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Abstract 

The most general black M5-brane solution of eleven-dimensional supergravity (with 
a flat R 4 spacetime in the brane and a regular horizon) is characterized by charge, 
mass and two angular momenta. We use this metric to construct general dual models 
of large-N QCD (at strong coupling) that depend on two free parameters. The mass 
spectrum of scalar particles is determined analytically (in the WKB approximation) 
and numerically in the whole two-dimensional parameter space. We compare the mass 
spectrum with analogous results from lattice calculations, and find that the super­
gravity predictions are close to the lattice results everywhere on the two dimensional 
parameter space except along a special line. We also examine the mass spectrum of 
the supergravity Kaluza-Klein (KK) modes and find that the KK modes along the 
compact D-brane coordinate decouple from the spectrum for large angular momenta. 
There are however KK modes charged under a U(l) x U(l) global symmetry which 
do not decouple anywhere on the parameter space. General formulas for the string 
tension and action are also given. 

1 Research fellow, Miller Institute for Basic Research in Science. 



1 Introduction 

The conjectured dualities between gauge and string theories [1) have been recently exploited 
in [2)-[9] to construct and investigate models of pure QCD in 3+ 1 dimensions, whose main 
component is the black M5-brane solution of eleven-dimensional supergravity, which near the 
branes corresponds to an anti-de Sitter (AdS) space. The no-hair theorem implies that the 
most general model of this kind that can be constructed (i.e. based on a regular geometry 
with M5-brane charge) is obtained from a rotating black M5-brane parameterized by its 
charge, mass and two angular momenta. The scope of this paper is to calculate the mass 
spectrum of scalar modes of this general model in the supergravity approximation, and study 
its behavior in the parameter space. The parameter space is four dimensional, but the mass 
parameter can be set to 1 by a choice of mass units; the charge is related to the 't Hooft 
coupling A = g2 N (where g is the Yang-Mills coupling and N is the number of branes). 
It is assumed that A is very large so that the radius of curvature is much larger -than the 
string scale; this is necessary for supergravity to be a good approximation to string theory 
(M theory). In this regime glueball masses are independent of A, so what remains is a two­
dimensional space spanned by the angular momentum parameters. When one of the angular 
momenta vanishes, the model reduces to the one angular momentum model examined in 
Refs. [6, 8). In our investigation we will use both analytic methods (within the WKB 
approximation, as developed in Refs. [9, 10]) as well as numerical ones based on Ref. [4). 

The static M5-brane has an S0(5) symmetry associated with the internal S 4
• Turning 

on the angular momentum parameters, this symmetry group breaks down to the C~rtan 
subgroup as S0(5) -t S0(2) x S0(2) rv U(1) x U(1). The spectrum ofthe supergravity field 
fluctuations can be organized in representations of S0(5) or S0(2) x S0(2). The proposal of 
Refs. [2)-[4) is to identify the S0(5)-singlet modes propagating on the Minkowski boundary 
of the spacetime with large-N QCD glueballs. The dilaton modes correspond to JPC = o++ 

filueballs (J, P, and C being the spin, parity and charge conjugation quantum numbers). In 
non-supersymmetric, pure SU(N) Yang-Mills theory, there is no counterpart of the S0(5) 
global symmetry, so one would expect that at weak Yang-Mills coupling those Kaluza-Klein 
(KK) particles which transform non-trivially under this group are very massive and decouple. 
This problem was studied for QCD3 in [11) where it was shown that the first correction 
(beyond the A = oo limit) to the masses of these states does not lead to their decoupling in 
the case of vanishing angular momenta. A general study for QCD3 supergravity models with 
three angular momenta was recently given in [10). In this paper, using both analytic (within 
the WKB approximation) and numerical methods, we calculate the spectrum of glueballs 
and of KK states. We find that the KK modes on S4 do not decouple in the large A regime in 
any region of the two dimensional parameter space (within the supergravity approximation). 
In contrast, the KK modes on the circle associated with the compact Euclidean time (on the 
M5-brane worldvolume) decouple in the limit of large angular momentum. 

Some interesting effects concerning thermodynamical aspects of rotating D-branes have 
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been recently pointed out in Refs. [12]-[14]. Here we will be considering the slightly different 
construction of Refs. [2, 6] for zero-temperature QCD, where the Euclidean time parame­
terizes an internal circle, and the Minkowski time is one of the brane volume coordinates. 

2 The Supergravity Model 

2.1 The metric 

The maximal number of angular momentum parameters for the rotating M5-brane (dictated 
by the rank of the S0(5) isometry group of rotations of the static M5-brane) is equal to two. 
This metric was constructed in [15], though the expression given there contains a few minor 
mistakes which we correct below. The metric of the rotating M5-brane is given by2 

d 2 -sn -

where 

I f ~ 2 [2 COS 2 {) 
f-3 ( -hdt2 + dx~ + ... + dx~) + --dr2 + fsr2[(1 + 1 + 

h r 2 

l2 sin2 
() sin2 '1/; l2 cos2 '1/; [2 2 
2 

)d02 + (1 + 2 
2 

) cos2 Od'l/;2 - 2-% cos() sin() cos '1/; sin 'lj;d()d'lj; 
r . r r 

cosh J . 2 2 . 2 4ml1l2 cos2 () sin2 
() sin2 '1/; 

-4mr5Llfdt(l1sm Odcp1+l2cos Osm 'lj;dcp2)+ ,.5 /lf dcp1dcp2 

. 2 O( l~ 2ml~ sin 
2 

() )d 2 2 () • 2 ·'·( li 2mli cos
2 

() sin
2 

'ljJ )d 2] 
+ sm 1 + r2 + r5!lj 'Pl +cos sm 'f/ 1 + r2 + r5!lf 'P2 ' 

(2.1) 

[2 [2 [2[2 

Ll = 1 + -t cos2 
() + -%( sin2 

() + cos2 
() cos2 '1/;) + 1

4
2 cos2 

() cos2 '1/; , 
r r r 

(2.2) 

f 
= 

1 
2m sinh 2 a 

+ !lr3 ' 
(2.3) 

2m 
h = 1- !lr3 ' (2.4) 

_ 1 + 1I + q + [it1 _ 2m 
h = r2 r2 r4 r3 

Ll 
(2.5) 

The horizon is located at r = r H, where r H is the largest real root of 

(r2 + l~)(r2 + LD- 2mr = 0 . (2.6) 

One can obtain the following formulas for the ADM mass, entropy and angular momentum: 

2This differs from Eq. (12) of [15] ·in the expression for ~ (called fi:/ there), the power of r in the 
components 9t<p,, 9t<p, g'P, 'P 2 , and a factor sin 2 'ljJ in 9t<p,. 
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V5 v ( n4) 2 ( 1 3 . h2 . ) 
G 

m + -sm a , 
4~ N 4 

(2.7) 

s V5 v(n4) 
4

GN 2m ry cosh a, (2.8) 

V5 v(n4) 
G m l1 2 cosh a , 

4~ N ' 
(2.9) 

2 

G _ Ku _ 24,..7[9 
N- - II p' 

s~ 
(2.10) 

where GN is Newton's constant in 11 dimensions, and lp is the 11 dimensional Planck length. 
The parameter a is related to the (magnetic) charge Nand m by 

(2.11) 

The Hawking temper~ture and angular velocities are given by 

Ty = 3ri£ + (l~ + l~)r~ - ltl~ 
. s~mr'k cosh a ' 

lt 2 
n1,2 = h ( ,2 z2 ) cos a ry + 1,2 

(2.12) 

These quantities satisfy the first law of black hole thermodynamics: 

(2.13) 

Let us now go to Euclidean space r = -it, l 1,2 -+ il1,2 , and take the field theory limit as 
in [1, 6]: 

./ 2m= u;z~, (2.14) 

so that 2m sinh2 a-+~ Nl~. We obtain the metric 

fltU2 l~ ( ug 2 2 2] 2 flt(~N)~4dU2 

- 1 (1- U6 fl)dr +dx1 + ... dx5 +lp 4 4 u6 + 
(~N)3 U2((1- ;~)(1- ~)- u~l 

F(~N)~ a4 

p fl ~ [ flt d0 2 + fl2 cos2 ()d'lj} + 2 u~ cos() sin() cos 1/J sin 'lj;d()d'lj; 

2
U5 1 (a~ sin2 Odrd<p1 +a~ cos2 

() sin2 'lj;drd<p2 ) + sin2 0(1 - a! )d<p~ + 
U4(~N)2 U 

a4 
cos2 

() sin2 '1j;(1 - u~ )d<p~]' (2.15). 
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where 
a~ sin2 

() sin2 'lj; 
- U4 

(2.16) 

(2.17) 

(2.18) 

Note that the component g'P1'P2 vanishes in the field theory limit, and so do the last terms 
in g'P 1 'Pt and g'P2 'P 2 • 

The coordinate r describes a circle of radius R0 , where R0 is related to the Hawking 
temperature TH by R0 = (27rTH t 1

, with 

(2.19) 

u4 u4 3u4u2 

A = 8 1 ( 4 + H 4) 4 1 4 4 = ( 2 2 ) ( 2 ° H 2) ( 2 2.) 
UH- 3 a1 a2 UH- 3a1a2 UH- UJH UH- U1 UH- U2 

(2.20) 

where we have introduced the coordinate u by U = 2( 1r N) 112u,' and rescaled a 1,2 -7 

2( 1r N)112a1,2 . The constants u't-, UJH, u~, u~ represent the four different solutions for u2 of 
the equation 

( 4 4)( 4 4) 6 2 0 u - a 1 u - a2 - u0u = . (2.21) 

There are two p~sitive ( u't-, UJH, u't- > UJH ), and two negative (or complex) solutions ( u~, uD, 
with u't-- and UJH representing the outer and ·inner horizons respectively. When a1 = a2 =a, 

the equation simplifies to 
(2.22) 

where the signs ± corresponds to the inner and outer horizons. From Eq. (2.22) one sees 
that when a >> u 0 the two positive solutions get closer to each other, thus the inner horizon 
approaches the outer horizon. 

The gauge coupling gl in the 3 + 1 dimensional Yang-Mills theory is given by the ratio 
between the periods of the eleven-dimensional coordinates x5 and r, i.e. 

gl A 
X5 = 27r Ro01 = N Ro01 , (2.23) 

where A = 9~: is the 't Hooft coupling. Dimensional reduction in 01 gives the type IIA 
metric representing the field theory limit of the rotating D4-brane metric with two angular 
momentum parameters: 
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4du
2 ~1 d()2 ~2 2 ()d·'·2 + 4 4 6 + - + - cos 'f/ 

u2( (1 - ~ )(1 - ~) - ~) ~ ~ 
4 (. a4 ) ( a4 ) 

a2 • • • 2 1 - ~ 2 2 () . 2 •1• 1 - :=.t d 2 
+2 u4~ cos() Sill() cos 7/J sill?jJd()d?jJ +Sill () ~ u dr.p 1 +cos Sill 'f" ~ u r.p2 

4A u5 ( 2 . 2 ()d() d 2 2 () . 2 d() d )] ( 24) -
3
u4 ~ a 1 Sill 2 r.p 1 + a2 cos Sill 7/J 2 r.p2 , 2. 

where the dilaton field is given by 

87!" A3 A3u3 ~t 
2<1> 

e = 27u5N2 
(2.25) 

In these coordinates, the metric is independent of N, and the string coupling is of order 1/ N, 
as expected. The 't Hooft coupling A appears as an overall factor of the metric. For u0 =J 0, 
curvature invariants have a finite value at the horizon, and they are suppressed by inverse 
powers of A. 

The metric (2.24) has a U(l? isometry associated with translations in ()2,r.p1 ,r.p2. This 
should appear as a global symmetry in the corresponding dual Yang-Mills theory. Since the 
pure Stf(N) QCD has no such symmetries, one may expect that states which have charges 
with respect to U(1? have a large mass compared to the glueball masses. In Section 4 we 
calculate the different mass spectra and investigate this possibility. 

2.2 String tension and action 

. The string tension is given by 1/27!" times the coefficient of I: dx~, evaluated at the horizon, . 
at the angles where it takes its minimum value [2, 6]. This follows by minimizing the Na,mbu­
Goto action of the string configuration. The absolute minimum occurs at () = 'ljJ = 0 or 7r. 

V)!e obtain 
4 2 

u = 3AAuo . (2.26) 

String excitations should have masses of order u 112
. The spin ::; 2 glue balls that remain In 

the supergravity approximation - whose masses are determined from the Laplace equation -
have masses which are independent of A. 

In the field theory limit, the free energy F ( = Action x TH) takes the simple form 

tl Vs 3 6 F = E- THS- HlJl - n2J2 = -- N Uo ' 37!"3 
(2.27) 

where E = MADM- Mextremal, Mextremal = MADM(uo = 0). Using that the M5-brane coordi­
nate x5 is compactified on a circle with radius R0Aj N, one has the relation 

\14A 
Vs = THN. 
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Expressing u0 in terms of the string tension (2.26) we obtain the intriguing relation 

Action 1 N~ 2 ---=--a 
"\14 121r A 

(2.29) 

that generalizes the result found in [8] for the case. of one angular momentum. Thus, in terms 
of the string tension, the action is independent of a1,2 • It would be very interesting to have 
a derivation of (2.29) from the Yang-Mills side as a non-perturbative contribution to the 
partition function (related to the expectation value ofthe gluon condensate (~Tr F;v(O)) ). 

gYM 

2.3 The supersymmetric limit u0 = 0 

Metrics of rotating branes with non-extremality parameter m = 0 greatly simplify upon 
introducing Cartesian-type coordinates [6]. For the extremal (m = 0) M5-brane metric 
(2.1), one introduces [13] 

Y1 = Jr2 + ll sin() cos <p1 , Y2 = Jr2 + ll sin() sin <p 1 , 

Y3 = J r2 + l~ cos () sin 'ljJ cos <p2 , Y4 = J r2 + l~ cos () sin 'ljJ sin <p2 , 

Y5 = r cos () cos 'ljJ . (2.30) 

Using these coordinates we obtain 

4 5 

ds¥1A = f- 112
[- dx~ + L dx~] + tl2 L dyJ , (2.31) 

i=l j=l 

where f is obtained from Eq. (2.3) by taking the limit a --+ oo, m --+ 0 at fixed N using 

(2.11): f = 1 + 1r~~~, with r, (), 'ljJ expressed in terms of Yi by Eq. (2.30). In this limit 
the BPS bound is saturated, MADM = const N. It can be shown that the function f(Yi) 
satisfies the equation Ojoi f = 0, i.e. it is a harmonic function in the 5-space parameterized 
by Yi. The metric (2.31) has unbroken supersymmetries, which can also be understood by 
interpreting the metric (2.31) as a multicenter distribution of BPS D4-branes, by constructing 
the harmonic function f as a linear superposition of harmonic functions corresponding to 
each D4-brane [13, 16]. 

The field theory limit of (2.31) can be obtained by replacing f --+ f - 1, and properly 
rescaling coordinates. Alternatively, we can return to the metric (2.24) written in spherical 
coordinates, and set u0 = 0. The resulting metric has a curvature singularity in u = a1 (we 
are assuming a1 > a2 > 0), which cannot be removed by any choice of periodicity in the T 

coordinates (the horizon region of the extremal u0 = 0 metric is not a Rindler space). Because 
of the singularity, the supergravity approximation breaks down in the u0 = 0 case; in order 
to understand the corresponding supersymmetric gauge theory, one needs to understand the 
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full string theory. At the supergravity level, it is meaningless to associate a temperature to 
this metric. 

One can have control over the string-theory corrections if we regularize the metric by 
taking uo f. 0 and consider the limit of small u0 (or equivalently, a1,2 ju0 large). For any value 
of a1,2/uo, one can choose A sufficiently large so that all curvature invariants are arbitrarily 
small. This is the technique used in the next section when discussing the large a1,2/u0 limit. 
Note that in this limit TH -+ oo. In this theory, all fermions-which have masses O(TH )­
decouple. On the other hand, the spectrum of the u0 = 0 theory must be supersymmetric 
with the usual degeneracy between fermions and bosons. The supersymmetric u0 = 0 theory 
cannot coincide with the theory obtained by taking the limit u0 -+ 0 (in the fashion described 
above), since the latter theory does not have fermions in the spectrum. Nev~rtheless, since 
the corresponding background metrics are essentially the same (at a 1,2 » u0 ) it is possible 
that a part of the structure of the theory with atfu0 » 1 may be dictated by the structure 
of the u0 = 0 supersymmetric model. We shall return to this point in our conclusions. 

3 Glueballs and the Related KK Modes 

The o++ glueballs are related to spherically symmetric modes of the dilaton fluctuations, of 
the form 

\II = <P( u )eik·x , (3.1) 

where M 2 = -P [2]. The differential equation determining the mass eigenvalues is obtained 
by substituting this into the dilaton equation of motion 

(3.2) 

u'"sing the background metric (2.24), and the formula 

vf9 = C u9 ~ cos2 (}sin(} sin '1/J , C = _1_ (41rAA) 6 

21r A 3uo 
(3.3) 

In addition to the o++ glue balls we consider particles with non-vanishing U(1) charge asso­
ciated with the circle parameterized by (} 2 • The corresponding solutions of (3.2) will be of 
the form 

(3.4) 

We will show both analytically (within the WKB approximation) and numerically that these 
states do decouple for a particular range of parameters. We will also consider the KK states 
associated with the l = 1 modes of the S4

• For the static ( a1 = a 2 = 0) M5 metric, these 
transform in the 5 representation of S0(5). After introducing angular momentum, this 
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decomposes into (2, 1) EB (1, 2) EB (1, 1) of the Cartan subgroup S0(2) x S0(2). According 
to this decomposition, the corresponding solutions of (3.2) for the two doublets will be given 
by 

1Tr _ A..( ) ik·X • 0 (COS i.p1 ) 
'.1.' - 'f' u e s1n . , 

Sllli.pl 

W = ¢(u)eik·xcos0sin'lj; (c?s<p2
) , 

Sllli.p2 

whereas for the singlet it is of the form 

W = ¢( u )eik·x cos 0 cos '1/J . 

(3.5) 

(3.6) 

(3.7) 

In ordinary (finite A, N) Yang-Mills theory there is no S0(2) x S0(2) symmetry, so one 
would expect that at least the states which transform non-trivially under S0(2) x S0(2) 
become very massive and decouple in the weak-coupling limit. It is clear that the singlet state 
(3. 7) should also decouple. If it did not decouple at small A, it would then be represented by 
some (gluon field) operator in the gauge theory. In the zero angular momentum case, this 
state combines with the other four components to form a multiplet (a 5) of S0(5). Thus 
the singlet state cannot correspond to a purely gluonic operator (since the gluon field is a 
singlet under S0(5)), and must decouple. 

Finally, we shall also consider o-+ glueballs, which couple to the operator C\ = Tr F F. 
On the D4-brane worldvolume, the field that couples to this operator is the R-R 1-form AIL, 
which satisfies the equation of motion 

j.l,V= 1, ... ,10. (3.8) 

Finding angular-independent solutions is complicated, because of the non-diagonal compo­
nents of the metric. The metric becomes diagonal in the two opposite limits a 1,2 « uo and 
a 1,2 >> u0 • In these cases one can consider solutions of the form 

A ( ) ik·x 
B2 = XB2 u e , (3.9) 

In the following we will first present the mass spectra of these states obtained in the 
WKB approximation, and then the same spectra obtained by using numerical methods. We 
present tables for each state comparing the WKB with the numerical results and find that 
they are in a very good agreement. We also compare them to the lattice results for the 
glueball states which were computed for N = 3 and small A. 

3.1 Mass spectrum in the WKB approximation 

In the following we use the WKB approach of [10] (which generalizes the WKB approach 
of [9]) to calculate the different mass spectra (including KK modes) in the present case of 
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QCD4 with two angular momenta. Consider differential equations of the form 

(3.10) 

where M represents a mass parameter, and f(p), h(p) and p(p), p E (pH,oo), are three 
arbitrary functions which are independent of M and have the following behavior: 

as p-+ PH, 

as p-+oo, 

(3.11) 

(3.12) 

where r 1,2,3 , 8 1,2,3 , ! 1,2 , h1,2 and p1,2 are (real) numerical constants. For large masses M, the 
WKB method can be applied to obtain the approximate spectrum. One finds [10] 

(3.13) 

where 

e = i~ dp {J, (3.14) 

is a constant which scales like a length, and 

a 1 = 8 2 - 8 1 + 2 , /31 = r 1 - r 2 - 2 , (3.15) 

a2 = l81- II or a2 = ./(81- 1)2- 4p
1 

(if 83- 81 + 2 = 0) , v !1 

(3.16) 

Consistency requires that a 1 and /31 are strictly positive numbers whereas 83 - 81 + 2 and 
r 1 - r3 - 2 can be either positive or zero. Typically the validity of the WKB approximation 
requires that the quantum number m be much larger than 1 (for precise conditions see [10]). 

3.1.1 Masses of the o++ glueballs 

The masses of the o++ glueballs are determined from the differential equation (3.2) with the 
ansatz (3.1). Introducing p = u2 one gets Eq. (3.10) with3 

f(p) = (p 2
- b~)(p2 - bD- p~p = (p- PH)(p- pt)(p- P2)(p- P3)' 

h(p) = ~ ' p(p) = 0 . 

3In the rest of subsection 3.1 we will use the notation ai, 2 = b1,2· 
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This gives for the various constants 

St = 1 , 82 = 0 , Tt -; 4 , r2 = 1 , 

a1 = 1 , a2 = 0 , {31 = 1 , {32 = 3 . 

Using (3.13) one obtains the following mass spectrum 

7r2 

M 2 = e2 m(m + 2) + O(m0
) , m ~ 1 , 

e = ~ £= dp ..;p 
2 . PH V(P- PH )(p- pt)(p- P2)(p- P3) ' 

(3.18) 

(3.19) 

This formula implies that mass ratios between resonances are, in the WKB approximation, 
independent of the angular momentum parameters b1 , b2 • This is similar to QCD3 , where 
the general rotating D3-brane solution with three angular momenta parameters was used 
[10]. As in [10], the WKB approximation breaks down in the region near b1 = b2 , u0 = 0. 

3.1.2 The KK modes on the circle 

For the KK modes with non-vanishing U(l) charge corresponding to the periodic variable fh 
we look for solutions of (3.2) with the ansatz (3.4). In this case we obtain Eq. (3.10) with 
M 2 replaced by M 2 

- 47r
2n 2T'h and 

f(p) = (p2 - bi)(p2 - b~) - p~p ' 
2 2 3T2 2 

h (p) = ~ , p(p) = _ 7r n ;~) H p (3.20) 

This gives for the various constants 

s2 = 0 , s3 = -1 , r1 = 4 , r2 = 1 , r3 = -2 , 

21rnp~12 PHTH 
a2 = , f3t = 1 , f12 = 3 . 

(PH- Pt)(PH- P2)(PH- P3) 
(3.21) 

Using (2.19) and (2.20) we see that a 2 = n. Then (3.13) (with M 2 --+ M2
- 47r2n 2T'h) gives 

the following mass spectrum 

7r2 

M 2 = 41r2n 2T'fi + e m(m + 2 + n) + O(m0
) , m ~ 1. (3.22) 

We would like to examine the way that these states decouple in two limiting cases. First 
consider the case with b1 » p0 and b2. Then we see from (2.19) that 

(3.23) 
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On the other hand, i:ri the same limit, 

(3.24) 

Therefore the ratios of the masses of the glue balls to those of the U ( 1) charged particles 
behave as 

Mglueb. jm(m + 2) (Po)3/2 
M· ~ 1.20 -b ' 

ClrC. n 1 
for bt » Po and b2 . (3.25) 

Hence, the KK modes on the circle decouple with a power law. Now consider the case 
bt = 4b2 »Po· Then 

and 

15b2 

T rv 1 
H- 3/2 

167rp0 

1.33 
~~172' 

bl 

(3.26) 

(3.27) 

Therefore the ratios of the masses of the gl ueballs to those of the U ( 1) charged parti des 
behave as 

Mglueb. ~ 1.26 jm(m + 2) (Po)3/2 ' 
Mcirc. n bt 

for b1 = 4b2 » Po , (3.28) 

showing that in this case there is also decoupling with the same power law as in (3.25) (up 
to a slightly different numerical factor). 

3.1.3 The KK modes of 54 

L;et us now compute the mass spectrum for the KK states with non-trivial angular de­
pendence on 5 4 • The two equations corresponding to the doublets must be related by an 
interchange of a 1 and a2 , whereas the one corresponding to the singlet should be invariant 
under such an interchange. For the (2, 1) doublet we make the ansatz (3.5). Inserting into 
Eq. (3.2) one finds equation (3.10) with 

h(p) 

p(p) = -4l (1- b~)- bip4 (1- b~)2 . 
2p2 f(p) p 

For the various constants we find 

p 

4' 

St = 1 , s2 = 0 , S3 = -1 , . r1 = 4 , r2 = 1 , r3 = 2 , 

11 

(3.29) 



h =1' Pt = - b~Pk (1 - b~ ) 2 ' 

ft PH 

btPk ( b~) 
P2 = -4 ' O:t = 1 ' o:2 = 2h 1 - Pk f3t = 1 ' {32 = 5 . (3.30) 

Hence, the mass is given by 

M2 = ?T2 m (m+4+ 2btPk(1- b~ )) + O(mo)' 
~2 ft Pk 

m ~ 1, (3.31) 

where~ is given by (3.19). Consider the mass formula in the region b1 » p0 where the KK 
modes on the circle decouple, as in the case ofone angular momentum [6, 8]. Using PH~ bt, 
the mass formula takes the form 

2 
2 ?T 0 

M ~ I2 m(m + 5) + O(m), m ~ 1. (3.32) 

This shows that for b1 » p0 the mass of these KK states is of the same order as the glueball 
masses (3.19). 

For the (1, 2) doublet we make the ansatz (3.6) We obtain the same results as (3.29)­
(3.31) with b1 and b2 interchanged. For completeness we include the mass formula 

m > 1. (3.33) 

?T2 

M2 ~ e m(m+4) + O(m0
), m ~ 1, (3.34) 

where ~ is given by (3.19). This shows that for b1 » p0 the mass of these KK states is 
of the same order as glueball masses and a little lighter than the modes corresponding to 
the KK doublet (3.5). As a general rule (which applies in particular to QCD3 [10]), states 
with <p-dependence corresponding to the largest angular parameter are slightly heavier. In 
addition to the two doublets there is also a singlet (1, 1), represented by Eq. (3.7). We find 
that the function ¢(p) obeys (3.10) with 

f(u) = (p2
- bi)(p2

- b~)- p~p , 

p(p) = 2(bi + b~- 2p2
) • 

p 
h(p) = 4 ' 

For the various constants necessary to compute the corresponding masses we find 

8t = 1 , 82 = 0 , 

P2 = -4 , f2 = 1 , 

83 = 0 , r 1 = 4 , r 2 = 1 , r3 = 2 , 

O:t = 1 ' 0:2 = 0 ' {31 = 1 ' {32 = 5 . 

12 

(3.35) 

(3.36) 



Using (3.13) the mass formula for the singlet (3.7) reads 

m 2: 1, (3.37) 

where (is again given in (3.19). Clearly, the masses of these modes are of the same order as 
the glueball masses (3.19), albeit slightly heavier. 

3.1.4 Masses of the o-+ glueballs 

Let us finally also consider o-+ glueballs. As we have mentioned, finding angular-independent 
solutions is complicated, because of the non-diagonal components of the metric. The metric 
becomes diagonal in the two opposite limits b1,2 « p0 and b1,2 »Po· In these cases one can 
consider solutions of the form (3.9). Substituting this into (3.8), we obtain a second order 
ordinary differential equation which, upon introducing p = u2 and writing at2 = b1,2 , can be 
written as Eq. (3.10) (with </.>(p)-+ xo2 (p) ) with 

J(p) = (p2
- bn(p2- b~) , p(p) = o , 

1 p(p2
- bD(P2

- bD 
h(p) = 4 (p2- b?)(p2- bD- P~P . 

This gives for the various constants 

St = 0 , s2 = -1 , r1 = 4 , r2 = 1 , 

a1 = 1 , a2 = 1 , f3t = 1 , fJ2 = 3 . 

Using (3.13) one obtains the following mass spectrum 

m 2: 1, 

(3.38) 

(3.39) 

(3.40) 

where, it turns out, the constant (is still given by the corresponding expression in (3.19). In 
the limit when b1 , b2 » p0 , the singularity structure of Eq. (3.10) changes [9]. In this limit 
however, the equation coincides with the equation for the o++ glueballs, and therefore the 
mass formula should be changed to 

m 2: 1, (3.41) 

corresponding to the mass formula ( 3.19) of the o++ gl ueballs shifted by one (since the lowest 
state should correspond to the zero mode ofEq. (3.10) and not to a glueball state [17]). This 
will be the formula used for comparison to the numerical results for a» u0 • 
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3.2 Numerical evaluation of the mass spectra 

In the following, we present the results of the nurp.erical evaluation of the mass spectra 
corresponding to the states described in Section 3.1. For every state, we will illustrate the 
dependence of the masses on the angular momentum parameter along a generic direction 
(chosen to be a 1 = 2a2 ), along the special direction a 1 = a2, and a table comparing the 
numerical and WKB results (and the lattice results for glue ball states). 

3.2.1 Masses of the o++ glueballs 

The equation for the o++ glueballs can also be written as 

Ou [~ ((u4
- a{)(u4

- ai) -,u2ug) Ouf(u)]- k2u3 f(u} = 0. (3.42) 

This equation is symmetric under the interchange of a 1 and a2 , and reproduces Eq. (2.14) of 
Ref. [8] for a2 --+ 0. This differential equation can be solved numerically using the shooting 
method as described in Ref. [4]. We require that the solution be normalizable (that is for 
u --+ oo f( u) should vanish), and regular at the horizQn uH. These conditions restrict the 
possible values of M 2 to a discrete set, which can be identified with the glueball masses. The 
analysis of [8] demonstrated that the o++ glue ball masses are very stable against the variation 
of a single angular momentum parameter. The numerical solutions of Eq. (3.42) show that 
this statement remains valid for the whole range of angular parameters ( a 1, a2 ), except in the 
region a 1 = a2 » u0 • This is consistent with the fact that in the WKB approximation (to 
order 1/m) the ratio of masses are independent of a1 , a2 everywhere except at a 1 = a2 » u 0 , 

where the approximation breaks down. As mentioned before, a1 = a2 , u0 = 0 is the special 
region where the inner horizon coincides with the outer horizon. As a result, the factor 
multiplying the second derivative term in (3.42) has a double zero (instead of simple zero), 
and the behavior of the solutions is different. 

In Fig. 3.1 we show the behavior of the lowest eigenvalue of Eq. (3.42). The valley along 
a 1 = a2 is related to the fact that the differential equation (and the physics of the model) 
is symmetric under the interchange a 1 t+ a2 • Note that the function is smooth except at 
the point a 1 = a2 = oo (or a 1 = a2 , u 0 = 0). In Fig. 3.2 we show the behavior of the ratio 
of the glueball masses along the direction a1 = 2a2 , which illustrates the fact that along a 
generic direction (by a generic direction we mean that it does not asymptote to a1 = a 2 ) the 
glueball mass ratios behave just like for the case with only one angular momentum, that is 
they change only slightly and take on their asymptotic value very quickly. The fact that the 
behavior of the glueball masses does not change can be seen comparing Fig. 3.2 to Fig. (2.1) 
of Ref. [8]. Table 3.1 contains the comparison of the lattice results, the numerical solutions 
and the WKB results along a generic direction (chosen to be a1 = 2a2)· 

In Fig. 3.3 we show a ratio of masses along the special direction a1 = a2 , where the inner 
and outer horizons come together as atfu0 --+ oo (this is also the region where the WKB 
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a, 

\ 

Figure 3.1: The unnormalized values of the o++ glueball mass (the lowest eigenvalues of 
Eq. (3.42)) as a function of the two angular momenta. Note that this function is smooth 
everywhere except in the region a 1 = a2 ~ oo. 

approximation breaks down). In this region the mass ratios behave very differently than 
anywhere else and- depart from the lattice results (for example, the weak-coupling lattice 
value for Mo++• / Mo++ for N = 3 is about 1. 7 4, which is notably bigger than the numbers of 
Fig. 3.3 at large a). . 

·3.2.2 Masses of the o-+ glueballs 

The differential equation for o-+ glueballs can be written as 

1 1 4 4 4 4 2 ( U
4 

- ai)( U 4 
- ai) 

38u[-(u - a1 )(u - a2 )8uXo2(u)] = -M ( 4 4 )( 4 4 ) 6 2 Xo2(u). u u u - a 1 u - a2 - u0 u 
(3.43) 

The corresponding mass spectrum cari be obtained using a similar numerical method as 
for the o++ glueballs. The dependence of the lightest o-+ glueball mass on the angular 
momentum along a generic direction (chosen again to be a1 = 2a2 ) is given in Fig. 3.4. One 
can see that while the masses are fairly stable against variations of the angular momentum, 
just like in the case of a2 = 0 discussed in [8], the actual values of the mass ratios compared 
too++ increase by a sizeable ("' 25%) value. The change is in the right direction as suggested 
by recent improved lattice simulations [20]. The actual asymptotic value of the mass ratio 
mo-+ = 1.59 is the same as for the a 2 = 0 case everywhere except very close to the region 
mo++ 
a1 = a2 » u0 • Table 3.2 contains the comparison of the lattice results to the supergravity 
results evaluated using the numerical and the WKB methods. 

Just as for the case of the o++ glueballs, this ratio behaves very differently along the 
special a1 = a2 direction, and departs significantly from the lattice result ( mo-+ )lattice = 1.46 

mo++ 
as it can be seen in Fig. 3.5. 
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r 

a 
2 4 6 8 10 

Figure 3.2: The ratio of the o++* mass to the o++ mass along a generic direction, chosen 
here to be a 1 = 2a2 = a. Note, that the change in the ratio is tiny, and the asymptotic value 
of the ratio is the same as in Ref. [8] in the case of a1 ---+ oo, a 2 = 0. 

r 

1.6 

1.5 

1.3 

1.2 

a 
50 100 150 200 250 300 

Figure 3.3: The behavior of the ratio r of the mass of the excited o++* glueball mass to 
the o++ mass along the line a1 = a2• Note, that along this direction the solutions behave 
very differently than anywhere else in the parameter space and depart significantly from the 
lattice results. 
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state lattice numerical WI<B 
o++ 1.61 ± 0.15 1.61 (input) 1.55 
o++* 2.8 2.57 2.53 
o++** - 3.49 3.46 
o++*** - 4.40 4.37 
o++**** - 5.30 5.28 
o++***** - 6.20 6.18 

Table 3.1: The masses of the first few o++ glueballs in GeV. The first column gives the 
available lattice results [18, 19, 20), the second the asymptotic value of the supergravity 
calculation using the numerical method (the point is chosen to be a1 = 2a2 = 20u0 ), while 
the third column the WKB result for the same supergravity approximation. 

Figure 3.4: The ratio of the lowest o-+ mass to the lowest o++ mass along a generic direction, 
chosen here to be a1 = 2a2 = a. Note, that the ratio is very stable against the variations of 
the parameters. The actual change in theratio is sizeable, and independent of the direction 
chosen in the ( a1, a2) parameter space (except the line a1 = a2) and agrees with the ratio 
found in Ref. [8] for the case of a1 --+ oo, a2 = 0. As explained in the text, this figure is 
only reliable for the regions a « u0 and a » u0 which are shown by solid lines, while for the 
intermediate region denoted by a dashed line there are corrections due to the non-vanishing 
off-diagonal components of the metric.· 
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1.25 

" 1.225 

"' 1.2 
~ 

1.175 

1.15 

1.125 

a 
2 4 6 8 10 12 

1.075 

Figure 3.5: The behavior of the ratio r of the mass of the lowest o-+ glueball mass to the 
lowest o++ mass along the line a 1 = a2 • As explained in the text, this figure is only reliable 
for the regions a « u0 and a » u0 which are shown by solid lines. 

state lattice Num.(a1:2 = 0) Num.(a1 = 2a2 = 20) WKB 
o-+ 2.59 ± 0.13 2.00 2.57 2.53 
o-+* 3.64 ± 0.18 2.98 3.49 3.46 
o-+** - 3.91 4.40 4.37 
o-+*** - 4.83 5.30 5.28 
o-+**** - 5.74 6.20 6.18 
o-+***** - 6.64 7.10 7.09 

Table 3.2: The masses of the first few o-+ glueballs in GeV. Unlike o++ glueballs, the su­
pergravity masses for these glueballs are sensitive to the values of a 1 , a2 • Two cases are 
displayed, illustrating the typical values that one gets for small and large a1 , a2 (the asymp­
totic values for large a 1 , a2 are the same for any generic direction, i.e. with a1 =/= a2 ). The 
lattice results are from [19, 20]. 
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3.2.3 Masses of the KK modes of S4 

In terms of u = yiP, equation (3.29) for the first KK _doublet (3.5) reads 

Ou [~ ((u4
- a1)(u4

- a~)- u2u~) ouf(u)]- u3 (k2 + ~~ H(u)) f(u) = 0. (3.44) 

where 
a4 a4 us 

h0 ( u) = {1 - ~ )(1 - .2) - ....Q , 
u4 u4 u6 (3.45) 

4 4 4 
a2 al a2 )2 H(u) = 4h0 (u) (1- -) + -(1-- . 

2u4 u4 u4 (3.46) 

The components of the second doublet (3.6) give the same equation with a 1 and a2 in­
terchanged. Finally, the equation that determines the mass spectrum of the singlet (3.7) 
IS 

u28u [~ ((u4 - a1)(u4 - a~)- u
2

) J'(u)] + u3(8ai +Sa~- k2
u

2
- 16u4)f(u) = 0. (3.47) 

This is symmetric under the interchange of a1 and a2 • One can again numerically determine 
the solutions of these equations using the shooting method. In Figs. 3.6 and 3. 7 we show 
the behavior of the S0(2) x S0(2) singlet mode first along a generic direction (which was 
again chosen to be a 1 = 2a2), and then along the special direction a 1 = a 2 . One can see that 
this mode does not decouple on any region of the parameter space. Figs. 3.8 and 3.9 show 
the similar plots for the non-singlet KK modes (for (3.44)), which similarly do not decouple 
anywhere in the parameter space. Tables 3.3 and 3.4 show the comparison of the first few 
KK modes evaluated using the numerical and the WKB methods. 

3.2.4 Masses of the KK modes on the circle 

Next we consider the KK modes coming from the compact D-brane coordinate. These modes 
have the form (3.4 ), where </;( u) obeys the differential equation 

a [1 (( 4 4)( 4 4) 2) )] ( ) 3 ( 2 9n
2
(ai- u4 )(a~- u

4
) ) u - u - a 1 u - a 2 - u Ou</J(u = </; u u k + A2 ( 8 4 ( 4 4 ) 2 4 4 ) · u u - u a 1 + a 2 - u + a 1 a 2 

(3.48) 

One can again numerically solve these equations. For a generic direction (chosen to be again 
a 1 = 2a2) we find that these modes decouple very quickly from the spectrum, just like in 
the case with one angular momentum parameter discussed in Ref. [8]. This is illustrated 
in Fig: 3.10. For the case of the special direction a 1 = a2 , the numerical analysis of the 
decoupling is inconclusive. The masses of these KK modes grow much slower than for the 
generic case. At the point when our numerical solutions become unreliable, these modes 
are not decoupled yet, however one can not rule out the possibility that for a -+ oo they 
eventually do decouple (see Fig. 3.11). 

\ 
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1. 44 

1.42 

a 
2 4 6 8 10 

1. 38 

1.36 

1.34 

1.32 

Figure 3.6: The mass ratio r of the S0(2) x S0(2) singlet KK mode to the lowest o++ 
glueball along the generic direction a 1 = 2a2 • 

r 

1.4 

1.3 

1.2 

a 
20 30 40 

Figure 3.7: The mass ratio r of the S0(2) x S0(2) singlet KK mode to the lowest glueball 
mass o++ along the special direction a 1 = a2 . 
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state numerical WKB 
KK 2.15. 2.00 
KK* 3.23 3.09 
KK** 4.20 4.09 
KK*~* 5.15 5.05 
KK**** 6.07 5.99 
K /{***** 6.99 6.91 

Table 3.3: The masses of the first few singlet KK modes in GeV. The first column gives 
the asymptotic value of the supergravity calculation using the numerical method (the point 
is chosen to be a 1 = 2a2 = 20u0 ), while the second column the WKB result for the same 
supergravity approximation. 

r 

1. 75 

1.7 

1. 65 

1.6 

1.45 

a 
2 4 6 8 10 

Figure 3.8: The mass ratio r of the S0(2) x S0(2) doublet KK mode to the lowest glueball 
. masses along the generic direction a 1 = 2a2 . 
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0.65 

0.55 

a 
20 40 60 80 100 120 

Figure 3.9: The mass ratio r of the lightest glueball to the 50(2) x 50(2) doublet KK modes 
along the special direction a 1 == a2 • 

state numerical WKB 
KK 2.84 2.19 
KK* 3.80 3.34 
KK** 4.73 4.37 
KK*** 5.54 5.36 
K K**** 6.57 6.31 
K /{***** 7.47 7.25 

Table 3.4: The masses of the first few non-singlet KK modes in Ge V. The first column gives 
the asymptotic value of the supergravity calculation using the numerical method (the point 
is chosen to be a 1 = 2a2 = 20uo), while the second column the WKB result for the same 

.. . . ) 

supergrav1ty approximatiOn. 

22 



r 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.5 
a 

1 1.5 2 2.5 

Figure 3.10: The mass ratio r of the lightest glueball to the KK mode on the compact D­
brane coordinate 02 along the generic direction a 1 = 2a2 = a. Just as for the case with only 
one angular momentum, these states decouple very quickly from the spectrum. 

r 

0.75 

0.5 

0.45 

a 
5 10 15 20 25 30 

Figure 3.11: The mass ratio r of the lightest glueball to the KK mode on the compact 
D-brane coordinate 02 along the special direction a1 = a2 • 
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state numerical WKB 
KK 11.27 11.24 
KK* 11.48 11.45 
KK** 11.76 11.72 
KK*** 12.09 12.06 
K K**** 12.48 12.45 
K K***** 12.92 12.89 

Table 3.5: The masses of the first few- KK modes on the circle in Ge V. Along a generic 
direction these KK modes decouple, thus we have chosen an arbitrary point a 1 = 2a2 = 2.5u0 

for the comparison of the numerical and WKB results. which are given in the first and second 
column. 

4 Conclusions 

In this paper we have presented a two-parameter family of supergravity models of non­
supersym~etric 3 + 1 dimensional SU(N) Yang-Mills theory, based on regular geometries 
with D4-brane charge. In these models, we have evaluated the mass spectra of the scalar 
glueballs and some of the related KK modes everywhere on the two dimensional parameter 
space using both numerical and analytic (WKB) methods. We find that the glueball mass 
ratios are very stable against the variation of the angular momentum parameters. The 
asymptotic values of these ratios for large angular momenta are in good agreement with 
the most recent lattice results everywhere in the parameter space except along a special 
line a 1 = a2 » u0 (which is exactly the region where the WKB approximation breaks 
down, and also the region where the inner and outer horizons approach each other and 
the supergravity approximation approaches a discontinuous limit). The KK modes on the 
compact D-brane coordinate decouple for large angular momenta everywhere (except perhaps 
along a 1 ~ a2 , where our analysis of decoupling is inconclusive). The KK modes on the 
5 4 however do not decouple from the spectrum anywhere in the parameter space in the 
supergravity approximation used in this paper. 

The masses evaluated in this paper in the supergravity approximation can in principle get 
large corrections when extrapolating from the strong coupling (large A) regime to the weak­
coupling regime of the Yang-Mills theory. If the spectrum of the corresponding string models 
at small A do indeed reproduce the Yang-Mills spectrum, a natural question to ask is why the 
glue ball masses (or perhaps only the glue ball mass ratios) would get small corrections, while 
the KK masses get large corrections. Since in the limit a 1, a2 » u0 the metric approaches 
the supersymmetric space (2.31), it is possible that a subset of the masses may be protected 
by supersymmetry (as explained in Sec. 2.3, the naive limit u0 -t 0 does not lead to a 
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supersymmetric theory, since it does not have fermions in the spectrum). A problem of 
interest is thus to investigate the supersymmetric model with u0 = 0, and determine which 
scalars belong to short BPS multiplets, and which ones are in long multiplets. Since the 
masses of the scalars belonging to short multiplets should not be changed in the .X « 1 
regime, this could explain why the o-+ glueball masses are so close to the lattice values, 
and it may be used as a highly non-trivial quantitative test of the conjectured relation of 
supergravity to non-supersymmetric SU(N) Yang-Mills theory. 
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