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Abstract

Acoustic Resonance Characteristics of Rock and Concrete

Containing- Fractures
by
Seiji Nakagawa
Doctor of Philosophy in Materials Science and Mineral Engineeri.ng'
University of California, Berkeley

Professor Ronald Gronsky, Chair

In recent years, acoustic resonance has drawn great attention as a quantitative tool for
characterizing properties of materials and detecting defects in both engineering and
geological materials. In quasi-brittle materials such as rock énd concrete, inherent fractures
have a significant influence on their mechanical and hydraulic properties. Most of these
fractures are partially open, providing internal boundaries that are visible to propagating
seismic waves. Acoustic resonance occurs as a result of constructive and dest;iictive
interferences of propagating waves. Therefore the geometrical and me‘cﬁanical properties

of the fracture are also interrogated by the acoustic resonance characteristics of materials.

The objective of this dissertation is to understand the acoustic resonance characteristics
of fractured rock and concrete. Chaptef 2 and 3 show that the spatial distribution and the:
elastic and viscoelastic properties of fractures in one-dimensional systems have a significant
effect on their resonance frequencies and the attenuation. A numerical code that simulates
the resonance of three-dimensional bodies containing fractures is developed in Chapter 4

and used to determine the anisotropic elastic moduli of rocks (Chapter 5) and the stiffness

-1-



of a fracture in coﬁcrqte (Chapter 6) from measured resonance frequencies. In Chapter 7,
the dynamic stiffnesses of concrete bridge columns are determined from their resonance
frequencies and good agreement with the changes in the static stiffness is found. Chapter 8
shows that a sheared fracture converts a part of normally incident P-waves to polarized S-
waves and vise versa, which can be used as a powerful tool for detecting and measuring
shear stress on fractures. A sheared fracture is also shown to have a significant effect on
the velocity and particle motion of the waves propagating along the fracture (Chapter 9).
Chapter 10 unifies the effects of dynamic coupling (dilation) of a sheared fracture and wave
propagation and resonance in an infinite series of multiple parallel fractures in a dispersion
equation for aniSotropic frequency-dependent wave propagation. This equation provides
complete solutions for elastic wave propagatioh in the media which includes such wave
phenomena as generalized Rayleigh-Lamb plate waves, fracture interface waves, and

acoustic resonances.

Ronald Gronsky, Professor, Department of Materials Science and Mineral Engineering
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General Introduction

1.1 Introduction

The mechanical and hydraulic properties of rock and concrete are significantly
influenced by fractures that range in size from millimeters in a single crystal and mineral
grains in rock to meters in infrastructure such as tunhels, buildings, and bridges. Fractured
materials typically exhibit decreased stiffness and strength. Slip along a fracture may cause
a catastrophic failure of a structure. A fracture also serves as a major conduit of fluid. A
large number of fractures in a reservoir rock can be a source of hydrocarbon production.
Cracking in a reinforced concrete structure may result in a short service life as corrosive

materials (water, oxygen, chloride ion, efc.) can easily access the steel reinforcement.

For a variety of reasons mentioned above, there is a great deal of interest in detecting
and characterizing fractures in rock -and concrete. Most of the fractures that affect the
mechanical and hydraulic properties of materials are fully or partially open. Such fractures
are seismically visible depending on their compliance that arises from locally enhanced
deformation of the medium around the fracture (e.g., Pyrak-Nolte et al., 1990a).
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Conventionally, propagating seismic waves have been used for detecting and |
characterizing fractures. A propagating wave interacting with a fracture exhibits changes in
velocity, amplitude, spectral content, and direction of propagation. In most cases, the first-
arriving part of the observed waves is of interest, as relaﬁvely straightforward interpretation
can be made on the effect of the fracture on the characteristics of the wave. However in
many cases a wave measured in a medium including fractures contains complicated later-
arriving waves (seismic coda) that are expected to carry additional information about the
internal structure of the medium. This coda is essentially reverberation generated by
acoustic resonances within the medium due to waves being multiply reflected by fractures.
Therefore, an understanding of the acoustic resonance behavior of media containing
fractures is of great value for detection and characterization of fractures. |

Acoustic resonance is a phenomenon wherein the dynamic response of a material
becomes significantly amplified under certain physical conditions. The amplified response
occurs for discrete frequencies (resonance frequencies) that constitute the "sound" or "tone"
of the medium if they are in audible range. Acoustic resonance is used for examining the
properties of materials and structures in daily life. For example, a physician taps on a
patient's chest to examine his or her physical condition from the sound in the chest cavity.
A worker at a ceramics factory tries to determine if a piece of china contains any invisible
flaws from the tone it makes. These practices are based on the knowledge that changes in
material properties and structure result in different resonant characteristics. Qualitative

~ diagnoses are made by "hearing" the changes in the sound.

In recent years, many attempts have been made to use acoustic resonance as a
~ quantitative tool for determining material properties and diagnosing defects in both
engineering and geologic structures. A large number of infrastructures such as buildings,
bridges, and dams are suffering structural damage due to fractures caused by their extended
service time and natural seismic activitie's.‘ For example, according to the statistics released
by the Federal Highway Administration, 24% of the nation's bridges (7.5% in California)
were structurally deficient in the year of 1989 (Tarricone, 1990). Although the statistics are
-now becoming old, the ratio of deficient structures is expected to have risen rather than
dropped during the past decade. Techniques based on acoustic resonance are among the
most promising as a cost effective non-invasive inspection method for assessing damage
and performance of the infrastructure. Resonant characteristics of structures have been
examined for deterioration of bridges (e.g., Mazurek et al.,, 1990) and dams (e.g., Olson

et al., 1990). On the other hand, locating and characterizing fractures in rock mass are also
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important in petroleum engineering, groundwater hydrology, and civil engineering.
Geologic structures often manifest themselves as thin 'slabs, or blocks compartmentalized by
subparallel and intersecting fractures (Chernyshev and Dearman, 1991). Resonance of
such structures potentially provides valuable information about the geometry and

mechanical properties of these blocky rock masses.

The primary objective of this research is to understand the acoustic resonance
characteristics of fractured rock and concrete using a combination of laboratory testing and
numerical modeling. A fracture introduces an internal boundary that scatters and distorts
propagating waves. This distortion results in altered resonance frequencies and mode

shapes of the fractured rock mass.

For propagating waves, a fracture acts as a frequency-dependent filter that preferentially
passes low-frequency waves and reflects high-frequency waves (Schoenberg, 1980;
Pyrak-Nolte et al., 1990a). Many researchers have shown that a simple set of boundary
conditions called the displacement-discontinuity boundary conditions can _be'used for
modeling the dynamic behavior of a fracture. The applicability of the model was
demonstrated numerically by Angel and Achenbach (1985) using a dynamic boundary -
element method and experimentally by Pyrak-Nolte ez al. (1990a). The model has been
used extensively for simulating. a variety of wave phenomena. Buck et al. (1982) used the
model for examining the contact stiffness of fatigue cracks from transmitted and refracted
ultrasonic waves. Rehbein et al. (1982) used similar techniques to estimate contact
stiffness of the interface between metal couplers. Gu et al. (1996a, b) used the model for
examining the waves propagating along a fracture analytically and numerically using a
boundary element method. Nihei et al. (1998) examined the behavior of channel waves
propagating between parallel compliant fractures analytically and experimentally. Pyrak-
Nolte et al. (1990b) examined wave propagation in regularly spaced, multiple, parallel |
fractures experimentally and Yi ef al.(1997) simulated the anisotropic wave propagation due
to the fractures using the finite difference method. For the abovc examples, both the
stiffness of the fracture and the wave frequency showed a large effect on the behavior of

propagating waves.

Hesler (1995) showed the effect of fracture stiffness on the resonances of a fractured
one-dimensional syStem using the displacement-discontinuity model for the fracture.
Hesler's results are analogous to the results obtained by other researchers including
Gudmundson (1982), Kam and Lee (1992), and Man et al.(1994) for cantilever beams
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including cracks and notches: an increase in the compliance of a structure due to defects
decreases the resonance frequencies and alters the mode shapes. Hesler's results are
significant because they show that the localized compliance that arises from the imperfect
contact between mating fracture surfaces (unlike open voids or notches like other
researchers) has a large effect on the resonances of fractured media that are similar to their

effect on the propagating waves.

This research extends Hesler's work to the resonance of more general systems
including multiple fractures, elastic anisotropy, and three-dimensional geometry. The
research includes a determination of material properties such as elastic moduli and fracture
stiffness from experimentally measured resonances. Acoustic resonance is also used to
assess the damage due to fractures in concrete sub-structures.

1.2 Overview of this Work

This research examines the resonance characteristics of media such as rock and concrete
containing fractures. Following this chapter, Chapter 2 discusses the resonance
characteristics of fractured one-dimensional systems. Analytical and numerical methods are
employed to examine quantitatively the resonance behavior of a system including single and
multiple fractures. Attenuation due to fracture is found to have different effects from
~ dissipation of energy in an intact medium. Resonance behavior of finite and infinite, and
regularly and irregularly fractured systems are compared. An infinite system shows similar
resonance behavior as an equivalent finite system but the attenuation is larger due to
radiation of energy into the surroundings. Resonance of an irregular system is
characterized by spatial localization of vibration motion, especially for small fracture
stiffnesses. '

Part of the results from Chapter 2 is demonstrated by laboratory experiments on
* fractured rock bars in Chapter 3. Stiffness of the fracture is altered by applying axial stress
to the specimens through compliant plastic rings. Application of axial stress to the fracture
results in an increase in fracture stiffness, leading to an increase in resonance frequencies.
A specimen with a fracture injected.with water and filled with attenuative material shows an

increase in attenuation for predicted resonance modes.

‘In Chapter 4, a numerical code that can simulate resonance of a three-dimensional
object including fractures and material anisotropy is developed based on the Rayleigh-Ritz

method. Spectral response of the mode (frequency response function, FRF) and mode
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shape of vibration for specified locations of the source and receiver are computed. The
code can also be used for determining anisotropic elastic moduli and fracture stiffnesses
from experimentally measured resonance frequencies. In subsequent chapters, the
numerical techniques developed in this chapter is used to simulate experimentally observed

resonances and to determine elastic properties of specimens.

One of the common characteristics of rock are its.anisotropic elastic properties. Chapter
5 discusses the resonance of anisotropic rocks whose anisotropy arises from different types
of rock microstructures. Both static and high~freq'uencvy dynamic behavior of the rocks are
measured to characterize the specimens. The numerical code developed in Chapter 4 is
used to determine the anisotropic elastic moduli of approximately transversely isotropic
rocks. The resulting elastic moduli are found to range between moduli from static and
ultrasonic measurements. The result may suggest a frequency dependent behavior of the
stiffness of the rocks due to compliant microcracks and grain contact. Mode shapes of the
resonances are also measured using a scanning laser Doppler vibrometer and their basic
agreement with the normalized simulations is .confirmed.

Anisotropy in granite specimens in Chapter 5 is due to uniformly distributed -
microcracks in rock. For this microstructure, resonance of the medium could be examined
by épprdximating the compliance introduced by the microcracks as a reduced bulk elastic
moduli. However, such an approach cannot be used if the medium contains a distinct
fracture. In Chapter 6, resonance of a concrete cylinder including a single through-going
fracture is examined experimentally and numerically. The stiffness of the fracture is
changed to see its effects on the resonance of the specimen. Measured and simulated |
resonances for the fractured specimen show shifts in the resonance frequencies and
localized resonances as predicted in the analyses of Chapter 2. The numerical code is used
to determine the dynamic stiffness of the fracture from measured changes in resonance
frequencies. The inverted dynamic normal stiffnesses of the fracture show good agreement
with statically measured stiffnesses.

To apply the acoustic resonance technique to assess damage and the effect of repair of
civil infrastructure, field resonance measurements on semi-site scale concrete bridge
columns are performed in Chapter 7. High—frequency stress wave measurements reveal the
distribution and difference in orientation of fractures in the directions normal and
perpendicular to the loading direction. However, due to the strong sensitivity of the wave

to compliant fractures, the repaired structures do not always show changes in their seismic
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signatures even though the stiffness and ultimate strength of the structures are significantly
improved. Measured resonance frequencies and attenuation show good correlations with
the measured changes in the static stiffness before and after the destruction and repair of the
structures. Dynamic stiffnesses of the structures are determined from measured resonance
frequencies and show good agreement with the statically measured stiffnesses. The results
demonstrate that the resonance of a fractured structure is a good indicator for assessing the
degree of damage and the effect of repair.

Throughout this research, the stiffness of a fracture plays an important role in
determining the dynamic behavior of materials and structu_rés. Therefore it is important to
understand the fundamental properties for the stiffness of a fracture. In Chapter 7, the
dynamic behavior of a fracture subjected to shear stress is examined using propagating
seismic waves. Although the discussion is focused on propagating waves, these results are
equally important for the resonance of a medium including such fractures. A novel
discovery is made for conversion between P- and S-waves normally incident on a sheared .
fracture during laboratory experiments. The observed conversions of waves are due to
dynamic dilation of fracture whose local contact stiffness is systernatically redistributed by
an applied shear stress. The dilation behavior can be modeled by cross-coupling
components of fracture stiffness that are used for the displacement-discontinuity boundary
conditions. Transmission and reflection of seismic waves across a sheared fracture are
examined analytically and numerically using a dynamic two-dimensional boundary element
method. The results demonstrate distinct changes in the waves interacting with a sheared
fracture that can be used for detecting and potentially measuring shear stress on a fracture.

Beyond the seismic waves incident on a sheared fracture in Chapter 8, Chapter 9
discusses the behavior of interface wave propagation along a sheared fracture. A
generalized dispersion equation is derived for fracture stiffness with dilation components

| (coupling fracture stiffnesses). The introduction of the coupling fracture stiffness changes
the phase velocities and particle motions for two possible types of fracture interface wave.
The changes in the particle motion are clearly visible as a phase lag between waves on
opposite sides of the fracture. The observed behavior of the fracture interface wave can be
used for deteéting and characterizing shear stress on a fracture.

Chapter 10 discusses wave prdpagation in media that contain parallel, regularly-spaced
fractures. Unlike the discussion in Chapter 1 where only the one-dimensional case is

treated, a general dispersion equation for fully coupled P-SV-SH waves is presented.
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Waves propagating in the fractured system exhibit tfansversely isotropic behaviors due to a
large compliance in the direction normal to the fractures as is seen from the experimental
results in Chapter 5. Fractures in the system can have coupling stiffnesses as discussed in
Chapter 8. When the wavelength of the wave propagating in the system is comparable to
or shorter than the fracture spacing, both velocity surface and spectrum of the wave exhibit
distinct pass and stop band structures for the propagation direction normal to the fractures.
~ Such behavior is analogous to the results for one-dimensional systems (Chapter 1). Within
a stop band, the wave amplitude decays exponehtially away from a source. As a result,
waves propagating parallel to the fractures localize near the source. At boundaries between
pass and stop bands, group velocity in the normal direction approaches zero, indibating that
the system is at resonance. It is shown that the general dispersion equation degenerates to
the SH-plate wave equation and Rayleigh-Lamb plate wave equations (Graff, 1975) for
vanishing fracture stiffness, and to a generalized interface wave equation that includes
results in Chapter 9 if the layer thickness is much greater than wavelength.

The final chapter summarizes important findings and conclusions in this thesis.

Suggestions for possible future research are provided as well.



Analytical Study on the Effects of
Fracture Properties on
One-Dimensional Resonance

2.1 Introduction

This chapter examines the acoustic resonance of one-dimensional systems containing
single and multiple fractures using analytic and semi-analytic methods. One-dimensional
resonance is often encountered in real situations. Some of the examples are the resonant
bar tests used for testing materials in laboratory, vertical vibration of structural beams,
reflections of seismic pulses in the impact-echo tests (Carino et al., 1986), and multiple
reflection of seismic waves normally incident on layered geological structures (Banik et al.,
1985a,b; Burridge et al., 1988). Understanding the resonance behavior of fractured one-
dimensional systems is not only beneficial for interpreting the resonance of the above
examples but also provides valuable insights to the resonance of more complicated multi-
dimensional systems.

- The objective of this chapter is to develop basic understandings of the effects of single
and multiple fractures on the resonances of one-dimensional systems. The primary effects

are the shift of resonance frequencies, change in attenuation, and change in mode shapes

8
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that can lead to localization of vibration energy. These effects are related to boundary
conditions and mechanical and geometric properties of fractures such as stiffness, viscosity
(due to fluid and filling), number, and locations.

Dynamic behavior of a fracture has been modeled by the displacement-discontinuity
boundary conditions (Kendall and Tabor, 1971; Schoenberg, 1980; Pyrak-Nolte et al.,
1990a). The model has been successfully used for analyzing wave propagation across and
along a compliant interface between solid halfspaces. Frequency response functions
(FRF's) of fractured systems were derived by a one-dimensional version of the propagator
matrix method (Kennett, 1983). Resonance in a one-dimensional system can be treated in a
relatively straightforward manner due to lack of mode conversions between propagating
waves (e.g., P-wave, S-wave, and surface wave). A concise summary of the propagator
method is given in Appendix A.

In the following discussion, the resonance of a finite system including fracture(s) is
first examined, followed by that of an infinite system. The relation between spectral
characteristics of waves propagating in the fractured infinite systems and resonance
characteristics of their finite counterparts are compared.

2.2 Finite System Including Single Fracture
2.2.1 Resonance frequency shift

The type of frequency response functions (FRF's) used in this chapter is the mobility,
defined as the velocity response of a system against unit force excitation (e.g., Newland,
1989). A dimensionless mobility is defined by multiplying the mobility by the acoustic
impedance of the system. For a slender bar including a single fracture (Figure 2.1), an
analytic expression for the power of dimensionless source mobility (both source and
receiver located at the top) is derived as

aing — 126058, “sin ¢, — Beos(9, + )]22 ’
[2sin ¢, - sin ¢, — Bsin(¢, + 6, )]

(2.1)

where @ is the angular frequency. The derivation of Eq.(2.1) is shown in Appendix B.

is the dimensionless acoustic impedance of a fracture defined by

| 2kl @ '
p=— . ; (2.2)
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Ly
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10-3 |||||||||||||||||||||||111||||||
L L o2 2 . i
(=wL/2rc)
(a) FRF on the 1st segment (source-side)
105
MM*
1 source
10-5
T
5"
b
(=xL/E) j—
1 ry
L
10-3 [TTT I I T[T T T T[T i rd v
0 1 o/2m 2 3 —
(=wL/27c) receiver
(b) FRF on the 2nd segment
Figure 2.1 Waterfall plot of FRF(Mobility)'s for a finite bar with a single fracture. The fracture

separates the bar by a ratio of 1:3. Both frequency and stiffness are dimensionless in the plots. (a) In the
first segment (Lo/L=0.25), several of the resonance peaks disappear as the fracture stiffness is decreased. (b)
There is no vanishing of resonance peaks in the second segment (L;/L=0.75).
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where x is the specific fracture stiffness and Z is the acoustic impedance of the intact
medium, and ¢, and ¢, are the phase angles defined by

gy =ol/c, ¢, =oLc, - @23

where L, and L, are the lengths of the first and second segments in the bar, and c is the

velocity of the wave in the intact medium. Mobility at the bottom of the bar (receiver
located at the bottom) is given by (derivation shown in Appendix B)

MM = p’ . o | (2.4)
- [2sing, -sing, - Bsin(g, + ¢1)]2

‘For a high fracture stiffness, § in Eq.(2.1) approaches infinity. Resonance occurs at
frequencies that satisfy sin(q)o + ¢1)=O. Therefore,

Dy :%-nﬂ:' n=0,1,2,... (2.5)

where L= L;+ L,. If the stiffness of the fracture is low, resonances of the first segment

occur for sin(¢0) =0, while the second segment resonates both for sin((bo) =0 and

sin(¢,) = 0. Corresponding resonance frequencies are ‘
c

@y, =z—'no7f, no=0,1,2,... (Ist segment) (2.6a)
0 .

a),m; = -lf—o-nln or w,, = —c—-nzn'. ny, n=0,1,2,...(2nd segment)(2.6b)

L

This result is particularly interesting because the second sets of solutions in (2.6b) indicate
that these modes are localized in the second segment of the bar. Figure 2.1 illustrates the
resonance behavior of a system consists of two segments separated by a fracture with
length ratio of Lg: L1=1:3. The plot shows several modes that vanish in the first segment
for small fracture stiffnesses.

From Figure 2.1 it can be seen that the shift in the resonance frequency of each mode

occurs for a limited range of fracture stiffnesses. The center of the shift can be examined
by a "center resonance frequency” @, defined as follows
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N7
[72]
i)
C ]
= '
2] '
) )
5 fracture stiffness-
) resonance frequency
© th
= curve for m " mode
(o)) 1
Q ! 1
: -
frequency

Figure 2.2 The center resonance frequency, @x, is defined by an average of resonance frequen01es for an
infinitely stiff fracture and a zero stiffness fracture. The center fracture stiffness, K¢, is defmed as a
corresponding stiffness of the fracture stiffness- -resonance frequency type curve of the mode.

Dpiop + @
— 8 ow
w. = —2“_ » Dy,

> wlow’ . . (27)

where ®,,, and @, are the resonance frequencies for infinitely high and low fracture
stiffnesses, respectively. The corresponding "center fracture stiffness" k. and impedance

ratio B, can be determined from a fracture stiffness-resonance frequency type curve for

each mode (Figure 2.2).

To understand the effect of the location of a fracture on resonance frequencies, a finite
1-D system of length L divided by a fracture into two segments is examined. The length
ratio between the segments is Lq: L1=mg:m; where mg/mj is assumed to be a rational
number. An intact bar of length L and the separate segments (length Ly and L) have
common resonance frequencies only at @, = %Mﬂ-n (n=0,1,2,....; M=mg+m,)
correspdnding to every M th, myth, and m; ™ modes, respectively. As the stiffness of the
fracture decreases, the first M resonance frequencies of the initially intact bar (mode O to
mode M-1) decrease and become the first mg and m; modes of the separated segments.
These frequency shifts repeat every Mt mode: all the n=i+ M - j(i,j=0,1,2,....)!h modes
shift by an equal amounts as the stiffness of the fracture decreases from infinity to zero.
For example, if a fracture is introduced in a bar such that Lg: L1=3:7, the resulting center

frequencies are obtained as in Table 2.1. In this table, only @,'s for j=0 are shown'

because the shift of resonance frequencies repeat cyclically for larger j's. The last column
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in the fable yields different 8,'s. Therefore, there are 10 different types of modes that are

~ distinguished by characteristic B,'s. The resulting «_'s (dimensionless) and B.'s are

plotted against dimensionless @, in Figure 2.3. This result also implies that if a fracture

separates a bar into segment lengths with a ratio that is not a rational number, an infinite

number of By's result for the resonances of the system.

Table 2.1 Computation of Center Resonance Frequency

Intact bar Block No.1 Block No.2
m| ¢=,,L/c o, Llc w,, Llc w,-L/c
O 0 % * ES
11 i (0) (0) /2

2 2r 107/7 * 127/7
3 3n 207/7 * 27 +137/14
4 4r * 10 /3 27+ 5m/3
5 57 30m/7 * 4r+9m/14
6 671 40t/ 7 * 4x+137/7
7 T * 20 /3 67+ 51/6
8 8 507/7 * 6r+11m/7

-9 on 60 7/7 * 8m+117/14

Note: The fundamental mode for an intact bar becomes one of the rigid body modes
(@yp,,=0) for separate segments. Center resonance frequencies cannot be obtained for m=0

(or n=109j, j=0,1,2,...) " modes as they do not show a resonance frequency shift.

60

KL/E)

b(=

- 20 k-

50
40 £

sof

10f

6 8 10

PRI S,

15[

05[ a

4 6 8

10

¢./2r=w,L/2nc
(2) Ke-O

¢ /2r=w.L/21c
(b) Be-0c
Figure 2.3 The (a) center fracture stiffness k., and (b) corresponding impedance ratios B, for the

resonances of a fractured bar. A fracture separates the bar by a ratio of 3:7. There are 9 different . 's that
yield 9 groups of modes which are distinguished by the slope of x; -, plots.
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If a fracture is at the middle of the bar such that Lg= L1=0.5 L, all the odd modes of an
intact bar have decreasing resonance frequency with decreasing fracture stiffness and form
pairs with even mode resonances. The even modes are not affected by the fracture.
Mobilities for the system are plotted for a range of frequencies and locations along the bar
in Figure 2.4. The dark lines in the plot show resonance peaks and the light curves show
nodes. Stiffness of the fracture is made dimensionless by the length L and the Young's
modulus of the system FE to yield a stiffness parameter b= xL/ NE, where N is the-

‘number of fractures in the system (here, N=1). Center resonance frequencies can be
obtained only for the odd modes as

c 1
o =—-2k+—|r (k=0,1,2...). 2.8
e =7 ( 2) ( ) | (2.8)
From Eq.(2.4) and Hesler's (1995) work, the following equation must be satisfied ét

resonance

_2sin @, -sin @,

, >0. | @9
sin(@, + ¢,) h . . (2.9)

For the case considered here, ¢, = ¢, from Eq.(2.3). By introducing Eq.(2.8) into (2.9),
it is found that the resulting B's are identical for all modes (f8,=1.0). Therefore the

corresponding x,'s are exactly proportional to the @,'s.

2.2.2 Attenuation due to material damping and fracture viscosity

If a medium (intact part of the bar) is attenuative, it has a finite seismic quality factor Q.

For a finite Q, a phase term used in the propagator matrix (Appendix A) becomes complex

_or( 1) e
¢ = (1+12Q) c(1+z§). | (2.10)

C
Where { is the vibration damping ratio (e.g., Newland, 1989). Q can be either a constant
or a function of frequency. For a bar with a single fracture at the middle, the mobility
distribution in the bar is computed for a variety of Q's (Figure 2.5, left half). The plot

shows that both even and odd mode resonances attenuate (width of the peak broadens) as
the attenuation of the system increases.
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Figure 2.4 Computed mobility distribution in a finite bar with a single fracture at the middle. Dark
lines show high amplitude (resonance) and the light curves show low amplitudes (nodes). As the fracture
stiffness decreases, the resonance frequencies of the odd modes decrease while the even modes do not shift.
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If fluid is present in the fracture, attenuation of resonance occurs as a result of viscous
shear within the fracture. For a clean fracture with partial surface contact surrounded by
fluid, an adequate rheological model would be the Kelvin-Voigt model (parallel spring and
dashpot model). Pyrak-Nolte (1990a) used the model to explain the viscoelastic effect of
fluid-filled fractures on transmitted seismic waves. The effect can be examined by defining
a complex specific fracture stiffness (Rokhlin and Wang, 1991)

K=K, +ik, =K, +ion, ' (2.11)

where 7 is the specific viscosity of fluid. In many cases, however, 1 may not
correspond to the intrinsic viscosity of the fluid. This is because the resonance loss
mechanism of a fracture may have many causes such as damping due to a small amount of
clay at the contact surface (Sudrez-Rivera, 1992) and local squirting of fluid out of
contacting asperities (Mavko and Nur, 1979; Dvorkin et al., 1995). Therefore, the 717 in
Eq.(2.11) should be considered as a structural parameter of a fracture rather than the
intrinsic viscosity of the fluid. The effect of an increasing viscous component in fracture
stiffness on a single fracture system is shown in Figure 2.5 (right column). Viscosity of
the models is represented by the viscous relaxation time defined by a specific viscosity
normalized by the real part (elastic component) of the fracture stiffness. The fundamental
mode's resonance frequency in an intact system (b=e<) for these examples is assumed to
be f,=w,/2r=11.6kHz.(L=0.203m, p=2470kg/m3, and ¢=4710m/sec). Unlike an
intrinsic attenuation in the matrix (Q or ), a viscosity of the fracture only increases the
attenuation of the odd modes. This effect can be explained by the difference in the
accompanying mode shapes of the resonances (Figure 2.6). For even modes, the fracture
is located on an anti-node of vibration. As the motions of the surfaces on the opposite
sides of the fracture are in-phase, the fracture has no effect on the attenuation of resonance.
Odd modes, on the other hand, experience the maximum effect as the fracture is located on

a node where the amplitude of the opening and closing motion of the fracture is the largest.

A close examination of Figure 2.5 reveals increases in the resonance frequencies of odd
modes with increasing viscosity. The changes in resonance frequencies and attenuation
with increasing viscosity are examined for a range of fracture stiffnesses. For this
purpose, the first and second odd modes (ol and 02 modes, respectively) were used. In
Figure 2.7(a), each type curve represents a different fracture stiffness shown by the
dimensionless stiffness parameter b. When the stiffness of the fracture is high, an increase

in viscosity increases the resonance frequencies of a system with a large fracture stiffness.
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Figure 2.5 Computed mobility distribution in a finite bar with a single fracture at the middle. Fracture
stiffness is constant (b=10). Increase in material damping (Q-1) attenuates both even and odd modes while
fracture damping (Kelvin-Voigt model, viscous relaxation time T=h/ K) attenuates only odd modes.
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Figure 2.6 Mechanism for the selective attenuation of odd modes. For each mode pair, the odd mode
attenuates as it invokes a large relative motion between the surfaces of a fracture. The even mode, on the
other hand, does not cause any relative motion across the fracture as the fracture is located on the anti-node
of the resonance.
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Figure 2.7 Effect of viscosity on the resonance frequency and attenuation of the 1st and 2nd odd modes.
Resonance frequency and viscous relaxation time are normalized by the resonance frequency of the 1st mode
for an intact system (@). (a) Increase in viscosity for the high-fracture stiffness system increases the
resonance frequency while it decreases the resonance frequency for the low-fracture stiffness system. (b)
Attenuation maximizes at an intermediate viscosity. The location of the peaks shifts from high viscosity
(large relaxation time) to low viscosity for low fracture stiffnesses. At high fracture stiffnesses, attenuation
decreases without changing the peak relaxation time.
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On the contrary, resonance frequencies decrease for a system with a small fracturestiffness.
Further increase in viscosity in the low fracture stiffness system results in a vanishing
resonance peaks. When the viscosity becomes even larger, the resonance peak recovers.
The recovered resonance shows a higher frequency than the original system. Once the
peak is recovered, the resonance frequency monotonically increases with increasing
viscosity.

Attenuation behavior of the single-fracture system is also shown in Figure 2.7(b).
Quality factor Q and damping coefficient { are computed by the half-power method : Q is
computed from a ratio between the resonance frequency and the bandwidth of the
resonance peak with amplitude (power) greater than half-power of the peak (e.g.,
Newland, 1989). Each type curve shows a single peak. The slopes on both sides of the
peaks are 1 and -1 for the low-viscosity and high-viscosity sides, respectively. It should
be noted that the half-power method is not accurate for determining the damping coefficient
when the attenuation is large (typically, {>0.1) (Boubié et al., 1987).

2.3 Finite System Including Multiple Fractures
2.3.1 Resonance frequency shift and mode localization

The results obtained in the previous section are extended to a system including periodic
multiple fractures. The mobility distribution in Figure 2.8 shows changes in the resonance
frequencies and mode shapes in a system containing 9 fractures. Plots on the left side
represent constant fracture spacing and fracture stiffness. The resonance frequency shifts
in the periodic system (constant fracture spacing) with increasing fracture stiffness are
shown in Figure 2.9(a). From the discussion in the previous section, the difference in the
frequency shifts among the modes can be related to how close the fractures are located to
the nodes of each mode. Similar to the single fracture case, each 10 modes comprise a
single mode group. In these mode groups, the lowest order mode does not change
resonance frequency as its anti-nodes are located exactly on the fractures (i.e., they are
insensitive to changes in fracture stiffness). A group of resonance peaks is called a "pass
band" and a frequency range absent of resonance between adjacent pass bands is called a
"stop band" (Ziman, 1964; Hodges and Woodhouse, 1983). In a pass band, vibration can
propagate far from a source without attenuating. On the other hand, vibration attenuates
exponentially away from a source in a stop band. Such behavior is well known for waves
propagating in a regularly stratified heterogeneous media (Bedford and Drumbheller, 1994).
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Figure 2.8 Computed mobility distribution in a finite bar with nine fractures. Dark lines show high
amplitude (resonance) and the light curves show low amplitude (node). As the fracture stiffness decreases,
the odd modes exhibit a decrease in resonance frequencies while the even modes do not shift.
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Table 2.2 Fracture Spacings in Finite One-dimensional Systems

layer

number 1 2 3 <k 5 6 7 8 9 10
Regular

system 0.1 01]01] 01} 01f01] 01} 0.1 0.1 ] 0.1
Irregular

system [0.081(0.119({0.087]0.158{0.098]0.113]0.084]0.113(0.117]0.032

When fractures are not regularly spaced, the resonance behavior of the system changes
dramatically. The right half of the Figure 2.8 shows the resonance of a system containing
9 fractures with simulated random layer thicknesses. The average fracture spacing of the
system is identical to the regularly spaced fractures. The thickness of the layers normalized
by the total length of the system is shown in Table 2.2.

For a system with intermediate fracture stiffness (b = kL / NE=10, N=9), the pass and
stop band structure is not evident. As can be seen from Figure 2.9(b), all the modes
experience changes in their resonance frequencies as the fracture stiffness is varied for the
irregular system in contrast to the regular system. However, modes that do not show
changes in resonance frequency for the regular system show relatively small frequency
shifts. When the fracture stiffness is further decreased (b=1), the internal layers exhibit
locally enhanced resonances (Figure 2.8). This is the same phenomenon observed for a

single fracture system with different segment lengths.

The observed localization of resonance is due to perturbation of acoustic impedance in a
nearly periodic system, and is known as Anderson's localization (Anderson, 1958). For
example, Hodges and Woodhouse (1983) showed that a system of a stretched spring with
masses attached to it exhibits strongly localized modes when a small perturbation in the
spacing between the masses is introduced into a regular system. Luongo (1992) also
showed that the axial vibration of a continuous beam with distributed restraining
longitudinal elastic springs exhibits localized mode shapes when a small perturbation in the

stiffness of the beam is introduced.

Mode shapes of resonances for regularly and irregularly spaced fractures are shown for
intermediate (Figure 2.10) and low (Figure 2.11) fracture stiffnesses (b=10 and b=1,
respectively). The amplitudes of the mode shapes are normalized by the maximum

amplitude. Both regular and irregular systems' modes exhibit discontinuities in mode
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Figure 2.9 Resonance frequency shifts for finite bars with regularly and irregularly spaced fractures.
Each resonance frequency f, is normalized by a corresponding intact bar's resonance frequency f;" (a) For
regularly spaced fractures, systematic decreases in the resonance frequencies can be seen. Multiples of the
10th mode do not change the resonoance frequency. (b) Although a systematic shift is present, the system
with irregularly spaced fractures does not show the modes that do not change the resonance frequency.
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Figure 2.10 Mode shapes for resonances in a bar with regularly and irregularly spaced fractures with
a normalized fracture stiffness b=10. For finite fracture stiffness, mode shapes become discontinuous
across the fractures. For the irregular case, mode shapes are weakly localized for high frequency modes
(3rd mode group (m=10 to 29" modes)
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25

Figure 2.11 Mode shapes for resonances in a bar with regularly and irregularly spaced fractures. With a
normalized fracture stiffness b=1. For the regular case, the amplitude of vibration is more or less even for
the entire bar. The irregular case, on the other hand, except for the modes that degenerate to the rigid body
motion of each block (0 to 9% mode), causes strongly localized mode shapes to result.
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shapes across fractures (locations of fractures are shown by vertical dotted lines) except for
the Oth, 10th, and 20t modes of the regular system. The continuous mode shape across
the fractures is realized as the locations of fractures coincide with anti-nodes of the modes
where no stress is introduced at resonance. As the mode shape of these modes is identical

to that of an intact system, resonance frequencies are not changed by the fractures.

For an intermediate fracture stiffness (b=10, Figure 2.10), mode shapes of the irregular
system become asymmetric and start to show locally enhanced amplitude for higher order
modes. For a very small fracture stiffness (b=1, Figure 2.11), the higher order modes in
the irregular system are strongly localized. In the regular system, in contrast, amplitude of

mode shape is more or less uniform throughout the system.
2.3.2 Attenuation behavior

Attenuation due to the viscous behavior of a fracture in a multiply-fractured system is
shown in Figure 2.12. For the regularly fractured system, modes with a resonance
frequency that is insensitive to a change in the fracture stiffness are not affected by the
introduced viscosity. This behavior is analogous to the result in Section 2.2.2. In each
mode group, modes that exhibited a large frequency shift tend to show large attenuation.
This is because such modes involve a large opening and closing displacement across the
fracture surface that leads to large energy dissipation. For an irregular system, in contrast,
the systematic grouping and attenuation behavior of the modes are not evident. This is
because irregularly spaced fractures sample the nodes and anti-nodes of the mode shape
randomly, which makes their contribution to the attenuation approximately equal for all

modes.
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Figure 2.12 Effect of fracture viscosity on the resonance of a multiple fracture system. The FRF
plots at the bottom are computed for a receiver located at the bottom of the fractured bar. For a
regularly-spaced fracture system, the first mode in each pass band does not attenuate while the other
modes attenuate in increasing order with increasing resonance frequency. An irregularly-spaced fracture
system shows an increasing trend in attenuation for higher order modes, but does not show the

systematic attenuation seen for the regular system.
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2.4 Resonance of a Delaminated Halfspace

Before discussing resonance of fractures in an infinite system, the effect of an infinite
boundary (halfspace) is examined by studying resonance of a delaminated layer on a half-
space. When the surface of a half-space is detached by a compliant interface (e.g., a
fracture), this system can resonate by a uniform dynamic load applied on the surface. For a
source and a receiver located on the surface of the delaminated layer (Figure 2.13), the

power of the dimensionless mobility is

. 2(1+cos(2¢))+ B> +2Bsin(2¢)
M = : ,
2(1—cos(2¢)) + B> —2Bsin(2¢)

(2.12)

where M is the dimensionless mobility (complex FRF) and the superscript * represents its

complex conjugate. The derivation of Eq.(2.12) is given in Appendix B. For the
delaminated layer of thickness L, a phase angle ¢ is defined by

¢=—". (2.13)

From Figure 2.13, it can be seen that an increase in the fracture stiffness increases both
the resonance frequencies and attenuation. It is also noticed that the increases in the lower
order modes' resonance frequencies and attenuation are greater than the higher order
modes'. To examine the mode dependent behavior of the resonance frequency shift, the
center resonance frequency @, (Figure 2.2) and corresponding x, and f3, are examined.

When the stiffness of the fracture is very small,  approaches zero and Eq.(2.12) becomes

_1+cos(2¢,)

MM (x —0)= i

(2.14)

This equation shows that peaks of the FRF (resonances) appear periodically in frequency
satisfying cos(2¢,)=1, or sin(¢,)=0. This is a classical solution for the resonance of a
continuous slender bar with finite length (Graff, 1975). As the fracture stiffness increases,
the resonance frequencies increase and asymptote to frequencies that satisfy
tan(2¢,) = —2¢,. This condition is found by searching for local maxima (resonances) of
Eq.(2.13) with a large 8. Simultaneously, attenuation of resonance increases and, for an
infinitely high fracture stiffness, the mobility, becomes constant (=1) for all frequencies.
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Figure 2.13 FRF's of a delaminated layer on a half space for different fracture stiffnesses. Both
frequency and the fracture stiffness are dimensionless. An increase in the stiffness of the fracture introduces
an upward frequency shift and a broadening (i.e., attenuation resulting from radiation damping) of the
resonance peaks. The shifting and attenuating behavior of the resonance is the largest for the lower order
modes.
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Figure 2.14 The (a) center fracture stiffness k. and (b) corresponding impedance ratios fB. for the
resonances of the delaminated halfspace. K increases in proportion to the @, (or normalized frequency ¢,
), which results in approximately constant S, for all modes. B, asymptotes to 0.732 for the high order
modes.

Figure 2.14(a) and (b) show the center resonance frequencies @,'s and corresponding

x.'s and B.'s. It can be seen that the shift of resonance frequencies occurs for similar

impedance ratios that asymptote to a constant (=0.732) for higher resonance frequencies.
This indicates that the shift of a higher order mode resonance occurs for proportionally high

fracture stiffness.

Attenuation of the resonances in the delaminated layer is due to the radiation of wave
energy across the fracture. Therefore, the magnitude of attenuation is determined by the
transmission coefficient of the fracture. The seismic quality factor Q and the damping
coefficient { are defined as a ratio between energy dissipated in a single cycle of vibration

(AE) and the total energy ( E: sum of strain energy and kinetic energy) in the system as

1 —AE
T=pf=—-—— 2.15
Q ¢ n E (2.15)
To derive an analytic expression for the damping parameters, vibration in the system is
decomposed to waves traveling downward and upward in the delamination and halfspace

(Figure 2.15). A time-averaged flux of wave energy escaping from the system is

F, = % pea’ulf, , (2.16)




2 Analytical Study on 1-D Resonance 31

it

<energy in delamination>

c X2mw/w

<energy flux per cycle in half space>

Figure 2.15 Decomposition of vibration to upgoing and downgoing wave components. Amplitudes of
the decomposed waves are used to derive expressions for time-averaged wave fluxes. The total energy of
vibration is computed by integrating the fluxes of upgoing and downgoing waves in the delamination over
travel time t=L/c and the energy loss across the fracture is computed from the downgoing flux integrated
over a single period (2 7T/ @).

where 1" is the displacement of the downgoing wave in the halfspace. During a single

cycle of vibration, the amount of the escaping energy is

~AE=F,-2E = lpca)2|u;"-‘>|2 2, (2.17)
0 2 )

The total energy of vibration in the delaminated layer is also obtained from the fluxes of the

waves in the system. The fluxes of the downgoing and upgoing waves are

F,= lpca)2|ud

2
st , 2.18
> (2.18)

2 1 2
, F =—pcolu
u 2p u
where u, and u, are the displacements of upgoing and downgoing waves, respectively.

The energy of vibration in the layer of length L equals the total energy by a flux for a period
of L/c (c is the phase velocity of the waves). Therefore, the total vibration energy is

L 1 L
E=(F,+F,) -~ =peo?(juf +}uf)-2. (2.19)

Displacements are related to each other by

uu

=|RJu,], |uy”) ={T}lu,|, (2.20)
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where T and R are the transmission and reflection coefficients. By introducing the
expression (2.20) into (2.17) and (2.19) with a relation |R]* =1—|T]*, the Q and { are
computed by

1 _2-71 oL

Q_:i_ i =(1+287)9. (2.21)

In the above expression, the phase angle ¢ =L/ c. T is the transmission coefficient of a

fracture for a normally incident wave given by (e.g., Schoenberg, 1980)

__ip
v (2.22)

where f is the impedance ratio of a fracture defined by Eq.(2.2). Eq.(2.21) can be

rewritten as

1 1(wZ\ |oL
Q—E—[HE(—,—(—j }T' | (223)

The above expression reveals that attenuation decreases monotonically with increasing

frequency.

Comparison between analytically determined Q's using Eq(2.23) and Q's measured
from the source mobility (Eq.(2.12)) using the half-power method is shown in Figure
2.16. The slight difference between the analytic and measured Q's for large attenuation is
due to the inaccuracy of the half-power method.
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Figure 2.16 Comparison of analytically and numerically (using the half-power method) determined
attenuation of vibration in a delamination. Horizontal axis is normalized frequency (¢=wL/c). Both results
show very close agreement. A slight difference in attenuation for large { (or small Q) is due to the
inaccuracy of the half-power method.
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2.5 Infinite System Including Finite Number of Fractures
2.5.1 Transmission and reflection coefficients

When the finite fractured system discussed in the Section 2.3 is embedded in an infinite
one-dimensional medium, vibration inside the system attenuates even in the absence of
material and fracture damping because of the radiation of vibration energy into the
surrounding halfspaces. The seismic behavior of such a system is particularly interesting
for characterizing a zone of parallel fractures in a geologic unit. Multiple parallel fractures
are common features found in almost all rock types, including igneous, sedimentary, and
metamorphic rocks. For example, Figure 2.17a shows multiple parallel fractures observed
in a sandstone basin by Laubach (1991). Figure 2.17b is a sketch of parallel fractures in a
basalt unit by Peterson et al. (1993). Peterson et al. examined characteristics of seismic
waves transmitting through fractures between boreholes and demonstrated that changes in
the waveform can be modeled by the displacement-discontinuity boundary conditions with

good agreement.

A wave normally incident on a zone of parallel fractures is multiply scattered within the
fractured zone, changing its velocity, amplitude, and spectral characteristics. These
changes are expected to have a close relation with the resonance of a finite system. To
study this effect, the finite fractured systems examined in Section 2.3 are embedded in an
infinite medium (Figure 2.18) and responses of the systems to steady state waves were
examined using the displacement transfer function of the system. A displacement transfer
function is defined by a displacement spectrum of transmitted or reflected waves
normalized by a displacement spectrum of incident waves. The propagator matrix method
was used to compute the transfer function. Computed transfer functions for transmitting
and reflected waves are essentially the transmission and reflection coefficients of the
fractured zone, respectively. These, in turn, are the spectra of the transmitted and reflected
waves for an incident impulse.

Transmission and reflection coefficients of regularly and irregularly fractured zones are
shown in Figure 2.19. The stiffness of the fractures is identical to the medium stiffness
case (b=10) for a finite fractured system used in the previous section. The transmission
and reflection coefficients have a complementary relation (T2+R2=1) as the total energy of

the waves has to be conserved. As can be seen from the plot, the regular system exhibits
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° 0m

(a) Multiple fractures in a sandstone unit. Little Coal Creek (Hill) outcrop, Wyoming.
(After Laubach, 1991)

Column-defining
fractures

(b) Multiple fractures in a basalt unit. Boreholes used for the cross-hole seismic measurements are also
shown. (After Peterson et al., 1993)

Figure 2.17 Examples of multiple parallel fractures observed in the field.
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regularly  irregularly
spaced spaced
fractures  fractures

Figure 2.18 Schematics for regularly and irregularly spaced fractures embedded in an infinite medium. A
wave is incident on the fractured zone from infinite distance. Transmitting waves and reflected waves are
computed and examined for their velocities and spectral characteristics.
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Figure 2.19 Transmission (T) and reflection (R) coefficients of (a) regularly and (b) irregularly spaced
fractures. ITI2 and IRI? are complementary (ITI>+IRI?=1) as the energy of the wave has to be conserved.
Regularly spaced fractures show distinct pass and stop bands. The band structures are not clear for the
irregularly spaced fractures.

distinct pass and stop bands that are not evident in the irregular system. As shown in
Figure 2.20, the transmission coefficients of the fractured zone have a close relation to the
FRF of the finite systems. The most significant feature is that the structure of the pass and
stop bands for the fractured zone is identical to those for the finite system. This indicates
that changes in the spectral characteristics of a wave propagating through a zone of
fractures reflect resonance characteristics of the internal fractures.

2.5.2 Spectrum of the first-arriving pulse

The power spectra of the first-arriving part of the transmitting pulses are shown in
Figure 2.21 along with their phase and group velocities in Figure 2.22. The phase and

group velocities are computed from the phase spectra of the wave as follows

cphase = L/tphase ’ Cgr{)up = L/tgroup ’ (224)
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Figure 2.20 Comparison of FRF's (power of mobility for finite system and power of transmission
coefficient for an infinite system) for finite and infinite systems with 11 fractures. Frequency is normalized
with an average fracture spacing AL=0.1L (L= thickness of the fractured zone) and an intact material
velocity. The stiffness of the fractures is constant (b=10). Both regular and irregular systems show strong
correlation between the pass and stop band structures for the finite and infinite systems.



2 Analytical Study on 1-D Resonance 39

12 P ‘I L B A A A A 1.2 ¢ T T T
1f | 1E .
0.8 Lo i 1 osf
ITP0s6 {ITPos |
0.4 | 1 oaf :
02t 1 o2
ob v v e \1.\; 0 F AP NSO B SVP ta sm v e = =
0 0.5 1 1.5 2 0 0.5 1 15 z
¢/ 2n=wAL/2rc ¢/ 2n=wAL/27c
(a) Regular system . ' (b) Irregular system

Figure 2.21 Transmission coefficient for the first-arriving pulse through regularly and irregularly spaced
fractures. Due to the frequency-dependent low-pass filtering of the fractures, transmission coefficients
become small with increasing frequency.
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Figure 2.22 Phase and group velocities for the first-arriving pulse through regularly and irregularly
spaced fractures. The velocites were computed from phase spectra of the pulses. For both cases, velocities
increase with increasing frequency. Such behavior is predicted by the seismic displacement-discontinuity
model for transmission across a single fracture (Pyrak-Nolte et al., 1990a). Decrease in group velocity for
the irregular system at high frequency is due to the distortion of the pulse by scattered waves within a thin
layer. Due to the frequency-dependent low-pass filtering of the fractures, transmission coefficients become
small with increasing frequency.
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where L is the thickness of the fractured zone, and ¢, and ¢, are the phase and group

phuase Vgroup

time delays of the pulse between a source and a receiver computed from

9 de

t, = =
hase ’ roy b4
d o Y do

(2.25)

where 0 is a phase spectrum of the transmitting pulse.

As can be seen from the plot, the spectral amplitude of the transmitting pulse decreases
monotonically with increasing frequency. Phase and group velocities, on the other hand,
are the slowest at zero frequency and increase with increasing frequency. This is caused by
the accumulation of the frequency-dependent time delay across each fracture (Pyrak-Nolte
et al., 1990b). Due to the filtering effect of the fractures, amplitude spectra for both regular

and irregular systems decrease monotonically with increasing frequency.
2.5.3 Coda spectrum

Strong multiple reflections within a fractured zone in an infinite medium can be studied
by examining the spectrum of seismic coda for a time-domain impulse response. Figure
2.23 shows impulse responses and coda spectra for the regular and irregular systems. A
transmitted pulse for the regular system exhibits much larger energy than the irregular
system while the reflected pulse for the irregular system shows more energy than the
regular system. This can be interpreted as a time-domain realization of Anderson's
localization; perturbation of the acoustic impedance in an irregular system prohibits the
propagation of the waves. It can be seen that for the regularly spaced fractures, both codas
for transmitted and reflected waves have similar band structures as those for the entire wave
train of the transmitted waves. Although the irregularly spaced fractures do not show clear
band structures, locations of peaks in the coda spectra are identical to those observed for
the transmitted waves. These results indicate that the coda part of the waves are generated
by resonances within the fractured zone that radiate the vibration energy to the surrounding
halfspaces. One marked characteristic of the coda spectra for the regular system is that
there are distinct peaks (resonances) in the spectra at boundaries between pass andbstop

bands. This phenomenon is further examined in the following section. '
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Figure 2.23 Time domain impulse response and spectra of the coda (as indicated in the diagrams) for (a)
regularly and (b) irregularly spaced fractures. From the waveforms, it can be seen that the irregular system
reflects more wave energy than the regular system. (a) The spectra of the transmitted and reflected wave
codas for the regular system have pass and stop bands that are similar especially for high frequencies. (b)
Although the band structure is not clear, coda spectra are similar for transmitted and reflected wave codas.
These results indicate that the coda (for both reflected and transmitted waves) is the resonances of the
fractured zone that radiates the vibration energy into surrounding half spaces. Some of the corresponding
peaks (and valleys) for the irregular system are labeled for comparison with Figure 2.19(b).
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2.6 Infinite System Including Infinite Number of .Regularly
Spaced Fractures

2.6.1 Derivation of dispersion relation

In this section, one-dimensional wave propagation in a medium with an infinite number
of regularly spaced fractures is examined. This is a limiting case of wave propagation in a
multiply fractured system. Wave pfopagation in an infinite system with welded alternating
layefs has been studied by many researchers including Brillouin (1953), Rytov (1956), and
Helbeig (1984). By taking advantage of structural periodicity, displacement and traction,
an infinite system can be analyzed using a unit cell that consists of a minimum unique
sequence of alternating layers with different acoustic impedances (e.g., Bedford and
Drumbheller, 1994). The method used for analyzing the wave propagation in impedance-
contrast periodic structures is applied for fractured periodic systems to derive a dispersion

" relation of waves.

. Using the propagator method and the displacement-discontinuity boundary conditions
for a compliant interface, particle displacement of a steady state wave in an infinite medium

with regularly spaced fractures is derived as follows.

Displacement of one-dimensional waves propagating in an intact segment is described
by '

u(z) = Aei(kz—wt) + Be—i(kz+mt), (226)

where k is the wave number and @ is the angular frequency of the wave. The stress is

obtained from Eq.(2.26) by applying the spatial derivative as

O'(Z) = ia)Z(Aei(kz-wt) _ Be~i(kz+(bt))’ ' - (2.27)

where Z is the acoustic impedance of the intact medium. These expressions are valid
within each segment but do not describe the global behavior of the wave. Expressing a
wave number for the global (or effective) wave propagation in a single direction by k, the

above expression can be rewritten as

u(x) =Ue |  (28)
o(z) = T(2)e™), | (2.29)
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in .which,. |
U(z) = Ae™ % + Be ™~ (2.30a)
T(z) = iwZ(Ae™ * — Be ™). (2.30b)
where
K'=k+k, K- =k-F. | 2.31)

Eq.(2.30a) and (2.30b) are independent of time. Applying Floquet's theorem (Floquet,
1883; Brillouin, 1953) requires that U(z) and T(z) be periodic functions of layer thickness -
AL, so the following relations are satisfied

UAL+0%)=U(0") ' (2.32a)
T(AL+0")=T(0"). -(2.32b)

The displacement-discontinuity boundary conditions at z= AL are

T(AL+0%)= k(U(AL+0*)- U(AL+0")) (2.33a)
T(AL+0%)=T(AL+0"). (2.33b)

Using Eq.(2.32a) and (2.32b), Eq.(2.33a) and (2.33b) become

T(0")=x(U0")-UML+0)) _ (2.34a)
T(0")=T(AL+07), (2.34b)

respectively. By introducing the Eq.(2.30a) and (2.30b) into Eq.(2.34a) and (2.34b), the
following matrix equation is derived

iK™AL

1-" ]t e KA A
/3(1 - e"“L) -2i /3(1 - e-"‘*AL) +2i { B} =0 ‘ | (2.35)

where 8 =2x/wZ is the impedance ratio of a single fracture. The condition for a non-

trivial solution to exist is satisfied by equating the determinant of the matrix to zero, which
yields ’

cos(fAL) = cos(kAL){l - %} (2.36)
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This is a dispersion equation of the waves propagating in a regularly-spaced infinite one-
dimensional fractured medium. '

2.6.2 Limiting behaviors of velocities

When stiffness of the fractures approach infinity (high fracture stiffness limit),
Eq.(2.30) becomes ' |

cos(iéAL) = cos(kAL). | (2.37)
o = € (2.38)

=c

Therefore, the wave velocity becomes that of an intact medium.

When the frequency of wave approaches zero (static limit), a Tayler series eXpansion of
Eq.(2.30) becomes

A 2 ~ 4
. (kaL) \ (kaL) ALY (KAL) kAL [KAL (KAL)
TR o T TRIET TH— ,
A (2.39)
where b is defined by
p=FAL (2.40)
E
The first order terms of the expression are
(aL) __gawy _eary
_ = - | (2.41)
2 2 2b :
- kAL = kAL |1+ % . (2.42)

Therefore, the phase velocity is

, 1
& e = c/ \ /1 +e (2.43)

The group velocity is obtained by taking the derivative of Eq.(2.42) with respect to ® as
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o f 1
cgroup = C/ I+ —I; s (244)

which is identical to the phase velocity. Both velocities are related to a static stiffness of the
fractured system as follows

1L 1+ 11

+ : 2.45
pé*  pc®  pct kAL _ (24)
PLTE (2.46)
M M kAL

where M is the elastic modulus. . Eq.(2.46) shows that the compliance of the system
derived from a zero-frequency limit of velocities is equal to the static compliance that is
given by a sum of the compliances in the intact medium and the fractures (i.e., .the Backus

average).
2.6.3 Phase and group velocities

The phase (or the wave number)-frequency relation given by the dispersion equation
Eq.(2.36) is shown in Figure 2.24(a). The dimensionless fracture stiffness is assumed to
be b=kAL/ E=10. Only real solutions are shown as an imaginary term in a complex -
solution leads to exponential decay of the wave. Therefore, frequency bands devoid of real
solutions are the stop bands that prohibit propagation of waves. Figure 2.24(b) shows
phase and group velocities of the wave computed from the dispersion relations. Within
each pass band of the infinite system, phase velocity shows weak negative dispersion while
group velocity shows both positive and negative dispersion that becomes zero at
boundaries between the pass and stop bands. As a wave with zero group velocity is a
standing wave, this indicates that the system resonates at these frequencies.

For a system with a finite number of fractures, phase and group velocities are computed
from the phase spectra of the transmitting waves. By comparing Figure 2.25 with Figure
2.24, it can be seen that the 10-layer (11-fracture) system has similar dispersion behavior
as the system with an infinite number of fractures. For a regular finite system, the group
velocity approaches zero at pass and stop band boundaries. This result verifies that the
peaks in the coda spectra in Figure 2.23 are indeed resonances caused by the periodicity of

the structure in the system. The irregular system also shows sharp decrease in group
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velocites at the boundary between large and small transmission coefficient ranges, which

implies that the system is close to. a resonant state.
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Figure 2.24 Dispersion in a regularly spaced infinite series of fractures. In Figure 2.22(a), only the real

solutions of the dispersion equation are shown as a complex solution cannot propagate in an infinite

system. Regions where the real solution exists are the pass bands (all energy propagates without

attenuating). The shaded regions where no real solution is found are the stop bands. (b) In each pass band,

the phase velocity shows a negative dispersion (velocity decreases with increasing frequency) while the -
group velocity exhibits both positive and negative dispersions, with zero velocity at the boundaries between

the pass and the stop bands. ’
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[Finite irregular fractures]

47

(b) Phase and group velocity

Figure 2.25 Dispersion in regularly and irregularly spaced finite fractures. The regular system exhibit a
similar dispersion behavior as the infinite system. The peaks and valleys of group velocity within pass
bands are due to the finite number of fractures. The valleys essentially corresponds to the resonances of the
finite system. At boundaries between pass and stop bands, there is a sharp decrease in the group velocity.
These corresponds to the peaks in the coda spectra observed in Figure 2.23. Small group velocity indicates
that the wave in the system is becoming a standing wave (wave with zero group velocity) and the system is
near resonance. Although the pass and stop band structures are not clear, the irregular system also shows a
sharp decrease in the group velocity at pass and stop band boundaries.
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2.7 Summary

This chapter has discussed the effects of fractures on the resonance characteristics of

finite and infinite one-dimensional systems.

7

It has been shown that an impedance ratio between a fracture and intact medium B is
the controlling parameter for both resonance frequency shifts and attenuation due to
rheological and radiation damping. This result provides the link between the resonance
characteristics and the mechanical properties of the fracture. For finite fractured systems,
the relative locations of the fracture and the nodes of vibration modes are shown to have
significant effects on the resonance frequency shift and the attenuation of the resonance.
Due to mismatched locations of fractures and vibration nodes and antinodes, résonances of
a medium containing irregularly spaced fractures can spatially localize the modal energy
between the fractures. These results potentially provide valuable knowledge for detecting
and locating fractures in geologic structures built in the subsurface and above ground.
Particularly, localized resonance can be a powerful diagnostic tool for detecting motions of
a rock mass that is isolated within the structure by fractures.

For interpreting seismic waves propagating through multiple parallel fractures, both
regularly and irregularly spaced fractures were embedded in an infinite medium. Computed
transmission and reflection coefficients showed that the pass and the stop band structures
were identical to those in the FRF of the finite systems. An important implication of this
result was that by examining transmission coefficient and reflection coefficient spectra of
propagating waves, the resonance characterisitcs of the embedded fractured system can be
determined. From the determined resonance characteristics, properties of the fractures
(stiffness of fractures, spacings, etc.) might also be determined.

Another important implication is the relation between resonances (standing waves) and
propagating waves. In a multiply fractured system, distinction between a propagating
wave and a resonance in the system becomes obscure. If a finite system containing
fractures is embedded in an infinite medium, perfect resonance (without attenuation) cannot
occur due to radiative loss of the energy into surrounding halfspaces. On the other hand,
propagating waves show large group time delays and attenuation due to multiply reflected
and trapped energy between fractures. Whether wave propagation or resonance dominates
the system is determined by the stiffness of the fracture. Perfect wave propagation occurs

for infinite fracture stiffness (welded interface) and perfect resonance occurs for zero
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fracture stiffness. For intermediate fracture stiffnesses, resonances of a system can be
identified from sharp decreases in group velocities. Therefore, by examining. such
characteristics in a wave spectrum, the internal structure of a fractured medium can be
determined.

This chapter also presented an analytic expression for the dispersion relation associated
with an infinite series of regularly spaced fractures. The dispersion relation predicted both
pass and stop band structures in the wave spectrum. Within each pass band, a wave
~ propagated at a reduced velocity without attenuating. The group velocity of the wave
approached zero at boundaries between pass and stop bands. At these frequencies, the

behavior of waves in the s'ysterﬁ change from that of propagating waves to standing waves.

Many of the above results indicate that acoustic resonance can be used to identify the _
internal structure . of fractured solids. However, for quantitative detection and
characterization of fractures, further research should be performed to incorporate the results
from this study into techniques such as modal analysis utilizing the finite element method
(FEM). The FEM has become a common technique to locate a defect or fracture from
resonance with recent advent of computer technology. For example, Cawley and Adams -
(1979) used the shifts in the resonance frequencies of a structure to determine the location
of damage with a finite element model. However, the use of the numerical model without

’understand'ing the underlying mechanics may lead to inaccurate or incorrect results. With a
basic understanding of the effect of fractures, information contained in the measured
resonances can be utilized to their full extent.

In the following chapter, some of the results obtained in this chapter for a finite system
including a single fracture will be demonstrated by laboratory experiments using resonant
bar tests on thiI; rods of rock. Resonance and wave propagation in periodically fractured
media is revisited at the end of this thesis for the case of multi-dimensional wave
propagation in fractured media.
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iter 3

Resonant Bar Test on
Fractured Rock

3.1 Introduction

The resonant bar test has been conducted to measure the elastic and attenuation
properties of rock and concrete in laboratdry for decades. It is sometimes preferred over
ultrasonic transmission tests for several reasons. Among these reasons are the relatively
low frequency range employed for the tests (1kHz~100kHz) that is.close to the range used
for borehole acoustic logging of geological structures and the accuracy of the method in
determining attenuation properties (Boubié et al., 1987). Most resonant bar tests,
however, are conducted to assess the resonance of intact and homogeneous specimens. As
rock and concrete generally contain fractures at many scales, treating a specimen with a
fracture as a homogeneous medium may lead to erroneous material properties. Therefore,
it is important to understand the effect of fracture properties on the resonance of bar
specimens. Furthermore, for detecting and characterizing fractures in situ, dynamic
properties of a fracture under a variety of conditions are required. Using a resonant bar

test, low-frequency mechanical properties of fractures can be examined in the laboratory.
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Hesler (1995) examined the resonance of rock specimens containing fractures. The
specimens used by Hesler were rock cylinders containing healed natural fractures and rods
of engineered materials such as plexiglass and aluminum with a notched cross section and a
glued interface between the two intact pieces. A similar experiment was conducted by
Bamnios and Trochidis (1995) using longitudinal and vertical vibrations of a cantilever
beam with a notched cross section. The notched and glued cross sections provided a

- strong acoustic impedance contrast in the specimens that altered resonance frequencies and
mode shapes significahtly. By applying the displacement-discontinuity boundary
conditions used for modeling wave propagation across and along a compliant interface
between two elastic halfspaces (Kendall and Tabor, 1971; Schoenberg, 1980; Pyrak-Nolte
and Cook, 1987), Hesler developed a simple equation deriving the effect of fracture
stiffness on the resonance frequencies of fractured bars. |

It is well known that the stiffness of a fracture increases significantly with application
of normal stress due to the increase in the contact between surface asperites (Greenwood
and Williamson, 1966; Goodmah, 1976; Brown and Scholz, 1985). Therefore a fracture
in situ exhibits stiffnesses ranging from zero (open fracture) to infinity (welded fracture).
In order to study the effect of fracture stiffnesses on resonance, a range of stresses have to '
be applied to the fracture. Resonant bar tests are usually conducted on specimens under
atmospheric pressure. To test a specimen under high confining pressure similar to field
conditions, an elaborate testing setup and corrections of obtained results are required (Lucet
et al., 1991), including the use of compressed Helium gas to minimize the acoustic
coupling. between a specimen and its surrounding media.

The focus of the experiments performed in this chapter is on the effects of fracture
properties on the resonances of rock bars. As the stiffness of a fracture created
perpendicular to a rod specimen can be changed by applying an axial load, only uniaxial
compression is necéssary to observe the effects of fracture stiffness on resonances.
Vibrations inside the specimen are isolated by compliant plastic rings attached to the ends of
the rod. Due to the large acoustic impedance contrast between the specimen and the rings,
boundary conditions for the resonance become approximately stress-free. Because the
boundary conditions are only approximately stress-free, fracture stiffness on resonance
frequencies are not exactly pfedicte’d by the theory developed in Chapter 2. However,

these results do show basic agreement with the theory presented in the previous chapter.
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3.2 Experimental Setup
3.2.1 Sample description

The resonance tests were conducted on thin rods of plexiglass, alumirium, and rock
(Sierra White Granite and Berea Sandstone). The rod specimens were 32.8cm in length
and 5.08cm in diameter. The granite specimen contained a lafge number of microcracks
that were aligned roughly parallel to a single plane. Detailed measurements on the granite
- will be shown later (Chapter 5). The sandstone specimen contained bedding structures that
were visible as thin, red stained layers, possibly iron oxide formations. These
microstructures lead to transversely isotropic elastic properties of the rocks. In preparing
the specimens, the rods were cored perpendicular to the plane of anisotropy (microcrack or
bedding planes) and oven-dried at 103 °C for at least 48 hours before the tests. Static and
high-frequency dynamic properties of the specimens are shown in Table 3.1.

Table 3.1 Static and Dynamic Properties of Specimens

dynarhic_ dynamic | static static
specimen density Young's | Poisson's| Young's Poisson's

modulus ratio modulus ratio
aluminum | 2.70kg/m3 | 717 GPa| 0.34 70 GPa 0.35
plexiglass 1.18kg/m3 | 6.17GPa| 033 | 4.19GPa 0.36
Sierra White | 2.62 kg/m3 | 19.9 GPa| 2sSumed 57 | Gp, 0.038
Granite (ovendried) tobe 0
Berea 2.10kg/m3 | 9.22 GPa| 0.066 | 9.36 GPa 0.055
Sandstone (ovendried) -

Note: Static Young's moduli were determined from the initial slope of the stress-strain curves at
OMPa axial stress after a single cycle of load was applied to the specimens. Dynamic Young's
moduli were determined from ultrasonic transmission tests using IMHz sources. For the granite
specimen, the dynamic Poisson's ratio was assumed to be zero to obtain the Dynamic Young's
modulus from the P-wave modulus. This was done because the elastic properties of the rock could
not be properly determined from the P- and S-wave velocities due to the strong elastic anisotropy.
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3.2.2 Free vibration test Setup

Conventional free vibration tests were conducted to measure the resonance frequencies
and attenuation of rod specimens without confinement. The specimens were held in
styrofoam rings to isolate the vibration (Figure 3.1a). A small piezoelectrié crystal with a
resonance frequency of IMHz was attached to one end of the specimen using adhesive wax
(Petro Wax, PCB Piezotronics). Either swept sine waves (chirp signal) or continuous sine
waves (stationary waves) sweeping a range of frequencies were used to drive the crystal
and resonate the specimens after amplification of the signals by a voltage amplifier (Krohn-
Hite 7602). The resulting accelerations were measured by a miniature accelerometer (PCB
Piezotronics, 309A, resonance frequency>120kHz) attached to the other end of the
specimen with the adhesive. The mass of the crystal and the accelerometer used for the
tests were 3.5g and 1.5g, respectively. The measured signals were displayed, analyzed,
* and stored using a spectrum analyzer (ONO SOKKI CF6400).

3.2.3 Axially confined vibration test setup

Axially confined vibration tests were conducted using a similar experimental setup as -
the free vibration tests, but with the specimens under axial load. The load was applied to
the specimens through a pair of PVC rings (Figure 3.1b). The dimensions of the rings
were 7.02 cm in length and 2.66 cm and 3.28 cm in inner and outer diameters,

respectively. The density of the rings was 1.07 g/cm3. The accelerometer and the
| piezoelectrip source were housed inside the rings during the tests.

3.2.4 Measurement of frequency responses

The force applied to a specimen by a piezoelectric crystal decreases with decreasing
frequency of the applied electric signal. Therefore measured acceleration has to be
corrected for this effect. An experimental frequency response function (FRF) is obtained
as a spectral ratio between measured accelerations on a specimen and accelerations on the
source piezoelectric crystal suspended in the air. To measure the acceleration on the
crystal, an accelerometer was directly attached to the surface of the crystal. As the
measured acceleration on the crystal is roughly proportional to the force applied to a
specimen, the computed FRF is essentially an accelerance (acceleration response to unit
force excitation). A typical acceleration response measured for a source piezoelectric
crystal is shown in Figure 3.2.
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Figure 3.1 Experimental setup used for vibration tests on rod specimens. Free vibration tests were
conducted with specimens suspended on styrofoam rings to acoustically isolate the vibration. For axially

confined vibration tests, the specimens were loaded through plastic rings.
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Figure 3.2 Acceleration spectra measured on a source piezoelectric crystal suspended in the air. An
accelerometer was directly attached to the crystal with wax. The crystal was driven by single frequency sine
waves that swept from 0 up to 32kHz. Amplitude of the acceleration increases with increasing frequency.
The phase spectra show approximately constant phase for the frequency range shown above.

3.3 Free Vibration of Rod Specimens

The dynamic Young's modulus along the axis of a thin finite rod can be measured from
resonance frequencies of the longitudinal vibrations. If the vibration is truly one-
dimensional, the resulting‘ resonance frequencies consist of harmonics of the primary mode
that are equally-spaced in frequency. From any of the harmonics, Young's modulus is
determined by ‘

2L
(m 2=
! n

E=pc, c;= (3.1)
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where p is the density, c;; is the velocity of the wave propagating along the rod, L is the
length of the rod, n is the mode number, and f™ is the resonance frequency of the nth
mode (overione) in [Hz]. For a circular rod with a finite diameter, waves propagating
along the rod become dispersive, decreasing the phase velocity from a "bar \}elocity"
computed by \/—E% to a Rayleigh wave velocity with increasing frequency of the wave
(Pochhammer, 1876; Graff, 1975). Corrections of Eq.(3.1) for a finite rod diameter and
length are made by many researchers including Bancroft (1941), Love (1944), Rayleigh
(1945),and Spinner and Tefft (1960). The corrected equation has a generic form

1 .
E=pcixz. - (32)

where U is the correction factor that accounts for the effect of Poisson's ratio and the
diameter to wavelength ratio (D/A) of a specimen. Rayleigh (1945) derived an approximate
expression known as Rayleigh's correction for small D/A. Love (1941) derived the
complete governing equation of the resonance problem based on the variational principle.
Bancroft (1941) derived the correction factor for an infinitely long rod by numerically
solving the involved differential equations. Spinner et al. (1960) experimentally tested
these results and found good agreement between predicted and measured resonance

frequencies. A summary of the methods is provided by Spinner and Tefft (1961).

As the specimens used for the tests are relatively short (Iength to diameter ratio
L/D=6.46), to avoid the buckling of the bar during the axially loaded tests, waves
* propagating along the rod can be dispersive even for the lowest order mode. To examine
the effect of dispersion, wave velocity in the bar is calculated by Eq.(3.1) for the first
several longitudinal mode resonances. The resulting velocities are normalized by the
Young's modulus velocity \/—1::/—p- determined by a statically measured Young's modulus
for a very small axial stress. Wave velocities for the aluminum and plexiglass specimens
shown in Figure 3.3a (except for the static result) exhibit strong negative dispersion
~ (velocity decreases with increasing order of mode). The large difference between the static
and dynamic results for the plexiglass may be due to the viscoelastic behavior of the
material. In contrast, the sandstone and granite specimens show much smaller dispersion.
The different dispersioh behaviors among the specimens are due to small Poisson's ratios
of the rocks. Static stress-strain measurements reveal that the Poisson's ratios of the

granite and sandstone specimens determiined from their lateral expansion during uniaxial
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(b) Young's modulus determined from resonant bar test

Figure 3.3 Young's modulus determined from resonant bar tests. Top figure shows phase velocities
computed from measured resonance frequencies and normalized by the phase velocities for the static
properties of the specimen. Bottom figure shows the determined Young's modulus normalized by the static
Young's modulus of the specimens after applying Bancroft's (1941) correction for Poisson's ratio and rod
radius to wavelength ratio (a/A). The moduli obtained from ultrasonic transmission tests are shown on the
far right (a/A is not equal to 0.4 for these resuits).
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loading are negligibly small (less than 0.06). The marked low Poisson's ratios are
attributed to the closure of thin flat microcracks in granite and loose grain contact in
sandstone. Due to these small Poisson's ratios, waves propagating along the rod do not
involve large surface motion in lateral directions. Therefore, dispersion due to the inertia
effect of lateral motion does not occur. Aluminum and plexiglass specimens exhibit strong
velocity dispersion due to their large Poisson's ratios (0.35 and 0.36, respectively, from
static loading tests). '

The results were corrected for the geometry and Poisson's ratio (determined from static
tests) of the specimens using Bancroft's correction (Figure 3.3b). The same figure also
includes the results obtained from ultrasonic transmission tests with IMHz P- and S-wave
sources for comparison. Although Young's modulus along the axis of the rod cannot be
determined from the two velocities for transversely isotropic material, approximate values
are obtained by assuming a zero Poisson's ratio for the granite (Young's modulus equals
P-wave modulus) and elastic isotropy for the sandstone. The corrected results should give
Young's modulus of the specimens that includes only the effect of velocity dispersion due
to the dissipation of wave energy. Young's modulus of the aluminum specimen is constant
for all the resonances. The modulus for the plexiglass specimen shows a large increase
from 0 th mode (static) to the frequency for the first mode of resonance. Although the
increase in velocity (or modulus) is small, a positive dispersion can be seen for most of the
observed resonances. Young's modulus determined from the ultrasonic tests was the
largest, which is consistent with the positive dispersion trend. The correction hardly
changes the results for the rock specimens as the small Poisson's ratios make the correction
factor U very close to unity.

Attenuation of the specimens wa$ measured by the half-power method for each
resonance peak (Figure 3.4). Attenuation in aluminum appears to be rather large especially
for higher order modes (Q becomes as low as 160). The other specimens exhibit roughly
constant attenuation for all the observed resonances except for the highest order mode.
This relatively high attenuation in aluminum is possibly due to the enérgy loss at the
contacts with the external environment (coupling with source piezoelectric crystal, foam
rings, air). As the attenuation in rock and plexiglass rods is much larger than the aluminum
rod, the attenuation caused by the external coupling for rock and plexiglass rods is .
negligible. Therefore the measured attenuation for the rock and plexiglass specimens is
approximately the intrinsic attenuation of these materials.



3 Resonant Bar Test 59

10"
6‘ Plexiglass
g Doy o "1:
= 107 T Sandstone....
5 i, (ovendry)
o -0l g..q---0 Granite -
(ovendry) .o i*
- . -.--o. :
§ e aluminum
g -
g -
£ .
100 Lty '
0 10 20 30 9 >

resonance frequency (kHz)

Figure 3.4 Attenuation of the specimens determined by the half-power method. Aluminum specimen
shows rather large attenuation for metal possibly due to the coupling loss to the external environment.

Rock and plexiglass specimens exhibit approximately constant attenuation for most of the observed
resonances except for the last modes.

3.4 Resonance of Axially Confined Rod Specimens

3.4.1 Effect of end coupling‘on resonance

Typical crystalline rocks with microcracks and granular rocks with compliant grain
contact exhibit an increase in elastic moduli when a compressional load is applied. The
increase in moduli results in higher velocities of the propagating elastic waves that can be
determined from the resonance frequencies of the rocks. Resonance measured using the
experimental setup described in Section 3.2.3, however, may be affected by the mechanical

coupling between the specimen and the surrounding load frame through the plastic rings.

To examine this effect, resonance frequencies and attenuation of the plexiglass and
aluminum rods were first measured with increasing axial stress. Figure 3.5(a) and (b)
shows the FRF's of the rods measured for a range of axial stresses. Shifts in the
resonance frequencies due to the end coupling is shown in Figufe 3.6(a) and(b). Measured
resonance frequencies are normalized by those obtained for free vibration. The aluminum
rod shows very small change in resonance frequencies for increasing axial stress.

Although most of the resonances for the plexiglass specimen show only a small change in
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Figure 3.5 Frequency response spectra of uniaxially confined aluminum and plexiglass rods. (a)
Resonance frequencies of the aluminum rod show very small changes while (b) some of the modes for the
plexiglass rod show a large resonance frequency shift and changes in the structure of the FRF (e.g., €2 mode
disappears as the load was decreased and is replaced by an emerging e2' mode). For both specimens,
attenuation of the resonances changes significantly with applied load.
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Figure 3.6 Effect of axial confinement on the resonance frequency (or phase velocity) of aluminum and
plexiglass specimens. Resonance frequency of each mode is normalized by the mode's free vibration
frequency. The aluminum specimen shows only a small change in the resonance frequency while the
plexiglass resonance frequencies scatter around the free vibration frequencies. For both specimens, a large
change in the resonance frequency occurs up to about 0.05MPa of the axial load. For higher axial loads, the
effect becomes constant and the resonance frequencies do not show a large change.
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Figure 3.7 Effect of axial confinement on the attenuation of aluminum and plexiglass specimens. The
aluminum specimen shows a large increase in attenuation possibly due to the radiation of the vibration
energy through the plastic rings. The plexiglass specimen shows relatively small change in attenuation
except for the highest order mode (e3) shown here. Attenuation for the e2' mode is shown only up to
0.2MPa of axial stress after which it switches to the e2 mode. The seemingly small increase in attenuation
in the plexiglass specimen is due to a large intrinsic attenuation of the specimen that overwhelms the
additional radiation damping. For both specimens, a large change in the attenuation occurs for small axial

- loads. ’



62 3 Resonant Bar Test

the resonance frequéncies, a few modes exhibit erratic behaviors such as a large frequency
shift, and vanishing and emerging peaks (Figure 3.5). The erratic resonance behavior of
the plexiglass rod is caused by a relatively weak impedance contrast between the specimen
and the plastic rings. In contrast, the aluminum specimen has a much larger impedance
contrast (impedance ratio between aluminum and plexiglass is 38 for the static moduli).
Change in the attenuation is also shown in Figure 3.7 (a) and (b). As can be seen from the
plot, attenuation of the aluminum rod increases significantly compared with the attenuation
measured for free vibrations (Figure 3.4), and is not equal for all the modes. The
plexiglass specimen, on the other hand, shows relatively small changes in attenuation
except for the highest order mode (€3 mode) in the plot. The seemingly small increase in

attenuation in plexiglass is due to the large intrinsic attenuation of the material.

The results indicate that the determined stiffness of a rock from the resonance
frequencies may not be accurate if the acoustic impedance of the rock is relatively small
compared with the impedance of the load-bearing plastic rings. Attenuation of a specimen
is also affected by the coupling with the surrounding media especially when the intrinsic
attenuation of the specimen is small compared with the energy loss through the plastic
‘rings.

3.4.2 Resonance of intact rock specimens

Frequency response functions (FRF's) of rock speciméns are shown in Figure 3.8 (a)
and (b) for increasing axial stress. From the plots, it can be clearly seen that the resonance
frequencies of the rocks increase significantly with increasing axial stress. For relatively
low axial stresses (< 0.1 MPa), the shifting behavior of the resonance peaks is severely
disturbed by the improvement of the specimen-ring-frame coupling. The improved
coupling both increases and decreases resonance frequencies. The behavior possibly
depends on the relative contribution of the coupled mass (frequency decrease) and stiffness
(frequency increase).

The normalized resonance frequencies are shown lin Figure 3.9(a) and (b). Neglecting
the effect of the dispersion due to the geometry and Poisson's ratio of the specimens, these
results show an increase in Young's modulus of the rocks during uniaxial compression.
For the granite specimen, the correction for the dispersion due to the inertia effect discussed
in Section 3.3 is negligible because Poisson's ratio is as small as 0.06 at the maximum

(measured statically). The modulus for the sandstone specimen, however, may include



3 Resonant Bar Test 63

[granite]

oov e1vI o1 V Ie2'

0 3MPa
2MPa
f 100 MPa
- 0.5MPa
E -200 0.233MPa
> 0.2MPa
% -300 0.168MPa
0.1MPa
'490 0.05MPa
_ 0 MPa
00 A A A A A A AT
, . 1 1 ] L !
(a) FRF's of granite specimeﬁ
[sandstone]
o b ooV iV o1V eV o2V P
' ' " o 2MPa
1MPa
160 0.5MPa
N 0.2MPa
E -240 0.1MPa
; % 320 0.05MPa
~ . : ‘ 0.037 MPa
) a0 T T 0.021 MPa
, \ P .' f 0.012 MPa
560 A A A A A A i
| L i ! i |

\ _ 0 5 10 15 20 25 30
’ frequency (kHz)

4 (b) FRF's of sandstone specimen

Figure 3.8 Measured FRF's of intact rock bars. Resonance frequencies of the specimens increase

significantly with increasing axial stress. (a) ol mode of the granite specimen shows slightly irregular
- behavior. (b) Resonances of the sandstone specimen show quite erratic behavior possibly due to the small
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Figure 3.9 Increase in phase velocity of rock specimens with increasing axial stress determined from
resonance frequencies. Velocities are normalized by the phase velocities computed from resonance
frequencies of free vibrations. Increased axial stress increases the resonance frequencies, resulting in the
increase in the phase velocity. Due to the small acoustic impedance, the velocities for the sandstone scatter
around the mean.

significant error as Poisson's ratio increases up to 0.1.at 3MPa of axial stress. According
~ to Bancroft's correction (Bancroft, 1941) with a Poisson's ratio of 0.1, the 5th and 6th
modes include 1.2% and 2.4% of dispersion in rr_ioduluS, respectively. Although there is
significant scattering among the velocities obtained from different modes, increase in the
velocities with increasing axial stress is clearly seen for both rock specimens. Young's
moduli measured from static stress-strain measurements and ultrasonic velocity
measurements are also shown in Figure 3.10(a) and(b) for comparison. To compute
Young's modulus from the ultrasonic velocity measurements, Poisson's ratio of the granite
specimen was assumed to be zero, i.e., the P-wave modulus was assumed to be identical to
the Young's modulus, and the sandstone was assumed to lge isotropic (Young's modulus
can be determined from P- and S-wave velocities). The results obtained from the resonant
bar tests show a basic agreement with the static tests. Results from the ultrasonic
transmission tests, however, deviate from the static and resonant bar tests as the load is
increased. This may be due to an increase in Poisson's ratio and the stress-induced

anisotropy in the specimens.
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Figure 3.10 Comparison of phase velocities determined by static tests, ultrasonic transmission tests, and
resonant bar tests. Results are normalized to the phase velocities at 0 MPa. Note that the normalized
vertical scale is equivalent to the Young's modulus of the specimens. The averaged results for the resonant
bar test show basic agreement with increase in statically determined Young's modulus. Phase velocities
determined from the ultrasonic velocity measurements are consistently higher than the other results,
possibly an effect of the increasing Poisson's ratio and stress-induced anisotropy in the specimens that are
not taken into account in computing the phase velocity.

3.4.3 Resonance of fractured rock specimen

A single tensile fracture was introduced at the center of a granite rod specimen by
Brazilian point loading. The orientation of the fracture was perpendicular to the rod axis
and parallel to the average microcrack plane. The surfaces of the fracture were mated
during the tests. The frequency response spectrum of the specimen is shown in Figure
3.11 for a range of axial stress. By comparing the resonance frequencies in Figure 3.11
and Figure 3.8(a), it can be seen that resonance frequencies of even modes were not
affected by the introduced fracture while odd modes showed a decrease in frequencies.
The difference in behaviors of resonance frequencies yields pairs of even and odd modes

that were predicted in the analyses in the previous chapter (Section 2.2.1).

The dynamic stiffness of the fracture can be determined from the difference in the
resonance frequencies of the odd modes between fractured and intact specimens. As the
elastic moduli of the rock change with stress, the Young's modulus for the intact part of the
fractured specimen was determined from the longitudinal resonance frequencies of the
intact specimen at each stress. The density of the specimen was assumed to be constant |

during the test. For measured resonance frequencies, rod length, diameter, density, and
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Comparison of this plot with Figure 3.8(a) reveals that the effect of the fracture is only on the odd modes
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dynamic Young's modulus of the specimen, the dynamic fracture stiffness was calculated
using ‘Eq.(2.9) at each stress (Figure 3.12). For modes that showed erratic behaviors
(splitting of resonance peaks), the most dominant resonance peak was chosen for
computing the fracture stiffness. The plot shows the stiffness of the fracture increasing
with applied axial stress. The increase in stiffness results in a nonlinear load-disp'lacement
(closing displacement) behavior of the fracture. An experimentally determined fracture

stiffness-axial stress relation is:

x=(1.58+20.1- 6~ 2.52- 6% ) x 10" [Pa/m], (3.3)

where o is the applied axial stress given in [MPa].

3.4.4 Effect of fluid inside the fracture

The fractured granite specimen in Section 3.4.4 was resonated first without axial load. -
After measuring resonance frequencies and attenuation of the longitudinal mode
resonances, the fracture was filled with distilled water injected by a syringe and changes in
the resonance frequencies and attenuation were measured. The same test was repeated with
0.5 MPa of axial stress. Figure 3.13(a),(b) show the change in the experimental FRF's
before and after the water was injected into the fracture. For each pair of the even and odd

modes, clear increases in attenuation for the odd modes are present. Figure 3.14 and

‘Figure 3.15 show the measured change in resonance frequencies and attenuation. For the

higher fracture stiffness (axial stress=0.5MPa), odd mode resonance frequencies increased
due to increase in viscosity of the fracture. On the other hand, even modes exhibited much
smaller resonance frequency shifts. The resonance showed large increase in attenuation for
odd modes and small increase for even modes. For the low-stiffness fracture, the
resonance behaviors followed an opposite trend to the high-stiffness fracture: resonance
frequencies of odd modes decreased while even modes exhibited increases. Attenuation
behavior of the resonance was similar to the high fracture stiffness case, showing a large
increase in attenuation for the odd modes. |

The observed behaviors of the resonance are consistent with the theoretical prediction in
the previous chapter (Section 2.2.2). As odd modes generate maximum stress amplitude at
the center of the rod where the fracture is located, large relative motion results between the
two partially contacting surfaces of the fracture. This motion leads to a squirting flow of
fluid around the contacting asperities. The viscous drag between the fluid and the fracture




68 3 Resonant Bar Test

¢ =0MP
20 [o, al
10 ol
o1 e2 o2 e3io3
O 1.1
-10 -dry

r. saturated

AN
NI VALV A
%

[
1)

FRF (dB V/V)
R
o

A
o

-50 i
5 5 10 15 20 25 30
frequency (kHz)
(a) OMPa axial stress
20 [Ga= 0.5MPa]
‘0 el o1 e2 i e3}x 1.03 :
— 00 02
S dry, ﬂsat/urated A R \Jl
: 10 A/ i‘l\”/,\k v
Z -20 \~ ! [N /[
b -30
L 40
-50

5 10 15

20 25 30
frequency (kHz)

(b) 0.5MPa axial stress

Figure 3.13 FRF's of fractured granite bar showing the effect of fluid in the fracture. The fracture is
saturated with distilled water. Increase in viscosity of the fracture attenuates odd mode resonances (labeled as
01~03). The tests are conducted on a low-stiffness fracture (axial stress=0MPa) and a high-stiffness fracture
(axial stress=0.5MPa). The surfaces of the fracture are mated.

surface dissipates vibration energy. In contrast, vibrations for even modes do not generate

stress at the center of the rod and attenuation remains small.

As was shown in Section 2.2.2, for high fracture stiffness, an increase of viscosity in
the complex fracture stiffness leads to an increase in resonance frequency with increasing
attenuation and a decrease in resonance frequency for a low-stiffness fracture. Theoretical
curves that describe the behavior of resonance frequency versus relaxation time are plotted
for fracture stiffnesses at 0 and 0.5MPa of axial load (Figure 3.16). The fracture
stiffnesses are computed using the experimentally determined fracture stiffness-stress
relation in Eq.(3.3). Although the mode o1 for low-stiffness fracture (axial stress OMPa)
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‘Figure 3.14 Shift of resonance frequencies for a fracture injected with water. (a) For the low stiffness
fracture, odd mode resonance frequencies decrease. Increase in the even mode frequencies cannot be explained
by the model but may be due to the stiffening effect of water penetrated into the intact part of the specimen.
o1 mode shows a different behavior than the other odd modes, showing an increasing resonance frequency.
(b) For the high stiffness fracture, odd mode resonance shows opposite behavior to the low stiffness
fracture, and shows an increase in resonance frequency by injected water. ' '
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Figure 3.15 Change in attenuation for a fracture injected with water. For both high and low fracture
stiffnesses, odd mode attenuation increases much more than the even mode. Increase in attenuation is
related to the amount of resonance frequency shift. (a) For the low stiffness fracture, even modes show an

increase in attenuation corresponding to the resonance frequency shift while (b) the even modes of the high
stiffness fracture show very small increase in attenuation.
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shows a different behavior than predicted, the experimental results show qualitative
agreement with the theoretical predictions; odd mode resonance frequencies tend to increase

for a high-stiffness fracture and decrease for a low-stiffness fracture due to a fluid induced
increase in fracture viscosity.
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Figure 3.16 Resonance frequency shifts due to an increase in fracture viscosity. Experimentally
determined phase velocity and fracture stiffness are used to compute the curves. The resonance frequency of
each odd mode (on) is shifted by the paired even mode (en)'s resonance frequency @p;, and normalized by the
fundamental mode's resonance frequency w* for.an intact bar . (a) For the low stiffness fracture, an increase
in viscosity (shown by the normalized relaxation time in horizontal axis) results in a decrease in the
resonance frequencies. On the other hand, (b) for the high stiffness fracture, an increase in viscosity
increases the resonance frequencies. '
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3.4.5 Effect of attenuative filling

A latex membrane was placed between two surfaces of a fracture in the specimen and
axially loaded up to 3.0MPa. As the load was decreased, resonance frequencies and
attenuation were measured. FRF's measured during unloading are shown in Figure 3.17.
Change in the attenuation of the observed modes is shown quantitatively in Figure 3.18.
As can be seen from the plots, attenuation of odd modes is maximum at an intermediate
stress. Differences in the attenuation behavior between even and odd modes can be
explained by the same mechanism described in Section 2.2.2. The non-monotonic increase
and decrease in attenuation of the odd modes are due to the frictional and viscous
dissipation in the latex membrane. A possible mechanism is shown schematically in Figure
3.19. When a large axial stress is applied, the stiffness of the fracture is high and only
small relative motion between the surfaces of the fracture occurs during vibration. For this
reason, attenuation of the odd modes for high axial stresses is small. When the stress is
decreased, large shearing motion is introduced in the membrane as the closing motion of
the fracture extrudes the latex out of the contact between asperities. For a very small axial
stress, the stress introduced by passage of a wave becomes even within the membrane. As
the shearing motion in the membrane is small, attenuation becomes small again.



72 3 Resonant Bar Test

T T T T L
ooV e1v o1v ezV ozv esv oS*_

3MPa

2MPa
-100 :
iMPa

0.5MPa -

-200 4
0.2MPa

0.1MPa
-300
: 0.056MPa

(dB V/V)

. 0.040MPa
-400

0.023MPa

-500 0.0072MPa

0.0028MPa

-600 0 MPa

1 1 1 | 1 1

0 5 10 15 20 25 30
frequency (kHz)
Figure 3.17 Attenuation of odd mode resonances due to a latex membrane in the fracture. Attenuation is
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Figure 3.18 Attenuation in a fractured granite specimen with an inserted latex membrane. The
attenuation coefficient was determined by the half-power method. For an intermediate stress range
(0.01~0.1MPa), attenuation is maximum. Note that some of the resonance peaks for the odd modes vanish
for maximum attenuation.
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Figure 3.19 Possible mechanism for non-monotonic attenuation behavior of odd modes. For high
stiffness fracture, asperities on two surfaces of a fracture are in contact and only a small stress change is
caused in the latex membrane. At intermediate stresses, a large stress concentration is caused in the
membrane between asperities, resulting in flow of the latex with a large shear motion. This shear motion
causes large attenuation of resonance. For a small stress, stress concentration in the membrane becomes
small and a passing wave causes a uniform fluctuation of stress. As the shear motion in the membrane is
small, resulting attenuation decreases.

3.5 Summary

This chapter examined the resonance characteristics of rock specimens including a
single fracture using the resonant bar test. To study the effect of fracture stiffness on
resonance behavior, a bar specimen including a fracture was axially loaded through
compliant plastic rings. The use of plastic rings made the boundary condition of the
specimens approximately free-end although measured resonance frequencies and
attenuation were affected by the coupling with the surrounding media to varying degrees

depending on the acoustic impedance contrast between the specimen and the rings.

Axially loaded intact rock specimens exhibited a significant increase in velocity (or
Young's modulus) with increasing axial load. This is due to the changes in rock
microstructure by stress such as closing of microcracks and stiffening of grain contact.

Although the measured resonances were affected by the improved end-coupling with
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increasing stress, the observed changes were significantly greater than the changes in
resonance frequencies measured for aluminum and plexiglass specimens. For the range of
frequencies used for the resonant bar tests, the results showed good agreement with the
statically measured changes in Young's modulus. Dynamic Young's modulus values
determined from high-frequency ultrasonic transmission tests were consistently greater than
the moduli determined from other measurements especially for large axial stresses.
Although the cause of such behavior is not known, changes in elastic behavior of the
specimens such as increased Poission's ratio and stress-induced anisotropy may be
responsible. The resonant bar test using longitudinal vibrations is essentially limited to
measuring the dynamic Young's modulus along the bar axis, and Poisson's ratio, if the
specimen is isotropic. Determination of elastic moduli for anisotropic rocks will be
discussed in a later chépter (Chapter 5).

The effects of a compliant fracture on the resonance of a bar specimen were examined
using a granite bar including a through-going center fracture. The stiffness of the fracture
was changed by applying axial load to the specimen. Resonance frequencies of the odd
modes changed significantly in contrast to the even modes that showed only a small shift,
similar to the intact specimen. Although the resonance behavior was affected by end
coupling to some degree, the behavior of experimentally measured resonances show
qualitative agreement with the predictions of the analytic model described in the previous
chapter. From the frequency shifts of the odd modes, dynamic fracture stiffness was
determined for each axial load.

The fracture in the granite specimen was also filled with water and a latex membrane to
see the effect on the attenuation of resonance. For both cases, attenuation of the odd modes
increased as predicted in the previous chapter. The resonance frequency shift due to the
water in the fracture varied dependihg on the stiffness of the fracture: for low fracture
stiffness, an increase in viscosity of fracture lead to a decrease in the resonance frequencies
while the resonance frequencies for the high-stiffness fracture showed the opposite
behavior. These changes in behavior can be qualitatively predicted by using a rheological
model (Kelvin-Voigt model) for fracture stiffness. A fracture with a latex membrane
showed attenuation of resonance that changes as a function of stress applied to the fracture.

The attenuation is maximum for intermediate stresses for which it is postulated that a large

shear motion within the membrane occurs.
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The effects of the fracture stiffness on the resonance of the bar specimens predicted by
the one-dimensional analyses in the pervious chapter were demonstrated successfully.
Although some of the results presented in this chapter were affected by the boundary
condition of the specimens, measured and predicted resonance behaviors for varying
fracture stiffness and viscosity showed good qualitative agreement. This in turn indicates
that the model (displacement-discontinuity boundary conditions) can be used for describing
the dynamic behavior of a fracture during resonance. For a more quantitative measurement
for relationship between fracture stiffness and characteristics of resonance such as
resonance frequency shift and attenuation, an experimental setup that provides better

acoustic isolation to the specimen while allowing application of axial stress is necessary.

Some of the problems with the resonant bar test that arise from the one-dimensionality
of the vibration field can be solved by examining the resonances of arbitrarily shaped
specimens. By examining resonance frequencies and mode shapes, anisotropic elastic
moduli and fracture stiffness can be determined with the help of numerical models. In the
following chapter, a numerical code that analyzes the normal mode vibration of arbitrarily
shaped bodies with elastic anisotropy in their bulk material properties and with fractures is
introduced.



Numerical Model for Resonance
of 3-D Anisotropic Body
Containing Fractures

‘4.1 Introduction

Fractures in materials often cause serious structural hazards. As the introduction of a
fracture in a solid body changes its vibration characteristics, attempts have been made to
assess the presence and the degree of damage caused by fractures using the acoustic
resonance of structures. Acoustic resonance has been used for characterizing bulk elastic
. properties of solids for many years. For solids of simple geometries such as slender bars.
(Birch & Bancroft, 1938; Powers, 1938) or spheres (Soga & Anderson, 1967; Birch,
1975), determination of elastic properties from measured resonance frequencies is based on
the application of known analytic solutions. However, for many solid structures that have
complex three-dimensional gedmetry, their resonance can hardly be analyzed by analytic
methods. For this reason, numerical techniques such as finite element (FE) modeling are
performed to simulate the effect of damage on resonance of structures. FE modeling is
especially powerful for analyzing the vibration of beam and shell structures as it can make
use of computationally efficient structﬁral elements (e.g., Petyt, 1990). However, for

massive solid structures such as dams, concrete bridge piers, and laboratory scale test

76
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specimens, the FE modeling loses its advantages as true three-dimensional modeling using

three-dimensional elements is required.

In this chapter, a numerical technique is introduced for simulating the effect of
compliant interface(s) and elastic anisotropy on the resonances of a body with a general
three-dimensional geometry. Using this technique, anisotropic elastic constants and the

stiffness of a fracture are determined from experimentally measured resonance frequencies.

For intact solids, many researchers including Ekstein & Schiffman (1956), Holland
(1967), and Demarest (1969) have investigated computational methods for determining
elastic properties from resonance measurements. They showed that numerical techniques
based on a variational method with the Rayleigh-Ritz discretization of the displacement field
very accurately predicts resonance frequencies of small anisotropic elastic crystals with
rectangular geometry. Ohno (1976) applied the method to crystals with rectangular
geometry and determined their anisotropic elastic moduli by numerical inversion. Visscher
et al.(1991) demonstrated that use of a truncated polynomial series instead of Legendre
polynomials made it possible to an'alyze the normal mode vibrations of anisotropic elastic
bodies with more complex geometries. These methods are important because they -
constitute fast and accurate forward analysis techniques that can be used in the back
anaIysis of resonance measurements for general elastic moduli and mechanical properties of
materials cbntaining fractures. | |

To formulate the numerical technique presented in the folloWing sections, a fracture is
introduced as an interface between intact solid bodies with imperfect contact. The load
displacement behavior of the fracture is described by the displacement-discontinuity
boundary conditions (Schoenberg, 1980; Pyrak-Nolte et al., 1990a). A matrix equation
that is to be solved for the normal modes of vibration is derived by applying the variational
technique used by the researchers mentioned previously. The formulation of the problem is
essentially an extension of Vissher et al.(1991)'s work. A numerical code developed for
this model computes resonance frequencies, mode shapes, and frequency response
functions for specified geometry and mechanical properties of a fractured elastic body
(Nakagawa et al., 1996). Using the results of the forward computation for resonance
frequencies and mode shapes, the numerical code can also be used for iterative inversions

for anisotropic elastic moduli and fracture stiffness from observed resonance frequencies.
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4.2 Theory
4.2.1 Hamilton's principle.

“For an elastic body undergoing a steady-state vibration, a Lagrangian is defined by

L:jV(KE—PE)dV, 4.1)

where Kg and P are the kinetic and potential energies, respectively (Vissher et al., 1991).
When a fracture is introduced into the volume V, the potential energy term now consists of
two pafts: elastic strain energy stored in the bulk part of the body (Pg ) and energy stored
in the fracture (P}sc ). If the body is separated by N fractures into Npji(=Ngc+1) blocks,

noting that the P} is distributed over the surface of the fractures, the Lagrangian becomes

Ny Ng,
L= gjvb (K- Pg)dv +2;, js, (-Pf)as. (4.2)

As subsequent discussion is made in the frequency domain, ¢* dependence of

displacement is assumed. Behavior of the fracture is described using the displacement-
discontinuity boundary conditions. With a mass density function p(x € Vb) , a general

elasticity tensor Cijk,(x € Vb), and a fracture stiffness matrix K (x € Sf) , energy density

terms are expressed as

KZ = %pa)zuiTui (4.3a)
1

P Z‘ = ‘2‘”1', jCzjkluk,l (4.3b)

Pp = E[ui]’(ij[uj] ) - (4.3c)

where [w,}=u —u; represents a displacement-discontinuity across the fracture. A
conceptual model for a fractured body is shown in Figure 4.1. For a fracture with a normal

vector {n;}T=(0,0,1), the diagonal form of the fracture stiffness matrix is

kK, 0 O
0 x, 0}, Ny 4.4)
0 0 «x

n

[K}j]::
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displacement discontinuity
<intact body> <fractured body>

Figure 4.1 Modeling fractured elastic material with displacement-discontinuity boundary conditions.

where x,, and K, are the tangential stiffnesses, and x, is the normal stiffness of fracture.

In general, fractures may also have non-zero off-diagonal stiffnesses. The physical
meaning of the off-diagonal fracture stiffnesses for the above coordinate system is
discussed in Chapter 8. It is noted that a rotation of the coordinate system can also make

the fracture stiffness matrix fullly populated.

Taking a variation of the Lagrangian with respect to displacement vector yields

Nblk N/’C

SL= 2{ [ (EqaDbuav+ ij(Eq.H)au,.ds} +Y [ (Bq. 1S, (4.5)
) . 7 .
where
Eq.1=po*u; + Cyyuy | - (4.62)
Eq.II = Cyyuy jn; = oyn; =1 (4.6b)
Eq.UI=ic;fu;]. C (4.60)

The surface of each block Sy, can be separated into an external surface Sp, ¢x; and an internal

surface (fraéture surface) Sy jnr. By combining a pair of displacement variations on the
internal surfaces of adjacent blocks, a displacement-discontinuity variation &[] is formed.

Consequently, the variation of the Lagrangian is modified as

Npg . Nog Ng - )
SL=Y.[ (EaDdudv+3.[ (EqU)dudS+Y [ (Eq.II)8[w 1S @7
\ b b ext I
where
EqIl'=¢, o (4.82)

Eq.Il = iy[u,]+1,. | v (4.8b)
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In Eq.(4.7), variations of displacement in each term are independent. Therefore, requiring

a stationarity of the Lagrangian is equivalent to solving the following boundary value
problem

Eq.1=po’u;+ Cyu,; =0 ... Wave equation (4.92)
EqI’=t,=0 or 6u;=0 ...Homogeneous B.C. (4.9b)
Eq.II" = x[u;1+1,=0. ....Constitutive relationship for a fracture (4.9¢)

This is a wave propagation problem in multiple intact blocks whose resulting surface
displacements on the fracture are related by displacement-discontinuity boundary
conditions. The above result demonstrates applicability of the variational technique to
vibration problems of a solid elastic body with fractures.

4.2.2 Rayleigh-Ritz method

Using notations similar to those used by Visscher et al. (1991), a displacement field
inside each block is expressed by a truncated polynomial series with unknown coefficients

A
u(xeV,)=u®=> al oy (4.10)
A=0 .

¢;(Lb) — xl ym Zn
where A is defined for a combination of the order of polynomials
A-={lmn} A=12..,R I+m+n<N. (4.11)

, If the maximum order of the polynomials N is identical for the three directions (x, y, and
2), R is calculated from the N by

R=3(N+1)(N+2)(N+3)/6. (4.12)

This type of descretization is known as the Rayleigh'-Ritz method. As pointed out by
Visscher et al., this simple polynomial series is better suited than Bessel functions or

Legendre polynomials used by other researchers for modeling mode shapes of a body with
an arbitrary geometry. The set of basis functions { ®}”’ }can be chosen independently for

each block. As { ®/ }is a complete set, i. e., any polynomial of order less than N can be
expressed as a linear combination of ®(?''s , it can express any continuous displacement

field if N is sufficiently large.
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By utilizing the equations (4.3a)~(4.3c), a discrete version of the Lagrangian with a

(1) (1) (Npy )

global coefficient vector a = {all sy 5eee, Qg } 1s obtained as

L= %a)zaTMa - —;-aT(G + GF)a
(4.13)
Ny
M= M"Y (4.14a)
- v
Ny :
G=Y G" (4.14b)
b : )
F _ & F(f) ' v
G"'=>G"". (4.14c)
f

where M is the global mass matrix, G is the global bulk stiffness matrix, and GF is the
global fracture stiffness matrix. These are sums of submatrices M®),G®), and GF(®,
respectively, that are defined for each block or fracture as. °

M. = 8 [, @ p@lVay | | (4.152)
G, = jv, (I)(b) C;f’]) q)(h) dv ' (4.15b)
and
GLf) = J’ oM N YTds ' (4.16a)
GHY) = J ok, N @llas, v (4.16b)

for the base functions for single blocks, and

Giglt ==, ok, P 7as (4.16¢)
Grd) = j o i, s, | (4.16d)

for the base functions in separate adjacent blocks. Through Eq.(4.16a) to (4.16d), f+ and

f- represents blocks on the positive and negative sides of a fracture, respectively. For
" numerical implementation, pairs of indices (4,i) and (A, i') in the above expressions are

expressed by single indices so that the equation can be written in a matrix form.

Variation of the discrete Lagrangian with respect to the coefficient vector a yields
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Mass matrix Block stiffness Fracture stiffness

inter-block

Figure 4.2 Structure of mass (M) and stiffness (G) matrices for a 3-block, 2-fracture system. Mass and
block matrices are block-diagonal. The fracture stiffness matrix consists of block-diagonal intra-block terms
and off-block-diagonal inter-block terms.

5L = 5aT{a)2M ~(G+ GF)}a =0 for Va | (4.17)
o Ma = (G+G")a. . (4.18)

This is a matrix equation for a generalized eigenvalue problem. The mass matrix M is
symmetric positive definite and the stiffness matrices G+GF are symmetric. Therefore, the
matrix equation can still be solved by standard eigenvalue solvers such as the Householder
tri-diagonalization and the QR algorithm (Press et al., 1988). An example of the structure
of the matrices for a 3-block, 2-fracture system is shown in Figure 4.2.

The numerical solution of Eq.(4.18) can be used to produce a frequency response
function for a specified combination of source and receiver locations and directions. By
employing a standard modal superposition technique (e.g., Newland, 1989), the
displacement response (FRF) of a fractured body for a unit sine wave force excitatioh is
given by

(r () : : |
w(x(’),x(‘))zi w‘fn(x -)¢n(x ) (4.19)

b
% )a(")TMa(")

n=1

where x') and x are locatlon vectors for a receiver and a source, respectively, o, is the

angular resonance frequency for mode n, and a™ is the nth eigenvector. Weight functions
¢, are defined as
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i=1

A - (4.20a)
= OGO (MY |. "
> (S o)
i=1 =] -
. 3 . I) ’
9, (X(X?) = zui 'ni(
: i=1
3 (A . A (4.20b)
— (COF N(STEO N I
z . a,; @ (X ) n;
i=1 =1

where " and #{*) are unit orientation vectors for receiver and source, respectively.
- 4.2.3 Rigid and finite stiffness boundary conditions

Resonance of a body on a rigid foundation with a compliant interface can be simulated
by the same technique as the previous subsection: an elastic body is attached to a fixed
(immobile) rigid body with displacement-discontinuity boundary conditions. As there is no
displacement in the rigid body, assuming the rigid body is on the negative side of the
interface, Eq.(4. 16b~d) vanish. The resulting mass and stiffness matrices are identical to
those of the elastic body with traction-free boundaries except for additional intra-block
terms in the stiffness matrix computed by Eq.(4.16a) (Figure 4.3). The stiffness of the
interface between the elastic body and the rigid foundation can be specified by the fracture
stiffness. A rigid boundary condition is realized by making the fracture stiffness of the
boundary very large. ' ' ‘ |

Figure 4.3 Structure of stiffness matrix for stiffness boundary (connected to rigid foundation).
Modification of the matrix is required only for the block-diagonal intra-block terms of the GF! submatrix.
GF0 submatrix for the rigid foundation is not required as the displacement is always zero.
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4.2.4 Symmetry of the problem

When a problem has certain degrees of symmetry either in material properties or
geometry, time and memory required for the computation can be greatly reduced by
decomposing the eigenmodes into mutually independent groups. Demarest (1971) showed
that normal modes of a cube specimen that exhibit elastic behavior symmetric with respect
to the three mirror planes (planes that are parallel to the surfaces of a cube, cut thrbugh the
center of the cube, and intersect each other at right angles) can be decomposed into eight
mutually independent mode groups by selecting a certain combination of even and odd
orthonormal basis functions for displacements. A detailed discussion is given by Ohno
(1976). Although the current method does not use orthonormal basis functions employed
by researchers such as Ohno, identical modal decomposition techniques can be used to
rewrite the mass and the stiffness matrices into independent submatrices as long as the

problem has a sufficient degree of symmetry.

When a fracture is introduced symmetrically into a symmetric elastic body, the
symmetries of the problem can still be exploited with some modifications in the way the
base functions are defined. These modifications are necessary because the displacement-
discontinuity boundary conditions between adjacent blocks break the symmetry of each
block. For example, if a free vibration problem of a fractured body is to be solved, a block
at a free end has a stress-free boundary at one end, but has a displacement-discontinuity
boundafy on the other end. To solve this problem, base functions for all the blocks are
collected together to redefine global base functions. Odd and even global base functions
are defined not by the order of power for the polynomial within each block but by the way
the base functions are combined. For an even number of blocks (odd number of
fracture(s)), an even global base function is constructed such that identical local base
functions are chosen in the corresponding blocks across the plane of symmetry (Figure
4.4). Odd global base functions are constructed in the same way but with base functions
with an opposite sign across the symmetry plane. If the number of the blocks is odd, base
functions for the center block have to be either even or odd depending on the types of the
global base function.
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Figure 4.4 Examples of structuré for global base functions for fracture(s) introduced symmetrically in a
symmetric body. For even numbers of blocks, global odd and even base functions are defined using local
base functions that can be either even or odd. For odd numbers of blocks, an even global base function
requires an even local base function for the center block and odd global base functions require odd local base
functions.

4.3 Resonance Inversion
4.3.1 Perturbation of stiffness - Rayleigh's Quotient

When the stiffness of an elastic system such as the elastic moduli of the intact part and
the fracture stiffness changes, both resonance frequencies and related mode shapes are
affected. The effects of a small change in the stiffness can be examined by applying small
perturbations to the eigenvalue and eigenvector of the Eq.(4.17).

For an arbitrary mode £, the matrix equation for the elastic system is given by
®?Ma, =Ta, = (G +G")a,. 4.21)

When a small perturbation O6I" is added to the stiffness matrix I', for the perturbed

resonance frequency and mode vector, the following matrix equation has to be satisfied.

(@} + 6w; )M(a, + 8a,) = (T + 6T')(a, + ba,). (4.22)

Subtracting Eq.(4.21) from (4.22) and ignoring small higher order terms yields
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(0fM-T)8a, +(S0;M— 6T )a, =0. ©(4.23)

By multiplying the mode vector to Eq.(4.23) from left hand side of the equation and using
the Eq.(4.21) to eliminate the first term, we get

dw;a/Ma, =a, éTa, ' (4.24)

T
P LLLY (4.25)
a,Ma,
Eq.(4.25) is called Rayleigh's quotient and explicitly shows a change in resonance
frequency due to a small perturbation in the stiffness of the system. This relation is
particularly useful as the perturbation in the resonance frequency can be calculated without
the knowledge of the perturbation in mode vector.

4.3.2. Determination of elastic moduli for anisotropic material

Suppose that the bulk stiffness matrix- G contains »n elastic constants of the generalized
Hooke's law (0, = Cy,€,,). First of all, an initial guess for the elastic constants is made
and resulting resonance frequencies and mode vectors are computed. Assuming the initial
guess is close to the elastic moduli of real material, Eq.(4.25) can be used to update the
elastic constants of the system from differences between measured and computed resonance
frequencies given by

o = 0} - 2" (4.26)

The superscript (obs) means a quantity from observation and (i) is an iteration counter. For
the initial stage, i=0. By introducing Eq.(4.26) into Eq.(4.25)

a”" 6Ga’
a’"Ma}”

2(i) 2(obs)

=00} =~ 0" - w; 4.27)

As the left hand side of the equation is linear in terms of the perturbation of elastic
constants Cj, the equation can be rewritten as

AV sC = b, | (4.28)

where
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¢’ ={G,G,.... G} . (4.29a)
b = @2 — 2. | (4.29b)

When m resonance frequencies are observed, the following matrix equation is obtained
A?(mxn)6C=b"?. . (4.30)

This is a generalized inverse problem for an increment in the elastic constants C;. When the
number of observations are more than unknowns (m=n), assuming the matrix product has

its inverse, the increment dC is computed by
) -1 ,
5C:(A(1)TA(1)) b, . (4.31)

This is a least square solution of Eq.(4.30). The meaning of the least square minimization
is graphically shown in Figure 4.5. The assumed elastic constants of the system are
improved by |

CHY =6C+C? ' (4.32)

As the above discussion assumes infinitesimal perturbation of stiffness, elastic moduli
computed from Eq.(4.32) do not yield resonance frequencies that agree with the observed
resonance frequencies. The solution is obtained by iteratively applying the above
procedure and minimizing the difference between observed and computed resonance
frequencies. At each iteration, resonance frequencies and mode vectors are computed using

updated elastic constants.

The iterative inversion method presented above is essentially identical to the method
used by Ohno (1976) and Migliori et al. (1993). Migliori et al. derived the matrix equation
Eq.(4.30) by minimizing the following subjective function

m 2

2 ‘ ‘
I'=Y w(éa}) = ;wk(wf(') -}, (4.33)
=1 ) .

k=1

where wy is a weight reflecting the confidence and accuracy of each mode. The iteration
procedure used here is known as Newton's method and the initial estimate for the elastic
constants should be close to the final solutions for convergence. To improve the

convergence of solution when an initial guess is relatively far from the final solutions,



88 4 Numerical Modeling of 3-D Resonance

Migliori et al. employed the Levenberg-Marquardt method (e.g., Press, 1988) that
combines the above with the steepest-descent method, which seeks the fastest-decreasing |
direction of the subjective function in the solution space. Increment of moduli by the

Levenberg-Marquardt method is given by
T . T . -1 . .
5C=(A"A? +Q- Diag(A® A"’)] b (4.34)

where Q is a dimensionless positive parameter and Diag( ) is an operator that extracts a
diagonal part of the matrix. When a solution is far from the final solution, a large Q is
taken to assure that the subjective function is decreased. When the solution becomes close
to the final solution and the subjective function becomes small, € is brought to zero and

Newton's method is used to achieve the converged solution.

Although implementing the Levenberg-Marquardt method to a computer code is not
difficult, current research employed only the Newton's method to update solutions during
. iterations.

4.3.3. Determination of anisotropic fracture stiffness

The procedure shown in the previous subsection can be directly applied to determine
anisotropic fracture stiffness. Noting that a perturbation in the stiffness is introduced only

in the fracture component of the stiffness matrix, Eq.(4.27) becomes

. T F . :
a”"6G a’ =50 = 0 — @2

TV O k x PR
4y a;

(4.35)

Again, as the left hand side of the equation is linear in terms of the fracture stiffness, the

above equation becomes

Dy sxc = b, | . (4.36)
where
k" ={Ky, Ky, K, }- ‘ (4.37)

Note that the components of the fracture stiffness vector do not have to be for a single
fracture. For m (m >n) observations for resonance frequencies, the increment for the
fracture stiffness vector is given as
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. R S
6K:(D(”TD(’)) b | (4.38)

Using Eq.(4.38), a similar iterative proceédure as in the previous section is taken.

4.4 Accuracy of Computed Resonance Frequency
4.4.1 Lamé's mode

Accuracy of the introduced method for computing resonance frequencies of intact
elastic bodies have been demonstrated by many researchers. Holland(1968) compared his
results and those of Ekstein and Schiffman (1956) for computed resonance frequencies of
isotropic cubes with analytically available Lamé's mode resonance frequencies. Demarest
(1969) showed that use of Legendre polynonﬁals for base functions produces better results
than the previous works and demonstrated the aécuracy of his method by using the

experimentally measured resonance of a steel cube.

For rectangular parallelepipeds, there exists a family of modes called Lamé's mode
(Lamé, 1866) for which an analytic expression for the resonance frequency and mode
shape are available. For free vibration of isotropic rectangular parallelepipeds, Lamé
showed that the mode has resonance frequencies '

w="" fzcﬁ (4.39)
2a \ p

which satisfies d/m = b/n, where 2a and 2b are any two lengths of the block, m and n are
integers, Cgg is a shear modulus, and p is density of material. A Lamé mode does not have
any motion in the direction of the third length and tractions are zero on any plane normal to
it. Lamé's mode for a more general type of elasticity is discussed by Mindlin (1956). For
an isotropic cube, Eq.(4.39) becomes

w="7 /Zcﬂ | - (4.40)
LY p ' :

where L is a length of the cube. Due to the symmetry, each Lamé's mode is triply
degenerate.
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4.4.2 Accuracy of solution for an intact cube

As general analytic solutions for the resonance frequency of an arbitrarily shaped elastic
body do not exist, the accuracy of numerical solutions cannot be checked by reference to
the analytic solution. An alternative method to check the accuracy 1s to examine the
convergence behavior of the numerical solution as the order of the approximation for the
employed base functions is increased. As any continuous displacement field can be
expressed by a complete set of base functions with sufficiently high order of polynomials,
numerical solutions can be considered to be close to the exact solutions if any change in the |

resonance frequencies with increasing order of base functions is sufficiently small.

Changes in computed resonance frequencies of an isotropic cube with traction free
boundaries are shown in Figure 4.5. Each curve represents the difference between
resonance frequencies for a single mode with increasing maximum order of base function

polynomials, n. The n is identical for three directions (x, y, and z directions). The

10° | 635465 (2nd Lame's mode) ¢ m21,22,23
o 10° :
S :\
£
T
T 10°
-
g _
w ‘;
5 % 10
O
[
=
Y 0
o “I-I 10
QO =
c
10 :
8 m12,13,1
o (1st Lame's mode) i
102 - \.19,10,1'1

4 5 6 7 8 9 10 11 12

n (order of polynomial)

Figure 4.5 Convergence of computed resonance frequencies for an isotropic cube (E=50GPa, v=0.2,
L=0.1m, p=2600kg/m?). Resonance frequency changes between 2k ™ and 2(k+1) ™ order approximation
(n=2k+1) are shown. The theoretical resonance frequency for the 1st Lamé's mode is 20.0160 kHz. Higher
order modes require higher order base functions to compute the resonance frequency accurately. It is noted
that the Lamé mode converges faster than other type of modes.
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accompanying mode shape is shown for each mode. It can be seen that higher order modes
require higher order base functions for accuracy. The 12th, 13th,14th modes form the first
Lamé's mode and exhibit faster convergence than other modes. The second Lamé's mode
(63th, 64th 65th modes) are also shown for comparison. The computed resonance
frequencies of the Lamé's modes are compared with the analytic solutions with increasing
order of base function polynomials (Figure 4.6). It can be seen that the modes exhibit

rapid convergence to the exact solutions as the order of approximation is increased.

[1st Lame mode] {2nd Lame mode]
1.001 1.2 :
1.0008 115 mode 63, 64, 65
, 51.0008 - "mode 12,13 -
g 4 B B O T Aty SR S Rt
~ (Y ~a
~~1.0004 ‘/ - \
: 4 1.05 [ S T —
1.0002 *-+--mode 14
—
1 H L) S H 5 o 1 : H H ;
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12

n {order of base function polynomial) n (order of base function polynomial)

Figure 4.6 Convergence of the 1st and 2nd Lamé mode resonance frequencies for an isotropic cube. The
vertical axis is normalized by theoretical resonance frequency. It is noted that 2k+1 * and 2k ™ order base
functions result in identical resonance frequencies of the Lamé's mode. The 1st mode (mode 12~14)
resonance frequency is accurately computed even with relatively low order polynomials.

4.4.3 Accuracy of solution for a fractured cube

When a fracture is introduced into the cube discussed in Section 4.4.2, resonance
frequency and mode shape are altered, depending on the stiffness of the fracture. As
vibrations of the cube with very high and low fracture stiffness are close to free vibrations
of intact block(s), an intermediate fracture stiffness (x=10!! Pa/m) is chosen to understand

the conversion behavior of numerical solutions. The fracture stiffness is assumed to be
isotropic (K, = K, = K, = K).

Conversions of computed resonance frequencies for an isotropic cube containing a
centered through-crack is shown in Figure 4.7. The maximum order of base function
polynomials in each block separated by the fracture is 2m(=n) for the x and y directions and

m for the z direction (direction normal to the fracture). All material properties are identical
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to the intact cube in the previous subsection. From the plot it can be seen that introduction
of a fracture does not slow down the convergence of solutions. It is also noted that
convergence and mode shape of the 215t mode are identical to the first Lamé's mode of an
intact block. This is because a fracture introduced in parallel to the x-y plane does not have

any effect on the resonance of the mode as tractions on the plane are zero everywhere in the
intact cube. '

10*

108

iy
Q
Ny

—
e

f(n-1 ). f(n+1) (HZ)

f

resonance frequency difference

9 10

n (order of polynomial)

Figure 4.7 Convergence of computed resonance frequencies for a fractured block (E=50GPa, v=0.2,
L=0.1m, p=2600kg/m3, fracture stiffness k=10'! Pa/m). Resonance frequency changes between 2k * and
2(k+1) ™ order approximation (n=2k+1) are shown. 21" mode is identical to the 1st Lamé's mode (20.0160
kHz). Higher order modes require higher order base functions to compute the resonance frequency accurately.

4.5 Accuracy of Resonance Inversion
4.5.1 Inversion for isotropic elastic moduli

The resonance inversion technique introduced in Section 4.3.2 was checked for its
performance to determine isotropic elastic moduli of a cube from its resonance frequencies.
Convergence and accuracy of determined solutions were examined. Resonance frequency

and mode shape of the "observed" modes were computed using 12t order base functions.
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Figure 4.8 Source and receiver locations for observed resonance frequencies of an isotropic cube.
Direction of the source and receiver are aligned.

Young's modulus and Poisson's ratio of the cube (0.1mx0.1mx0.1m) were assumed to be
50GPa and 0.2, respectively. Density of the cube was 2600kg/m3. For source and
receiver locations shown in Figure 4.8, a FRF(compliance) was computed (Figure 4.9).

Resonance frequencies of the first five modes were used for the inversion.

As the inversion process requires many iterations, lower 10th order base functions were
used to approximate the displacement field in the cube. As initial guesses, Young's
modulus of 25GPa and Poisson's ratio of 0.2 were chosen. Figure 4.10(a) shows changes

in the standard deviation for the power of computed resonance frequency given by
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Figure 4.9 Computed FRF(complianée) for forced excitation of an isotropic cube. Modes marked by
solid triangles were used for checking the accuracy of numerical inversion for elastic moduli.
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Figure 4.10 Convergence of the solution. The original model's Young's modulus and Poisson's ratio
are E=50 GPa and v=0.2 (exact solutions), respectively. The initial guess is E=25 GPa and v=0.1.
"Observed" resonance frequencies are computed using 12 order base functions. Inversions are conducted
using 10™ order base functions. The observed resonance frequencies are perturbed by the amount specified
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in the plot to see the effect of error in measured data on the convergence.
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where f;2(obs) and f;2()) are the power of observed and computed resonance frequencies for
the i th iteration, respectively, and N is the number of observed modes (here, N=5). In
the plot, the square root of og's are shown to indicate an average difference between
resonance frequencies of an inverted model and observed resonance frequencies. During
the inversion, the weighting factors in Eq.(4.33) are assumed to be constant (=1). To
examine the effect of errors in the observed resonance frequencies, the frequencies were
perturbed by the amount specified in the plot.

From the plot it can be seen that an increase in the perturbation leads to an increase in
the difference between the inverted and observed resonance frequencies. A case with no
perturbation ( Af = OHz) also shows a small difference at convergence due to the difference
in the order of base functions used for the inversion. Even though the initial guess is very
different from the model's true elastic moduli, the convergence behavior is quite stable.
Changes in the Young's modulus and Poisson's ratio at each iteration are also shown in
Figure 4.10(b) and (c). It is noticed that in spite of relatively large perturbations
(Af =100Hz, 1kHz), the inverted Young's moduli are reasonably accurate. Poisson's

ratio, on the other hand, is more sensitive to the error in the observations.
4.5.2 Inversion for isotropic fracture stiffness

Performance of the resonance inversion technique for determining isotropic fracture
stiffness was examined using the same method in Section 4.4.1. A model used for the
tests was the same cube including a fracture as in Section 4.4.3 (fracture stiffness
k=1011Pa/m). Locations of a source and a receiver are shown in Figure 4.11. Computed
FRF and modes used for inversion are shown in Figure 4.12. An initial guess for the
fracture stiffness was chosen as 1012Pa/m. For a single case with no perturbation, an
initial guess of x=1012Pa/m was also tested.

During the inversion, it was found that a direct application of Newton's method does
not converge the solutions as the initial guesses were too far from the exact solutions. To
ensure the convergence of the solutions, a correction for fracture stiffness at each iteration
(Eq.(4.38)) was introduced as
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_fracture $
Figure 4.11 Source and receiver locations for observed resonance frequencies of an isotropic cube
including a single through-crack. Direction of the source and receiver are aligned.

6k — 0.5% 0«K. ' (4.42)

This modification decreases the speed of convergence but helps to stabilize the convergence
process. Figure 4.13(a) and (b) shows changes in the averaged resonance frequency error
and determined fracture stiffness, respectively. The speed of convergence is much slower
than the inversion for elastic moduli of the intact cube discussed in Section 4.5.1. It is
noticed that the determined fracture stiffnesses are relatively accurate except for a case with
a large error in the observation ( Af = 1kHz).
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Figure 4.12 Computed FRF(compliance) for forced excitation of an isotropic cube containing a fracture.
Modes marked by solid triangles were used for checking the accuracy of numerical inversion for elastic
moduli.
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Figure 4.13 Convergence of solution. The original model's Young's modulus and Poisson's ratio are
E=50 GPa and v=0.2, respectively, and fracture stiffness is 10! Pa/m. The initial guess was made as 1012
Pa/m for four cases with different perturbation in the observed resonance frequencies and 10'® Pa/m for no
perturbation. "Observed" resonance frequencies were computed using 12x12x6 (x, y, and z-directions) b
order base functions in each block. Inversions were conducted using 8x8x4% order base functions.
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4.6 Summary

In this chapter, a simple numerical method for computing normal mode vibrations of
elastic body with fractures was introduced. Using this fast forward modeling technique, a
numerical inversion technique for determining elastic moduli and fracture stiffness from
observed resonance frequencies was developed.

As analytic solutions for an arbitrarily shaped three-dimensional body with fractures are
not available, the accuracy of the numerical model is difficult to evaluate. However, from
the convergence of computed resonance frequencies with increasing order of polynomial

approximations, the accuracy of the numerical model is examined indirectly.

For a special case where analytic solutions were available (Lamé's mode), computed
solutions were compared with analytic solutions showing good agreement. Accuracy and
conversion of the inversion technique were checked for isotropic elastic moduli and fracture
stiffness of cubes. The results indicated that even when relatively large error was present
in the observed resonance frequencies, the method could determine the elastic parameters
with reasonable accuracy. However, numerical results obtained for a specific problem
have to be viewed with caution. This is because a resonance is affected by many
geometrical and mechanical parameters of a specimen and the accuracy of the solution is
expected to vary for different problems.

The numerical model developed in this chapter can be a very powerful tool for
examining resonance of anisotropic and fractured bodies with general geometry. Using the
forward-modeling part of the code, resonance frequencies, mode shapes, and expected
FREF for specific source and receiver locations can be computed. Using the code, optimal
source and receiver locations can be determined for exciting or avoiding large vibration
motions to perform acoustic resonance tests. The inversion part of the code can determine
unknown elastic parameters from measured resonance frequencies. As the moduli and
fracture stiffness of the material can be related to the degree of damaged introduced, the
code can be used to make the acoustic resonance technique a quantitative tool for

characterizing material properties and diagnosing damage in a structure.

In the following chapters, the numerical models presented in this chapter are used for
modeling experimentally observed resonances and determining stiffness parameters (elastic

constants and fracture stiffness) of rock and concrete specimens.



Resonance of Anisotropic Rock

5.1 Introduction

At the millimeter to submillimeter scale, rocks appear as a heterogeneous aggregate of
crystals and mineral grains. Rocks may also contain numerous microcracks that are
distributed uniformly within the matrix. When heterogeneities in rock occur in the form of
systematically oriented mineral grains, bedding planes, and aligned microcracks, they result
in anisotropic bulk stress-strain behavior. The bulk elastic behavior of the rock is
described by elastic constants of an equivalent homogeneous anisotropic medium. These
elastic constants can be determined either statically from load-displacement tests or
* dynamically from the velocities of P- and S-waves. Both the static and dynamic tests
require measurements conducted in multiple directions with respect to the axes of elastic
symmetry. For example, to determine the dynamic elastic moduli of a transversely
isotropic rock, at least five independent P- and S-wave velocities in three directions
(typically 0°, 45°, and 90" to the axis of symmetry) have to be measured (e.g., King, 1969;
Lo et al., 1984). Similarly, static load-displacement tests require axial compression and

lateral expansion measurements on specimens cored in three directions (King, 1969). The

99
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latter approach for determination of the five anisotropic elastic constants is not common
because it requires a cumbersome testing procedure that is susceptible to inaccuracies in
measurements of the elastic deformation of a specimen resulting from nonelastic

deformation (frictional slip).

Acoustic resonance spectroscopy is a technique for determining the dynamic elastic
constants of a specimen using steady-state vibration of a specimen of known geometry.
The technique consists of resonating the specimén over a broad range of frequencies,
measuring the resonance frequencies, and computing the elastic constants by nonlinear
inversion of the measured resonance frequencies. This technique is particularly interesting
because it can determine anisotropic elastic constants of a specimen with general geometry

from a single measurement of the frequency response.

The standard resonant bar technique in the Chapter 2 is restricted to longitudinal,
flexural, and torsional resonances of a slender bar specimen with isotropic elastic
constants. For this geometry, simple relations between the Young's modulus and the
resonance frequencies of longitudinal and flexural modes, and the shear modulus and the
resonance frequ’encies of torsional modes make the determination of the elastic constants
almost trivial. No such relations exist, however, for use in determining the anisotropic
elastic constants for a specimen of more general geometry. "This more complicated problem
requires inversion for the elastic constants using numerical techniques. Although such
techniques have been used for determining the elastic constants of single crystals and
minerals (Ohno, 1976; Maynard, 1992; Migliori et al., 1993), few attempts have made to
characterize the anisotropic elastic properties of rocks whose anisotropy arises from the

heterogeneous microstructures.

In this chapter, acoustic resonance spectroscopy is applied to determine the elastic
constants of transversely isotropic rock specimens. For comparison purposes, static and
ultrasonic measurements are first performed to determine the zero-frequency and high-
frequency elastic moduli. These measurements are followed by acoustic resonance
measurements on cube-shaped specimens. Measured resonance frequencies are used to
invert for the five elastic constants using the numerical algorithm introduced in the previous
chapter. Mode shapes of the anisotropic specimens are also measured using a laser
Doppler vibrometer and compared with mode shapes computed from the elastic constants
obtained from the numerical inversion of the measured resonance frequencies.
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5.2 Static Elastic Properties
5.2.1 Description of specimens

Rock specimens used in this chapter are Sierra White Granite, Berea Sandstone, and
Tennessee Dolomite. These rocks are anisotropic due to different microstructures. The
granite specimen contains a number of sub-millimeter size microcracks that are oriented
perpendicular to a single direction. This granite is from the same quarry as the granite
specimen used in the Chapter 2. The sandstone specimen has bedding structures that are
visible as red oxidized minerals deposited along submillimeter-spaced bedding planes. The
sandstone also contains minor cross-bedding that cross-cuts the dominant near parallel
bedding structures (this Berea sandstone specimen is different from the specimen used in
Chapter 2). The dolomite specimen contains a number of fractures that extend as long as a
centimeter and are mostly filled with precipitated silica (Opal). The precipitated silica is
also present in the form of millimeter size inclusions. These microstructures give rise to
transversely isotropic static and dynamic properties. By visual inspection, the granite
specimen appears to be the most homogeneous and the dolomite the most heterogeneous
due to the presence of large cracks and inclusions. The densities of the ovendried granite,
sandstone, and dolomite specimens are 2.62 g/cm3, 2.15 g/cm3, and 2.70 g/cm3,

respectively

The specimens were prepared for acoustic resonance spectroscopy by first determining
the axis of symmetry of the rock using ultrasonic measurements and then cutting out a
cube-shaped specimen from the block such that two of its surfaces are perpendicular to the
axis of symmetry. The size of the cubes were 9.40 cm, 6.04 cm, and 6.45 cm for the
granite, sandstone, and dolomite, respectively. The specimens are shown in Figure 5.1.
For the granite, cylindrical specimens (9.81 cm in length, 3.73 cm in diameter) and short
octagonal blocks (5.08cm across parallel surfaces) with their axis perpendicular to the
surfaces of the cube specimen were also made. These specimens were used for measuring

static and high frequency (ultrasonic) properties of the rock.
5.2.2 Optical microscope observation for granite

Sub-millimeter microstructures in the granite specimen such as aligned minerals,
microcracks, and grain boundaries are not directly visible. Thin sections for optical

microscopy were prepared from three cylindrical specimens of the granite cored
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(a) Granite cube (Sierra White). No
obvious microstructure can be detected
by visual inspection. The rock appears
to be homogeneous.

(b) Sandstone cube (Berea). Distinct e
bedding structures can be seen. Layers 2
of red stain are spaced rather irregularly. =mms
Cross bedding structures that cut the :
dominant parallel bedding structures

obliquely can be seen on the sides of

the cube.

Cross

bedding planes

mineral-filled fractures

(c) Dolomite cube (Tenessee).
Relatively large, mineral-filled irregular
fractures can be seen. The specimen
also contains inclusions of Opal that
fill elliptical cavities in the rock.

inclusions

Figure 5.1 Rock cube specimens used for resonance spectroscopy. The three rocks have different
microstructures that lead to transversely isotropic elastic behavior: (a) granite, (b) sandstone, (c) dolomite
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core D

X

plane of anisotropy
(average microcrack plane)

Figure 5.2 Core orientation of specimens used for optical microscope observation, imbibition tests, and
static uniaxial load-displacement tests. Cores A and C are taken in the direction perpendicular to the

isotropy axis (parallel to average microcrack planes). Core D is parallel to the isotropy axis. The reference
direction of each core is shown by a dotted line along its diameter.

perpendicular to each other (Figure 5.2, National Petrographic Service Inc., Houston,
Texas). The specimens were vacuum-impregnated with blue-dyed epoxy. Figure
5.3(a)~(c) are the thin section optical-micrographs of microcracks observed in the three
perpendicular directions. The observations are made using normal transmitted light.
Microcracks impregnated by blue epoxy are best seen in the C core and are aligned roughly
parallel in a single direction. In the A core, alignment of the microcracks are not as clear as
in the C direction. In the D core, no preferential directions of the microcracks are
observed. Figure 5.4(a) and (b) are the close-up photographs of the microcracks. Open
cracks filled with epoxy are marked by solid triangles. Figure 5.5(a) is a thin section
micrograph using polarized light. A micrograph of the same area using normal light is also
shown (Figure 5.5(b)) for comparison. From the photographs, no obvious elongation or
alignment of mineral grains is present. These observations indicate that the anisotropy of

the granite is primarily due to open microcracks that are aligned in a single direction.



(a) core A (b) core C (c) core D

Figure 5.3 Thin section optical-micrographs of granite in three perpendicular directions. The color of the images is
inverted to enhance the fractures. The bright white areas are the biotite grains. (a) Core A and (b) core C show
microcracks approximately aligned in the direction perpendicular to the D direction (z-axis). (c) Microcracks in core D are
more randomly oriented than the other directions. Core C exhibits epoxy-filled microcracks that are aligned parallel.
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(b) core C

(a) core A

0.5 mm

Figure 5.4 Higher magnification optical micrographs of microcracks in mineral grains. Epoxy-inpregnated

open cracks are mostly perpendicular to the D direction.
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2.5 mm

2.5 mm

(b) Micrograph of similar area using non-polarized light (core C)

Figure 5.5 Shape and alignment of mineral grains in granite specimen. (a) Using polarized light,
different types of minerals and their orientations can be distinguished. From the micrograph, no obvious
elongation or alignment of crystals in any particular direction can be seen. (b) Using normal light, shapes
and alignment of biotite grains (black regions) can be seen, which also show no systematic pattern that

would lead to anisotropic behavior of the rock.
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5.2.3 Capillary imbibition for granite

In order to confirm that the microcracks in the granite were open, one-directional
imbibition of water into the granite was performed using cylindrical specimens cored in
mutually perpendicular directions. The specimens were 9.81 cm in height and 3.73 cm in
diameter. The bottom of the specimens were cleaned prior to the experiment to expose
fresh surfaces. After being ovendried for at least 48 hours at 103 °C, the bottom of the
specimens were immersed in distilled water up to 5 mm deep to allow the water to imbibe
by the capillary force of the microcracks. The volume of water imbibed into the specimen
was monitored by periodically measuring the total weight. During the test, the specimens
were covered by glass jars to maintain the relative humidity of the air around the specimen
at 100% (Figure 5.6). From the weight of oven-dried and vacuum saturated specimens,

the effective porosity of the specimens was measured as 1.02%.

Figure 5.7 shows the time history of the water-saturation resulting from imbibition into
the specimens. From the figure, it can be seen that core D initially shows a significantly
slower rate of imbibition than the other specimens. Although the difference is subtle, core
A exhibits a faster initial imbibition than core C. For much later times, saturation ratios of
all three cores asymptote to 80%. The remaining 20% is due to the air trapped within the

specimen.

The anisotropic rate of imbibition can be explained by the geometry and the alignment
of microcracks in the granite (Figure 5.8) . Core D exhibits the slowest imbibition along
the axis of the cylinder as the water has to flow through the most tortuous paths of
connected microcracks. Directions along the axis of core A and C are the fastest imbibition
directions as they have the least tortuousity. The small difference in imbibition rate for core
A and C may be due to the larger misalignment of cracks in the C specimen. These results
are consistent with the geometry and alignment of microcracks observed in the thin

sections.
5.2.4 Static behavior for granite

Static uniaxial compression tests were conducted to examine the anisotropic elastic
behavior of the granite core specimens. The specimens used for the static tests were
identical to the ones used for the capillary imbibition tests (cores A, C, and D). The cores

were tested under room-dry conditions (density of 2.62 g/cm3). The experimental setup is
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(b) Condition of specimens 50 hours after starting imbibition

Figure 5.6 Oven-dried core A, B, and C were placed in glass jars with their bases immersed in distilled
water. Changes in their weight were measured as the water imbibed into the specimens. The bottom picture

(Figure 5.6(b)) shows the specimens after 50 hours of imbibition. Water has reached the top of the
specimens A and C, but not core D.
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Figure 5.7 Time history of capillary imbibition into granite cores. All the cores are of equal size and
shape. Core D exhibits much slower increase in the saturation ratio compared with the other two cores,
indicating that the primary orientation of microcracks is not aligned with the core axis. Core A shows

slightly faster imbibition than core C. Saturation ratios for the cores asymptote to approximately 80%
after 10 days.

idealized crack
geometry

Figure 5.8 Idealized microcrack geometry and orientations from microscope observation and capillary
imbibition tests. Open microcracks in the granite specimen are preferentially aligned perpendicular to
the D direction. Larger variations in the spatial distribution of the microcracks in the A surface of the
block may be the reason for the slightly faster imbibition in the A direction than in the C direction.
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shown in Figure 5.9. A core specimen was uniaxially loaded in a load frame using a hand-
operated hydraulic jack. Both vertical and horizontal LVDT's were mounted on the
specimen to measure vertical compression and lateral expansion of the specimen. The
applied load was measured using a loadcell. Readouts from LVDT's and the loadcell were
displayed and stored on a computer.

The static stress-strain relation of the rock also displays strong anisotropy. Figure
5.10(a) shows the axial stress-strain relations for three mutual perpendicular directions.
Core D (z-axis direction) exhibits a significantly larger compliance than the other two
directions. Small excursion loops from the main stress-strain loops are measured to obtain
the elastic moduli of the rock free of frictional slip (e.g., Walsh, 1965; Cook and Hodgson,
1965). Figure 5.11(b) shows the relations between axial strain and radial strain. The
direction of the measured expansion is 90° from a reference direction (for core A and C, in
the direction parallel to the average microcrack planes; for core D, in the direction parallel to
core A). All specimens show very small Poisson's expansion for small axial load. This is
due to the closing of microcracks oriented in the direction perpendicular to the loading
direction. Core D shows the smallest radial strain versus axial strain ratio due to a large
number of microcracks preferentially oriented perpendicular to the specimen axis. The
difference between the Poisson's ratios for the specimens becomes small for larger axial
stresses. As the hysteresis of the major loops is small, the slope of the curves is assumed
to be identical to the slope of the small excursion loops that provides the elastic Poisson's
ratio of the specimens.

Variations in Poisson's ratio around the axis of each specimen are shown in Figure
5.1 1(a)~(c). For core A (Figure 5.11(a)), basic agreement between the Poisson's
expansions for the 0° and 90° can be seen on the loading part of the curves. The unloading
curve for 0° shows a large amount of slip between the specimen and radial LVDT mount.
In the Figure 5.11(b), core C exhibits similar behavior of Poisson's ratio for all directions
around the axis. Radial strains in different directions are shifted for comparison. Unlike
the other directions, core D exhibits small variations in the behavior of Poisson's expansion
around its axis. This indicate that the behavior of the granite is not truly transversely
anisotropic. Poisson's ratio is the smallest in the directions parallel to core C (90° and
270°, along y-axis). Although the difference in Poisson's ratio is large for large axial
strains, all curves seem to have similar slopes for very small axial strain. Therefore, the
granite is assumed to be transversely isotropic in the analysis of elastic moduli at zero
confining stress presented in Sections 5.3 and 5.4.
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load frame

hemispherical
mount

loadcell

horizontal

LVDT specimen

vertical
LVDT's

hydraulic jack
enerpaci

data aquisition system

Figure 5.9 Experimental setup for static load-displacement test. Axial load is applied by a hydraulic
Jack. Both vertical displacement and lateral expansion are measured using LVDT's. Measured displacements

are displayed and recorded on a data acquisition system on a computer running LabView software (National
Instruments, Inc.).
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Figure 5.10 Uniaxial compression tests on granite specimens cored in three mutually perpendicular
directions. (a) core D shows much larger compliance than the other two cores due to closure of aligned
microcracks. (b) Poisson's expansion was measured in the direction 90° from the reference direction
(direction parallel to the plane of anisotropy for core A and C, direction parallel to core A for core D, see
Figure 5.2). Permanent offset at zero axial strain is due to the slip between specimen and LVDT mount.
Initial Poisson's ratio for the specimens are quite small (V=0.033~0.066) due to the closing of
microcracks. Young's moduli and Poisson's ratios for different specimens increase and become similar for
high axial stresses.
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Figure 5.11 Poisson's expansion of specimens around the core axis. For core A, unloading curve for 0°
orientation deviates from the 90° orientation due to large slip between specimen and the LVDT holder.
Core A and C do not show significant difference in Poisson's expansions for different orientations. Core D,
however, exhibits small variations in Poisson's expansion, showing maximum expansion in the 0°
direction.



114 5 Resonance of Anisotropic Rock

Young's moduli of the specimens determined from small excursion loops in Figure
5.10(a) are shown in Figure 5.12. Due to the frictional slip in the rock and the limited
resolution of the data, the accuracy of the determined Young's modulus and Poisson's ratio
at low stresses is rather poor. By extrapolating the obtained modulus-stress relations, the
Young's modulus at zero axial stress is estimated to be 19 GPa for core D (E3) and 30 GPa
for core A and C (E{=E;). From the plot, Poisson's ratios are approximately 0.099 for
core A and C (vi2=V13=V21=V23) and 0.033 for D core (v3;=v33). The upper left of the

elastic compliance matrix for the measured elastic parameters are

1 Y Va
& E, E, E |0, 0.0333  -0.00333 -0.00174](0,,
£, b= 22 Ei —% G, t=|-0.00333 0.0333 —0.00174 |{ 5,, tx10™
£ vl‘3 ‘,223 L |los) |-0.00333 -0.00333  0.0526 |0y,
L El 2 E3 |

(5.1)
The above compliance matrix S is not symmetric, possibly due to the experimental error
and data resolution. Assuming the error is caused by the measurements for the Poissons

ratios, the compliance matrix is redefined by

S+8T
2 (5.2)

S =

where the superscript 7 is a matrix transpose operator. The stiffness matrix is obtained as

0.0333  —0.00333 —0.002527"
C=S5"=|-0.00333 0.0333 —-0.00252| x10°

—-0.00252 -0.00252  0.0526
30.4 3.16 1.61

=[3.16 30.4 1.61|x10° [Pa]
.61 1.61 19.2

(3:3)
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Figure 5.12 (a) Young's modulus determined from small excursion loops in Figure 5.10(a) and ((b)-(d))
low-axial stress load-displacement tests. Young's moduli at zero axial stress are estimated as 30 GPa and 19
GPa for directions parallel and perpendicular to the microcracks, respectively. The square regions in the
above plots show the initial nonlinear behaviors due to compliant contact between specimen and loading
plates. Young's modulus for all three directions increases with increasing axial stress. Difference between
directions parallel to the microcracks (core A and C) and perpendicular to the cracks (core D) gradually
decreases as the stress increases.
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5.3 Ultrasonic Transmission Test
5.3.1 P-wave anisotropy for granite

To check for the anisotropy of transmitted P-waves, the granite cores were vacuum
saturated and placed in a water ba@h (Figure 5.13(a)). The water bath has a turn table at the
bottom and a pair of immersion ultrasonic transducers (central frequency of 1MHz)
attached to the side walls. The P-wave anisotropy of the specimen can be examined by
rotating the table and measuring transmitted P-waves as a function of angle (Figure 5.14).
Both cores A and C show peaks in velocity and amplitude in the direction parallel to the

microcracks while core D shows consistently low velocity and amplitude for all directions.
5.3.2 S-wave anisotropy

S-wave anisotropy was measured on the granite cores and the cube-shaped sandstone
and dolomite specimens using the experimental setup shown in Figure 5.13(b). The
specimens were tested under room dry conditions. To establish repeatable acoustic
coupling between the specimen and the ultrasonic transducers, the specimen was loaded
between the transducers through thin lead foil disks in a load frame (SMPa for granite,
6.9MPa for sandstone, and 5.9MPa for dolomite). The measured S-wave waveforms are
shown in Figure 5.15. The granite cores show two distinct quasi-shear waves that result
from shear-wave splitting. For the direction of wave propagation parallel to the plane of
anisotropy (labeled as /'), components of an S-wave polarized parallel to the microcracks
(labeled "H") propagate faster than the components polarized perpendicular to the
microcracks (labeled "V"). In the direction perpendicular to the plane of anisotropy
(labeled " L"), the velocity and amplitude of the S-wave are constant. The sandstone
specimen shows similar splitting of S-waves but the splitting is rather small indicating a
smaller degree of anisotropy. Although the amplitudes of the S-waves for the dolomite

cube show similar patterns as other specimens, the shear wave splitting was not observed.
5.3.3 Velocity anisotropy and axial load

Changes in wave velocities with increasing axial load are shown in Figure 5.16 for P-
waves and in Figure 5.17 for S-waves. For granite and sandstone, both P and S-waves

initially show a rapid increase in velocity with increasing load. This is due to closing
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seismic
transducer

core (P- and S-wave)
water bath specimen
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transducer
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hydraulic jar‘k
(a) P-wave anisotropy test (b) Uniaxially confined P- and S-wave test

pulse generator digital oscilloscope

Figure 5.13 Experimental setup for ultrasonic wave transmission tests. (a) For granite core specimens,
anisotropy of P-wave transmission was measured using immersible transducers (central frequency=1MHz).
The specimen was rotated around its axis with a turn table attached to a water bath. (b) The granite core
specimens and sandstone and dolomite cubes were uniaxially loaded to measure S-wave anisotropy and stress
dependency of P and S-waves. For cube specimens, aluminum cones were used to apply a uniformly
distributed load to the specimens. Piezoelectric crystals in the transducers were excited by a high-voltage
pulse generator and measured waves were displayed and stored on an oscilloscope.



118 5 Resonance of Anisotropic Rock

P-wave anisotropy

-90°

coreA&C

90°

reference *
direction

o°

-90°

90°

0°
|

-90°

core D ' ' |

5.0 30
time [usec]

Figure 5.14 P-wave anisotropy of granite core specimens (vacuum saturated with water). A waveform
was measured at every 15 degrees. Angles in the plots are measured from a reference direction of each
specimen. Large positive and negative amplitude is shown in light and dark grays, respectively. P-wave

shows maximum amplitude and velocity in the direction perpendicular to the isotropy axis (perpendicular
to microcrack planes). '
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Figure 5.15 S-wave anisotropy of granite core specimens and sandstone and dolomite cubes (room-dry).
The polarization direction of source and receiver were rotated around each coordinate axis and transmitted S-
wave was measured for every 15 degrees of rotation. For granite and sandstone, shear wave splitting due to
transverse isotropy of the rock is observed (SH and SV-waves). Although it shows clear S-wave amplitude
anisotropy, the dolomite specimen does not exhibit splitting of shear waves.
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(a) P-wave velocities for granite core specimen
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(b) P-wave velocities for sandstone cube specimen
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(c) P-wave velocities for dolomite cube specimen

Figure 5.16 Stress dependence and anisotropy of P-wave velocity. (a) Granite shows strong stress
dependence due to microcracks that close under uniaxial stress. (b) Sandstone also shows strong stress
dependence due to improved grain contact by the axial load. For both specimens, a P-wave parallel to the
isotropy axis shows the smallest velocity. (c) For the axial loads shown above, the dolomite specimen
exhibits very small stress dependence possibly because the open cracks are filled with precipitated mineral.
The velocity anisotropy is also very small.
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Stress dependence and anisotropy of S-wave velocity. Granite (a) and sandstone (b)

specimens show similar stress dependence of S-waves as P-waves. Similar to P-wave velocity, dolomite (c)

specimen sho

ws very small stress dependence and velocity anisotropy.
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microcracks for the granite and the stiffening of grain contacts for the sandstone. In
contrast, the dolomite shows a very small stress dependence and a small velocity
anisotropy. The behavior of the waves in the dolomite specimen may be caused by
scattering of waves off the thin mineral inclusions that fill the open flat fractures. Here, the
acoustic impedance contrast between the matrix and the inclusions causes amplitude
anisotropy of the waves by scattering, but because they are thin relative to the wavelength,
they have little effect on the wave velocities.

5.3.4 High-frequency dynamic elastic moduli

High-frequency dynamic elastic moduli of the rocks were measured using P and S-
wave contact transducers (central frequency 1 MHz). The stress applied to the specimen
was approximately zero. Lower frequency transducers (250 kHz) were used when the
attenuation was too severe to assess accurate first arrivals. Velocities of the granite were
measured using both the cube specimen and the octagonal blocks (Figure 5.18). Velocities
for other types of rock were measured using only the cube specimens. For this series of
tests, oven dried specimens were used. Table 5.1 shows measured velocities of P and S-
waves. Propagation and polarization directions are shown in Figure 5.18. For a
transversely isotropic elastic material, the five independent elastic constants can be

determined from P and S-wave velocities using the following equations (Lo et al., 1985)

Table 5.1 P and S-wave velocities for cube specimens

granite sandstone dolomite
density 2622 (kg/m3) 2148 (kg/m3) 2701 (kg/m3)

) VP | VSH | Vsv VP | VsH | Vsv Ve | VsH | Vsv
axis (m/sec) | (m/sec) | (m/sec) | (m/sec) | (m/sec) | (m/sec) | (misec) | (m/sec) | (m/sec)

X 4285 | 2700 | 2320 | 2828 | 1914 | 1846 | 4952 | 2839 | 2637
y 4296 | 2668 | 2290 | 2808 | 1902 | 1841 | 5070 | 2814 | 2692

Z 3093 | 2302 2326 | 2602 | 1810 | ------ 4474 | 2569'| ——mv
source 1 3500 250 " 1MHz 500 250
frequency| kHz kHz Hz KHz

a. Due to strong scattering, the first arrival of this wave was not clearly observed.
Velocities shown in bold are compared with the velocities for the octagonal specimens
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~ propagation direction

Figure 5.18 Directions of propagation and polarization (particle motion) of P and S-waves measured in
the cube specimens. The name for the velocity of each wave is shown in the plot. S-wave velocities with
particle motion parallel and normal to the plane of isotropy (x-y plane) are shown with a subscript "SH"
and "SV", respectively. For the granite specimen, octagonal blocks were also prepared for measuring P-
waves propagating obliquely to the isotropy axis (perpendicular to x-y plane).
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Ci=pV;, = pV12>y’ (5.42)
Co=C,—2pVg, =Cy - 2PV§H)~’ (5.4b)
Cyy =PVr.» (5.4¢)
Cu= pV.SZ‘Hz’ (5.4d)

P45°

Cis =—Co +/4p°VE . =20V2,(Cy + Cpy +2C, ) +(G, + Cu)(Cs +Cy), (54 €)

where p is density of material, Vp, and Vp, are P-wave velocities measured perpendicular
to the isotropy axis, Vp, is the P-wave velocity parallel to the isotropy axis. Vggy and Vsg,
are velocities of the S-waves propagating perpendicular to the isotropy axis with particle
motion perpendicular to the axis. Vgy, is the S-wave velocity parallel to the isotropy axis.
Vpas- is the P-wave velocity in the direction oblique (45°) to the isotropy axis. Other
commonly measured velocities Vgy, and Vsy, (S-wave velocities perpendicular to the
isotropy axis, particle motion parallel to the axis) are not used in the Eq.(5.4a)~(5.4e). This
is because these velocities are identical to Vsy, . Notice that some velocities for the dolomite
specimen are significantly smaller than the velocities measured for finite axial stresses in
Figure 5.16 and 5.17, indicating large velocity anisotropy. This may be caused by thin,
compliant debonding cracks between the dolomite matrix and the mineral inclusions that

close when subjected to small axial loads.

From the velocities in Table 5.1, four out of five elastic constants for transversely
isotropic rocks can be determined using Eq.(5.4a)~(5.4d). Results are shown in Table

5.2. Average velocities were used to compute the moduli for velocities that should be
identical (for example, V,, and V). In Table 5.1, Vg, for the dolomite is much smaller

than Vg, and V,. This is probably due to a large error in reading the arrival of the

strongly scattered and distorted wave. Therefore, this velocity was not used for computing

the moduli.

Table 5.2 Dynamic Elastic Moduli (250kHz~1MHz)

granite [sandstone | dolomite
Cn 48.27 17.06 67.82
Ci2 10.49 1.42 24.67
C33 25.08 14.54 353.99
Caa 13.99 7.21 19.18

The moduli are shown in [GPa]
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From the velocities in Table 5.1, modulus C;3 cannot be computed. This is because it
requires a P or S-wave measured at an oblique angle to the axis of isotropy. For granite,
octagonal specimens were prepared for measuring waves at this orientation. Table 5.3
shows measured velocities in the direction and polarization shown in Figure 5.18.
Velocities for the octagon D measured using IMHz P and S- waves show good agreement
with the velocities for cube specimens measured using 5S00kHz P and 250kHz S-sources.
From the table, octagon C shows smaller velocities than octagon D. This is possibly due to
local heterogeneity of the rock. Due to the anomalously low velocities, the 45° P-wave

velocity of the octagon C cannot be directly used for determining modulus Cy3. The 45° P-
wave velocity (V,,.,) was inferred from V,, and V,,, using the relative magnitude of

Vs compared with V,, and V), for the octagon C. The estimated V., was 3727m/sec.

From Eq.(5.4e) and the moduli in Table 5.2, C;3 for the granite was determined to be 4.93
GPa.

Table 5.3 Velocities Determined for Granite Octagons
at IMHz Source Frequency

octagon C octagon D

axis VP | VSH |Vsv | axis VP | VSH | Vsv
/ 6 (m/sec) | (m/sec) | (m/sec) / (D (m/sec) | (m/sec) | (m/sec)

x /p° | 4042 2582|2189 | x /0° | 4271 2677 | 2297
x /45° | 3564 | 2420 | 2191 | x /45° | 4271 | 2680 | 2306
z /o0° | 3008 | 2341 | 2293 | ¥ /op° | 4271 | 2680 | 2326
z /135° | 3493 | 2526 | 2176 | ¥ /135° | 4164 | 2749 | 2281

Velocities shown in bold are P, SH, and SV waves having the same directions of wave
propagation and polarization (particle motion) as in Table 5.1.
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5.4 Resonance of Anisotropic Rocks
5.4.1 Experimental setup

Resonance of the anisotropic rocks tested in both Section 5.2 for the static properties
and Section 5.3 for the high-frequency dynamic properties was examined in the cube
specimens. A similar setup to the resonant bar tests in the Chapter 3 was adopted (Figure
5.19). Specimens were suspended using thin steel wires and excited with a sine wave
swept over a broad frequency range by the internal signal generator in an Ono Sokki
CF6400 spectrum analyzer. This signal was amplified by a voltage amplifier (Krohn-Hite

7602) and then passed to a small piezoelectric crystal attached to the specimen with
bonding wax. The resulting accelerations were measured using a miniature high frequency
accelerometer (PCB Piezotronics, 309A, resonance frequency>120kHz) and then displayed
and analyzed on the spectrum analyzer.

5.4.2 Frequency response of an isotropic cube

Before examining the resonance of anisotropic rocks, the resonance of an isotropic
cube made of lead glass was conducted to determine the accuracy of the measurements and
the inversion technique presented in Chapter 4. The length of the specimen was 10.16 cm
and the density was 6275 kg/cm3. As the specimen was too heavy to be supported by steel
wires, it was placed on a foam pad to approximately simulate stress-free boundary
conditions. High frequency ultrasonic transmission tests (central frequency of IMHz) gave
P and S-wave velocities of 3187 m/sec and 1792 m/sec, respectively. The dynamic
Young's modulus and Poisson's ratio computed from these velocities were 51.14 GPa and
0.269, respectively. |

Measured experimental frequency response functions are shown in Figure 5.20(a) and
(b) for source and receiver locations indicated in the plots. Measured accelerations were
normalized by the values determined with an accelerometer attached to the back of the
piezoelectric crystal suspended in air. Accelerations for the crystal were multiplied by the
crystal's mass (3.5g) to obtain the force applied to the specimen. In the plots, frequency
response functions (accelerance) were computed with the numerical model introduced in
Chapter <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>