "'J.tv 'T/pu term in the numerator of the graviton propagator is -1 I ( D - 1) and -1 I ( D - 2), 

respectively, and they are not the same. Also note that the "'J.tv"lpu contribution is proportional 

to the radion correction, discussed below. The massless graviton correction to al' is then gotten 

by adding and subtracting this "'T/ - .,, contribution evaluated at m~ = 0, weighted by either 

-1I(D -1) or -1I(D- 2). That is, t4e ordinary graviton correction to (g- 2)12 should be 

bi(massless graviton) a~n) (m2 --+ O) + _1_ii~n} __ 1_ii~n) 
- t N D-1 1 D-2' (20) 

(n)( 2 _ ) 1 1 -(n) 
- ai m N - 0 - D - 1 D - 2 ai ' 

where iii is the contribution to (g- 2) 12, evaluated at m~ = 0, of the "'J.tv"lw term in the massive 
graviton propagator. That is, ii~n) = w-1r~n)(m1- = 0) where r}n) is the contribution of a KK 

radion, discussed below. 

In this limit Eqns. 16, 17 and 18 reduce to a~n) = a~n) = -lll3t- 3219 + 11l6lnm~, 
a~n) = ain) = 4lt + 2013- 2lnm~, and a~n) = -2l3t- 2619 + 113 lnm~. Now an explicit 
computation gives ii~n) = a~n) = 0, a~n) = ain> = -2, ii~n) = 3. The correction from each 

diagram is evidently finite! Using Eqn. 21 and the m~ = 0 limit of Eqns. 16, 17 and 18 

presented above, one gets b1 = b2 = -lll3t- 3219, b3 = b4 = 4lt + 2013 + 216 = 4lt + 7 and 

b5 = -2l3t- 2619-112 = -2l3t-61l18. These results are in agreement with the computation 

given in Ref. [26]. 

b. Radian 

The. contribution of .the tower of KK r~diom~ to aJ.t is gotten by computing the Feynman 

diagrams in Fig. -11 using the Lagrangian i:p. Eqn. 8 and the expansion of the induced metric, 

Eqn. 5. :It is remarkable that,· ,before summing over the KK states, the contribution of each 

Feynman diagram to al' is finite! In the_ notation of Eqn. 12 (~n) = r~n)), the result is 

rin) = r~n) - 0, . 

w-1r~n) = w-1r~n) - -4- 2jdx (R(x,m~,m~)F(x) + L( . m[ 2 ) G(x)) ·, 
x,mF,mN . 
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---- ·/· .,. ' , ' 
' ' I \ 

·I I 

----- ' .,. ' , ' , ' ' \ 
I \ 

I ' 

Figure 1: Bulk gravity contribution at the one-loop level to the anomalous magnetic moment. 

Dashed lines denote either bulk spin-:2 graviton or bulk spin-0 radion. Wavy and solid lines 

denote on-the-wall photons and fermions, respectively. 

-1 (n) _ I d (R( 2 2 ) ( ) 2 m~ ( )) w r5 - -1-3 x x,mF,mNKx +-L( 2 2 )Gx , 
3 x,mF,mN 

(21) 

where .JW .is the coupling of the radion to the trace of the stress-energy momentum tensor, 

w = (n -1)/3(n+2). The functions are: F(x) = x(1-x)(3x/2+ 1), G(x) = x2 (3x2/2- 2x- 2), 
and K(x) = x2(1- x). In the limit m~ ~ 0, w-1r~n) ~ a~n)_ In the limit m~ ~ m~, 
w-1r~n) . w-1rin) ~ -2, and w-1r~n) ~ 0. So in this limit r~) = -4w. 

c. Applications 

To constrain M. it is useful to consider the cases mN ~ mF and mN ~ mF. In the former 

case a~+···+ a5 reduces to 10/3, and ri + · · · + r5 reduces to -w. In the mN ~ mF case 

a~+···+ a5 ~ 5, and ri + · · · + r5 ~ -4w. In view of the final sum over KK states, and the 
fact that the sum in either limit is 0(1), the (by far) dominant contribution to a~-' occurs for 

thos~ KK modes with large n, since the degeneracy of states is much greater. In this ·case the 

int~gr,alin ;~ql1: )4 over the KK nup1ber phase space is trivial and power divergent. Applying 

th~~~{~t.IllVJ~pf.S.~(;tiop 2.,,:m9-n. 15, and w = ('/1-1)/3(n + 2), tJ,Ietota! ~()rr~ction to a~-' is. 

A (·· 4 (n- 1)) 21rn/
2 m~ 

!Sal-' - 81r2 5 - 3 n + 2 nr(n/2] M; 
7'A· (mJJ) 2 

- 127r M. ' n = 2 ' 

257rA (m·· JJ) 2 

- ,n=6. 
288 M. 

(22) 
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The first contribution is from the tower of spin-2 KK states, and the second is the contribution 

from the tower of KK radion states. Note that this result scales as M;2 , and is independent 

of n. The presence of the factor 2rrn12 /nr(n/2] from the phase space integration substantially 

enhances the correction. For instance1 for n,....., 6 this factor is ,....., rr3 /6 and compensates the loop 

suppression. Requiring that b..aJL is less than the current 2a limit of 2 x 0.8 x 10-8 gives the 

following 2a limits : 

(current limit) n = 2: M* > 340 GeV A112 , n = 4, 6: M* > 410 GeV A1
/
2

. (23) 

Note that since the limit on M* "' A112 , it is not so strongly sensitive to the value of A. The 

limit for n = 2 is considerably weaker than existing accelerator limits. ''For instance, the good 

agreement between existing LEP2 data and the predicted SM cross-section for )'+missing energy 

final states constrains the bulk graviton production rates [5, 4], and implies M* > 1200 GeV for 

n = 2. The aJL constraint for n = 6 is competitive with the limit from bulk graviton production 

which for n = 6 isM*> 520 GeV [4, 5]. 

The future prospects are more promising though. The BNL E821 experiment plans to de­

crease the experimental error in a~xp by a factor of rv 20, i.e., down to b..a~xp == 4 x 10-10 • This 

should be compared to the KK graviton and radion contribution to the MMM. Inserting. the 

relevant numbers into Eqn. 22 gives for n = 2 (upper) and n = 6 (lower): 

( 
2) (TeV)

2 

!::!..a~-' = 
3 

x 10-9 x A x M* (24) 

So an 0(10....:9) correction to the MMM is not unreasonable. 

Finally, the final formulas for the correction to MMM, and the non-decoupling of the KK 

states, can be understood by computing the one-loop diagram in the full theory. Recall that the 

correction to the MMM requires a helicity flip. This pulls out a factor of Pa'YaPa, lowering the 

degree of divergence by two. Then naive power counting gives 

2 

1 
An 2 

mp n+3 -2 -1 -2 2 mp 
b.. a I-' rv Mn+2 dkk k k kk ,....., m F Mn+2 ,....., M2 ' 

* * * 
(25) 

for A ,....., M*. The other factors appearing in the integrand are also easily understood. The first 

factor kn+3 is the 4 + n dimensional phase space factor. The factors of k-2 and k-1 are from the 

the graviton ahd muon propagators. Finally, the third factor counts the momentum factors at 

the ~n)fvitbn vertices; for example, r~ Fig:l (a) the graviton-fer~ion.:..:fermion interactioll CQrttains 

,....., k. This naive explanation then reproduces Eqn. 2.2. The KK states exhibit non-decoupling 

since their coupling to matter is stronger at higher energies. 
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4 Bulk Vector Bosons 

a. Bulk Vector Bosons 

In this Section I compute one-loop correction of a bulk X gauge boson to the MMM. A U(1)x 

gauge field in the bulk that couples to leptons contributes to aJ.t by the one-loop diagram in Fig. 

2a. It could be a gauged B- L, or the higher KK modes of the photon, for example. As with the 

bulk gravitons, the bulk vector boson interactions are constrained by the measured value of aw 

In this case the limits are more model-dependent. Each KK mode couples universally to leptons 

with an unknown 4-dimensional gauge coupling gx. This bulk vector boson also does not have 

to live in the full n-dimensional bulk. It could instead live in a P-:-dil!lensional subspace with 

volume Vp. It will be shown though, that those regions of parameters reslilting in O(lo-8 - 10-9 ) 

corrections to the MMM will also be probed by future short-distance force experiments. 

While the limit from aJ.t implies that the gauge coupling must be microscopic (see Eqn. 36 

below), it is also quite natural for the 4-dimensional coupling to be small [3]. In the full 4 + p 

dimensional gauge theory the gauge coupling between a vector boson and fermions is gC:> I M~/2 • 
Confining the fermions to a 3-dimensional wall, by either a topological defect or just using a 

p-dimensional delta function, and performing the usual KK decomposition of the vector boson 

results in a universal coupling 9x of e~ch KK mode to fermions. It also gives 

{26) 

the relation between the fine structure constants in the 4-D effective theory and the fundamental 

p-dimensional theory. As a result, it is very natural for the vector boson to be very weakly 

coupled. For example, in the case p = n, ax =a~> M'! I M~L, independent of n. In this case 

ax ,...., 2 x 10-30 x a';> x (M*I3 TeV)2 • 

This also makes it very natural for the X boson to be extremely light. Note that even if 

a B- L gauge boson is lighter than the proton (as will be the case here), the proton remains 

stable since the B - L gauge boson does not carry B - L charge. These facts were pointed out 

in Ref. [3], where it was argued that a B- L vector boson could mediate forces at the sub-mm 

distance scale 107 -108 times stronger than gravity. To avoid conflicts with these short-distance 

force experiments, the mass of the zero mode of a new U(1)x coupled to baryons must be larger 

than rv 10-4e V. This requires that the gauge symmetry is spontaneously broken in the bulk by 

the vev v of some scalar field cf>. The mass term for the gauge field in the full theory, written 

using, 4-D canonically normalised fields, is 
: 2 . 2 . . 1-' 

I d4+Px~ 94+p 1!._ AxJ.t Ax 
2 Mf Yp JYv ;v;; {27) 

Inserting the vev, the usual KK expansion for Ax, integrating over the p-volume, and using 

Eqn. 26 gives 

(28) 
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for the mass of the zero mode. If instead the scalar field ~ is confined to a distant 3-D wall, then 

in Eqn. 27 I should replace ~2/Vp-+ ~2 and insert the approximation [15] ~(x,y) rv o(P)(y)¢>(x). 

This results in the same expression for the mass, Eqn. 28. Consistency of this field theoretic 

approach requires that the vev must satisfy v < M*. This implies an upper bound of gx M* 

to the mass of the zero mode. When this is combined with the constraint on gx from aP., an 

interesting upper bound to the mass of the zero mode is gotten. The masses of the other KK 

states are 
2 

2 2 2 n 
mN = gxv + R2. (29) 

An evaluation of Fig. 2a gives the contribution of one KK state to aw The result is finite 

and 
2 

~a~n) =ax Jdx L( m: 2 )x2(1- x). (30) 
1r x,m ,mN 

The normalisation of the U(1)x charge is chosen such that the X charge of a lepton is 1. The 

function L(x, m2, m~) is defined in the previous section. In the limit mN -+ 0 Eqn. 30 reduces 

to the famous result from Schwinger [27]. 

I now want to consider performing the sum over all the KK states. The contribution 

from those states mN~mF is obviou~!Y finite. In the opposite limit mN ~ mp, ~aLn) -+ 
(ax/37r)m}/m~. In this case the correction decouples as m-p/. Since the degeneracy of the KK 
states increases as (m~)P/2-I, however, the resultant sum is power divergent as (m~)P/2-:- 1 for 

p > 2, logarithmically divergent for p = 2, and finite for p = 1. As in the case of the bulk 

graviton loop, a cutoff A = M* is used to regulate these divergences, and an overall factor of 

A ,.._, 0(1) is inserted to parameterise the result of an actual one-loop computation in a more 

complete theory of quantum gravity. The contribution of those modes mN ~ mp to ap. is then, 

using a trivial modification of Eqn. 15, 

ax 2 2 (1r2
) ~ap. - A

3
1fmpR 6 , p = 1 (31) 

&a" _ 2A;; (p~ 2 r;~:]) (M~?F)' (~;~), p>2 (32) 

a~) ( 2 7rP/2 ) (mp)2 
-

2
A 37r p- 2 f[p/2] M* ' P > 2 (33) 

~ap. - A a; m~R2 lnM;/m~ , p = 2. (34) 

To arrive at Eqn. 31, p = 1, I have neglected the IQ,8$S.,ofthe zero.;m,<;H:le. AJ,so,_npte that)n 

this case the result is finite. For p >; 1 the .symmetry breaking contribution is irrelevant stnce 

tlie resulting sum is divergent. To :get from Eqn. · 32 'to Eqn. 33, I have used the relation 

2M~L = M:+2Vn and the relation Eqn .. ?6 between the 4-dimensional and (4+p)-dimensional 

fine structure constants. . 

These expressions for the bulk vector boson contribution to ap. can also be understood by 

considering computing the one-loop diagram in the full theory. Recall that the correction to the 
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------- ' ' ' ' 

b) 

Figure 2: One-loop correction to the anomalous magnetic moment from: a) abelian bulk vector 

bosons (dashed wavy line), b) charged Higgs (dotted line) and bulk RH neutrinos. Wavy and 

solid lines denote on-the-wall photons and fermions, respectively. 

MMM requires a helicity flip in the loop diagram. This pulls out a fac'tor of PaPa"fa, lowering 

the degree of divergence by two. Then naive power counting gives for p > 2 

(p) (p) 
~a rv m2 ax I dkkP+3k-2k-2k-2 rv m2 ax AP-2 

JL FMf FMf . (35) 

The first two factors of k-2 in the integrand are for the KK vector boson and fermion propagators. 

Substituting A"' M* further simplifies this result to ~aiL rv a~>m~/M;, which is Eqn. 33. Note 

that this result is independent of the dimension of the subspace. This implies that the correction 

to MMM is independent of Vp, and depends only on M* and a~), the fine structure constant in 

the full theory. The dependence on Vp only enters once the correction to the MMM is expressed 

in terms of the 4-dimensional fine structure constant. 

b. Applications 

Requiring that !.l.aJL < 2 x 0.8 x 10-8 gives the following 2a limits for the interesting cases 

p = n = 2, and p - n = 6: 

-32 1 ( M* ) 4 . -31 1 ( M* ) 4 p = n = 2: ax < 3.3 x 10 x :X TeV , p = n = 6: ax < 2.4 x 10 x :X TeV . (36) 

The limit in the case n = 2 is rv 10 below the "natural" value of"" 2 x 10-31 forM* =1 TeV. I 

emphasize that these tiny limits apply only to the situation where the vector boson occupies the 

whole bulk. The limits on ax are considerably weaker if the vector boson lives in a subspace. 

That is, for other choices of p < n, the limit on ax is weakened by the amount M:Vn/MfVp. 
The limits in Eqn. 36 translate into the following 2a upper bounds on the mass of the zero 

mode, using mx < gxM*: 

' \ . p=n=2: (37) 

p=n:..:..6: (38) 

In the case that X = .B ...:.. L, the gauge boson can mediate an isotope dependent force at 

sub-mm distance scales. Even: tll<i>ugh the :gauge_•-coupling is microscopicvthe force can· still be 
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huge compared to the gravitational force at those distance scales. The limits in Eqn. 36 quantify 

an upper limit to this signal. From the upper bound on the gauge boson mass, Eqn. 38, it is 

clear that there is still an allowed region where mx ~ mm- 1. Then the ratio of the forces is, 

for p = n = 2 to p = n = 6, 

F, G 2 c" 6-7 ( M. )
4 

Fx: grav =ax: Nmnucl~10 TeV (39) 

The conclusion is that even though the (g- 2) constraint is strong in the case p = n, the B- L 

gauge boson can still mediate forces 106 - 107 times stronger than gravity at sub-mm distances. 

Next I apply these results to the scenario of [12], where KK excitations of the SM gauge 

particles and Higgs bosons (and their superpartners) result in a pow~r law evolution of the 

gauge couplings. This allows for a unification scale as low as few decades above the TeV scale. 

In this picture the SM gauge bosons, for example, have KK excitations in one or two extra 

dimensions. These will all contribute to the MMM. In what follows however, I only concentrate 

on the contribution from the KK photons for the reason that their contribution (and hence also 

those from KK Z's and W's) is rather small (see Eqn. 40 below). It is then seen that the 

constraint from att provides a rather weak upper limit to R, the size of the subspace that the 

gauge bosons occupy. Using Eqns. 31,'·34, a;~ = 137, M. rv 10 TeV, and the 2a experimental 

error on the muon (g- 2)/2 gives 

p . 1 : R-1 > 30 Ge V , p = 2 : R-1 > 190 Ge V. (40) 

The limit for p = 1 is finite, whereas the case p = 2 is logarithmically sensitive to the cutoff. 

Since these two constraints satisfy R-1 ~ mtt, the use of Eqns. 31 and 34 is consistent. The 

rather weak bound for p = 1 is due to the aEM suppression, and the constant density of KK 
states. 

Finally, KK excitations of the Z0 gauge boson result in a tree-level correction to the theo­

retical predictions for atomic parity violation parameters. The measurement of atomic parity 

violation therefore constrain the size of some extra "small" dimensions. These experiments mea­

sure a quantity Qw which is the coherent sum of the Z boson vector couplings to the nucleus. 

The measured value for Cesium is [17] 

Q~P = -72.41 ± 0.25 ± 0.80, (41) 

which agrees very well with the theoretical prediction [17] 

·., QrvM = -73.12 ± o.o6 ± o.m. (42) 

The exchange of a tower of KK Z0 bosons trivially modifies (at tree-level) the SM prediction to5 

Q~--+ ,<;Jti :- QW + Q{f,K = QrvM ( 1 + m~R2 ~ ~2 )., . (43) 
-----------------------------' nassume thatthe,SM:fe~ons do not have any KKexdtations below M •. 
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The mz contribution to the KK mass n/R has been neglected. Note that the KK correction 

to Qw pushes the theoretical prediction farther away from the measured value. To limit R, I 

require that Q~P- Qt,i < 2a, or -Q~K < 0.89. Using the measured value given above, and 

performing the sum over KK states results in the following 2a limits 

lnM*R 
p = 1 : R-1 > 1100 GeV ; p = 2: R- 1 > 3.6 TeV ln 

20 
· (44) 

So it is quite clear that the stronger limits on TeV -sized extra dimensions are gotten from 

atmoic parity violation rather than the MMM. Compare the results in Eqn. 44 to Eqn. 40. 

5 Bulk Right-Handed Neutrinos 

The authors of Ref. [15] proposed several mechanisms for generating "' 0( e V) sized neutrino 

masses. In one of their models which is the attention of this section, small Dirac neutrino masses 

are generated by introducing bulk RH neutrinos. I now briefly explain their idea. The interaction 

J d4
x kLH L v~n) 

' n 
(45) 

gives a Dirac mass kv / J2 to the LH and RH zero mode neutrino. The higher KK states also 

mix with the LH neutrino, but what will eventually concern us for the MMM are the extremely 

heavy KK states, which have very tiny mass mixing with the LH neutrinos. In their model this 

interaction arises from a higher dimension operator in the full theory. More specifically, the 

operator 

I 4 ko ( ) ( )vc(x,y) 
d xd?y---pfi L x, y H x, y IV , 

M* yVp 
(46) 

where I have allowed the fields to propagate in p extra dimensions, and k0 is a dimensionless 

constant. Inserting the approximation '1/JsM(x, y) ,....., J6(P)(y)'I/JsM(x) for the SM zero modes [15], 
and the usual KK mode expansion for vc gives the relation between k and k0: 

1 ( M* )pfn 
k = ko f"ii:iiiU = ko M , 

yM* Yp PL 

(47) 

where to obtain the second relation I used ( 47rG N t 1 = M;:+2 Rn and assumed Vp = RP for 

simplicity. Consequently, the coupling k can be very tiny, and neutrino masses of the correct 

8fder of rriagD.itude 'feqtiil-ed\to 'explain the ~tmosJhetlc a~d '~olai ~eutri~o idt1o~ali~~ can' be 

obtained. 

To obtain a correction to the MMM- at the one-loop level, I assume: 

i) the muon neutrino obtains a Dirac mass 'l>y mixing with a sterile neutrino, as in Eqn. 45; 
~ ··' ' ·~ ' . ' . ' 

1i)the Higgs sector is extended to include an extra Higgs doublet which also acquires a vev. . ...,. ' ' ; . 
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The second assumption is realised in low-energy supersymmetric extensions to the SM, for 

example. The point of this assumption is to obtain a trilinear coupling between the physical 

charged Higgs, the muon, and the bulk RH neutrinos. Consequently, these interactions contribute 

to the MMM at one-loop, as shown in Fig. 2b. 

An evaluation of Fig. 2b gives the following correction to the MMM: 

(n) - 2k2 I m} 2 - ) 
!:l.aJ.L -16 2 dx-( 2 2 2)x (1 x' 1r L x,mp,mrfJ+,mN 

(48) 

where I have denoted by k the trilinear coupling of the physical charged Higgs, charged LH 

fermion, and bulk RH neutrinos. It is related to a linear combination of the trilinear couplings 

in the gauge basis. The function Lis L(x, m}, m~+' m~) = -x(1- x)m~ + xm~+ + (1- x)m~, 
where mrfJ+ is the mass of the charged Higgs. In the limit m~ ~ m}, m~+, 

f:l.a(n) = ~ ~ m} . 
J.L 3167r2 m~ 

(49) 

As in the case of the bulk gravitons and bulk vector bosons, the dominant correction to the 

MMM occurs from the super heavy KK RH neutrinos. In fact, the sum over KK states is identical 

(tip to numerical factors) to the KK s"\lm for the vector bosons. Integrating Eqn. 49 for p > 2, 

and using trivial modifications to Eqns 14 and 15, gives 

2 2 A 2 7rp/2 m} (MPL)2p/n 
!:l.aJ.L = 3k 81r2 p- 2 f(p/2] M'; . M* (50) 

Note that since k = k0 (M*/MPL)Pin, the strong dependence on M*/MPL cancels, leaving 

2 A 2 7rP/2 m 2 

!:l.aJ.L = 3k~ 81r2 p- 2 f(p/2] J; · (51) 

Choosing p = 5, for example, gives 

!:l.aJ.L rv 8k~A x 10-10 (~~) 
2 

rv k~A x 10-9 (~~) 
2 

(52) 

So since both k0 and A rv 0(1), it is possible to get !:l.aJ.L "' 10-9
. This may be- within the reach 

of the BNL E821 experiment. 
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