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Electronic states of a thin layer of material on a surface possess unique physical and 

chemical properties. Some of these properties arise from the reduced dimensionality 

of the thin layer with respect to the bulk or the properties of the electric field where 

two materials of differing dielectric constants meet at an interface. Other properties 

are related to the nature of the surface chemical bond. Here, the properties of excess 

electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and 

the bound state energies and effective masses of the excess electrons are determined 

using two-photon photoemission. For Xenon, the dependence of bound state energy, 

effective mass, and lifetime on layer thickness from one to nine layers is examined. 

Not all quantities were measured at each coverage. 

The two photon photoemission spectra of thin layers of Xenon on a Ag(lll) 

substrate exhibit a number of sharp, well-defined peaks. The binding energy of 

the excess electronic states of Xenon layers exhibited a pronounced dependence on 

coverage. k discrete energy shift was observed for each additional atomic layer. At 

low coverage, a series of states resembling a Rydberg series is observed. This series 

is similar to the image state series observed on clean metal surfaces. Deviations 

from image state energies can be described in terms of the dielectric constant of the 

overlayer material and its effect on the image potential. 

For thicker layers of Xe (beyond the first few atomic layers), the coverage de­

pendence of the features begins to resemble that of quantum well states. Quantum 
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well states are related to bulk band states. However, the finite thickness of the layer 

restricts the perpendicular wavevector to a discrete set of values. Therefore, the 

spectrum of quantum well states contains a series of peaks which correspond to the 

various allowed values of the perpendicular wavevector. Analysis of the quantum well 

spectrum yields electronic band structure information. In this case, the quantum well 

states examined are derived from the Xenon conduction band. Measurements of the 

energies as a function of coverage yield the dispersion along the axis perpendicular 

to the surface while angle-resolved two-photon. photoemission measurements yield 

information about dispersion along the surface parallel. 

The relative importance of the image potential and the overlayer band structure 

also depends on the quantum number and energy of the state. Some members of 

the image series may have an energy which is in an energy gap of the layer material, 

therefore such states may tend to remain physically outside the layer and retain 

much of their image character even at higher coverages. This is the case for the 

n = 1 image state of the Xe/ Ag(111) system. The energies of image states which 

are excluded from the layer have a complex dependence on the thickness of the layer 

and its dielectric constant. 

The population decay kinetics of excited electronic states of the layer were also 

determined. Lifetimes are reported for the first three excited states for 1-6 atomic 

layers of Xe on Ag(lll). As the image states evolve into quantum well states with 

increasing coverage, the lifetimes undergo an oscillation which marks a change in the 

spatial extent of the state. For example, the n = 2 quantum well state decreases 

substantially at 3-5 layers as the electron probability density in the layer increases. 

The lifetime data are modeled by extending the two-band nearly-free-electron ap­

proximation to account for the insulating Xe layer. 
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Chapter 1 

Introduction 

The interactions of electrons with interfaces are of considerable importance in 

many fields of study. The energy levels, dynamical processes, and transport prop­

erties of electrons at surfaces and interfaces have a direct influence on the surface 

chemistry, electrochemistry, electronic device properties, and optical properties of 

interfaces. The unique electronic properties of the surface are involved in the sur­

face chemical bond. The breaking of a surface chemical bond and the generation 

of reactive species at the surface may in some cases involve electron transfer from 

the substrate to the adsorbate. The field of surface science is largely concerned with 

the interaction of electrons at surfaces and interf<}.ces. Most of the tools of surface 

spectroscopy, for example, electron energy loss, Auger emission, and photoemission, 

involve the interactions of electrons with the surface. The scanning tunneling mi­

croscope and the atomic force microscope, which have increased our knowledge of 

surfaces immensely in recent years, involve electronic interactions between the surface 

and the probe tip. 

The present work is concerned with electronic states which are present at a sur­

face or interface. Of primary interest is the class of states whose spatial extent is 

largely coincident with that of the adsorbate layer, here referred to as the interfacial 

quantum well states. The primary system of interest in the present work consists 

of a metal substrate covered with a thin layer of electrically insulating material. In 

addition, thin metal layers on a metal substrate have been investigated. The be-
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havior of electrons at the metal/insulator interface have been investigated for films 

ranging in thickness from one to several molecular layers. The chief aim has been 

to develop a more complete picture of electronic structure at interfaces. A central 

question which has emerged concerns the roles the molecular properties (through the 

quantum mechanical energy levels of the isolated adsorbate molecule and molecular 

polarizabilities), bulk electrical properties (energy bands, dielectric constants), and 

surface or interface properties play in determining the electronic structure of the 

composite interface. One strategy has been to build up a microscopic understand­

ing of electronic structure of an interface by comparing measurements of electronic 

structure over a wide range of layer thicknesses. Presumably, effects which involve 

electronic interactions between the substrate material and the first molecular layer 

of adsorbate should be more prominent for very thin layers than for very thick lay­

ers. Similarly, bulk properties should be manifested as the layer thickness increases 

beyond that of a single molecular layer. 

Another question which emerged during the course of these investigations con­

cerns the spatial extent of interfacial electronic bands. Factors which are likely to 

influence the spatial extent of the interface bands include the nature of the electronic 

potential in the region near the junction between the two materials and the bulk and 

molecular electronic properties of the two materials comprising the interface. Yet 

another important question concerns the nature and associated time scales of the 

relaxation processes of interfacial electronic bands. Many scientifically important 

systems are in a metastable state in which physical interactions between parts of 

the system result in a loss of energy to the surroundings. Information about the 

dynamics of electrons at interfaces is of value because it offers a window into range 

of processes through which an electron can transfer energy, change quantum number, 

and change position. Given sufficient experimental evidence, a complete picture of 

the various processes, intermediates, timescales, and likely sequences of events in­

volving electrons at interfaces can be obtained. The kind of experimental evidence 

required to develop such a picture is time-resolved spectroscopic characterization of 

the quantum-mechanical energy levels of electrons at interfaces. The characteristic 

time scale of a given physical process is often roughly dependent on the size of the 



3 

system. The slow dance of the planets is measured in days, years, and centuries. In 

contrast, the characteristic time scale of electronic interactions in atoms and small 

molecules is generally between a few femtoseconds and hundreds of picoseconds. 

The experimental technique employed for these studies is time-resolved two-pho­

ton photoemission. Time-resolved two-photon photoemission is a relatively new tech­

nique, and its application to the study of complex interfaces is even more recent. This 

technique is uniquely suited to the study of the electronic structure of interfaces. The 

advantages include good energy resolution (comparable or better than that of other 

electron spectroscopies), ultrafast (femtosecond or 1 x 10-15 s) time resolution, and 

access to the energy window of primary importance to the chemical and electrical 

properties of interfaces. In the language of solid state physics, the energy range 

of two photon photoemission is the region containing the valence and conduction 

bands, the region most important to the the electrical properties of materials. In 

the language of chemistry, it is the energy region containing the HOMO (highest 

occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), the 

region generally associated with absorption in the ultraviolet and visible regions of 

the electromagnetic spectrum, bond formation, bond cleavage and electron transfer. 

The technique is also quite simple and elegant, conceptually. A photon from a laser 

pulse strikes a surface, imparting its energy to an electron, which is elevated to an 

excited energy level of the interface. Some time later, a photon from a second laser 

pulse strikes the surface, imparting enough energy to detach the electron from the 

surface. The free electron then travels a fixed distance in vacuum before striking a 

detector which records its energy and the direction of emission. The population of a 

given electronic energy level at a given time can be determined by setting the time 

delay between laser pulses. 

The present work involved a combination of several experimental techniques and 

the development of several theoretical models for excited interfacial states. The ex­

periments included standard surface preparation and characterization techniques of 

surface science, ultrafast laser spectroscopy, and photoelectron spectroscopy. Sur­

faces and interfaces are by their nature fragile, difficult to prepare, and prone to con­

tamination. In addition, the data obtained by some of the experimental techniques 

., 
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is often difficult to analyze, somewhat ambiguous and prone to misinterpretation. 

Every attempt was made to ensure that the substrate and overlayers were relatively 

clean, well-ordered, and free of contamination in an ultra high vacuum environment. 

Spectra were obtained in a thorough and systematic fashion. Multiple experimental 

runs were used to verify the reproducibility of results. Significant efforts were made 

to calibrate and verify the functioning of the TPPE spectrometer. Efforts were also 

made to ensure that the model for excited interfacial states were derived from simple 

models which have proven successful in similar systems. 
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Chapter 2 

Background 

2.1 History of Surface States 

The study of the interaction of light with electrons at surfaces dates to the work 

of a German experimenter, Philip Lenard, who studied the absorption of visible and 

ultraviolet light by metals. He found that enough light energy is transferred to the 

electrons in the metal so that some of them are ejected from the metal surface. He also 

found that the energy of the ejected electrons did not increase with light intensity, 

as predicted by -classical theory. Rather, the energy of the electrons depended on 

the wavelength of light while the current depen~ded on the intensity. This work led 

Einstein to develop his theory of the photoelectric effect, an important confirmation 

of the quantum hypothesis [1, 2]. 

A more detailed understanding of the electronic structure of metals was obtained 

by the application of quantum mechanics to the electronic energy levels of solids. 

In the theory of the electronic structure of metals as first developed it is assumed 

that electrons move about freely in a constant potential throughout the interior of 

the crystal. A better approximation is to consider the potential inside the crystal to 

be periodic with the periodicity of the lattice. The principal effect of the periodic 

potential is the presence of band gaps when the electron momentum is close to that 

of a multiple of a reciprocal lattice vector, where it can be said that the electron is 

Bragg-reflected by the periodic potential [3]. 
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Early theories which included lattice periodicity assumed infinite periodic crys­

tals. An infinite crystal possesses an infinite number of states. For a finite crystal 

containing N electrons the continuous bands are replaced by N discrete electronic 

states often called quantum well states. Another important consequence of the finite 

crystal is that the presence of the surface can give rise to additional energy levels 

called surface states or surface bands. These surface states may reside in forbidden 

energy gaps of the bulk and are localized in a region near the surface. These two fac­

tors differentiate surface states from bulk states or discretized bulk (quantum well) 

states. Tamm [4] was the first to demonstrate the existence of surface states using the 

Kronig-Penney potential to approximate the crystal. The crux of his approach was 

the application of wave function matching conditions to join solutions in the crystal 

and the vacuum. Maue [5] and Goodwin [6] applied the wave function matching 

approach to the approximation of nearly-free electrons. Goodwin also developed a 

description of surface states within the tight-binding approximation (TBA) [7]. 

2 .1.1 The Image Potential State 

In addition to the loss of periodicity at the surface, there is an abrupt change 

in the electron density and the polarizability. The polarizability of the surface gives 

rise to a potential well near the surface known as the image potential. The image 

potential has long been recognized as a fundamentally important aspect of surface 

electrostatics. As such, it is an important factor in the electronic energy levels of 

adsorbed species, it affects the kinetic energy of photoemitted electrons, and it is the 

dominant force in molecular physisorption1. 

An electron in the vacuum near the surface is attracted to the polarization it 

induces in the surface. This problem is often solved in elementary electrostatics by 

the method of images [8, 9], in which the electron at a distance z from a surface 

interacts with a fictitious image charge of opposite sign located at -z. In the widely 

.1 In the literature it is often assumed that the dominant force involved in physisorption of non­
polar species is the interaction between the surface spill-out dipole and the polarizable adsorbate. 
However, the surface dipole potential is short ranged and the exchange-correlation potential (which 
can be described as a many-body description of the image potential) dominates. 
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used jellium model for surface electronic structure, the image potential is described as 

a many-body effect: The image potential is the real part of the exchange-correlation 

potential near a surface [10, 11]. When the substrate has a band gap in the vicinity 

of the vacuum level, the resulting potential well can support a Rydberg-like series 

of states converging to the vacuum level (Figure 2.1). This class of surface state is 

called the image state or image potential state. 

Image states were first observed on the surface of liquid helium, where transitions 

were detected by microwave absorption [12]. The first evidence for image potential 

states on bare metals was obtained by inverse photoemission [13-15]. Giesen and 

coworkers were the first to study this class of surface states by two-photon photoemis­

sion (TPPE), using nanosecond pulsed lasers [16]. This and subsequent two photon 

photoemission work led to confirmation and refinement of the multiple reflection the­

ory for image state binding energies on different single-crystal metal faces [17-19]. 

In recent years, studies have extended into the more complex and interesting 

systems where one or more molecular layers is adsorbed on a surface (see reviews 

by Fauster [20] and Harris and coworkers [21]). The study of adsorbate layers is 

substantially more challenging than the study of the clean surface. Experimentally, 

these studies are complicated by the various classes of surface bonding and growth 

modes for the adsorbed layers. The adsorption phase diagram can be quite compli­

cated, including commensurate and incommensurate phases, 2-D liquid and 2-D gas· 

phases, amorphous phases, coexisting phases, and structural phase transitions. It is 

.also difficult to determine the origin of a given spectral feature which may be at­

tributed to electrons in the substrate, the overlayer, the vacuum, or a combination of 

all three regions (mixed states). Development of an accurate model is confounded by 

many effects, including the complicated electrostatics of a heterostructure containing 

regions of differing dielectric constant, the transfer of charge between the overlayer 

and substrate, adsorbate-adsorbate interactions (polarization and orbital overlap), 

bonding between overlayer and substrate, energy band mismatch, adsorption-induced 

workfunction shifts, and the effects of crystal and layer steps and defects. Chemisorp­

tion and its complex and interesting relationship to surface and adsorbate electronic 

structure is discussed in a paper by Lang and Williams [22] and in a review by Muscat 
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Figure 2.1: An electron near a surface is bound by an image potential which the 
electron induces by polarizing the material. Image states form a Rydberg series of 
states that converge to the vacuum level. The surface-projected Ag(lll) band gap 
is shown here. Technically, the n = 2 and higher image states are resonances, since 
they are degenerate with the conduction band. 



9 

and Newns [23]. 

Despite these complications, the spectroscopy of image states has been shown to 

be an important tool in the study of interfaces. Steinmann, Fauster, and coworkers 

used the fact that image state binding energies are pinned to the local work func­

tion [24] to observe the growth modes of Ag, Au and Co on Cu(lll) and Pd(lll) [25-

27] and have studied the evolution of metallic quantum wells for Au/Pd(lll) [26]. 

These studies examine the formation of occupied valence band quantum well states 

of one free-electron metal on another and were recently reviewed [20]. 

2.2 Spectroscopy of Surface Electronic States 

In order for a technique to be a candidate for surface electronic state spectroscopy, 

it should meet several suitability criteria. It should, first and foremost, be sensitive 

primarily to the surface. The resolution should, ideally, be better than the linewidth 

of surface state spectral features, which are on the order of a few me V in some 

cases, much narrower than bulk features. The technique must provide a method 

for populating and probing excited electronic states. The ability to resolve parallel 

momentum and to determine the dynamics of excited states is of substantial benefit: 

the additional experimental degrees of freedom help to sort out the various factors 

which contribute to the spectra of complex surface systems .. 

Techniques which have been used to study surface states include low energy 

electron energy loss spectroscopy (EELS), ultraviolet photo emission spectroscopy 

(UPS), X-ray photoemission spectroscopy (XPS), inverse photoemission (IPE), scan­

ning tunneling microscopy (STM), and two photon photoemission (TPPE). XPS is 

useful in identifying the species, oxidation state, and bonding of chemisorbed and ph­

ysisorbed layers as well as serving as a powerful tool for band structure spectroscopy. 

UPS is well-suited to characterizing the valence and conduction band structure of 

the substrate as well as occupied surface states. Here we shall only cover TPPE in 

detail because of the relevance to the current work. Also, much of the relevant recent 

experimental data relating to surface states was acquired using TPPE. There have 

recently been many advances to the technique of TPPE including improved resolu-
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tion in time and energy and the development of additional applications for TPPE 

such as hot electron dynamics, coherent phase-locked TPPE and TPPE of quantum 

beat signals arising from closely spaced levels. 

2.2.1 Photoemission Spectroscopy 

Photoemission spectroscopy is a technique which is uniquely suited to the study 

of the electronic structure of interfaces. Electronic states of solids and surfaces have 

been studied extensively using photoemission measurements [28]. The process in­

volves the absorption of a photon of known energy hv near the surface of a solid, 

photoemitting an electron of initial energy Ei yielding an electron with the kinetic 

energy Ekin· By measuring the energy of the photoemitted electron, the energy of 

the initial state with respect to the vacuum energy can be determined. If the work 

function is known, then the energy of the state with respect to the Fermi level EF 

can be obtained. The energy distribution curve of photoemitted electrons provides a 

picture of the initial density of states, provided the final states form a smooth contin­

uum and the transition probability is homogeneous. With monocrystalline samples 

and clean, well ordered surfaces it is possible to determine the band structure at high 

symmetry points and lines of the Brillouin zone. Angle-resolved measurements yield 

additional information about the 3-D band structure. Photoemission is limited to 

the study of occupied initial states below EF and unoccupied final states above the 

vacuum level. Final state results are scarce due to experimental considerations and 

the difficulty of interpreting final state photoemission results. Inverse photoemission 

spectroscopy and two photon photoemission spectroscopy provide access to surface 

and adsorbate states between the Fermi level and the vacuum level. 

2.2.2 Inverse Photoemission 

Inverse photoemission (IPE) refers to the class of experimental techniques in 

which a monochromatic electron beam is directed at the sample surface. A number 

of the electrons decay radiatively into unoccupied states. The photon energy for a 

given spectral feature is equal to the difference between the electron beam energy 



11 

and the final state energy. The resolution of IPE is limited by spectral width of the e­

beam and the energy resolution of the photon detector and is typically on the order 

of several hundred meV. Inverse photoemission is so named because the technique 

is analogous to "time-reversed" photoemission. However, while photoemission yields 

the energies of occupied electronic states, IPE yields the energy of unoccupied elec­

tronic states. Recent developments in the field of IPE have been covered in several 

review articles [29-31]. Here we shall restrict ourselves to a discussion of the main 

features of IPE and a comparison to TPPE. 

IPE is similar to TPPE in that both techniques are complementary to traditional 

photoemission spectroscopy, yielding the energies of states above the Fermi level. 

Parallel momentum is conserved in the IPE process. The IPE spectrum can be 

obtained as a function of parallel momentum by varying the angle of the incident 

electron beam with respect to the sample. Because of the relatively high energy of 

the electron beam (on the order of 10 to 20 eV), IPE is typically capable of sampling 

a larger range of k11 than TPPE. Inverse photoemission may also be more well-suited 

to the spectroscopy of states above the vacuum level, though, in principle, TPPE 

may also be applied to the study of states in this energy range.· 

It is difficult to make a direct comparison between the signal levels for IPE and 

TPPE since the TPPE response depends on the peak laser power. According to 

first-order perturbation theory, the ratio of the cross-section for IPE versus the cross­

section for photoemission is given by [28] 

R = (~)
2 

(2.1) 
A!iw 

Qualitatively, this reflects the available phase space for the final state particles. 

Typically, Rison the order of 10-5 , which explains the low signal/noise ratio typically 

observed in IPE spectra. 

An important difference between inverse photoemission and traditional photoe­

mission or TPPE is that the IPE process does not involve the generation of an 

electron vacancy or hole. This is generally not an issue in TPPE spectroscopy of 

metals where the hole is rapidly and effectively screened owing to the high density of 

carriers. For semiconductors and insulators, where screening is less effective because 
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of the lower number of carriers, there may be a notable difference between TPPE 

and IPE measurements related to imperfect screening of holes. 

2.2.3 Two Photon Photoemission Spectroscopy 

Time-resolved two photon photoemission is a relatively new technique which is 

uniquely suited to the study of the electronic structure and dynamical processes at . 
interfaces and offers several advantages over PE and IPE. The advantages include 

applicability to the energy range between EF and Evac, good energy resolution (com­

parable or better than that of other electron spectroscopies), ultrafast (femtosecond) 

time resolution, surface sensitivity, and low background. The technique is quite sim­

ple and elegant, conceptually. A photon of energy hv1 from a laser pulse is absorbed 

at a surface, imparting its energy to an electron at or below the Fermi energy level 

in the solid and elevating it to an excited intermediate state of the. interface. Some 

time later, a photon of energy hv2 from a second laser pulse is absorbed, imparting 

enough energy to eject the electron from the surface. The free electron then travels 

to a detector which records its energy and direction. 

The TPPE spectrum is a distribution of electron kinetic energies. The energies 

of the intermediate states can be determined by subtracting the energy of the second 

photon hv2 . The angle of the photoemitted electrons can be used to determine the 

energy as a function of the parallel momentum of the intermediate electronic state, 

referred to as the dispersion of the state. In addition, the population dynamics of 

intermediate states can be determined by varying the time delay between pump and 

probe laser pulses. 

Surface two photon photoemission was first developed and applied to the study 

of surface states by Giesen and coworkers [16] in 1985. This work constituted the 

first high-resolution spectroscopy results for the image states of Ag(lll), Cu(111), 

and Ni(111) surfaces. Much of the early work concentrated on the energies of image 

states and surface states for a variety of transition metal crystal faces. Two review 

articles cover much of the results and development of the technique [32, 33] during 

the first few years. 
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Later, the application of angle-resolved TPPE yielded measurements of the dis­

persion of image states. The dispersion of image states, E(k11 ), is determined by 

obtaining TPPE spectra at a series of angles. Dispersion measurements have been 

obtained for a wide number of crystal faces of transition metals [18, 24, 32, 34, 35]. 

The results of dispersion measurements are often described in terms of a quasipar­

ticle effective mass. Initial theory for image state dispersion predicted an effective 

mass of near unity for all crystal faces, except for measurements at high k 11 where 

the two band model is not accurate. 

In the last few years the initial promise of ultrafast laser techniques coupled with 

TPPE has been largely realized, and even more important results and advances in 

the technique are sure to follow. Importantly, TPPE is no longer merely a tool for the 

study of image potential states. Increased signal levels, improved time resolution, and 

a wider wavelength range have extended the reach of TPPE to an ever wider range 

of processes and systems including hot electron dynamics and transient molecular 

anions. Still, many important dynamical processes involving electrons which are 

known or thought to take place on surfaces have yet to be characterized. 

The team of Knoesel, Hertel, Wolf, and Ertl applied femtosecond time-resolved 

TPPE to the study of CO on Cu(111) [36,37]. Later they applied the same technique 

to the optical response of hot electrons for the same crystal face [38]. According to 

their analysis of the data, the results yielded a qualitative agreement with Fermi 

liquid theory. These results were later disputed by Petek and coworkers [39] who 

determined that the lifetimes deviated substantially from the (E- EF )-2 functional 

form predicted by the standard Fermi liquid theory. A qualitative agreement with the 

theory was reached when the band structure of Cu was taken into account, though the 

calculated lifetimes were a six times faster than the measured lifetimes. The failure 

of the free electron model in predicting the energy dependence and magnitude of the 

scattering times is attributed in part to d band electrons, which can participate in 

both scattering and screening of hot electrons. 

Time-resolved TPPE was also used to compare the dynamics of image states on 

clean Cu(111) to the dynamics of the image state for a monolayer of Xe on the same 

surface [40]. Qualitative agreement was reached with the results of a penetration 
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model assuming the primary effect of the Xe layer was the lowering of the work 

function. However, the near degeneracy of the Cu(111) conduction band with the 

image state invalidates the results of the penetration model, since the model requires 

that the state be in the band gap of the substrate. Since small changes in the 

model parameters yield wildly different results, agreement between the model and 

the experiment may be assumed to be due to a fortuitous choice of model parameters 

and not a strong indication of the correctness of the model. A more important 

contribution of this paper was the treatment of coherence dephasing using the optical 

Bloch equations [41] for a single resonant transition between two levels. Later work 

has shown that a two step Bloch model does not adequately describe two photon 

photoemission [42]. Interestingly, the more complex three step model yields results 

for lifetime (T1) which are similar to those obtained by use of the rate equations 

(which do not include dephasing). 

In a later paper [43], hot electron results are interpreted in terms of simple rate 

equations rather than the optical Bloch equations which were employed earlier [40]. 

It was determined that most of the photon energy is absorbed by d band electrons. 

It was also determined that d band hole states possess .roughly twice the lifetime of 

sp band electronic states, probably due to the highly localized nature of the d band 

hole state, since localization most likely reduces the probability of scattering events. 

The authors also found that approximately half of the excited electron distribution 

is removed from the surface region by ballistic electron transport within 20 fs of the 

initial excitation. 

Aeschlimann and coworkers have used ultrafast time-resolved TPPE to study 

a variety of complex systems of broad interest, including magnetic thin films [44-

47], alkali layers [48, 49], chemisorbed oxygen [50], and hot electron dynamics. In 

a recent paper in which the spin-resolved hot electron dynamics were determined 

for the Co(001) surface, it was found that the lifetime of excited electrons of the 

majority spin is twice as long as that of the minority spin carrier. Importantly, the 

results demonstrate the feasibility of studying spin-dependent electron dynamics in 

ferromagnetic solids directly in the time domain (as opposed to static bulk transport 

measurements), providing a unique and detailed perspective on electron transport in 

I 
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ferromagnetic solids and films. 

Petek and coworkers have concentrated their efforts on the study of hot electron 

dynamics [39] and the fundamental aspects of the interaction of short laser pulses 

with electronic states at or near the surface [42]. They extended the technique of 

ultrafast two photon photoemission by using phase-locked laser pulses, and were thus 

able to obtain time and phase-resolved information on the laser-induced polarization 

at the surface. It was found that, in addition to the initial oscillations at the laser 

frequency w, there is an oscillation at a frequency of 2w corresponding to the second 

harmonic. It was determined that the appearance of the second harmonic is not 

instantaneous. In their work on hot electron dynamics, Ogawa and coworkers find a 

dependence on the crystal face. Petek and Ogawa have written a review [51] on recent 

findings in the field of ultrafast laser spectroscopy of electrons in metals. Recently, 

the ultrafast kinetics of desorption precipitated by the transfer of an electron from 

the metal substrate to an adsorbed alkali atom were measured [52]. This work will 

likely lead to additional application of the TPPE technique to the spectroscopy of 

transition states on surfaces. 

2.2.4 Angle resolved Two Photon Photoemission 

Angle resolved two-photon photoemission (ARTPPE) and angle resolved inverse 

photoemission experiments can be used to measure the dispersion of image states. 

The dispersion is the relation between energy and parallel momentum ( E ( k11 )) for 

a given band. A related technique, angle resolved photoemission spectroscopy, has 

proven to be a useful extension of photoemission spectroscopy. The additional exper­

imental parameter greatly increases the amount of information obtainable by pho­

toemission experiments, providing detailed information about the three-dimensional 

band structure. Similarly, angle resolved two-photon photoemission yields additional 

information about excited surface bands. 

The angle between the detector axis and the surface normal can be related to the 

parallel momentum k11 associated with a given spectral feature using the relation 

k11 = 1i-1J2mEsinO, (2.2) 



16 

where () is the angle of the detector with respect to the surface normal. Often, the 

dispersion can be described by an effective mass parameter. The effective mass of 

image states is discussed in detail in a later section. 

2.3 Theoretical Models of Surface States 

There are essentially two broad classes of approaches to the modeling of surface 

states: ab-initio and empirical. The ab-initio approach more or less completely 

·simulates the system of interest, solving the complete Schrodinger equation for a 

sufficiently large slab. Such calculations are often computationally expensive, and 

often possess limited explanatory power in terms of physical properties or trends. 

Experimentalists attempting to establish trends and determine physical properties 

often rely on approximate solutions and empirical models which employ physical 

properties obtained by experiment in order to predict physical properties, spectral 

features, and trends. These models are typically based on a simplified hypothetical 

system which treats a small subset (hopefully the most important subset) of the 

processes and interactions encompassed by a more complete treatment of the system. 

Multiple Reflection Theory (MRT), proposed by Echenique and Pendry [17], and 

its variants, constitute a useful, empirical approach to the problem of image states. 

The power of the multiple reflection approach rests in its simplicity and its ability 

to account for differences in image state binding energies on various crystal faces, as 

well as its reliance on the well-known two band nearly-free-electron theory and such 

physical parameters such as the positions and widths of the substrate bands. Multiple 

reflection theory is a piecewise approach to the image state problem: appropriate 

wavefunction solutions in the substrate and vacuum are joined at the surface where 

eigenenergies are determined by solving the resulting boundary value problem. The 

following subsections illustrate approximate potentials and wavefunction solutions 

in the vacuum and in the substrate and are followed by a discussion of the multiple 

reflection method for determining bound states. 

I 
I 

I 
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2.3.1 The Image Potential or Surface Barrier 

Consider the case of an electron at a distance z outside a perfect conductor. 

From elementary electrostatics it is known that the electric field must vanish at the 

conductor surface. This boundary condition defines the electric field. A solution can· 

be obtained by applying the method of images: an imaginary positive charge at an 

equal distance - z from the conductor surface (an image charge) cancels the field at 

the surface satisfying the requirement that the field vanish at the surface. Since the 

interaction of the electron with its image is Coulombic, the resulting image potential 

takes the form of a Coulomb potential [17]: 

z 
V=--, 

z 
(2.3) 

where z is the distance from the conductor surface and Z is a coupling constant 

related to the static dielectric constant c: 

Z=~E-1. 
4E + 1 

(2.4) 

For a perfect conductor E = oo and Z = 1/4. If the potential approaches V ---+ -oo 

as z ---+ 0, the energy levels2 with respect to the vacuum level are given by: 

-Z2 -13.6 eV 
Eb= -- = ----

2n2 16n2 (2.5) 

For an electron outside an insulating material with a low dielectric constant, Z is 

smaller resulting in a lower binding energy. 

The image po~ential at a realistic metal surface, while exactly Coulombic .for 

large z, differs substantially from the Coulomb form within an Angstrom or so of 

the surface: At metal surfaces electron density profile in the surface region tapers .off 

smoothly from the bulk electron density some distance inside the metal to essentially 

zero a short distance outside the metal. The electron density is said to "spill out" 

from the surface. The resulting charge distribution gives rise to the surface dipole 

2Elsewhere it is stated that Equation 2.5 only holds for an infinite potential barrier (V = +oo) 
at z = 0. According to the properties of the confluent hypergeometric functions solutions for the 
Coulomb potential, the divergence of the potential in the region near z = 0 is more important than 
the potential at a single point. The infinite barrier at z = 0 merely serves as a way to emphatically 
remove from discussion any contribution from substrate electronic structure. 
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(spillout dipole) which contributes to the work function. As a negative test charge 

approaches the surface, electron-electron repulsion with the electron density outside 

the surface replaces the singularity near z = 0 present in the classical image potential 

with a smooth function which joins to the potential of the crystal interior. The 

connection with the interior crystal potential is responsible for the substrate-induced 

deviations from hydrogenic binding energies. A thorough discussion of a realistic 

quantum mechanical form of the image potential from a density functional point 

of view is available in a review article [19] and has been refined recently [53]. In 

the density functional treatment of surfaces, the image potential is the tail of the 

exchange-correlation potential outside the surface3 . 

In the multiple reflection theory for image states and some related theories, the 

image potential is approximated by a Coulomb potential with a flat cutoff potential in 

the region closest to the surface. The wavefunction solution to the time-independent 
' 

Schrodinger equation for the image potential region which matches the solution in 

the cutoff region and properly vanishes at infinity is a confluent hypergeometric 

function known as the irregular Whittaker function [54,55], W.A,tt(p), where f-L = 1/2, 

). = Zj../2E, p = 2z../2E, and Z = 1/4 for a metal image potential, and E and z 

are the energy and distance in atomic units. 

2.3.2 The Two Band Nearly-Free-Electron Model 

The two band nearly-free-electron (NFE) model describes an electron in a weak 

periodic potential [3]. It is a simple model which describes the electronic structure 

of ordered materials in terms of energy bands and is discussed in solid state physics 

textbooks [56, 57]. It is often invoked to describe the conductivity of simple metals 

and insulators in terms of a forbidden energy gap. The two band nearly free electron 

model is also the basis for many models surface and image states [58-60]. For an 

3In some approximate forms of density functional theory, most notably the local density approxi­
mation (LDA), the exchange-correlation potential does not possess the correct asymptotic 1/ z form 
but rather decays exponentially for large z. This is a consequence of neglecting nonlocal effects; 
LDA assumes the electron and its exchange hole are attached. When LDA methods are used in 
calculating image potentials, a correction must be applied [53]. 

I 
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infinite, perfectly crystalline solid, the crystal potential is periodic: 

V(r) = V(r +a), (2.6) 

where a is a primitive translation vector of the lattice. According to the well-known 

Bloch-Floquet theorem, the wavefunction solutions for a single electron in this po­

tential are also periodic and are given by 

(2.7) 

where uk(r) is periodic with the lattice. States of this form are said to be Bloch 

states. 

In the following theoretical discussion, a one dimensional approximation of the 

two band model is used. In applying this approximation to a 3-D crystal, it is 

assumed that the Hamiltonian for the system is approximately separable into per­

pendicular and parallel.components. Generally, it is assumed that k 11 = 0 and the 

contribution of 1£11 to the total energy is assumed to be a constant. 

Here only the major features of the two band model will be outlined. The notation 

is adapted from Smith [61]. In the two band NFE approximation the 1-D crystal 

potential is written as a Fourier expansion in multiples of the reciprocal lattice vector 

g = 21rja: 

(2.8) 
n 

The potential fluctuations are assumed to be weak, so only the first two terms, 

V9 , V_9 are kept and the higher order terms are ignored. For crystals with inversion 

symmetry Vg = V_ 9 • Electron energies c with respect to the zero of energy (here 

taken to be the band energy at zone center) for the two-band NFE model are given 

by solving the secular equation 

Vg I 
(n2 /2m*)(k- g) 2 - c = o. (2.9) 

At the zone boundary located at k = g /2 (in momentum or reciprocal space) 

there is an energy gap of width 21Vgl. Figure 2.2 illustrates the roots of Equation 2.9 

and how the parameters of the two band NFE model are related to the position 
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Figure 2.2: The main features of the two band nearly-free-electron model are the gap 
energy E9 and gap half width V9 at the g /2 = 1r j a zone boundary. The upper and 
lower solid curves are the roots of Equation 2.9 as a function of k. The dashed curve 
is the solution for V9 = 0, which corresponds to the case of a perfectly free electron. 
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and widths of the valence and conduction bands. Within the gap solutions exist 

for complex k, which correspond to an evanescent wave decaying into the metal. 

The wave vector can be represented as a sum of real and imaginary components, 

k = p + iq. 

For the 1-D case corresponding to solutions along the surface normal Equation 2.9 

yields the standard results 

p g/2, (2.10) 

(n2 /2m:*)q2 (4cE9 + v;) 112- (c + E9), (2.11) 

Eg (n2 /2m*)p2, (2.12) 

sin(2J) -(n2 j2m*)(2pqjV9), (2.13) 

where E 9 is the midgap energy, m* is the effective mass, g = 21rjd where dis the 

interplanar spacing, and J is a wave-function phase4 . The wave function in the crystal . 
is given by 

(2.14) 

For energies within the valence or conduction bands, the imaginary part of the 

wavevector, denoted by q is zero. Within the gap q > 0 which causes the wavefunc­

tion of Equation 2.14 to exponentially decay away from the surface. The maximum 

value of q is given by 
n,2 

2m*gqmax = IVgl. (2.15) 

The energy corresponding to Qmax is given by 

(2.16) 

The sign of V9 depends on the symmetry of the wave function at the top and bottom 

of the gap. For Ag(111) the band gap is sp inverted: solutions are s-like at the top 

of the gap and p-like at the bottom. This case corresponds to V9 > 0. 

4 For sp inverted band gaps, the correct branch of the arcsin required to solve for 6 in Equa­
tion 2.13 can be determined by requiring that 6 = 0 at the bottom of the gap, 6 = 1r j 4 at the 
middle of the gap where jqj is at a maximum and 6 = 1r /2 at the top of the gap. 
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By itself, the two band model possesses limited predictive value for a given system. 

However, the values of E9 , Vg, which are the energy (with respect to the energy 

zero at zone center) and half width, respectively, of the band gap, can be taken 

from experimental results or state of the art band structure calculations, yielding a 

parameterized model which has proven useful in describing the electronic structure 

of the substrate in models of surface states and quantum well states. The two band 

NFE model has proved useful in describing the effects of the energy gap and electron 

occupancy on the conductivity of simple metals and insulators. The details of the 

multiple reflection model, which uses thetwo band NFE approximation, are discussed 

below. 

2.3.3 Multiple Reflection Theory 

Multiple reflection theory, also referred to as the phase shift model for surface 

states, is a method for solving the internal boundary value problem where two band 

nearly-free-electron wavefunction solutions for the metal connect to (Whittaker func­

tion) solutions for the image potential at the surface. The model is based on the 

reflective properties of the potential barriers presented by the substrate lattice and 

the image potential. A plane wave is. constructed in the (infinitesimal) region be­

tween the metal and the image barrier. If a wave 'lj;- carries a unit of flux towards 

the crystal, a portion of the wave will be reflected. The reflected wave will have the 

form 

(2.17) 

where rc and cf>c are the modulus and phase of the crystal reflectivity and 'lj;+ is a 

wave which carries a unit of flux away from the crystal. When this wave is reflected 

from the surface (image) barrier where r8 and cp8 are the modulus and phase of the 

barrier reflectivity, the resulting wave is 

(2.18) 

Upon repeated scatterings, the total amplitude for 'lj;- is given by the geometric sum 

1 
(2.19) 
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A pole in Equation 2.19 denotes a bound state of the surface. Assuming unity 

reflection coefficients the bound state condition is 

<Pc + <P B = 27m. (2.20) 

Expressions for </Jc and ¢8 are derived from solutions in the crystal substrate and in 

the vacuum. 

The phase shift <P 8 for the image barrier is defined by matching the wavefunction 

for the image barrier to a plane wave of the form . 

(2.21) 

In the present context, wavefunction matching is performed by determining the log­

arithmic derivatives5 of both the plane wave and the wavefunction solution in the 

vacuum (Equation 2.14), setting them equal, and solving for ¢8 . As stated earlier, 

the wavefundion solution in the vacuum region is the irregular Whittaker function 

W>.,tt(P) where J-L = 1/2, A= Zj.../2E, p = 2z.../2E, and Z = 1/4 for the case of an 

image potential, and the energy E and the coordinate z are in atomic units. The 

resulting expression for the phase shift of a unit of flux traveling from the origin 

towards the Coulomb barrier is 

_ 1 (2...;2E w~,tt(Po)) 
</J B = 2kczo + 2 tan k W ( ) , 

c . >.,tt Po 
(2.22) 

where Wl,tt(p0 ) is the derivative with respect to p, kc is the wave vector in the 

cutoff region [54], p0 = 2z0 .../2E , and z0 is the cutoff distance6 .. The value of ¢8 

increases rapidly as E approaches zero, causing the total phase shift to increase 

rapidly which therefore sweeps though the bound state condition more frequently. 

This is consistent with the Rydberg-like series of states converging on the vacuum 

indicated in Equation 2.5. 

A useful approximation to ¢8 has been derived that reproduces the hydrogenic 

limit (Equation 2.5) and illustrates the dependence of ¢8 on energy [19], 

¢J8 (E) = ( ~- 1) n. (2.23) 

5 The logarithmic derivative of 'ljJ with respect to xis defined as dfdx(ln '1/J) or equivalently '1/J' /'1/J. 
6 A cutoff is used to approximate the flattening of the image potential arising from electron­

electron repulsion of the image electron with the electron gas near the metal surface. 
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This result is referred to as the interpolation formula for the "barrier phase shift 

¢8 and is reliable for determining trends in binding energies of image states. A 

comparison of the phase shift as a function of energy for the the interpolation formula 

and the quantum-mechanical expression reveals that the quantum-mechanical phase 

shift oscillates about the interpolation formula phase shift. 

The crystal phase shift ¢c is determined by matching the plane wave of the form 

(2.24) 

to the Bloch wave in the bulk given by Equation 2.14. The resulting expression for 

¢c is given by 

k tan ( ¢2c) = p tan(pa/2 + o) - q. (2.25) 

assuming the metal terminates at a distance equal to half the interlayer spacing 

outside the last layer of cores (half layer termination). 

For sp inverted band gaps 7 , the crystal phase shift varies from ¢c = 0 at the 

bottom of the gap to ¢c = 1r at the top of the gap. Considering the value of ¢c at 

the bottom and the top of the gap, the bound state condition of Equation 2.20 can 

be satisfied near the bottom of the gap when 

<Pc = -¢B· (2.26) 

This yields the surface state, which derives its name from the observation that the 

maximum in probability density is near the surface. Near the top of the gap the phase 

shift is approximately 1r in which case the bound state condition is approximately 

n = 0, 1, 2, ... , (2.27) 

¢B = (2n + l)n, (2.28) 

which yields the results of the hydrogenic approximation. 

7 A band gap is said to be sp inverted when Bloch states of s orbital symmetry (where the wave 
function amplitude is largest at the atom cores) are higher in energy than Bloch states of p orbital 
symmetry (where the wave function amplitude is largest between neighboring atoms in the lattice). 
The inversion is attributed to the contribution of d orbitals to the hybridized band, the effect of 
which is to lower the energy of the p band states with respect to the s band states. 



25 

It should be noted that the use of logarithmic derivatives to determine the phase 

shifts in Equations 2.22 and 2.25, together with the bound state condition ¢Jc + ¢J8 = 

21rn (Equation 2.20) ensure that the total wavefunction is continuous in slope and 

value. In fact, it can be easily shown that the phase shift requirement is only met 

when the logarithmic derivatives of the solutions in the bulk and in the vacuum are 

equal at z ~ 0. 

In order to illustrate the use of multiple reflection theory to describe image and 

surface states, the results of calculations of the n = 0 surface state and the n = 1 

and n = 2 image states on the Ag(111) surface are shown here. The parameters used 

in the calculation are listed in Table 2.1 along with experimental and calculated 

energies for the image and surface states. The interplanar spacing a along the (111) 

direction for Ag is 2.36 A. The parameters E9 , V9 , and EF are taken8 from a review 

article by Fauster and Steinmann [62] and the experimental numbers were obtained 

from the apparatus described later. The calculated probability densities '¢*'¢ are 

shown in Figure 2.3. The n = 1 image state is similar to the hydrogenic n = J state, 

with a node near the metal surface and a relatively small probability density in the 

metal. The n = 2 state also has a node near the metal surface, but is degenerate 

with the conduction band, hence it does not decay exponentially into the metal as 

the n = 1 state; the n = 2 wavefunctiori extends infinitely into the metal. The n = 0 

state is often referred to as the surface state, as it possesses a maximum (instead of 

a node) near the surface plane and does not belong to the hydro genic image series. 

The n = 0 state is present in the model only when the valence band is of s orbital 

symmetry. 

Multiple reflection theory successfully accounts for the existence of image and 

surface states within a single formalism and has been useful in attributing differences 

in the positions of image and surface states on different crystal faces to differences 

in positions of the vacuum level and the band gap. For more complicated systems, 

liThe review [62] actually lists a value of 2.15 for V9 • In their approach, the work function <I> is 
treated as an adjustable parameter and the interpolation formula (Equation 2.23) is used to evaluate 
¢8 which yields results which differ from those obtained from the Whittaker functions. The value 
of 2.075 is taken from Merry [63] who determined the value for V9 by subtracting experimental 
values for the conduction [32] and valence [64] bands. 
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Figure 2.3: Probability densities for then= 0 surface state and the n ·= 1, 2 image 
states for Ag(lll). The potentials are for illustrative purposes only and do not 
represent a realistic crystal potential. 
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Sample Vg Eg Et <I> State E Theo. E Exp. zo 
Ag(111) 2.075 9.64 7.865 4.56 n=O -4.65 -4.61 .6 

n=1 -.76 -.77 .1 
n=2 -.21 -.21 .1 

Table 2.1: Multiple Reflection Theory parameters and resulting binding energies for 
n = 0, 1, 2 for Ag(111). The energy values are in eV. V9 is the gap half width, E9 

is the position of the gap with respect to zone center (the r point), E1 is the Fermi 
level with respect to r, and <I> is the work function. The cutoff distance z0 in the 
image potential is in units of Angstroms. The energies of n = 0, 1, 2 are with respect 
to the vacuum level. 

simple expressions for c/Jc or ¢8 are not available, which limits the utility of the 

phase shift approach. In such cases, it is more straightforward to employ numerical 

integration to determine the wave function for potential regions for which simple 

analytical forms of the solution are not available. 

2.3.4 Effective Mass of Image States 

As mentioned earlier, the result of a series of angle-resolved two photon pho­

toemission measurements of a given spectroscopic feature is the relation between 

energy and momentum in the surface plane E(k11) called a dispersion curve. Often 

the dispersion curve may be conveniently described by an effective mass parame­

ter. The effective mass m* associated with a given spectral feature is defined by the 

expression, 

(2.29) 

where m* is expressed as a fraction of the mass of a free electron. Qualitatively, the 

effective mass or dispersion of image and surface state electrons is a measure of the 

influence of the substrate bands. For quantum well states, the parallel dispersion is 

related to the 3-D band structure. 

It has been shown [32] that the effective mass or dispersion of image and surface 

states of several crystal surfaces can be explained in terms of the properties of the 

surface projected bulk band structure, shown in Figure 2.4 for Ag(lll) along with 
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the dispersions of the n = 0 and n = 1 bands. The effective mass of the surface 

projected conduction band in Figure 2.4 is 1.6 me according to the literature [32]. 

The aptly named surface projected bulk band structure is the 3-D bulk band structure 

projected onto a given surface plane. The presence of a band at a given energy E 

and parallel momentum k11 indicates the existence within the full 3-D band structure 

of one or more band states at that energy with a momentum whose projection onto 

the surface plane9 is k11. The presence of a gap in the surface projected bulk band 

structure indicates an absence of states over the range of energy and surface projected 

momentum which describes the gap. 

The work of Giesen, and coworkers [32] describes the effective mass of surface and 

image states in terms of the reflective properties of the associated surface projected 

band gap. As shown in Figure 2.4, the upper and lower gap edges each possess a 

different dispersion in the surface plane and may cross, closing the gap at some value 

of k11. For sp inverted bands like the valence and conduction bands of Ag(111) the 

phase shift <Pc of the conduction (or upper) band edge is 1r and the phase shift of the 

lower band edge is zero. At a given energy, the crystal phase shift as a function of 

k11 does not remain constant but rather decreases since the distance from the upper 

band edge increases (assuming an upwardly dispersing band as in Figure 2.4). 

The effect of this variation in crystal phase shift on the effective mass can be 

estimated using a geometric construction [32]. A hypothetical hydrogenic n = 1 

image state on a perfectly reflecting substrate possesses a binding energy of -Ryd./16 

or -.85 eV and an effective mass of unity. Assuming that the effective mass of the 

upper bulk band edge is larger than that of the electron (as is the case for Ag(111)), 

the hydrogenic image state will cross the upper band edge at some value of k
11

• At 

the point where the hydrogenic image state crosses the band edge, the phase shift 

is 1r. Therefore, at this point the energies of the hydrogenic image state and the 

real image state should be equal. This point and the measured binding energy at 

k
11 

= 0 define the dispersion parabola of the image state and thus its effective mass. 

9The state or states of the crystal which correspond to a point in a surface-projected band may 
also possess a nonzero k_1_ in the range of zero to g/2. For example, the state corresponding to the 
valence band edge at k11 = 0 possesses a k J.. of 1r /a. 
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Figure 2.4: The surface projected bulk band structure of Ag(lll). The dispersions 
of the n = 0 surface state and the n = 1 image state are also shown. The surface 
projected valence and conduction bands are indicated by the lower and upper shaded 
areas, respectively. The surface projected band gap is the region between the surface 
projected valence and conduction bands. 
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A diagram of this construction for then= 1 state on Ag(111) is shown in Figure 2.5. 

If the point where the hypothetical hydrogenic free electron crosses the upper 

band edge is labelled Ec, EH = -.85 eV is the energy of the hydrogenic image state, 

and E1s is the energy of the real image state at k11 = 0, the effective mass is given 

by the expression 
m* 

(2.30) 

which is derived from the geometric construction. This result agrees with the ex­

perimental observation that the effective mass of image bands is larger than unity 

when the image state is relatively near a surface projected bulk band which has a 

large effective mass, while the effective mass of image bands is less than unity when 

the image state is relatively near a surface projected bulk band which has a low 

effective mass. Qualitatively, it can be said that the image band is partially repelled 

by nearby bulk bands. 

Prior to the development of this model for effective mass based on the crystal re­

flectivity, the excess effective mass of image states (in*/me = 1.3 for n = 1, Ag(111)) 

was attributed to a variety of physical mechanisms, including surface corrugation [65], 

coupling with electron-hole pairs [66, 67], and coupling with surface plasmons [68]. 

However, none of these mechanisms could account for the wide variation in effective 

mass observed for the various crystal faces of Ag and Cu. The simpler approach 

based on the reflective properties of the surface projected band structure succeeds 

because most of the physics relevant to image state dispersion (including some of 

the effects mentioned above) is represented in the surface projected band structure. 

The geometric model of the effective mass is only applicable to the clean surface and 

does not adequately explain the effective mass of surface or quantum well states in 

the presence of an adsorbate layer. An attempt to develop a method for treating the 

effect of the overlayer in the effective mass approximation is detailed in Chapter 4. 

2.3.5 Lifetime of Image States. 

The lifetime of image states has been the subject of theoretical and experimental 

investigation since the existence of image states was proposed [17]. Early qualitative 
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Figure 2.5: Graphical determination of the. effective mass of the n = 1 image state 
on Ag(lll). The shaded area is the surface projected conduction band. EH is the 
Energy of a fictitious hydrogenic image state. E18 is the energy of the image state. 
Ec is the point where both the image state and the fictitious hydrogenic state cross 
the conduction band edge. 
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arguments about the lifetimes of image states were based on the properties of the 

orbit of an electron in an image potential well. The round-trip time of an electron 

of quantum number n in a Coulomb well increases as n3 . Assuming that decay is 

via tunneling into the metal, the lifetime depends on the attempt rate or round trip 

time. Multiple derivations yielding T ex n3 are provided in a review article [19]. The 

first quantitative theoretical calculations for the lifetime of image state electrons were 

provided by Echenique and coworkers [69]. The ca.lcula~ions employed the self-energy 

formalism in which the lifetime is related to the imaginary portion of the complex self­

energy. Schoenlein and coworkers [70] provided the first direct measurements of the 

lifetimes of image states on metal surfaces using transient two photon photoemission 

spectroscopy with femtosecond pulses. Their results were in agreement with the 

e~rlier predictions. Schuppler and coworkers [71] used high-resolution two-photon 

photoemission spectroscopy to determine the linewidths of image states which may 

in some cases be related to the lifetimes. 

An empirical approach to calculating image state lifetimes has developed in which 

the lifetime is related to the penetration of the image state wavefunction into the 

substrate. The penetration p is defined as the probability density in the bulk [69, 

72-74], 

(2.31) 

The lifetime broadening r of the image state is related to the linewidth of the bulk 

crystal conduction band rb(E) by 

(2.32) 

The value of rb is approximated by the expression 

(2.33) 

where a depends on the material [75]. The expression in Equation 2.33 has been 

shown to hold for the range of 5 to 50 eV for several transition metals, based on 

photoemission and inverse photoemission linewidth data. For Ni, Cu, and Ag a fit 

to the inverse photoemission data yields a= 0.13. 
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· The various decay paths for image state electrons involve excitations of quasi­

particles or quasiparticle pairs in the substrate. For most metals, the primary decay 

pathway for image state electrons is v1a Auger processes in which the image state 

electron transfers its energy to an electron in the bulk, generating an electron-hole 

pair (69]. Additionally, energy can be transferred to surface plasmons and phonons. 

In addition to decay channels in which the final state is a bulk state, relaxation 

can occur in which either intermediate states or final states are image or surface 

states. Image electrons of nonzero parallel momentum may decay into image states 

of lower parallel momentum, a process called momentum relaxation or intraband 

relaxation. Image electrons may also decay to image and surface states of lower 

quantum number. It has been estimated that 90% of the linewidth of n = 2 states is 

from decay into n = 1 states (76]. Approximately 30% of the linewidth of the n = 1 

state for Ag(111) is attributable to decay via then= 0 surface state (77]. 

The rate of decay of image states at metal surfaces in which the decay is via 

the exchange of energy with quasiparticles can be modeled using the self-energy 

formalism. In the self-energy formalism, the real part of the complex self-energy 

corresponds to the energy of the state whereas the imaginary portion corresponds 

to the lifetime. An advantage of the self-energy formalism is its ability to take 

into account interactions with various quasiparticles to arbitrary order. The effects 

of other image states on the lifetime of a given state may be taken into account. 

Generally, lower order terms which correspond to Auger processes dominate the 

calculated lifetime. 

In the first time-resolved two-photon photoemission measurements of image state 

lifetimes performed by Schoenlein and Fujimoto [70], a simple exponential decay of 

image state population was assumed. Recent experiments [38, 42] have explored the 

possible role of coherence dephasing, in which the kinetics are not described by a 

simple exponential. Rather, the kinetics are described by a set of coupled differential 

equations known as the optical Bloch equations [41]. These effects will be discussed 

in Chapter 4. 
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2.4 Quantum Well States 

Quantum well electronic states are a feature of thin film systems. When an infinite 

solid is truncated, the continuum of bulk states is replaced with a finite number of 

discrete electronic states. The spacing and number of quantum well states depend 

on the number of atomic or molecular layers in the slab. For a very thick layer, the 

number of states is very large and the energy spacing between states is very small; 

the electronic properties are essentially indistinguishable from those of an infinite 

solid. However, for a very thin layer, consisting of 1-20 atomic layers, the number 

of states decreases and the energy spacing betwe.en levels is relatively large. This 

often results in carrier transport properties (for example, energy gap, mean free 

path, and carrier lifetime) which differ substantially from those of the bulk. Low 

temperature electron tunneling experiments on thin metal films were performed in 

the early 1970's [78-80] in which oscillations in the tunneling current as a function 

of film thickness and sample bias were observed. The oscillations were attributed to 

the existence of discrete energy levels in the thin film. 

Loly and Pendry [81] proposed the study of thin films as a method to improve 

band structure determination by photoemission. Peaks in· photoemission spectra 

correspond to a vertical transition between two energy bands. In principle, by mea­

suring the energy of the photoemitted electron for a range of photon energies, the 

band structure along the surface normal can be mapped out. This ideal is not reached 

due to fundamental limitations of the photoemission technique. The ability to relate 

a given feature in a photoemission spectrum to a given point in the Brillouin zone, 

the momentum of the initial and final state must be well defined. It is well known 

that while the wave vector. along the surface plane k11 is conserved during the pho­

toemission process, the perpendicular wave vector k1_ is only partially conserved. As 

the electron crosses the surface on its way out of the solid, k1_ is not conserved as the 

electron scatters from the surface barrier. This results in blurring of photoemission 

features and limits the accuracy of photoemission measurements to approximately 

25% of the distance to the Brillouin zone boundary. In practice, this greatly limits 

the resolution of photoemission except near band edges where the dispersion is flat. 
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Other final state effects also add to the uncertainty in photoemission measurements. 

Firstly, the finite lifetime of the hole left behind by the photoemitted electron results 

in the blurring of the band energies. For hole states near the Fermi level in free­

electron-like materials, the lifetime broadening is relatively small compared to the 

other contributions to the final state linewidth. Also, k1.. for the electron in the solid 

is uncertain because of the extinction length of around 5-10 A. Clearly, it would be 

advantageous to develop a technique .which is not sensitive to the uncertainty in k1.. 

in the final state. 

The picture changes when one assumes a sample N layers thick. The wavefunction 

of the film along the surface normal can be written in terms of Bloch waves: 

'¢(z) = u(z)eikz. (2.34) 

Assuming the wavefunction must vanish at the layer boundaries (0, N), the resulting 

wavefunction along the perpendicular direction is a standing wave of the form '¢ = 
u(z) sin kjzZ where j is a quantum number. In order to vanish at z = N a, kz must 

satisfy 

kjz = j1rjNa. (2.35) 

The quantum numbers in the plane kx, ky remain continuous and reveal the bulk 

dispersion along the surface parallel. An angl~-resolved photoemission experiment 

on this system will reveal a series of spikes in the spectrum. The uncertainty in kz 

no longer affects the spectrum since kz of the initial state is fixed by the boundary 

conditions of the thin layer quantum well. Thus the final state limitations are effec­

tively removed, the resolution of the technique is limited in principle only by the hole 

lifetime. The energies of discrete quantum well states can be related to the bulk band 

structure: the energies are taken from the spectra and a value of kjz is determined 

from the thickness Na using Equation 2.35, yielding the dispersion E(k). 

Loly and Pendry verified that this technique should work on a real system con­

sisting of overlayers on a substrate by modeling the system using the PEOVER 

photoemission program, which includes multiple scattering processes, surface effects, 

and hole lifetime. 
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This technique was later applied successfully to actual photoemission experiments 

on metal layers including Ag/Si(lll) [82], Pb/Si(lll) [83], and Ag/Cu(lll) [84]. The 

technique was also applied to an insulator, Xe [85, 86]. In these systems, thin layers 

(3-40 A) were studied. For such thin layers the boundary conditions complicate the 

simplified picture of Loly and Pendry. The imperfect boundary conditions were taken 

into account by introducing a quantum defect parameter o. The resulting expression 

for kz is: 

(2.36) 

It was advantageous to acquire spectra at a range of coverages in order to have 

enough data points to simultaneously determine o and tight binding parameters. 

Later, the method was applied to the conduction band using the technique of two 

photon photoemission. Fischer and Fauster [26] investigated the Au/Pd(lll) system. 

It was possible to observe QW states for this system since the Au conduction band 

edge is well below the vacuum level, while the Pd(lll) substrate gap extends well 

above the vacuum level. Smith and coworkers [87] derived a formula which yields 

the wavefunctions and binding energies of both the valence and conduction bands 

for the case of an NFE overlayer. 

2.5 The Photoemission Process 

It is useful to discuss briefly some of the fundamental aspects of the interaction 

of light with metal surfaces. These aspects are relevant to the surface depth of the 

spectroscopy, selection rules, overall photoyield, and their relation to experimental 

parameters such as light polarization and the azimuthal angle of the light imping­

ing on the surface. Detailed treatments of the photoemission process are given by 

Inglesfield [88] and Feder [89]. A treatment of single photon photoemission provides 

an appropriate basis for the understanding of the two-photon photoemission process 

since the initial and final states are essentially the same. TPPE differs from PE in 

that an intermediate state is also involved, and that the photon energies are generally 

smaller. 
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;Feder divides the photoemission process into five basic steps. The first step is the 

penetration of the radiation through the surface. The second step is the p·ropagation 

of the radiation inside the solid. The third step is the excitation of the electron. The 

fourth step is the propagation of the electron towards the surface. The fifth step is the 

penetration of the surface into the vacuum. Steps 3 through five comprise the well­

known three step model for photoemission [90]. In the fully quantum-mechanical 

one step model, all of the aspects of the three step model are represented as one 

concerted step. 

Steps one and two primarily relate to the optical properties of metals and how 

they affect the dependence of the cross-section on the angle and polarization of the 

incoming light. In a simplified view, the metal can be considered to be a material 

with a dielectric constant of greater than unity. Some of the light is reflected and 

some is refracted into the material. In general, s polarized light is more likely to be 

reflected while p polarized light is more likely to be refracted and later absorbed. If 

the incoming light is circularly polarized, the refracted beam will contain unequal 

components of s and p polarized polarization and will thus be elliptically polarized, 

except when the light is incident normal to the surface. This fact must be taken into 

account in experiments involving circularly polarized light. The preferred geometry 

for such experiments is near normal incidence. The reflectance of s polarized light 

incident on a metal surface is a function which decreases monotonically as the angle 

with respect to the sample normal increases. For p polarized .light incident on a 

metal.surface, the reflectance has a minimum at an angle referred to as the principal 

angle of incidence [91]. For Ag and a wavelength of 590 nm, the principal angle 

is approximately 78 degrees. Except at surface normal and grazing incidence, p 

polarized light is more efficiently absorbed than s polarized light. Assuming that 

photoyield is proportional to the number of photons absorbed, p polarized light 

should yield a higher number of photoelectrons than s polarized light. The optimum 

angle for the incident light is between the principal angles for the wavelengths used. 

Steps 4 and 5 of the photoemission process, propagation through the bulk and 

penetration of the surface barrier, are not very important for surface states, since 

much of the probability amplitude is outside the substrate. These steps are im-
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portant for photoemission, and are responsible for the lack of conservation of k1_ in 

photoemission from bulk states. 

The absorption of the photon results in the excitation of electrons in the bulk or at 

the surface. Several detailed descriptions of the excitation process are available [28, 

89]. Assuming the variation of the electric field due to the incoming radiation is 

small compared to the length scale of the atoms in the crystal lattice, the matrix 

element for excitation is proportional to 

(2.37) 

where \i'V is the gradient of the potential and lEi) and IE1) are the initial and 

final electronic states. The nature of the potential gradient \i'V at and near the 

surface results in two rather different excitation mechanisms. For a hypothetical 

perfect conductor, no electric fields are allowed inside the metal; \i'V is strictly zero. 

Even in the electron gas (jellium) picture, the potential inside the metal is constant 

(except very near the surface) and therefore \i'V is zero. Near the surface, there is 

a discontinuity in the field in the case of a classical perfect conductor and a smooth 

variation for the case of a quantum-mechanical electron gas. For these two idealized 

systems, surface photoemission is the only allowed photoemission process. For the 

more realistic case of a muffin-tin-like potential inside the metal, \i'V in the bulk is 

non-vanishing, and excitation within the bulk of the solid may occur. The relative 

magnitude of the bulk and surface contributions of \i'V depends on many factors, 

including the wavelength of the incident light, the polarization of the incoming light, 

the plasmon frequency of the solid, and the symmetry of states IE) and lEi). It 

should be noted that when nonlocal effects are considered, the distinction between 

surface and bulk photoemission is somewhat blurred. The polarization of incident 

light can be varied to help distinguish between surface and bulk photoemission. 

Surface photoemission is often enhanced by p polarized light. 

Since image states are located a distance away from the metal where there is 

little electron density, momentum is required to displace an electron from the bulk 

to the image state. This momentum is largely provided by the surface field V'"Vs, so 

surface photoexcitation is considered to be the dominant mechanism. However, for 
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direct excitation involving two bulk energy levels, the bulk field usually dominates 

the excitation process. 
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Chapter 3 

Experimental 

The experiments were performed using a custom ultrafast laser two-photon pho­

toemission spectrometer. Briefly, the spectrometer may be described as follows. An 

ultrafast laser is used to generate short light pulses. The laser light source is a com­

mercial titanium-sapphire oscillator and regenerative amplifier. Tunability of the 

laser in the visible wavelength region is achieved by the use of an optical parametric 

amplifier (OPA). An ultraviolet pulse is produced by second harmonic generation 

using a BBO crystal. The UV pulse serves as the excitation (pump) pulse in the 

present experiments. The residual fundamental (visible) pulse is used as the probe 

pulse. The two pulses are separated using a dichroic mirror. The probe pulse is re­

flected by a pair of mirrors on a stepper motor-driven translation stage. The position 

of the stage determines the time delay between pump and probe pulses. The two 

pulses are recombined using a second dichroic mirror and are focussed collinearly 

onto the sample. The sample is a Ag(lll) crystal mounted in an ultra high vacuum 

chamber. The pump pulse generates an excited electronic distribution on the surface. 

The probe pulse photoejects the excited electrons. The energy of the photoejected 

electrons is determined by time-of-flight. 

The experimental apparatus can be roughly divided into three main systems: 

the ultra-high vacuum chamber and associated hardware and diagnostic equipment, 

the laser system and associated optics, and the data acquisition electronics, which 

includes the detection electronics, the computer interface, the control program, and 
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the mechanical translation stage. The apparatus was constructed for the study of 

electronic states at interfaces by two photon photoemission. Each component must 

address its portion of the requirements of a TPPE system, as well as the additional 

requirements imposed by other parts of the system. 

The ultra-high vacuum chamber must provide an environment in which a sample 

interface can be prepared, characterized, and maintained relatively free of contami­

nants for the duration of the experiment. The laser system must provide light which 

is tunable in the energy region required to populate the electronic states of interest. 

Ideally, the laser should produce pulses of a duratio~ on the order of the lifetime 

of the excited states of interest or shorter. In the case of image states on clean 

metal surfaces, the lifetimes are on the order of 10-100 fs. An additional constraint 

is placed on the pulse width by the relatively short path length of the time-of-flight 

electron spectrometer, which requires that pulses be shorter than 1 nanosecond for 

optimal energy resolution. The spectral width of the laser pulses should be on the 

order of 50 me V or less, in order to resolve the first few members of the image series. 

The pulse energy should be low to avoid the production of too many electrons per 

pulse, which leads to broadening and distortion of the electron energy profile. Since 

single electron counting detection is e~ployed, the number of electrons which reach 

the detector for a given laser pulse should be one or fewer. A general rule of thumb 

is that one electron count for every 10 or 20 laser shots yields a relatively accurate 

spectrum. 

The data acquisition system should maximize signal throughput and minimize 

artifacts and distortion of the spectrum due to limitations of the data acquisition 

scheme, especially any effects which could affect the linearity of the energy measure­

ment or the amplitude of spectral features. The data acquisition system and methods 

should also address such problems as long term drift in signal due to fluctuations in 

laser power. Also, standard procedures and baseline measurements are required to 

maintain the overall health of the system, rapidly identify and repair faulty compo­

nents, and ensure repeatability and validity of results. Measurements of laser power 

(at several critical points in the laser system), pulse profile, spectrum, and shot-to­

shot noise are required. The quality of the vacuum in the vacuum chamber, substrate 
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crystal order and cleanliness, and the purity of sample material introduced into the 

chamber should be measured. The accuracy and linearity of the time-of-flight spec­

trometer must be determined for a wide range of operating conditions (sample bias, 

count rate, number of low energy electrons). This chapter is a description of the 

features of the apparatus which satisfy the requirements of the experiment, as well 

as the efforts which have been undertaken to ensure the reliability of the results. 

Experimental results and interpretation are given in the following chapter. 

3.1 The Ultra-High Vacuum Chamber 

The ultra-high vacuum (UHV) chamber was built specifically for the purpose 

of angle-resolved two-photon photoemission. A detailed description along with dia-;­

grams of several key components can be found in the dissertation of W. Merry (63]. 

The bell jar is constructed of type 501 stainless steel, which is resistant to oxida­

tion, is relatively free of materials which outgas, and is bakeable to 150 C. Also, 

type 501 stainless has a magnetic permeability near unity, which makes it suitable 

for electron spectroscopy. Type 505 stainless steel bell jars are also available which 

have the advantage of higher baking temperature, strength, and a magnetic perme­

ability closer to unity. Recently, high magnetic permeability nickel alloy chambers 

have been developed specifically for applications which require very low magnetic 

fields. All chamber materials were chosen to be UHV compatible and bakeable to 

100-150 C, all breakable seals are conflat type with OFHC (oxygen free, high con­

ductivity) copper gaskets. 

The vacuum chamber consists of several subsystems: vacuum pumps, sample 

manipulator, sample characterization (LEED, Auger, UPS), the time-of-flight spec­

trometer, gas leak valve, effusion cells, pressure gauges, and a quadrupole mass 

spectrometer. 

I 
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3.1.1 Sample Manipulator 

The sample manipulator fulfills a variety of functions necessary for the opera­

tion of the experiment. It securely holds the sample in place and allows the user to 

precisely control its position. The manipulator linearly translates the sample along 

three orthogonal axes. The manipulator may also be rotated to direct the sample to 

the various ports on the UHV chamber for sample deposition, sputtering, LEED and 

Auger spectroscopy, and time-of-flight photoelectron spectroscopy. The sample is 

mounted on a goniometer sector which allows the sample to be rotated with respect 

to the detector axis of the time-of-flight spectrometer. The goniometer sector allows 

for rotation of the sample between approximately -4° and 20°. A useful feature of 

the goniometer sector is the dial which facilitates the determination of the sample 

angle. The Ag(lll) sample is held by molybdenum clips to the sample holder. A 

thermocouple is in contact the sample in order to measure sample temperature. The 

sample holder is a piece of molybdenum which contains tungsten filaments for resis­

tive heating of the sample. The current to the heater is controlled by a Eurotherm 

temperature controller. The bottom of the sample holder is attached to a flexible 

copper braid connected to a liquid He cold tip. This arrangement allows the sample 

to be cooled to approximately 45 K. 

3.1.2 Vacuum Pumping System 

The ultra high vacuum chamber requires a number of pumps to maintain high 

vacuum in the range of 1 x 10-11 torr. The most important pump is the ion pump 

(Perkin-Elmer model TNB-X), which maintains vacuum when the vacuum system is 

not loaded with sample gas. The pumping capacity of the ion pump is augmented 

by titanium sublimation pump. When the system is under load, i.e., when a sample 

gas is introduced into the chamber, the gate valve over the ion pump is closed and 

the gas is removed using a turbomolecular pump (Edwards model EXT250) which 

is more efficient than the ion pump for removing large volumes of gas at moderately 

high vacuum. The turbomolecular pump requires a backing pump for operation. A 

rotary pump is used as a backing pump. Maintenance of the system includes checking 
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and changing the oil in the backing pump and periodic replacement or refurbishing 

of the turbomolecular pump. 

3.1.3 LEED and Auger Spectrometer 

Low Energy Electron Diffraction (LEED) is useful for determining the structure 

of the sample surface and adsorbed species. An electron gun is directed at an ordered 

sample. The elastically diffracted electrons pass though a retarding field grid and 

onto a phosphor screen where diffraction spots may be viewed. Analysis of the 

electron diffraction spots can yield the two-dimensional unit cell of the surface or 

adsorbate layer. LEED spot size can be used as a rough measure of the disorder of 

a surface or layer. 

Auger Electron Spectroscopy is a technique for identifying the chemical species 

on or near a surface. High energy electrons are directed at the sample. Some of the 

electrons exchange energy with tightly bound electrons on atoms of the substrate, 

ejecting the electrons from the parent atoms. One of the remaining electrons drops 

to the empty low-lying state. The remaining excess energy is taken up by ejecting 

an additional (secondary) electron. This exchange of energy between electrons is 

referred to as the Auger effect. The energy spectrum of the secondary or Auger 

electrons is indicative of the atomic number of the parent atoms. 

The low energy electron diffraction apparatus and Auger electron spectrometer 

are combined in a single unit (a SPECTALEED NG from Omicron Vakuumphysik 

GmbH). The operation in both modes is controllable by computer. The LEED 

pattern is viewable through a port window (rear view configuration), which greatly 

improves the viewable area over forward view LEED, especially in the case of a bulky 

sample manipulator such as the one currently in use. 

3.2 Laser System and Optics 

The laser system consists of a self-mode-locked titanium-sapphire oscillator, a 

titanium-sapphire regenerative amplifier, and an optical parametric amplifier. Both 
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the oscillator and the regenerative amplifier are optically pumped using a single 22 W 

CW argon ion laser (Coherent Innova 400). A beam splitter divides the 22 W output 

into a beam of approximately 8 W which is used to pump the oscillator and a beam 

of approximately 14 W which is used to pump the regenerative amplifier. The laser 

system is illustrated in Figure 3.1. 

The oscillator (a Coherent model Mira 950-F) is a modelocked ultrafast laser that 

uses titanium:sapphire as its gain medium. The laser cavity consists of a coaxially 

pumped titanium-sapphire crystal at the focal point of a pair of concave mirrors, 

a pair of Brewster prisms for dispersion compensation, a birefringent filter which 

allows limited tunability of the laser, a variable width slit which helps to improve the 

stability of the mode-locked pulse train, and an output coupler (a partially reflective 

mirror). The output of the Mira oscillator is a 76 MHz pulse train of pulses with 

a width of approximately 200 fs. At the center wavelength of 800 nm, the spectral 

width of the laser pulse is approximately 9 nm. As configured, the oscillator is 

tunable from 790 nm to 910 nm. The output power is approximately 1.9 W in CW 

mode and 1.2 Win modelocked mode. After the beamsplitter the modelocked power 

is approximately 380 mW. 

The amplifier (a Coherent model RegA 9000) is a CW pumped Q-switched tita­

nium-sapphire laser. Prior to the injection of a pulse from the oscillator, an acousto­

optic Q-switch interrupts lasing in the cavity for a period, allowing energy to build 

in the lasing medium. Shortly before injection, the Q switch is turned off. Pulses 

from the Mira oscillator are directed into the RegA. The input beam passes through 

a cube polarizer and a Faraday isolator. A single laser pulse is injected into the 

cavity through an Si02 acousto-optic cavity dumper. Both the cavity dumper and Q 

switch are powered by several watts of radio frequency power provided by a control 

unit. The timing and phase of the RF pulses are determined by feedback from pho­

todiodes monitoring the injected and ejected pulses. The pulse takes approximately 

20-30 round trips in the cavity. The resulting pulse is stretched to approximately 

20 ps by the group velocity dispersion of the Te02 Q-switch and titanium-sapphire 

crystal. The cavity dumper then extracts the pulse which returns through the Fara­

day isolator and is separated from the input beam by a polarizer. The stretched, 
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Figure 3.1: Diagram of the major components of the ultrafast laser two photon 
photo emission spectrometer. The picosecond timing electronics used to determine 
electron energies are omitted from the figure.· 
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amplified pulse is then compressed using four passes of a single gold-coated holo­

graphic grating. The output power is approximately 730 mW (3.7 J.LJ). The output 

pulse width is approximately 260 fs. 

The tunability of the Mira/RegA combination is not sufficient for the current 

experiments, which often require light wavelengths between 550 and 750 nm. To 

add tunability into the visible spectrum, an optical parametric amplifier is used 

(Coherent model OPA 9400). The output of the RegA 9000 is sent through a 50% 

beamsplitter. Half of the RegA beam is ,focussed into a sapphire disc to generate 

white light continuum. The other half is focussed into a BBO crystal to generate 

second harmonic. The white light and the second harmonic are focussed collinearly 

in another BBO crystal where a portion of the continuum is amplified by a non-linear 

optical process known as parametric amplification. The wavelength of the amplified 

light is determined by the angle of the BBO crystal. A second pass through the 

BBO is taken, further amplifying the portion of the continuum amplified in the first 

pass. The amplified continuum is tunable from approximately 520 nm to 730 nm. At 

a wavelength of 600 nm, the output power is approximately 30 mW (150 nJ). The 

chirped output of the OPA is compressed using a prism pair. The resulting pulse 

width is approximately 80 fs. 

In the present experiments, a UV pulse is used as the excite or pump pulse. 

The UV is generated by focusing the OPA output into a BBO crystal. The UV 

and residual fundamental are separated using a dichroic mirror. The fundamental 

takes a single round trip on a mechanical translation stage with a 1 J.Lm step size, 

corresponding to a precision of 6.6 fs. The fundamental and second harmonic are 

recombined on a second dichroic mirror and are focussed collinearly on the sample. 

3.3 Data Acquisition System 

Previously, the experiment used a picosecond laser and the apparatus was used 

only for measurements of state energies and effective masses. The addition of the 

femtosecond laser enabled measurements of the dynamics of the electronic states at 

the metal surface, as lifetimes of such states are on the order of 10-100 fs. The 
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acquisition of time-resolved TPPE spectra required the addition ofa stepper-driven 

mechanical translation stage and a computer program to scan the stage and acquire 

spectra at each stage position. The data acquisition electronics and software are 

central to the experiment and an often overlooked or misunderstood area. Errors in 

this area are difficult to detect and may render results useless. An understanding of 

the data acquisition system is required in order to use the system properly and to 

tune and calibrate the system for optimum accuracy, linearity, and signal rate. Also, 

future changes to the experiment may require a more complete understanding of the 

current setup and its limitations. Therefore, the data acquisition system is described 

in some detail. 

The data acquisition system consists of the time-resolved single-electron-counting 

electronics, the mechanical stepper motor driven stage, the stage controller, and the 

program which controls the electron-counting electronics and the stage controller. 

3.3.1 Amplification, Discrimination, and Timing 

The amount of time required for an electron generated in this experiment to 

traverse the 13 em flight tube is typically a few hundred nanoseconds. For the 

desired energy resolution of about 5 to 10 meV, a time resolution of a fraction of a 

nanosecond is required. To obtain this level of time resolution, care must be taken 

in the design of the detector, and special electronics are required. The electro~ 

detector is a microchannel plate detector (Galileo Electro-Optics model FTD-2003, 

with 2.5 em diameter plates). The microchannel plates act as an electron multiplier. 

A bias of +200 V between the flight tube and the first channel plate accelerates 

the electrons in the direction of the channel plates. A bias of +2000 V is placed 

across the channel plates which accelerates the electrons through the channels in the 

microchannel plates. As the electrons strike the walls of the channels, an electron 

cascade results which amplifies the signal. Upon exiting the second channel plate, 

the electron cascade is accelerated by an additional +200 V bias towards the 50 0 

impedance detector anode. At the top of the anode is a copper layer on top of a 

.5 mm ceramic plate which is connected to a conical aluminum stalk. The conical 
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form of the anode helps prevent reflections of the signal which lead to ringing in 

the pulse shape. The ceramic plate decouples the anode from the voltage bias of 

the copper layer: the anode is A.C. coupled. The anode terminates in a 50 D BNC 

connector which is attached to an ultra high vacuum compatible BNC feedthrough 

mounted on a conflat type flange. 

The amplified pulse has a positive-going hump with a rise time of a fraction of a 

nanosecond followed by a negative hump followed by some ringing. The pulse height 

varies substantially from pulse to pulse (the amount of amplification provided by 

the channel plates varies from point to point on the plate), but the overall pulse 

shape is reproducible. The pulse is amplified by a factor of 10 by a high bandwidth 

(1 GHz) amplifier (Philips Scientific model 6954B-10) located near the chamber. 

The output of the amplifier is connected to a Tennelec model TC454 Quad Constant 

Fraction Discriminator. The role of the Constant-Fraction Discriminator (CFD) is 

to turn the complicated pulse from the microchannel plates into a reliable timing 

pulse with a jitter of less than 100 ps. A threshold discriminator (as opposed to a 

constant fraction discriminator) generates a timing pulse whenever the input pulse 

reaches a certain voltage threshold. However, since the input pulses have a variable 

peak height, some timing jitter would result from threshold discrimination. Also, 

a threshold discriminator may not be able to differentiate between the fast MCP 

pulses and slow line noise. A CFD possesses additional circuitry to circumvent these 

shortcomings. A CFD splits off a fraction of the incoming pulse, inverts it, delays it, 

and adds it to the original pulse. This eliminates slow pulses, since only a pulse with 

a rise time on the order of the fixed time delay between fractions will have appreciable 

amplitude. The resulting pulse is then sent to the threshold discriminator portion 

of the CFD. The threshold discriminator triggers a zero-crossing detector. When 

the pulse crosses zero, a timing out pulse is generated. The timing out pulse relies 

primarily on the rise characteristics of the incoming pulse, and not the amplitude. 

The threshold and zero crossing voltages can be set with trimmer potentiometers 

and measured with a voltmeter. The constant fraction delay is specified by a short 

length of cable. In general, for best linear.response, the discriminator levels should 

be readjusted whenever it is suspected that changes in the timing characteristics or 
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amplitudes of MCP pulses have occurred, for example, when replacing the amplifier, 

replacing the channel plates, changing the·MCP bias, and periodically as the channel 

plates age. Improper adjustment of the CFD can lead to occasional triggering from 

the ring instead of the main pulse (this can give tise to slightly twinned, broadened 

peaks), low count rate (if the threshold is set too high), a high number of dark counts 

(if the threshold is set too low), biasing towards two electron pile up events, and poor 

time resolution. One way to test of the adjustment of the discrimination electronics 

is to increase the channel plate voltage by 100 volts or so in order to change the 

mean amplitude of the electron pulses and measure the change in count rate. If 

the discrimination electronics are properly adjusted and the channel plates are in 

working order, there should be a minimal impact on the count rate and no impact 

on the spectrum. 

Currently, there are improved constant fraction discriminators on the market. 

The latest discriminators allow for more flexibility in the adjustment of the size of 

the fraction and the fraction delay. The other timing pulse is the photodiode output. 

Since the photodiode output has a much lower variation in amplitude (typically 

5 percent), a threshold discriminator is used. The photo diode output acts as the 

"start" pulse and the processed output of the MCP is provides a "stop" pulse. The 

time between pulses is (approximately) the flight time of the photoemitted electron. 

3.3.2 Time to Digital Conversion 

Both timing pulses are sent to the TAC, Time to Amplitude Converter (Canberra 

Model 2043 Time Analyzer). The TAC generates a pulse whose voltage is propor­

tional to the time between start (photodiode) and stop (MCP) pulses. The TAC 

voltage is digitized by the MultiChannel Buffer (MCB), which is an EG&G Ortec 

Model 918 ADCAM. The MCB uses an efficient buffering scheme. Instead of passing 

each digitized value along to the computer, it simply adds a count to an address 

in the internal buffer memory corresponding to the digitized value. The result is a 

histogram of electron energies. Since the MCB has a 13-bit ADC (Analog to Digital 

Converter), the buffer memory has 213 or 8192 addresses, or "bins". Each bin has 



I 

51 

a capacity of 31 bits or 231 ~ 2 x 109 counts. An extra bit is reserved for marking 

regions of interest. After a scan with a duration of 15 s to several minutes, the 

resulting histogram is read using a dual port memory interface card in the the PC. 

This buffering scheme avoids a potential bottleneck in the data acquisition process 

and frees the PC to perform other tasks while the MCB is collecting and buffering 

the data. A typical data rate is 10 kHz. Each time conversion takes approximately 

12 p,s, which results in a "dead time" during which subsequent events are ignored. 

Since laser pulses arrive every 5 p,s, two potential electron counting events are ig­

nored, resulting in an effective dead time of 10 p,s per recorded event. For a 10 kHz 

acquisition rate, the dead time comprises approximately 10% of the total acquisition 

time. The model 918 MCB keeps track of dead time by adding 12 p,s to a dead time 

counter for each data acquisition event. Unfortunately, this results in a 20% overes­

timation of the dead time. This error is corrected in the data analysis software. It 

should be noted that newer ADC devices have a reset time of less than 5 p,s, which 

for the current experiment would eliminate dead time in the digitization step. There 

are also picosecond time analyzers that can handle multiple stop pulses per start 

pulse, which increases the usable data rate. Newer time analyzers often have built-in 

ADC units, so a separate ADC is not necessary. 

3.3.3 Linearity, Count Rate, and Noise 

Since this is a single-electron-counting system, the signal is only linear with count 

rate when there are one or fewer electrons per laser shot. Non-linearity caused by 

high count rates can be easily observed in the current system. This non-linearity 

can make it difficult to compare peak heights (either between two neighboring peaks 

at a given femtosecond time delay or for one peak at different time delays). Also 

it can flatten the top of very tall, narrow peaks, making measurements of lineshape 

difficult. It can also cause asymmetry in a measured peak. In addition, high count 

rates can often be a sign that space charge broadening is occurring, i.e., that the 

electron flux is high enough that a measurable broadening and shifting of electron 

peaks occurs through electron-electron repulsion in the free space of the flight tube. 
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Space charge broadening should not be confused with dielectric charging, which is the 

accumulation of charge on dielectric components near the sample or flight tube. The 

effect of dielectric charging is less predictable than that of space charge broadening. 

For a laser repetition rate of 200 kHz, one would assume that a count rate of 

10kHz would mean that the probability of any one laser shot producing an electron 

would be 1/20 or 5%. The chance of two electrons being emitted would be 1/400 or 

0.25%. Thus 5% of the signal (not 0.25%) would be lost due to two electrons being 

emitted per laser shot. However, this assumes a constant probability of emitting an 

electron per laser shot. In reality, there is an appreciable amount of noise in the laser, 

approximately 5 or 10%. Assuming that the probability of emitting an electron is 

proportional to the laser power to the third power, this means that for pulses that 

have 10% more energy, the probability of emitting an electron is 33% larger than 

that of a pulse of average energy. Thus, pulse-to-pulse fluctuations in the laser pulse 

energy can significantly increase the probability of more than one electron reaching 

the detector per shot, reducing the usable count rate. It should not be assumed that 

the linearity of the detection electronics remains the same day-to-day. The linearity 

of the detection electronics should be verified on a regular basis, by comparing spectra 

_and decay traces for a range of count rates (for example, by using a neutral density 

filter to attenuate the laser beam). 

In addition to the shot-to-shot noise referred to in the previous paragraph, the 

laser power can drift over the course of a few minutes or a few hours. This laser 

drift can have a devastating effect on the accuracy of kinetics traces. To minimize 

the effect of the laser drift, scan times should be as short as possible. This can be 

achieved either by reducing the number of points (stage positions) in a scan, or by 

reducing the amount of time a spectrum is acquired at a given stage position. A lower 

limit is placed on the number of stage positions by the fact that a large number of 

points along the decay trace are required in order to gain good statistics on the time 

constants extracted from the data. A lower limit on the data acquisition time per 

stage position is placed by the fact that it takes a few seconds to set up acquisition 

at each stage position. The bottleneck in this case is the amount of time required to 

transfer buffered data from the MCB and to clear the MCB memory in preparation 

I 
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for a new scan. Currently, the spectrum is acquired for approximately 15 seconds 

at each stage position, and the number of steps in a scan is between 40 and 200. 

Generally, six complete scans are taken for a given set of experimental conditions. 

The overall amplitudes of each scan in a set are compared in order to check for the 

effects of laser power drift. 

3.3.4 The Data Acquisition Program 

The data acquisition program is responsible for controlling the electron counting 

electronics and the stepper motor-driven translation stage as well as generating a 

data file. The data acquisition program is actually a MATLAB script called TRTPPE. M 

running in DOS. MATLAB was chosen because the system's users were familiar with 

MATLAB syntax, the syntax is terse and readable, and the MATLAB interpreter 

environment is ideal for rapid code development and testing. 

The initialization of the data acquisition script involves essentially three steps: 

1. Define the number and spacing of steps in the scan. 

2. Query the user for number of scans and scan direction. 

3. Move the stage to the start position. 

The main loop contains three essential steps: 

1. Calculate the stage position and move the stage. 

2. Clear the MCB and start acquiring a spectrum, wait. 

3. Read the contents of the MCB, store to a file. 

Since the version of MATLAB in use has no facility for interfacing with data 

.acquisition hardware, the script makes use of three DOS programs written in C to 

control the stage, control the MCB, and write the contents of the MCB to a file. 

These three programs are called STAGE, MCBACQ, and MCBMAT, respectively. MATLAB 

provides a mechanism for executing small DOS programs from within a MATLAB 

script. The source code for the MATLAB script and the C programs is in Appendix A. 
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The stage controller is a Klinger Scientific model CCl.l. It drives a mechanical 

translation stage with a step size of 1 Jim driven by a stepper motor. The round trip 

time difference for the laser pulse for a single step is 6. 7 fs. The stage controller is 

interfaced to the computer using the IEEE-488 (GPIB) interface bus and a National 

Instruments AT-GPIB interface card. The GPIB bus is a medium bandwidth (ap­

proximately 100 kilobyte/sec) bus capable of controlling 15 instruments. The stage 

is controlled by issuing simple text commands across the GPIB bus. In the software, 

the commands are arguments to GPIB functions in a function library which is sup­

plied with the interface card. The STAGE program performs the communication with 

the stage controller. The program accepts two arguments, a direction and a position. 

The appropriate arguments are generated by the TRTPPE. M script. 

The MCBACQ programissues commands to the Ortec model 918 ADCAM multi­

channel buffer. The connection to the model918 to the computer is through a special 

purpose interface card. The card possesses a mailbox I/0 interface through which 

commands are issued· to the 918 by writing to a specific I/0 address. C functions 

for the low-level I/0 were provided by EG&G Ortec. The example programs in the 

manual are incorrect. The MCBACQ program clears the buffer memory and acquires a 

spectrum for a fixed amount of time, typically 15 s. 

The MCBMAT program is used to save the contents of the 918 buffer memory. The 

memory is accessible through the interface card using a dual-port memory interface. 

The contents of the 918 data buffer are accessible on the PC in the OxDOOO memory 

page. 

A full spectrum is generated at each stage position. Depending on the number 

of points along the time axis required for a given experiment, between 40 and 200 

spectra are generated for a given scan. Along with each scan, a file is saved which 

contains information about the number and spacing of points along the time axis 

as well as a text comment. The data are saved in platform-independent MATLAB. 

format. The MATLAB format is readable by a number of programs including Octave, 

a freely-redistributable MATLAB clone. Information on the file format is available in 

the MATLAB documentation. 
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Ch.apter 4 

Results and Discussion 

In this section the results of a systematic series of experiments and theoretical 

investigations designed to identify and characterize the important physics relating to 

electronic states and dynamics at molecular adsorbate interfaces are presented. Two 

photon photoemission is employed to determine the energies and population kinetics 

of excited electronic states at molecular adsorbate interfaces. The adsorbate mate­

rials studied theoretically and experimentally include alkali metals, alkanes and rare 

gases. Theoretical models were implemented in an attempt to relate experimental 

results to well-known physical parameters and in order to test assumptions about 

the role of the substrate and overlayer electronic structure and the polarizability of 

the interface and in order to develop and refine a coherent physical picture of the 

systems of interest. 

Because of the complexity of the electronic· structure of overlayer systems, it is 

difficult to separate the relative contributions of the substrate and overlayer and 

the physical parameters which describe them. This is the motivation for studying a 

series of similar, but slightly different materials, such as alkanes and rare gases. The 

alkane data is contained in other theses, so only the rare gas and alkali metal work 

are presented here. In addition to varying the material under study, the coverage is 

also varied, in an attempt to determine the impact of layer thickness on quantum 

confinement and in order to monitor the development of 3D band structure. 
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4.1 Surface and Image States of an Alkali Layer 

on Cu{lll) 

In this section a theoretical model is developed and an analytic solution is derived 

for the case of an ultrathin alkali metal layer (specifically, Na) on a metal substrate. 

Portions of this work were adapted from a paper by McNeill and Harris [92]. The 
" 

author performed a series of experiments on K/ Ag(111) in order to further test the 

model and improve our understanding of image and surface states. in the presence 

of alkali metal layers. However, problems with the TPPE spectrometer cast doubt 

on the validity of the results, and it was decided not to include them in this thesis. 

The model described in this section was developed in an attempt to address several 

important issues relating to the electronic structure of excited electronic states at 

interfaces. These issues include the delocalization and resulting dispersion or effec­

tive mass of interface states or bands, the interplay between effects induced by the 

image barrier, interface potential, and substrate band structure, and the applica­

bility of multiple reflection theory [17] to adsorbate systems. A single atomic layer 

of alkali metal on a metal substrate was chosen for these calculations since it is 

more straightforward to model than other cases, such as insulator overlayers, as the 

metal overlayer does not affect the image potential in the vacuum and the electronic 

structure of the overlayer itself is simple (free-electron-like). 

The fundamental effects of adsorbates on the ·electronic structure of surfaces 

have been identified by experiment and theory. The presence of adsorbates on a 

metal surface has been shown experimentally to shift the binding energy of image 

states [93-96], give rise to adsorbate-derived states [97-99], or change the disper­

sion of the image states [95, 100, 101]. More recently, laser-induced desorption of 

alkali metal atoms from metal surfaces was observed and monitored on the fem­

tosecond timescale [52]. An approximate phase shift model for image and surface 

states for the case of an alkali metal layer deposited on a noble metal substrate was 

developed by Lindgren and Wallden [102]. Their model agreed with image state 

binding energies determined by inverse photoemission .. However, the results of later 
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studies of Na/Cu(111) and K/Cu(111) using high-resolution two-photon photoemis­

sion [101, 103] conflict with the predictions of that model. The approximate nature 

of that model and the development of experimental methods with resolution suffi­

cient to provide a good test of theory warrants the re-investigation of the phase shift 

model for the case of alkali overlayers. 

4.1.1 Multiple Reflection Theory for a Metal Adlayer· 

An extension of the phase shift approach to multiple reflection theory was pro­

posed by Lindgren and Wallden [102] for the case of alkali metal layers adsorbed on 

a noble metal substrate. In their approach, the overlayer is represented as an addi­

tional phase shift of 2¢d, where c/>d = dJ2me(E- U)/n2 and E is the energy of the 

electron, U is the potential in the overlayer, and d is the thickness of the overlayer. 

The bound state condition is then c/>c + c/>b + 2¢d = 27m. However, a careful inspection 

of the underlying wavefunction solution reveals that wavefunction matching is not 

preserved for the above bound state condition. While this expression constitutes 

an approximate solution to the problem, it is possible to solve the problem exactly 

for a more general potential (potential illustrated in Figure 4.1). In the present ap­

proach, the effect of an alkali overlayer is explicitly incorporated into the expression 

for cl>c by applying the appropriate matching conditions at the boundaries between 

the substrate and overlayer regions, thus ensuring that the bound state energy given 

by multiple reflection theory corresponds to a continuous wave function. The re­

sults of the model are then compared to the binding energy and dispersion results of 

Fischer [101, 103]. 

The present phase shift model is a variant on the well-known particle in a 1-D 

box model. In this case, the fiat box potential represents the layer. On one side, the 

box is bounded by a periodic potential representing the substrate, while on the other 

side the box is bounded by the metal image potential. Bound states are determined 

by applying matching conditions at the edges of the box. The two-band nearly- free­

electron model [5,61] is used to describe the electronic wave function of the substrate. 

According to the model, the wave function for an electron in the band gap is of the 
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Figure 4.1: The model involves a metal substr?-te with a work function <I>, band gap 
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barrier of height U and thickness d, and a Coulomb potential in the vacuum. 



59 

form 

'1/Jc = K eqz cos(pz + c5), (4.1) 

where p the real part of the electron's wave vector, q the imaginary part of the wave 

vector, and c5 the phase parameter are related to the reciprocal lattice vector g and 

the band gap parameters E9 and Vg which correspond to the position and width of 

the gap, respectively. 

In the overlayer region, the potential is approximated by a square well. Solutions 

in this region are in general a linear combination of incoming and outgoing plane 

waves: 

( 4.2) 

where k1 = J2m(E- U)/1i2
, E is the energy of the electronic state, U is the po­

tential of the overlayer, and m is the effective mass for the overlayer band. The 

origin of the z axis is set to the adlayer /vacuum boundary in this derivation. The 

wave function in the adlayer at z = -d, where dis the thickness of the overlayer, is 

then matched to solutions in the bulk crystal at half the inter atomic spacing outside 

the bulk crystal along the z direction (half-layer termination [ 61] is assumed). The 

matching condition is satisfied by setting the logarithmic derivatives of the wavefunc­

tion solutions on either side of z = -d to be equal, thus determining the coefficients 

A and B. The application of wavefunction matching results in a single expression 

which treats the crystal and adlayer as a unit for the purpose of calculating phase 

shifts. In order to determine the phase shift, the solution in the adlayer is matched 

at the adlayer/vacuum boundary (z = 0) to a plane wave of the form 

( 4.3) 

where K, = J2mE/1i2
• The two sets of matching conditions give rise to a system of 

equations which can be simplified to yield an expression for the total phase shift in 

the crystal and overlayer regions: 

<Pc kz ( -1 ( -q P ( / ) ) tan 2 = -;, tan k1d + tan kt + kz tan pa 2 + c5) . ( 4.4) 

As in previous calculations of image state binding energies for clean metal sur­

faces [19], the potential in the vacuum region is approximated by a Coulomb potential 



60 

with a cutoff. The solutions to the time-independent Schrodinger equation for the 

Coulomb potential are confluent hypergeometric functions [55]. The solution in the 

vacuum region which matches the solution in the cutoff region. and vanishes at in­

finity is the irregular Whittaker function [54], WA,J.!(p), where M = 1/2, -\ = zvf2E, 

p = 2zvf2E, and Z = 1/4 for the case of a conducting substrate, and E and z are 

in atomic units. The phase shift for a unit of flux traveling from the origin towards 

the Coulomb barrier is 

_ 1 (2V2E Wl,J.!(po)) 
¢Jb = 2kczo + 2 tan kc WA,J.! (Po) , (4.5) 

where Wl,J.!(p0 ) is the derivative with respect to p evaluated at p0 , kc is the wave 

vector in the cutoff region, p0 = 2z0 vf2E , and z0 is the cutoff distance. The 

values of WA,J.!(p0 ) were calculated using the generalized hypergeometric function 

HyperGeometricU in Mathematica [104]. As in the case of multiple reflection theory, 

bound states occur where the round trip phase shift is an integer multiple of 27r. 

The zero of energy in the matching was set set such that kc = K. This simplifies the 

expression for ¢Jb but does not affect calculated binding energies. Since the expres­

sion for the phase shift is derived using the proper matching conditions, the wave 

functions derived where the bound state condition is met are continuous, as shown 

in Figure 4.2. Since the bound state condition does not uniquely define the quantum 

number n, we define n according to the behavior of the wave function in the vacuum 

region, i.e., a wave function with an exponential tail in the vacuum is ann = 0 state, 

a wave function similar to a hydrogenic n = 1 state In the vacuum is an n = 1 state, 

etc. 

Whereas Fischer and coworkers [101] concluded that no set of parameters in 

the expression of Lindgren and Wallden [102] fit the observed binding energies, the 

present model fit the observed binding energies to nearly within experimental error. 

The best fit resulted when the Na potential was set to 4.25 eV below vacuum and the 

thickness of the layer was set to 4 A. The values of E9 , V9 , and the cutoff distance 

in the vacuum Zim were taken from Echenique and Pendry [19]. The work function 

of Na/Cu(111), 2.69 eV, was taken from Lindgren and Wallden [102]. The effective 

mass for the overlayer was set to that of a free electron (the results could perhaps be 
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Figure 4.2: Wave functions for the surface state (n = 0) and first two image states 
(n = 1, 2) for a model potential for Na/Cu(lll). 
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improved by employing the effective mass of the appropriate band of bulk Na). The 

best fit parameters give binding energies of 3.0 and .72 eV for the n = 0 and n = 1 

states, respectively. These values compare well with the experimental values of 2.88 

and 0.72 eV. 

One difference between the present model and previous attempts is that the phase 

shift for the overlayer is calculated using a solution which is properly matched at the 

layer/substrate boundary, as opposed to assuming an additive phase shift ¢1 = k1d. 

It is easy to illustrate that in some cases the assumption of an additive phase shift 

will yield results which are clearly incorrect. If one assumes a high potential barrier 

in the layer, the electron is excluded from the layer, the phase shift at the layer is 

1r, and the result is a hydrogenic image series. However, if one assumes the phase 

shift of the substrate is additive and is, for example, 1r /2, the model will predict 

that the substrate will result in a substantial deviation from hydrogenic behavior. 

This result doesn't make sense given the fact that the electron is effectively excluded 

from the substrate and therefore the substrate shouldn't affect the binding energies~ 

The application of matching conditions at the substrate/layer boundary as in the 

present model removes this apparent contradiction. The expression of Equation 4.4 

possesses the correct behavior ( c/Jc = 1r) for the limiting case of an infinite potential 

barrier in the layer. 

Another important difference between the two models is the use of a cutoff pa­

rameter Zim for the image potential in the vacuum in the present model instead of 

extending the overlayer potential to the point where it intersects with the image 

potential as in the previous model. The presence of the cutoff implies that in most 

cases, the Cleepest part of the potential well is in the vacuum region outside the layer 

instead of inside the layer. In other words, there is a small potential barrier for an 

electron impinging on the layer. This barrier affects. the energies of low-lying states 

which possess a maximum in the probability amplitude near the layer/vacuum in­

terface. It is worth noting that the present model potential may also be extended 

to the case of thin insulator layers, as is shown later .. The previous model fails for 

insulator layers where the layer potential is above the vacuum level, since the layer 

potential may not intersect the image potential as required by the model. 
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4.1.2 Effective Mass 

The method of Giesen et al. [32] for estimating the effective mass of image state 

and surface state electrons within the multiple reflection theory formalism has been 

successful in accounting for the observed effective mass of image and surface states 

on clean surfaces but not for adsorbate covered surfaces. This method was described 

in Section 2.3.4. The method relies on the value of the phase shift at a bulk band 

edge, either 1r (top of gap, for the case of a Shockley-inverted band gap) or zero 

(bottom of the gap for a Shockley-inverted band gap). 

A straightforward way to apply this model to the case of an adsorbate layer is to 

assume that the primary effect of the adsorbate layer on the surface electronic struc­

ture is the adsorption-induced work function change. For the case of Na/Cu(111), 

the work function lowering induced by the adsorbate places the image state near 

the middle of the gap. Assuming this to be the only effect of the adsorbate layer, 

the model predicts an effective mass of m* ~ 1me for the n = 1 image state. The 

measured effective mass is 1.3 me [101], which indicates that work function lowering 

alone does not explain the Na/Cu(111) effective mass. 

It is apparent that, as well as causing a work function change, the adlayer has an 

additional effect on the dispersion of the image state electron. Therefore a method 

which explicitly incorporates adlayer effects into effective mass calculations is re­

quired. In this section, the theory of the previous section for binding energies of a 

simple overlayer is extended to determine a theoretical effective mass. 

An approximate way to calculate effective mass using the 1-D model potential 

is by including the momentum dependence in the parameters which describe the 

band gap. If m~be is the reduced effective mass of the upper band edge and mzbe is 

the reduced effective mass of the lower band edge, then since E9 corresponds to the 

average of the upper and lower bend edges, its dependence on k11 is given by 

( 4.6) 

where m~ve is the average of the masses of the upper and lower band edges. Since 

2V9 is the difference between the upper and lower band edges, its dependence on k11 
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is given by 

(4.7) 

The dispersion in the overlayer can be approximated by adding an effective mass 

term to the expression for the perpendicular component of kinetic energy in the 

overlayer, 

K.E. = E- U0 - 1i2 k~/2m;, (4.8) 

where m; is the effective mass in the overlayer and U0 is the overlayer potential. 

For the clean surface, the curve corresponding to ¢c = 1r is the upper band edge. 

The addition of an overlayer will change the position and dispersion of the curve 

corresponding to c/Jc = 1r. The new position and dispersion of the c/Jc = 1r band can 

be found by inserting a value for k11 in equations (7) and (8) to determine the local 

values of E9 and V9 , which are in turn used to determine the parameters p, q, and 6, 

related to the crystal phase shift by Equation 4.4. The curve is finally determined 

by fitting a parabola between points corresponding to c/Jc = 1r for several values of k11. 

Figure 4.3 compares the upper band edge of Cu(111) and the curve corresponding 

to a crystal phase shift of 1r in the presence of an overlayer of Na. Dispersion of 

the overlayer band was not taken into account-a fiat dispersion in the overlayer was 

assumed. Note that there is a shift of almost 2 eV and a flatter dispersion in the 

c/Jc = 1r curve. The effective mass of the image state is determined by the geometric 

construction of Giesen et al. 

An important question is how to treat the dispersion in the overlayer. One could 

assume a fiat dispersion in the overlayer which implies that the kinetic energy in the 

overlayer would be independent of k11. For the case of Na/Cu(111) this assumption 

leads to a result of m* /me = 1.8 for the n = 1 state. If one assumes a free-electron 

dispersion in the overlayer, the resulting effective mass for the n = 1 state is m* = 
1.1me· A comparison of these results to the experimental value [101] of m* /me= 1.3 

suggests that the effective mass m; associated with the Na layer is somewhat greater 

than that of a free electron. A quantitative analysis of the relative influence of the 

effective mass of the overlayer material and the substrate material on the image state 

effective mass within the assumptions of this model was not performed but would be 
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Figure 4.3: The effective mass associated with an image state is determined by forcing 
the image state parabola to cross the <Pc = 1r curve at the same point (Ec) where 
the free electron band crosses the <Pc = 1r band. For the case of a bare metal surface, 
the upper band edge and the <Pc = 1r band are one and the same. The presence of an 
adlayer changes the position and curvature of the <Pc = 1r band. 



66 

useful for future studies of similar systems. 

4.1.3 Conclusions 

Within the assumptions of the two-band nearly-free-electron model, a fiat adlayer 

potential, and a Coulomb potential with cutoff, an exact analytic solution to the 

problem of image states on alkali metal-covered surfaces was derived within the 

framework of multiple reflection theory. The expression for the total phase shift 

yields binding energies in good agreement with experimental binding energies of 

image and surface states on Na/Cu(lll). A simple theory which accounts for the 

effective mass values of image and surface states was modified for the case of a metal 

overlayer. Effective mass calculations for Na/Cu(lll) suggest that the electron in the 

overlayer is somewhat heavier than that of a free electron and qualitatively account 

for the discrepancy between experimental tesults and those obtained from simple 

work function lowering arguments. The principal difference between this model and 

previous models is the addition of a cutoff parameter which implies a potential jump 

at the layer side of the layer /vacuum interface. It can be concluded that the presence 

of this barrier is important in determining the energies of low-lying electronic states. 

The approach taken here, matching the wave functions in the overlayer to wave 

functions in the bulk and in the vacuum, is general in principle and may be applied 

to more complicated cases, such as dielectric layers, which are discussed later in this 

chapter. 

4.2 Ultrafast Kinetics of Image States on Clean 

Ag{lll) 

This section illustrates the analysis an interpretation of ultrafast kinetics data 

presented in later sections. The ultrafast kinetics for the n = 1 image state on the 

Ag(lll) surface were determined using the vacuum chamber and Titanium:Sapphire 

laser described in Chapter 3. The time delay between pump and probe pulses is 

determined by the position of the mechanical translation stage. The time-of-flight 
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electron energy analyzer records a complete spectrum for each stage position. The 

result is a three dimensional data set where the axes are time, energy, and electron 

counts. Typical results for the n = 0 and n = 1 states on clean Ag(111) at laser 

wavelengths of 295 nm for the pump and 590 nm for the probe are shown in Figure 4.4. 

The n = 0 state feature is due to a non-resonant two photon excitation through a 

virtual intermediate state. 

Kinetics traces are generated for a given feature by plotting the signal as a func­

tion of time delay. The signal in this case is the number of electron counts associated 

with a given spectral feature. In the case where the functional form of the line shape 

of the spectral feature is known, the signal may be determined by numerical fitting. 

For other cases, it is more practical to approximate the integrated signal by summing 

the electron counts over a small range of energy near the peak maximum. Figure 4.5 

contains the kinetic traces for the n = 0 and n = 1 states taken from the spectra 

shown in Figure 4.4. While the two traces are similar in shape, there is a slight asym­

metry in the n = 1 peak and the maximum of the trace occurs at approximately 35 

femtoseconds after the maximum of then= 0 trace. Since then= 0 state is due to 

a non-resonant two photon absorption, the kinetics trace represents the instrument 

response function. The instrument response function is assumed to be Gaussian in 

shape. The n = 1 state is modeled by convolving the instrument response function 

with an exponential rise and decay function. The exponential rise and decay function 

is the solution of the rate equations for a system in which initial excitation from the 

ground state into the upper state is followed by decay into the lower state which is 

the state of interest. The fit corresponds to a rise and decay of 20 fs and 26 fs. 

The functional form for a single exponential decay is 

(4.9) 

In some cases, the population in a given ·state may be due to population transfer or 

feeding from another state. If the population transfer is governed by rate equations, 

the kinetics may be described by a single exponential decay with an exponential rise. 
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Figure 4.4: The time resolved two photon photoemission spectrum for clean Ag(111) 
at a probe wavelength of 590 nm. Then= 0 surface state and then= 1 image state 
are visible in the spectrum. The time axis represents the relative delay between 
pump and probe laser pulses. At t = 0, the pulses are coincident in time. The 
n = 0 feature is present at approximately 1.5 e V and the n = 1 feature is present at 
approximately 1.2 eV. 
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For this case, the functional form is 

n(t) =A TI (e-tfr1 - e-th). 
T2- Tl 

(4.10) 

Equation 4.10 may be difficult to evaluate numerically near r2 = r1 , something which 

must be considered when modeling data using this equation, since many minimization 

algorithms may become trapped .near the discontinuity. It also should be noted that 

Trise and Tdecay are interchangeable in Equation 4.10. A fit to this equation does not 

determine which time constant is associated with the rise or decay of population in 

the state of interest. 

When the laser pulse duration and the lifetime of the state of interest are on a 

similar time scale, the result is a smearing of the kinetics trace. The smearing of 

the signal is often described as a convolution with an instrument response function. 

Consider first the case where the pulse duration is short compared to the kinetics 

being measured. The signal at time t may be represented by the product of the 

integrated laser intensity I and the population dynamics (n(t) = Ae-tfr for t > 0 

and n(t) = 0 fort < 0). When the pulse duration and T are on a similar time 

scale, the integrated laser intensity I is replaced by a function I(t) which describes 

its intensity as a function of time. The signal at a given time delay t changes from 

a. simple product of intensity and popul-ation to an integral, 

1 100 S(t) ex In::: I(t- t')n(t')dt'. 
y27r -00 

(4.11) 

The above is the definition of the convolution integral [105], hence the signal can 

be termed a convolution of the probe pulse profile and the function which describes 

the population. Qualitatively, the non-instantaneous probe pulse with a maximum 

intensity at time t probes a weighted average of the population in the region near 

t. The weighted average is represented by the convolution. Similarly, for the case 

of a non-instantaneous pump pulse, the population as a function of time is smeared 

compared to the exponential and can be represented as a convolution of the decay 

function with the time profile of the pump pulse. It can be shown that this pair of 

convolutions can be represented by a convolution with a single instrument function 
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~nst· Representing the convolution integral for functions f(t) and g(t) as f * g, the 

signal S(t) is given by 

S(t) ex: /2 * (/1 * n) = ~nst * n, (4.12) 

where ~nst(t) is the instrument response function for the pump and probe pulses 

h(t) and J2(t) given by, 

(4.13) 

The instrument response function given by Equation 4.13 is also known as the 

cross-correlation of the pump and probe pulses. If the pump and probe pulses are 

Gaussian in shape, then the cross-correlation is also Gaussian in shape. For the 

current experiment, the n = 0 signal at a given time delay is directly related to the 

product of the pump and probe intensities integrated over the time axis. The n = 0 

feature serves as a convenient measure of the time instrument response function for 

the experiment. A portion of the 35 fs shift from t = 0 in the maximum of the 

n = 1 decay trace can be explained in terms of the properties of the convolution. 

When the symmetric Gaussian instrument response function is convolved with the 

asymmetric exponential decay, the result is a shift in the maximum. Another portion 

of the time shift can be attributed to the exponential rise of the n = 1 population. 

An alternative explanation for the exponential rise, one which does not imply initial 

excitation from the ground level to an upper level and subsequent decay to a lower 

level, is provided by the optical Bloch equations described later. 

4.2.1 Numerical Fitting 

As noted in the previous section, it is often necessary to describe the kinetics trace 

as a convolution of an instrument response function with a function describing the 

population dynamics (for example, a single exponential function). This complicates 

the determination of the decay constant T for a given kinetics trace. In addition, 

a given data set will contain a certain amount of noise which also complicates the 

determination ofT. Numerical methods are required both to determine the under­

lying rate and to generate statistical estimates of the uncertainty of the measured 
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Figure 4.5: The n = 0 state (circles) and n = 1 state (squares) kinetics traces for 
clean Ag(lll) at 590 nm and a temperature of 50 K. The Gaussian full width half 
maximum of the n = 0 feature is 112 fs and represents the instrument response 
function. 
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rate based on the noise or measurement uncertainty associated with the data. In 

addition to estimates of uncertainties, numerical methods can be used to determine 

the quality of fit, which is useful in establishing which of two or more candidate 

models yields a better fit to a given data set. 

Numerical evaluation of the convolution may be achieved by using the convolution 

theorem, which relates the convolution of two functions to their Fourier transforms. 

The Fourier transform (denoted by T[]) of the convolution of two functions is equal 

to the product of their Fourier transforms, 

T[S] = T[Iinst]T[n] = T[Iinst * n]. (4.14) 

The convolved signal S(t) is obtained by application of the inverse Fourier transform, 

S = T-1 [T[S]] = T-1 [T[Iinst]T[n]] . (4.15) 

Because the data consist of discrete points, discrete Fourier transforms are employed. 

The application of discrete Fourier methods to model the effect of an instrument 

function is covered elsewhere [106]. In principle, it is possible to directly retrieve the 

population n(t) by direct deconvolution, 

_ 1 [ T[S] l 
n(t) = T T[Iinst] . ( 4.16) 

The above equation only yields meaningful results when the Fourier transform of Iinst 

is nonzero everywhere. In practice, numerical deconvolution is often not a reliable 

method for extracting information about n(t). The preferred method for extracting 

the underlying population n(t) is convolution of a trial function (in this case an expo­

nential decay function) with the instrument response function (a Gaussian instrument 

function) in conjunction with optimization of the non-linear parameters of the trial 

function via minimization of the square error L:(Sexpt- Smodel?, a method known as 

non-linear least squares minimization. There are several methods available for non­

linear least squares minimization. The choice of method depends on the kind of data 

and the functional form of the fitting function. The Levenberg-Marquardt method is 

a popular and fast gradient search method. Nelder-Mead downhill simplex is slower 



73 

but is preferred in some cases. Some implementations of Levenberg-Marquardt min­

imization behave poorly when degenerate solutions exist, as is often the case when 
_., 

modeling multiple exponential decays. The fit to the data shown in Figure 4.5 was 

obtained using Nelder-Mead downhill simplex minimization. 

It is poor judgment to compare model results and base conclusions on parameters 

without reliable estimates of the uncertainty in model parameters. Reliable estimates 

of the uncertainty in the measured time constants may only be determined by care­

ful application ofstatistical methods to well chosen models. Uncertainty is typically 

represented by a confidence interval in which it is relatively certain (expressed as a 

percent probability) that the "true" value resides. Typically a confidence interval 

of la and 2a of a Gaussian distribution corresponding to a probability of approxi­

mately 67% or 95% is employed. Many implementations of the Levenberg-Marquardt 

minimization method return uncertainty estimates as part of the calculation. Other 

methods for determining uncertainty in the model parameters include the constant 

chi square boundary method and Monte Carlo methods. A common problem in 

many attempts to estimate experimental uncertainty is the lack of an independent 

measure of the measurement error a. In such cases, an estimate of the measurement 

error is obtained from the residuals of fits to the data. The uncertainties reported 

here were determined using the constant chi square boundary method. 

4.2.2 Coherence Dephasing 

The rate equations often used to describe the pump-probe kinetics traces are inad­

equate for describing systems in which the pump and probe fields interact coherently. 

In particular, features such as the time shift [40] observed in kinetics traces, narrow­

ing of spectral features with probe delay time (or equivalently, dynamics which are 

different near the center of the peak than in the wings), quantum beats (oscillations 

due to interference between two or more states), and the oscillations observed in 

phase locked spectroscopy are not properly explained in terms of simple rate equa­

tions. In such cases, a more complete description which accounts for the interaction 

of the pump and probe fields is required. An adequate description for many such . 
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cases is provided by the optical Bloch equations. 

The following is a description of the optical Bloch equations for a three level 

system interacting with two laser pulses [107] where the intent is to describe the 

interactions of ultrafast laser pulses with the surface in a time-resolved two photon 

photoemission experiment. No detailed description of the optical Bloch equations 

in this context is available currently in the literature, so an attempt is made here 

to describe the equations and some of the implications for interpretation of time 

resolved TPPE. A derivation and discussion of the optical Bloch equations for a 

two level system is presented in a book by Loudon [41]. For the present system 

of interest, it is assumed that the two laser frequencies are different, as well as the 

energy spacings between levels. The initial population is all in the IO) state. The IO) 

state is assumed to be a continuum or band of states. Additional approximations 

employed in the standard optical Bloch rn.odel for a two level system are also present 

in the current model, such as the rotating wave approximation. The first field Ea is 

at or near resonance with the IO) ---+ 11) transition and the second field Eb is at or near 

resonance with the 11)---+ 12) transition. The radiative lifetime T1 of the intermediate 

state 11) is finite while the lifetime of final state is assumed to be infinite. There 

is also a dephasing time T2 associated with each transition. The dephasing is often 

explained in terms of small differences in the resonance frequency of a transition 

which result in broadening of the spectral line. Figure 4.6 indicates the energy levels 

and fields of the system. 

The Hamiltonian 1{ for the system is given by 

( 4.17) 

where 1l~t is the contribution from the interaction of the electric field Ea, 1l~nt is 

the contribution from the interaction of the electric field Eb, and 1£R encompasses 

relaxation effects which result in depopulation and dephasing. 

In the dipole approximation, the matrix form of initial and interaction Hamilto-
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Figure 4.6: Diagram of the energy levels and fields of the optical Bloch equations 
for the 3 level system representing two photon photoemission. The excitation field 
is Ea(t), the probe field is Ea(t), T1 is the time constant for state jl), jO) is the 
initial state, jl) is the intermediate state, J2) is the final state, and ~01 , ~ 12 are the 
detunings for the JO) ---+ jl) and jl) ---+ j2) transitions. 
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nian can be written 

(4.18) 

The field is written as 

( 4.19) 

where &a(t) is the (Gaussian or sech2
) profile of the laser field (the square root of the 

intensity I(t)). 

The system may be described using the density matrix formalism where the 

density operator is p = 1 w) (w 1 and the density matrix for the three level system is 

( 

Poo Po1 Po2] 

P = P~1 P:1 P12 · 

Po2 Pn P22 

( 4.20) 

The equations of motion of the density matrix are given by 

ap 1 (ap) at = in [1£o + 1lint, p] + at R (4.21) 

and 

( 4.22) 

The matrix elements for relaxation are given by the reciprocal of the dephasing times 

T2 , T~, T~' and the reciprocal of the population decay time T1 , 

( aPnn') I 0 

Eft = - Pnn' 1 /T2 

R 1/T~' 

1/T2 1/T~' I 
1/T1 1j

0
T~ . 

1/T~ 

( 4.23) 

This form for the matrix elements Pnn' is based on the assumption that the diagonal 

elements decay with a time constant called T1 which is related to population decay 

while the off-diagonal elements decay with a time constant called T2 which is related 

to dephasing or linewidth. 



Explicitly, the equations of motion for each matrix element are given by 

a 
atPoo 
a 
atPu 
a 
atP22 

a -
at POl 

a -
atP12 

a­
atPo2 

iJ-taEa(t)(_ _ ) - n P01- P10 , 

iJ-taEa(t) _ _ iJ-tb£b(t) _ _ 
+ . n (Pol- PID)- n (Pl2- P21)- rlpu, 

+if.-lb£b(t) (- - ) n P12- P21 

if.-la£a(t) if.-lb£b(t) _ . _ 
+ 

2
n, (Pu - Poo) -

2
n Po2 + (z~ol - f01)P01, 

iJ-tb£b(t) iJ-taEa(t) _ . _ 
+ 2n, (P22- Pu) + 2n Po2 + (z~12- f12)P12, 

iJ-taEa(t) _ if.-lb£b(t) _ . _ 
+ 2n, P12-

2
n, Po1 + (z[~l2- ~o1J- fo2)Po2, 
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(4.24) 

( 4.25) 

( 4.26) 

( 4.27) 

( 4.28) 

(4.29) 

where p is related to p by the expression p = eiwt p. According to Equation 4.23, the 

expressions for rl, rOl, rl2, ro2 are given by 

r1 

rol 

r12 

ro2 

1 

Tl ' 
r 

r* + r* + - 1 
0 1 2 ' 

r 
r* + r* + - 1 

1 2 2 ' 

r~ + r;. 

(4.30) 

(4.31) 

( 4.32) 

( 4.33) 

Where Tl is the lifetime of state 11), ro is the (dephasing) linewidth of the IO) state, 

rr is the ( dephasing) linewidth of state 11) and r; is the dephasing linewidth of state 

12). The final signal is given by the value of p22 as t--+ oo. 

Some of the above parameters are readily obtainable from photoemission and 

TPPE data, while others may only be obtained through extensive modeling of the 

data and additional experiments such as phase-locked spectroscopy. The lifetime T1 

of state 11) is readily obtained by fitting the exponential tail of the kinetics trace, 

provided the lifetime is not too short compared to the pulse width. The linewidth of 

the initial state IO) may be obtained by measuring its spectral width in an experiment 

where the wavelength is short enough to excite directly to state 12) (in the case of 

some TPPE experiments, the initial state is the surface state, the width of which 

can be determined by UPS). The remaining free parameters are fi and r;. 
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The detuning ~01 vanishes for a single initial state when the light frequency is 

exactly resonant with the IO) ~ ll) transition. When this is not the case (such as 

for a light source with an appreciable spectral width or when excitation from several 

initial states is possible), the signal is given by an average over the detunings ~01 . 

Assuming a continuum of final states, a sum over the detunings ~12 should also be 

performed. If the energy spectrum is divided into N discrete elements Ek where 

k = l..N, at a given energy Ek the signal is given by, 

Sk(tp) = L [L P~;t00 (tp)'DI1)(~o1)] Ik(~12), 
. Ll12 Llo1 

(4.34) 

where tp is the time delay between the pulses and h is a function representing the 

energy resolution of the spectrometer. 

Several features of the time-dependent TPPE spectrum are contained in the above 

set of equations. One feature is the shift of the maximum of the kinetics trace to later 

times. The "time shift" is due to the fact that the E field does not directly transfer 

population from IO) to 11), rather it first generates a polarization (represented by 

the off-diagonal matrix elements) which is transferred to the ll) state by a second 

interaction with the electric field with a rate of r 01 . The amount of time shift 

depends on T2 and the detunings ~01 and ~12 . Also, the exponential tail of the 

time profile is affected by the detunings. For large detunings, the signal essentially 

reproduces the instrument response function. In terms of the spectral features, the 

Bloch equations (Equations 4.24 through 4.29) reproduce tqe narrowing of peaks at 

longer.probe delay times observed in experimental spectra. Typical variations in line 

shape as a fu:nction of pump-probe delay are shown in Figure 4.7. At early times 

for the two level picture, the line shape contains contributions from both T2 and T1 , 

whereas at later times the peak width is primarily associated with the T1 population 

decay. This difference in linewidth has an important impact on the way peak height 

is determined and its impact on the interpretation of TPPE kinetics traces. If the 

peak height is determined by integration of the area under the peak, the effect of 

coherence on the kinetics trace is removed and the results may be interpreted using 

the rate equations. Also, in cases where the dephasing is fast (T; < < TI), the results 

of the optical Bloch model are the same as those obtained by the rate equations. 
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Figure 4.7: The variation in line shape as a function of time as calculated using the 
optical Bloch equations. A two level system was assumed. The values used in the 
calculation are T1 = 50 fs, T2 = 50 fs, the coincidence time t 0 = 150 fs, the pulse 
width is 100 fs. Part (a) illustrates the spectrum as a function of time. There is a 
substantial background near t 0 at all energies which coincides with the time profile of 
the laser pulse. This feature is also. observed in the experiment. Part (b) illustrates 
the narrowing of the peak as a function of time. 
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The application of the simpler two state version of the optical Bloch equations 

to the interpretation of TPPE data [38] has been the subject of some debate in the 

literature [42]. It can be shown that the assumption of only two states on resonance, 

together with the assumption of only lifetime dephasing (T; = oo), applied to the 

n = 1 state of Cu(111) yields a result for T1 which is approximately a factor of 

two too small. Interestingly, the application of the full three step model to the 

data yields decay constants closer to those obtained by a fit to the rate equations. 

This is due to the inclusion of additional dephasing parameters associated with the 

additional energy level, which has the effect of reducing coherence. The additional 

parameters introduced by the three step model complicate the fitting procedure. 

Researchers should apply this powerful·methodology with care, as misap~lication or 

incorrect or hidden assumptions may result in large systematic errors in reported 

results. It is useful to compare the results of the Bloch models to the results of 

the rate equations for a given set of data. If there is a large discrepancy between 

rate model and Bloch model results, the Bloch model results should be viewed with 

skepticism. The optical Bloch equations reduce to the standard rate equations in 

the incoherent limit (T1 >> T;).'lt should be noted that coherence dephasing is not 

the only possible explanation of the time shift evident in kinetics traces. Another 

possibility is feeding from other states which are higher in energy, in which the time 

delay can be attributed to the rate at which the higher energy states feed population 

into the state of interest (this system is described by an exponential rise and decay 

function, shown in Equation 4.10). A questionable practice is the use of linewidths 

derived from experimental spectra to reduce the number of free parameters in the 

Bloch model. That a particular measured linewidth is relevant to the transition in 

question should be established by additional, independent experiments before such 

an assumption is used in data analysis. In addition, slight differences in sample 

preparation or the cleanliness of the surface can cause differing amounts of surface 

inhomogeneities which may result in substantially different measured linewidths or 

dephasing (T;) times. 

Because of the concerns raised in the previous paragraph, the time-resolved data 

presented later is interpreted using the standard rate equations. Spectral peak areas 
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were determined by fitting the peak to a Voight function of fixed width using linear 

least squares. For most of the data presented here, the inclusion of an exponential 

rise improved the fit substantially. It is speculated that the exponential rise is due 

to feeding from states of higher parallel momentum. 

4.3 Quantum Well States of Xe:. Spectral Features 

This section describes two photon photoemission experiments on multiple molecu­

lar layers of Xenon on the Ag(111) substrate and the development of a 1-D quantum­

mechanical model for the resulting binding energies using multiple reflection the­

ory in conjunction with a continuum dielectric theory. Portions of this section are 

adapted from a paper by McNeill and coworkers [108]. Solid Xenon serves as a 

model system for understanding aspects of band structure and transport in both 

semiconductors [109] and insulators [110] due to its large band gap and high ex­

cess electron mobility. Also, the study of quantum well (QW) states associated 

with such layers should provide important information about the bulk band struc­

ture [81]. Recently, ultraviolet photoemission spectroscopy has been used to investi­

gate the occupied valence band quantum well electronic states in metal/metal [84], 

metal/semiconductor [82, 83], and metal/insulator [85, 86] systems. In this section, 

angle-resolved two-photon photoemission (ARTPPE) spectra of the excited quantum 

well and image states in the presence of insulating layers of Xe and Kr on Ag(111) 

are presented. 

Previously; this technique was used to study a monolayer of Xe where the changes 

in image state binding energy and dispersion were assigned to the work function shift 

due to adsorption and the polarization of the Xe layer [96]. ARTPPE investigations 

of layers of alkanes [95, 111] revealed a sensitive dependence of the electronic structure 

on the layer thickness and the presence of localized electronic states. TPPE spectra 

of layers ofmetal on metal [24-26, 103] have demonstrated the pinning of image states 

to the local work function, line width broadening due to lateral electron confinement 

on islands of adsorbate, and quantum well states. 

There are several factors that are expected to influence the energies of excited 
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Figure 4.8: The surface-projected band structure for (left) clean Ag(lll) and (right) 
Xe on Ag(lll). The zero of energy is set to the Fermi level. The adsorption of a 
monolayer Xe reduces the work function <I> by 0.5 eV. This lowers the image state 
energies with respect to the Fermi level since image states are pinned to the vacuum 
level. Adsorption of additional layers of Xe results in the formation of quantum 
well states. The Xe and Ag{lll) bands are denoted by light and dark shading, 
respectively. A two-photon photoemission spectrum for a bilayer of Xe on Ag(lll) 
containing then= 1, 2, and 3 peaks is shown on the right hand side. 
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electronic states at the Xe/ Ag(lll} interface. A diagram of the relevant energy levels 

of the Xe layer and the substrate is shown in Figure 4.8. Xe possesses a large energy 

gap and electrons in solid Xe have a high mobility. Since Xe is relatively inert, no 

chemical bonding exists between the Xe layer and the Ag substrate. The empty 6S 

orbital forms a conduction band below the vacuum level. The-conduction band, which 

is located near the vacuum level, should influence the energies of interface electronic 

bands. Because of the symmetry of the thin layer system and the substrate, the 

electron is confined by the vacuum potential and the substrate band gap, resulting 

in discrete states perpendicular to the surface. Along the surface parallel, the states 

form continuous bands. Quantum confinement of the electron within the layer may 

affect band energies. The effective mass of the Xe conduction band, which is rather 

less than that of a free electron, should influence the parallel dispersion of the image 

bands. ·Also, the dielectric constant of Xe should affect the shape and depth of the 

image potential well near the Xe surface. The effect of the conduction band and 

quantum confinement are addressed by taking photoemission spectra at a range of 

coverages. The dispersion or effective mass of the interface bands is determined by 

angle-resolved two photon photoemission. 

4.3.1 Experimental 

For this . set of experiments, a 2 MHz train of 6 ps pulses at wavelengths of 

590-620 nm was generated by a synchronously-pumped, cavity-dumped dye laser. 

Second harmonic generation was achieved by means of a 2 mm BBO crystal. The 

laser was tuned so that the photon energy of the second harmonic was just below 

the work function in order to be able to investigate states near the vacuum level 

while keeping one-photon photoemission down to acceptable levels (below the point 

where space-charge broadening has a noticeable effect on the spectral features). The 

second harmonic and the residual fundamental beam were focused collinearly on the 

sample. The energies of emitted electrons were determined by time-of-flight. 

At a given angle e the wave vector along the surface parallel k11 was determined 
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from the sample angle and photoelectron kinetic energy E as follows, 

(4.35) 

A fit to the parabolic dispersion relation, E = E 0 + n2 kij /2m*, where E 0 is the kinetic 

energy for emission normal to the surface, determined the effective mass m*. 

The sample was cooled to 45 K by means of a liquid helium cryostat. The UHV 

chamber background pressure was ,...., 1 x 10-10 torr. Mono- and bilayer Kr and Xe 

were obtained by cooling the sample and backfilling the chamber with sample gas at 

pressures and sample temperatures specified by the phase diagrams of Kr and Xe on 

Ag(111) [112, 113]. At aXe pressure of,...., 2 x 10-6 torr and at temperatures between 

82-68 K a monolayer of Xe formed. At aXe pressure of,...., 2 x 10-6 torr and a temper­

ature of 67-66 K a bilayer formed. Experiments were performed quickly to minimize 

the effects of contaminants in the chamber or sample gas. Xenon multilaye'rs were 

formed by carefully metered dosing of the cooled ( ,....,45 K) sample. The spectrum 

for a monolayer Xe grown by backfilling the chamber with Xe at temperatures and 

pressures specified by the 2-D phase diagram of Xe/ Ag(111) was indistinguishable 

from the spectrum for a monolayer of Xe obtained by metered Langmuir dosing at 

45 K. This is consistent with Xe/ Ag(111) X-ray structure results [114], which show 

Xe to form an incommensurate hexagonal layer ori the Ag(111) surface for layers 

grown by both methods. Two photon photoemission spectra were obtained for 1-9 

layers of Xe, as shown in Figure 4.9. 

The adsorption-induced work function shift changes the contact potential differ­

ence between the sample and detector which in turn changes the measured kinetic 

energy of the photoelectrons. In order to determine binding energies with respect to 

the vacuum, the work function change must be determined. The adsorbate-induced 

work function shift D.<P was determined by TPPE and confirmed via threshold UPS. 

A fit of the UPS data to the Fowler form [115, 116] was used to extract the work 

function from the photoemission data. In addition, the work function shift was de­

termined from the TPPE spectrum by analyzing the convergence of the image series · 

to the vacuum level using the quantum defect formula, E = -.85/(n + a)2, and 

simultaneously solving for the quantum defect a, the binding energy with respect to 
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the vacuum E, and the position of the vacuum level (the energy to which the series 

converges), for both the clean and the adsorbate-covered surface. Then the difference 

between the vacuum level for the clean and adsorbate-covered surface yields the work 

function change due to adsorption. The quantum defect formula can only be applied 

to the bare surface and the monolayer, where the states are still approximately hy­

drogenic. For bilayer, only UPS results were used. The UPS and TPPE results for 

the work function change due to the monolayer agree to within 10 meV. Our results 

differed somewhat from other threshold photoemission work [117] in that most of 

the work function difference was observed in the first layer (D.<I> = -.500 eV), with a 

small shift (D.<I> = -.036 eV) for the second layer, and no shift within experimental 

uncertainty for the third layer. We attribute this discrepancy to uncertainty in the 

determination of coverage in the previous work. In the present work, the coverage 

could be determined precisely by monitoring the TPPE spectrum. The work function 

shift due to the presence of a monolayer of Kr was determined to be approximately 

-.30 eV. 

The parallel dispersion was measured by varying the angle of the sample with re­

spect to the detector rotating the goniometer sector on which the sample is mounted. 

Typical spectra for a range of sample angles are shown in Figure 4.10 along with a 

dispersion plot. 

4.3.2 Coverage Dependence of the Spectral Features 

The TPPE spectra of Xe/ Ag(111) at various thicknesses of Xe are presented in 

Figure 4.9, and the binding energies of then= 1, 2, 3 states are plotted in Figure 4.11. 

The labels n = 1, 2, 3 represent the image state levels to which the states correspond 

in the limit of zero coverage. The binding energies are also shown in Table 4.1. The 

binding energies of the image states on a monolayer of Kr were determined to be 

-.62 and -.19 eV for n = 1 and n = 2, respectively. 

For the first layer, the features are similar to then= 1, 2, 3 image states of clean 

Ag(111), as shown by Merry et al. [96]. The spectral features shift in energy and 

change in relative amplitude as the Xe coverage is varied from 1 to 9 monolayers. 
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Figure 4.9: Two-photon photoemission spectra of Xe/ Ag(lll) at a series of coverages 
(1-9 atomic layers, approximately). After two layers, the Xe coverage is non-uniform, 
and peaks corresponding to more than one coverage are visible in a given spectrum. 
The dark line through the peaks indicates which peak is assigned to the coverage (in 
mono layers) indicated at the left of the figure. 
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Figure 4.10: In plot (a) spectra of the n = 1 state of a monolayer of Xe on Ag(111) 
at a series of angles are displayed. The peak energy positions are used to determine 
the dispersion relation. In plot (b) reduced dispersion data for a monolayer of Xe on 
Ag(111) are shown along with a parabolic fit determining the experimental effective 
mass, yielding m* /me = .95 ± .1. 
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Figure 4.11: Experimental binding energies (symbols) of the n = 1, 2, 3 states as a 
function of Xe coverage, and a comparison to the results of a dielectric model (solid 
lines). Energies are with respect to the vacuum level. 
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Layers n=1 n=2 n=3 
1 -.67 -.20 -.09 
2 -.63 -.20 -.09 
3 -.60 -.23 -.10 
4 -.60 -.30 -.11 
5 -.58 -.36 -.12 
6 -.57 -.40 -.16 
7 -.57 -.43 -.21 
8 -.57 -.47 -.26 

Table 4.1: Binding energies for then= 1, 2, 3 states for one to eight layers of Xe on 
Ag(111). Energies are reported in eV with respect to the vacuum level. 

The n = 1 feature on a monolayer of Xe is significantly narrower than that of the 

clean Ag(111) surface, indicating a longer lifetime of then= 1 state in the presence 

of a layer of Xe. At the completion of a bilayer, the signal intensity of the n = 1 

peak is reduced relative to the n = 2, 3 features while the peak shifts to lower binding 

energy. The binding energy of the n = 1 state decreases by 16% over the range of 

1-9 layers. Most of this shift takes place over the first few layers. A similar decrease 

in binding energy with layer thickness has been observed for image states on n­

alkanes [95], which have a negative (repulsive) electron affinity [118, 119] and where 

the image state electron density is located in the vacuum. Due to the similarity of 

the coverage dependence for n = 1 on Xe/ Ag(111) with the coverage dependence for 

n ~ 1 observed on alkane layers, the n = 1 state is tentatively assigned to be an 

image state residing primarily at the Xefvacuum interface. For an electron residing· 

outside the layer, the primary effect of the layer is dielectric screening of the image 

potential. The effect of the layer on the n = 1 energies can therefore be modeled 

using the dielectric continuum model which treats·the adsorbate as a structureless 

dielectric. 

The binding energies of the n = 2, 3 states monotonically increase as the number 

of layers increases. The marked contrast between the coverage dependence of the 

n = 1 peak and the n = 2, 3 peaks suggests that the states exist in different locations 

along the axis perpendicular to the surface. The coverage dependence of the n = 1 
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peak is characteristic of image states outside an insulating layer, whereas the binding 

energies of then= 2, 3 states at higher coverage are close to the Xe conduction band 

minimum, an indication of QW states of the Xe layer. At intermediate coverage, 

the n = 2, 3 state energies are between image state ( -.85fn2 ) energies and the Xe 

conduction band minimum, indicating mixed behavior. The energies of the n = 2 

and 3 states at higher coverage are modeled using a quantum well model which 

represents the Xe band structure and treats the coverage dependence of the energies 

as a quantum confinement effect which splits the Xe band into a series of discrete 

states. Dielectric .effects are ignored in this model. 

These initial observations on the coverage dependence of the binding energies of 

all th~ interface states are consistent with a picture in which the attractive electron 

affinity of the Xe slab provides a shallow quantum well, bounded by the bulk band gap 

of the substrate on one side and the image potential on the other side. This picture 

forms the basis of a third model which represents an attempt to bring the two pictures 

together in a way which more accurately reflects the observed binding energies of both 

image states and quantum well states at all coverages and which includes the most 

important features identified in previous models: the band structure of the metal 

substrate, the band structure of the Xe overlayer, and the screened image potential 

of the adsorbate/metal system. 

The parallel dispersion of the TPPE features was determined for 1-4 layers of 

Xe and for one and two layers of Kr. The angle-resolved spectra of the n = 1 

state on a monolayer of Xe at a series of angles between oo and 16° are shown in 

Figure 4.10 along with the reduced parallel dispersion data with a parabolic fit. The 

coverage dependence of the effective mass of the n = 1, 2 states of Xe/ Ag(111) is 

shown in Figure 4.12. For both the n = 1 and n = 2 states, the effective mass 

goes from that of a free electron (0.95 ± 0.1me for n = 1) at monolayer coverage 

to significantly less than that of a free electron (0.6 ± 0.2me for n = 1) at 4 layers 

of coverage. The n = 1 effective masses for 1-2layers of Kr follow the same trend 

as for Xe (0.9 ± O.lme for a monolayer, 0.8 ± 0.2me for a bilayer). The dispersion 

measurements are complementary to the binding energy measurements in that they 

yield information about electronic structure and transport properties in the plane of 
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the interface. These results are later interpreted using a model which includes the 

3D band structure of the substrate and overlayer material in calculating the energies 

of the interfacial electronic states as a function of parallel momentum. 

4.3.3 Dielectric Continuum Model 

To model image states perturbed by the presence of the dielectric layer, the well­

established dielectric continuum model for image states outside an insulator layer 

on a perfect conductor was employed. The analytical form of the solution to this 

problem was first presented along with numerical solutions by Cole [120, 121]. An 

approximate analytic form for the wave function was developed by Trninic-Radja 

and coworkers [122]. This model represents an attempt to account for the effect of 

the dielectric nature of the adsorbate (represented by a dielectric constant and an 

affinity level) on image state binding energies. Binding energies for image states on 

liquid He [123] and thin layers of alkanes on a metal [118, 119] can be explained by 

this model. However, this model does not take into account the band structure of 

the layer and substrate, which should be important for states near in energy to the 

Xe conduction band. In the next two sections, models which take into account the 

band structure of Xe are presented. 

In the dielectric continuum model, the electrostatic potential on the inside of the 

dielectric slab as presented by Jackson [124] is given by, 

Vi(z) = 
e2 e2 (t- 1) -- + --,--.,.......,----'---

4tz 4t(t + 1)(t- z) 

_ e
2
(t- 1)(t + 2z) + 6'V:(z) _ EA 

4t(t + 1)t(t + z) z ' 
( 4.36) 

where z is the distance from the metal surface, t is the thickness of the layer, the 

electron affinity of the layer EA is treated as an additive constant and is set to 0.5 

eV [125] (which corresponds to the Xe conduction band minimum), t is the static 

dielectric constant of Xe, and the correction term is given by the infinite series 

(4.37) 
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Figure 4.12: Effective masses of n = 1 and n = 2 states as a function of Xe coverage. 
Data from two separate experiments are shown. 
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Numerical computation yields the following explicit approximation for 6"\li(z), 

z2 
o"\li(z) ~ oVi(t) . (i [ 1- .55(1- z/t) + .30(1- z/t) 2

] • ( 4.38) 

The series for oVi can be summed at z = t to give, 

e
2 

[(1 + ,8)
2 

3 l E- 1 6"\li(t) = -
4 

,8 ln(1 + ,8)- -,8- 1 where,B = -. 
. Et 2 c+1 

(4.39) 

The electrostatic potential in the vacuum, first presented by Cole [121], can be 

written as, 
e2 

V(z)- ----
0 - 2(£ + 1)z 

e2 ( E- 1) 
4(€ + 1)(z- t) + oVo(z) ( 4.40) 

and the correction term is given by, 

e2tt oo(-1)k-lk(E-1)k ov z -- --
0 ( ) - ( t + 1 )2 z {; ( kt + z) t + 1 . ( 4.41) 

The correction term can adequately be approximated by, 

2t2 oVo(t) 
oVo(z) ~ ( ) ( ) , z t + z 1 +"0.222 :~~ · ln(z/t) 

( 4.42) 

where the value of oVa at z =tis given by, 

e
2 

[ c ( 2£ ) 1 l oVo(t) = -t (c2- 1) ·ln t + 1 - 2(€ + 1) .. ( 4.43) 

Two steps were taken to avoid the singularities in the electrostatic solution at 

Che interface boundaries. First, a cutoff was imposed at -4 e V near the metal, 

resulting in a bare metal binding energy of -.75 eV which is close to the experimental 

value for clean Ag(111) of -.77 eV. Second, the potential is linearly interpolated 

between V(t- b/2) and V(t+b/2) near the dielectric/vacuum interface. Eigenvalues 

for the model potential were determined using an implementation of the discrete 

variable representation (DVR) [126]. Subsequent calculations were performed using 

a Runge-Kutta integrator as described in the next section. It was found that the 

DVR implementation was inefficient (optimized for harmonic wells) and somewhat 

inaccurate (the wave function did not completely vanish at the origin as required) 

for the potential of interest. 
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The potential given by the dielectric model forE= 3.0, EA = 0.5 eV, and b = 3 A 
for various layer thicknesses is shown in Figure 4.13. The resulting binding energies 

are shown in Figure 4.11, plotted with the binding energies extracted from the data 

of Figure 4.9. Although the model overestimates the binding energies for all three 

states, it is significant that it does reproduce the major trends in the data: then = 1 

image potential state energy becomes more positive while the higher quantum state 

energies become more negative as the adlayer thickness increases. 

Analysis of the model results yields the following observations. First, the n = 1 

electron is partially excluded from the layer by the potential barrier represented by 

the electron affinity. This can be seen in the the wave functions predicted by the 

continuum model which show a tendency for the probability associated with the n = 1 

image potential electron to move out toward the adlayer/vacuum interface as shown 

in Figure 4.14. Second, the electron affinity presents an attractive potential within 

the layer for the n = 2, 3 states. The n = 2, 3 image states transform into quantum 

well states of the layer as thickness increases. This suggests that the n = 2, 3 energies 

should be analyzed by a model which takes explicit account of their quantum well 

character, including the effective mass of the Xe conduction band. The proximity 

of the n = 2 and 3 states to the substrate suggests it is appropriate to include the 

substrate band structure as well. 

4.3.4 Discrete Wave Vector Model for QW States 

Loly and Pendry [81] proposed using photoemission from thin layers as a method 

for achieving highly accurate valence band structure measurements. Here this ap­

proach is applied for the first time to two photon photoemission, yielding accurate 

conduction band measurements. According to the theory of Loly and Pendry [81], 

QW wave functions possess a factor of sin kzz. For wave functions in a layer N atoms 

deep the wave function must vanish at z = 0 and N d, where d is the interplanar 

spacing, leading to the bound state condition kz = nj / N d, where j is the quantum 

number of the QW state. In the effective mass approximation the energy levels will 

follow the dispersion relation E = n? k; /2m*. Thu'l the electronic energy levels of a 
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Figure 4.13: The potential used in the dielectric model eigenenergy calculations. 
The potential is the solution to the electrostatic problem of an electron in or near a 
dielectric slab on a metal surface. The results for 1-3 layers of Xe (3.6 A per layer, 
E = 3,0) are shown. The image potential at the metal is cut off at -4 eV. The 
potential is linearly interpolated over a region of width b = 3 A at the Xejvacuum 
interface. 
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Figure 4.14: The resulting probability densities for the dielectric continuum model 
for then= 1 (solid lines) and n = 2 (dashed lines) states for 0,2,4, and 6 layers of 
a slab of dielectric constant E = 3.0 and electron affinity EA = 0.5 eV. This· figure 
illustrates the tendency of the n = 1 state to have significant electron density at the 
Xe/vacuum interface at these coverages while then = 2 state looks like a hydrogenic 
n = 2 image state for a monolayer but tends to move inside the layer and have a 
node near the Xe/vacuum interface, which is indicative of a quantum well state, for 
thicker layers. 
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quantum well can be thought of as a discretized band structure. If the energies of 

the states for a range of thickness are plotted against kz, the perpendicular disper­

sion can be observed. The band structure information obtained by this analysis is 

complementary to band structure information obtained by angle resolved measure­

ments of the parallel dispersion: by performing angle resolved measurements and 

coverage resolved measurements, a large area of the 3-D surface corresponding to 

the conduction band (E(k11, kz)) can be determined. 

In Figure 4.15 the binding energies of then= 2, 3 states are plotted with respect 

to the perpendicular momentum along with a fit to a parabola determining an exper­

imental value for the Xe conduction band edge of-.55 eV and an effective mass of 

.57me. Here we have assumed that then= 2, 3 states are the j = 1, 2 quantum well 

states, respectively. The binding energies qualitatively match the expected quantum 

well behavior for 7-9 Xe layers. In the range of 1-3 layers the dispersion is too 

flat to correspond to a QW state derived from the Xe conduction band, suggesting 

that n = 2, 3 are modified image states at low. coverage. At intermediate coverage 

the slope of the dispersion curve changes smoothly from flat dispersion to parabolic 

dispersion, suggesting that the n = 2, 3 states in this range are "mixed" states that 

possess both image state and QW state character, i.e., the states possess significant 

probability density in the layer and the vacuum. 

The crossover between image-like and quantum well-like behavior appears to 

occur at approximately the thickness corresponding to the expectation value (z) = 

6a0n2 for the same state in the hydrogenic image state model [17]- at four layers 

(14 A thick) for n = 2 and at seven layers (25 A thick) for n = 3. This result 

can be interpreted in terms of perturbation theory as follows. For the monolayer, 

the states are only slightly perturbed from those of the clean surface because of the 

small spatial overlap of the layer potential with the hydrogenic (zero order) wave 

function. When the layer is thick enough for significant overlap with the zero order 

wave function (t ~ (z)) , then= 2, 3 wave functions are brought down in energy by 

the attractive Xe layer potential. In contrast, the n = 1 state energy is in the Xe 

gap, therefore the n = 1 state is pushed out into the vacuum by the Xe layer. 
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Figure 4.15: Perpendicular dispersion plot of Xe quantum well states. The perpen­
dicular wave vector is determined by the layer thickness and the quantum number of 
the state. The perpendicular dispersion of the j = 1, 2 quantum well states (which 
correspond to the n = 2, 3 image states) is fit to a parabola, yielding aXe conduc­
tion band minimum of -.55 eV and an effective mass of .57me. The higher kz values 
correspond to lower coverage. Energies for the j = 1 state are plotted versus kz for 
2-9 Xe layers, and energies for the j = 2 state are plotted versus kz for 4-9 layers. 
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4.3.5 A Quantum Well on an NFE Substrate 

The dielectric model with a hard wall at the metal correctly predicts the gross 

features of the data but fails quantitatively, especially in that the energies of n = 2, 3 

drop too quickly as a function of layer thickness. The discrete wave vector model 

ignores the metal substrate and the image potential in the vacuum. Here an attempt 

is made to develop a simple model which takes into account the important physics 

of both models and properly treats the electronic structure of the substrate. QW 

states of a metal layer on a metal substrate have been successfully modeled as a two­

band nearly-free-electron (NFE) metal on a two-band NFE substrate with an image 

potential in the vacuum [87, ~27]. However, the wide Xe gap with a fiat core-level 

valence band precludes the use of the two-band NFE model for states near the Xe 

conduction band. It is more proper to ignore the Xe valence band by setting Vxe to 

the Xe conduction band minimum and using the effective mass approximation for 

the conduction band dispersion. Therefore the Ag(lll) substrate is treated as an 

NFE material and a potential is constructed outside the metal using the effective 

mass approximation to the Xe conduction band and the image potential outside a 

dielectric slab on a metal substrate from Section 4.3.3. 

The details of the model are as follows. In the substrate the two-band NFE 

approximation is used. This approximation has been successful in describing the 

substrate for the case of surface states in the band gap of a metal. Such states 

possess an exponential tail in the metal which can be adequately described in the 

two-band NFE approximation. The two band NFE model is detailed in Chapter 2. 

A value of- .55 e V with respect to the vacuum is used for the bulk Xe conduction 

band minimum and a bulk Xe effective mass of .57me taken from the discrete wave 

vector analysis in the previous section. The Xe interplanar spacing of 3.577 A was 

taken from X-ray data [114]. The Ag(lll) parameters were taken from calculations 

of clean surface image and surface state binding energies [19]. In the vacuum the 

potential was taken to be the image potential outside a dielectric slab given in Equa­

tion 4.40 with a cutoff at 1.3 A from the layer/vacuum boundary. The dielectric 

constant was fixed at E = 2, which was calculated from the Clausius-Mossotti equa-
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tion using the atomic polarizability of Xe and the density of solid Xe. An illustration 

of the potential is given in Figure 4.16. 

The eigenstates of the model potential were determined by numerical integration 

as follows. The 2-band NFE solution for the substrate corresponding to an evanes­

cent wave decaying into the metal substrate is evaluated at the substrate/overlayer 

interface. The slope and value are then propagated numerically through the flat 

overlayer potential (where the kinetic energy is evaluated using an effective mass of 

.57me) and out into the vacuum (where the mass is me) using a 4th and 5th order 

Runge-Kutta integrator with adaptive step sizes. The trial solutions are evaluated 

at large z for a range of energies to find solutions which are 'well-behaved at infinity', 

i.e., eigenstates. The accuracy of this numerical technique was verified by compari­

son to the results obtained by multiple reflection theory [19] for clean Ag(111) using 

the potential for the clean surface (i.e., zero layers of Xe). 

The model was implemented as a set of MATLAB scripts using a Runge-Kutta 

integrator available in the MATLAB function library. One of the advantages of Runge­

Kutta integrators is that they readily handle a variety of boundary conditions such 

as those imposed by the NFE substrate in the present model. Such flexibility is 

not generally available in techniques (such as DVRor collocation) that involve basis 

functions, since the choice of basis function imposes boundary conditions. The scripts 

are included in Appendix B. The time-independent Schrodinger equation is a second 

order ordinary differential equation (ODE). Runge-Kutta integrators usually only 

solve first order differential equations. Fortunately, higher order ODEs can always 

be reduc~d to the study of sets of coupled first order differential equations. For 

example, the general second order equation 

d2 y dy 
dx2 + q(x) dx = r(x), 

can be rewritten as two first order equations, 

dy 

dx 
dz 
dx 

z(x), 

r(x) - q(x)z(x), 

( 4.44) 

(4.45) 

( 4.46) 
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Figure 4.16: Potential used in calculating the quantum well states for 1, 2, and 3 
layers of Xe. The potential in t~e metal is a two-band nearly-free-electron potential. 
The potential in the layer is set to the Xe conduction band minimum. The potential 
in the vacuum is the continuum electrostatics solution for an electron outside a 
dielectric layer on a metal substrate. 
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where z(x) is an introduced variable. For example, the time-independent Schrodinger 

equation may be written as a pair of coupled first order differential equations as 

follows, 

dy 

dx 
dz 
dx 

z(x), 

2m(E- V(x))y(x). 

( 4.4 7) 

( 4.48) 

The determination of eigenvalues can be treated as a two point boundary value 

problem. In this case, the initial boundary values are the slope z(x) and value y(x) 

of the wavefunction where the substrate and adlayer meet. The slope and value 

of the NFE wavefunction are employed. The second boundary condition is that 

the wavefunction vanish at infinity. This boundary condition can be approximated 

by requiring that the wavefunction vanish at a large value of x. Solutions to the 

boundary value problem are typically obtained by employing the numerical method 

known as the shooting method. The problem was divided into two steps. First, 

a coarse grid search was used to determine approximate upper and lower bounds 

on the energy of a bound state. This was performed by numerical solution of the 

differential equations at several trial energies using a Runge-Kutta integrator. When 

a sign change in the trialsolution at large x was observed between two trial energies, 

it was assumed that a bound state existed somewhere in the range defined by those 

two· energies. Then a binary search was employed to narrow the range to a set 

precision. 

This model was used to determine binding energies for 1-9layers of Xe. A cutoff of 

1.3 A in the image potential outside the layer gave the best fit to the data. Binding 

energies are shown iri Figure 4.17 and the correspo'nding probability densities are 

shown in Figure 4.18. The binding energies predicted by the model underestimate 

slightly the n = 2, 3 binding energies, but the overall agreement with the data is 

good. The n = 2 probability density possesses a maximum in the Xe layer, whereas 

the n = 1 density exponentially decays within the layer. This is expected since the 

n = 2 state is above the Xe gap and thus the wave function propagates (is plane 

wave-like) in the layer. However, the n = 1 state is in the Xe gap and does not 

propagate in the layer. 
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Figure 4.17: Comparison between experimental binding energies for the n = 1, 2, 3 
states for Xe overlayers (symbols) and the predictions of the quantum well model 
outlined in this section. 
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Figure 4.18: Calculated probability densities for the n = 1, 2 states for 2,4,6, and 8 
layers of Xe/ Ag(111) calculated using the model outlined in this section for the case 
of a Xe layer. The vertical lines indicate the thickness of the Xe layer. The solid line 
represents the n = 1 state and the dashed line represents the n = 2 state. 
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4.3.6 Effective Mass of Quantum Well Electrons 

In principle, angle-resolved two photon photoemission measurements of quantum 

well states yield information about the (bulk) band dispersion of the overlayer ma­

terial along both the surface parallel and the surface normal. As discussed in the 

previous section, normal photoemission from quantum well states has been shown to 

yield precise band structure information along the direction normal to the surface. 

The coverage dependence of the parallel dispersion (shown in Figures 4.10 and 4.12) 

along one or more axes of the surface Brillouin zone yields additional information 

about the full 3D band structure, expanding the amount of information obtainable 

by photoemission considerably. However, the interpretation of coverage dependent 

parallel dispersion measurements thin layer quantum well is complex in that the dis­

persion of quantum well states is determined by several effects including the layer 

band structure, the substrate band structure and by the probability amplitude of the 

quantum well state in the substrate, overlayer, and vacuum regions. Here the com­

bined effects of the the band structure of the substrate and overlayer as well as the 

probability amplitude in the various regions which together determine the quantum 

well effective mass are explored. 

Since the present interest is in describing the electronic states within a substrate 

gap, the NFE model is a natural starting point. We shall also assume that all the 

measurements are near zone center of the surface Brillouin zone in which case two­

bands are sufficient to describe the dispersion. The geometric theory of Giesen and 

coworkers [18] (outlined in Section 4.1.2) for the effective mass of image states on 

the clean surface of noble metals is useful as an example of a successful theory upon 

which more sophisticated theories for more complex systems may be built. Indeed, 

the effective mass model for a thin alkali metal layer (Section 4.1) is based largely 

on the geometric model. The model for the alkali layer replaces the conduction band 

edge with a ¢c = 1r curve which contains both substrate and overlayer effects. 

The success of the geometric theory owes to the fact that it more or less correctly 

partitions the effective mass between the substrate, where the effective mass is related 

to the valence and conduction band dispersions, and the vacuum, where the effective 
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mass is that of a free electron. It should be noted that the theory is only applicable for 

surface states which are close in energy to either the conduction or valence band edge. 

The results are ambiguous in the middle of the gap, where it is not known which band 

the image state will eventually cross. This ambiguity relates fact that the derivation 

is geometric instead of algebraic, and relies on the fact that the crystal phase shift 

cf>c is 1r at the point along k11 where the image state crosses the conduction or valence 

band. Obviously, this ambiguity is not a feature of the underlying physics, but rather 

a weakness in the model. An additional complication in the case of a dielectric layer 

is the fact that the potential outside the layer is not the hydrogenic image potential. 

This makes phase shift analysis impractical. Instead, the approach taken is to include 

a dependence on k11 in the substrate and overlayer band parameters, as was done for 

the case of alkali metal layers in Section 4.1.2. In addition, the k11 dependence of 

the image potential is included, and eigenstates are determined (as explained in 

Section 4.3.5) for a range of k11 values, thus determining the dispersion. Calculations 

of phase shifts are not necessary in this approach. 

The details of the calculations are as follows. As in Section 4.1.2, the substrate 

band gap energy E9 and half width V9 are parameterized with respect to k11 in order 

to account for the changes in gap width and energy as a function of k11 in the surface 

projected bulk band structure (for an illustration of the surface projected bulk band 

structure, see Figure 2.4). The perpendicular component of the kinetic energy in the 

overlayer and vacuum regions is also parameterized in k11. Assuming the Hamiltonian 

for the system is roughly separable into perpendicular and parallel components, the 

total kinetic energy can be written as the sum of the perpendicular and parallel 

components. In the overlayer, the effective mass approximation with effective mass 

parameter m£ is used to account for the band dispersion of the overlayer material, 

resulting in an expression for perpendicular kinetic energy, 

( 4.49) 

where VL is the conduction band minimum of the layer. In the vacuum, a similar 

expression is used .for the perpendicular component of the kinetic energy, except the 
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Layers Effective Mass 
n=1 n=2 

expt. theo. expt. theo. 
1 0.96 0.91 1.09 0.98 
2 0.78 0.79 0.94 0.96 
3 0.63 0.72 0.77 0.93 
4 0.63 0.67 0.69 0.80 

Table 4.2: Measured effective mass of the n = 1 and n = 2 image-like states for 1-4 
layers of Xe on an Ag(111) substrate and a comparison to calculated results. 

mass employed is the free electron mass, 

(4.50) 

where Vim(z) is the image potential taken from the dielectric continuum model. The 

effective mass of the thin layer quantum well state is determined by finding binding 

energies for a few given values of k11 and fitting the results to a parabola. The effective 

masses for 1-4 layers of Xe were calculated using version of the program included 

in Appendix B which was modified to take into account k11 in the manner described 

above. The results of the calculation are plotted together with the experimental 

results in Figure 4.19. A table of experimental and calculated values is given in 

Table 4.2. 

The theory follows the overall trends in the data, including the fact that n = 2 

has a larger effective mass than n = 1, but seems to underestimate the effect of the 

layer in lowering the effective mass. Perhaps this is a result of using an effective mass 

of 0.57me, taken from a simplistic interpretation of the TPPE data, instead of the 

literature value of 0.35me. However, even in calculations performed with the lower 

effective mass, the effective mass is somewhat larger than experiment. Perhaps this 

indicates that the model does not calculate overlap with the layer as well as would 

be believed considering the success of the model for binding energies at k11 = 0. 

Indeed, this discrepancy indicates that effective mass measurements may be more 

sensitive to the spatial extent of the electron than binding energy measurements. 

It should be noted that uncertainty estimates for the effective mass measurements 
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Figure 4.19: The effective mass as a function of Xe coverage. Circles and squares 
indicate the calculated effective mass of the n = 1 and n = 2 states, respectively. 
Triangles and diamonds indicate experimental values of the effective mass of the 
n = 1 and n = 2 states. 
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were not obtained, so a quantitative evaluation of model correctness is not possible. 

The n=2 dispersion measurements for monolay~r and bilayer Xe suffered from low 

signal levels. In addition, it is possible that the photon energy was not sufficient 

for accurate measurement of n=2 at 1ML. The success of the effective mass model 

in reproducing the data indicates that angle-resolved TPPE measurements of thin 

layers of material together with the model presented here can be a useful method 

for obtaining momentum-resolved 3D band structure measurements of unoccupied 

bands. 

4.3. 7 Discussion 

The coverage dependent spectra exhibited several types of behavior which we 

attribute to image states, quantum well states, and "mixed" states. The n = 1 · 

state behaves as a screened image state of the composite metal/ dielectric interface 

at intermediate Xe coverage. On the other hand, the n = 2, 3 image states become 

quantum well states of the overlayer at 7 + layers of Xe and exhibit a coverage 

dependence between that expected for image and quantum well states for 3-6 layers. 

An important difference between image states and quantum well states is that image 

states are energetically within the Xe gap while quantum well states are energetically 

within the Xe conduction band. Based on this distinction the n = 1 state, which is 

below the Xe conduction band in energy, is an image state while the n = 2, 3 states 

are quantum well states. The image state binding energy depends largely on the 

electrostatics of the insulator/vacuum interface, while the energy of the quantum 

well states depends on the perpendicular dispersion and the minimum of the Xe 

conduction band. 

The results of the dielectric continuum model of Section 4.3.3 indicate that the 

n = 1 state moves to more positive binding energy (weaker binding) due to the 

dielectric polarization of the Xe slab in the presence of the image potential electron. 

This is a combination of two competing effects. First, the polarizable Xe adlayer, 

characterized by dielectric constant E, serves to screen the image electric field between 

the electron and the metal, leading to a more positive binding energy. Screening is 



110 

primarily due to the first term in Equation 4.36 and the first term in Equation 4.40. 

Second, the induced polarization interaction between the electron and the Xe slab, 

represented by the second term in Equation 4.40, is attractive and favors a more 

negative binding energy. This model correctly predicts that the net effect for the n = 

1 state is weaker binding to the interface as each of the first five or six layers is added 

(Figure 4.11), which results in a shift of electron density toward the Xe/vacuum 

interface. This reduction in binding energy is manifest in this model for any case 

where the affinity of the layer is repulsive with respect to the n = 1 binding energy. 

For states above the affinity level in the layer, the state "falls into" the layer at 

some thickness. The fact that the affinity level (Xe conduction band minimum) falls 

between the n = 1 and n = 2 energies distinguishes the coverage dependent behavior 

of the two states. 

The relative intensities (Figure 4.9) of the peaks as a function of Xe coverage 

give additional evidence as to the nature of the states. The linewidths would also be 

important but were difficult to determine due to overlapping features. Photoemission 

from then= 1 state becomes reduced in intensity relative to that from then= 2, 3 

states for 3 and 4 layers of Xe, but is similar in intensity for 6-8 layers of Xe. This 

is consistent with our assignment of the n = 1 state to an image state of the Xe 

layer, primarily located at the vacuum/Xe interface. The intensity of this feature 

may ·be determined by two competing effects related to the location of the n = 1 

state at the layer/vacuum interface. The initial decrease in intensity may be due to 

the fact that the probability of excitation of a substrate electron into the n = 1 state 

becomes lower as a function of coverage since the state is located relatively far from 

the initial states in the metal making the spatial overlap with the bulk states small. 

Similarly, the increase in relative intensity at 6-8 layers is likely due to an increase 

in the lifetime of the n = 1 state. The lifetime increase is due to the fact that the 

electron must tunnel though a thicker layer in order to decay into the metal. 

The n = 2, 3 states at higher coverage possess a perpendicular dispersion similar 

to accepted Xe conduction band values as shown in Figure 4.15. The influence of 

the Xe conduction band can also be seen in the angle-resolved data (Figure 4.12), 

where the dispersion is measured along the surface parallel while the perpendicular 
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momentum is fixed by the layer thickness. The effective masses measured along the 

surface parallel are higher than accepted bulk Xe conduction band values because 

for the first few layers a significant fraction of the probability density of the states 

is in the metal and in the vacuum which results in a larger effective mass. The 

effective mass for the n = 1 image state on a clean Ag(111) surface (corresponding 

to the limiting case of a state where all the probability density is outside the layer) 

is 1.3me. The parallel dispersion of the n = 1 state corresponds to an effective mass 

close to that of a free electron for the monolayer (m* /me = 0.95) and the effective 

mass monotonically decreases to m* /me = .6 at four layers. Also apparent from 

Figure 4.12 is that, for a given layer thickness, the n = 1 state has a lower effective 

mass (closer to the bulk Xe value of .35me) than that of the n = 2 state. This may be 

due to differences in the spatial overlap of the states with the substrate and overlayer. 

According to the calculations in Section 4.3.5 the n = 2 state has a higher probability 

density in the metal than n = 1 which should increase the effective mass with respect 

to n = 1. In looking at the wave functions for two and four layers (Figure 4.18), 

one can see that for up to four layers the n = 1 state has more density in the layer 

than the n = 2 state. Model calculations of the effective mass reproduce the trends 

seen in the data and demonstrate the usefulness of the combined angle-resolved and 

coverage-resolved TPPE in determining 3D band structure of the overlayer material. 

The calculations also suggest that the effective mass is quite sensitive to spatial 

extent of the electron. 

It should be noted that the high energy and momentum resolution afforded by this 

technique along both the surface parallel and surface normal yield the most precise, 

detailed spectra to date of the Xe conduction band. Angle-resolved UPS of a bulk 

single crystal conducted at a variety of wavelengths can also map out the conduction 

band structure, but UPS resolution is ultimately limited by hole lifetime effects and 

the fact that kz is only partially conserved in photoemission from bulk material. The 

precision of the TPPE measurements of the conduction band is in principle only 

limited by the lifetime broadening of the conduction band of the overlayer. 

The QW treatment of Section 4.3.5 has the appropriate behavior in the limiting 

cases of zero and infinite Xe layers. The model reduces to the multiple reflection 
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model for the clean surface in the limit of zero coverage. In the limit of high coverage, 

the model reduces to the effective mass approximation of the Xe conduction band. It 

also appears to adequately describe the data in the intermediate case of 1-9 layers. 

The probability density of the wave functions in Figure 4.18 indicates that for two 

Xe layers approximately 5% of the n ..:_ 2 wave function is in the layer whereas 

for 8 atomic layers of Xe approximately 95% of the wave function is in the layer. 

This model is perhaps successful because it partitions the wave function more or 

less correctly between the layer, vacuum, and substrate, allowing the substrate and 

vacuum parts of the potential to primarily determine the n = 2, 3 binding energy 

for the first few layers but allowing the overlayer potential to dominate for thicker 

layers. 

Merry and coworkers [96] discussed the effect of the work function shift due to 

adsorption on the image state binding energy. In the application of this model, 

the work function shift of -.5 e V was taken into account. Therefore this effect of 

the substrate band structure is explicitly\ accounted for in this model, allowing for 

a comparison of the relative importance of the work function shift, the dielectric 

properties of the interface, and the band structure of the layer. 

The binding energies and effective masses of the excited states of the Xe/ Ag(lll) 

interface within an electron-Volt below the vacuum level have been measured using 

ARTPPE for one to nine atomic layers. Purely 2-D image potential states (which 

only propagate freely in the plane of the surface) evolve into quantum well states that 

converge to the conduction band states of the 3-D bulk xenon solid with increasing 

layer thickness. This work demonstrates that ARTPPE is a powerful technique 

for studying the transition from two- to three-dimensional electronic structure at 

nanometer scale interfaces. The simple QW model outlined in Section 4.3.5 accounts 

for the energies of the n = 1, 2, 3 states over the range of coverages examined in this 

work. Importantly, the model yields a simple method for determining an accurate 

conduction band structure from the experimental data. In the following section, the 

lifetimes of the Xe QW states are investigated. 
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4.4 Ultrafast Dynamics of Xe QW States 

The culmination of the present work is the determination of the ultrafast decay 

kinetics for electrons in quantum well states of the Xe layer. Portions of this section 

are adapted from previously published work [128). The population decay kinetics 

were determined from one to six layers of Xe. These results represent the first time­

resolved measurement of the evolution from image states into quantum well states. 

These results are important because the transition of the electronic structure from 

two-dimensional atomically thin layers to the three-dimensional extended electronic 

structure of the bulk has implications in many fields including surface photochem­

istry, photoinduced charge transfer, and semiconductor device physics. Both surface 

effects, including chemisorption, band-bending, surface reconstructions, and image 

potential states, and quantum confinement, which results in the discretization of 

momentum along the surface normal, may affect the electronic characteristics ( ener­

gies, dispersions, and transport properties) of the composite interface. Femtosecond 

time-resolved two-photon photoemission (TRTPPE) has proved to be a useful tech­

nique for the determination of the energies and dynamics of interfacial electronic 

states for a variety of systems [21, 129) including metal surfaces [130], semiconductor 

surfaces [131, 132), and metal-insulator interfaces [40, 118). This approach represents 

a new and general method for determining the evolution of electronic structure from 

two-dimensional states of a single atomic layer to three-dimensional quantum well 

states by analysis of the femtosecond dynamics of excited electronic states for a range 

of layer thicknesses. Such a study has the potential of providing a measure of the 

spatial distribution of th~ electron at the interface and the thickness dependence of 

the spatial distribution as well as the transport properties across the insulator and 

the metal/insulator heterojunction. 

Physisorbed multilayers of Xe on a noble metal surface [85, 86, 108] have been 

identified as an important model system for understanding carrier dynamics at in­

terfaces and in quantum wells. Since solid Xe is electronically similar to Si02 , aspects 

of this model system are similar to those of a metal-oxide-semiconductor junction. 

Because the crystal and electronic structures of bulk Xe and Ag are experimen-
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tally [133, 134] and theoretically [135] well-characterized, models of the composite 

interface electronic structure and dynamics can be constructed and tested. Of fun­

damental importance to understanding electron behavior in quantum wells and at 

interfaces are the time scales and mechanisms for energy and momentum relaxation 

of carriers near the junction of two materials. A systematic study over a range of 

film thicknesses provides a unique probe of the interface since the evolution of the 

electronic structure can be monitored atomic layer by layer, allowing for the separa­

tion of the various factors which determine the electronic structure and dynamics of 

the composite interface. 

The evolution of ann= 1 image potential state into a QW state has been observed 

by Fischer et al. [26] for Au/Pd(111). In the previous section it was determined that 

conduction band QW states can form with increasing layer thickness for an insulating 

overlayer such as Xe which has a positive (attractive) electron affinity [108]. The 

energy levels of excess electrons in these states were measured, and it was shown 

that the binding energies were quantized according to the layer thickness. It was 

also demonstrated that the quantized energy levels were in good agreement with the 

Xe conduction band dispersion. Here, these measurements are extended to the time 

domain, providing the first direct (time domain) measurement of the lifetime of QW 

states at a metal-insulator interface. It is shown that the lifetime provides a measure 

of the spatial distribution of the electron at the interface and thickness dependence 

of the spatial distribution as well as the transport properties across the insulator and 

the metal/insulator heterojunction. 

In general, the electronic states of the interface depend on contributions from the 

electronic structure of the substrate, the overlayer material, polarization or image 

effects, and quantum confinement effects. As shown below, all of these effects are 

important in Xe/Ag(111). QW states occur in a layered sample when the states of 

one material are confined by band gaps in the neighboring layers. The relevant bulk 

bands of the materials under study are the surface-projected Ag(111) valence and 

conduction bands (VB and CB, respectively) and the Xe 68 CB (Figure 4.8). In 

addition, the polarizability of the metal surface supports a Rydberg series of image 

potential bound states converging to the vacuum level. The lowest members of that 
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series are also plotted in Figure 4.8. The work function shifts for monolayer and 

bilayer were determined from the. kinetic energy of the n = 3 feature [108]. The 

work function shift of D.<P = -0.5 eV due to the adsorption of monolayer Xe places 

the vacuum level at approximately 0.07 e V above the Ag CB minimum. The Xe CB 

minimum is at approximately -0.5 e V with respect to the vacuum level. Electrons 

promoted to the CB of aXe slab on the surface will be subject to confinement by the 

projected band gap in the metal and the image potential in the vacuum. Previous 

work has shown that the manner in which an image state evolves with coverage 

depends on its energy relative to the band structure of the Xe slab. The n = 2 and 3 

image states, which are above the Xe CB minimum, become QW states. of the layer 

at 7-9 layers of Xe and exhibit a mixed QW-image state behavior at intermediate 

coverage. These exhibit a discrete perpendicular dispersion corresponding to the Xe 

CB, whereas n = 1 does not (108]. 

The details of the experimental apparatus are described previously. Only the 

experimental parameters which are specific to this experiment are described here. 

A Coherent Ti:sapphire oscillator-regenerative amplifier system in conjunction with 

the optical parametric amplifier is employed to generate 70 fs visible pulses which 
., 

are frequency-doubled to yield UV pump pulses. The residual fundamental is used 

as a probe pulse and is optically delayed with respect to the pump pulse. The 

two pulses are focussed collinearly on the sample. The energy of the photoemitted 

electrons is determined by time.:.of-flight. Using 300 and 600 nm pulses as pump and 

probe, the measured instrument function is rv 110 fs FWHM. The wavelength was 

selected to place the pump photon energy ( 4.13 e V) close to the vacuum level but 

to avoid producing excess background counts from one photon photoemission. The 

sample was cooled to 45 K by means of a liquid helium cryostat in the UHV chamber 

with background pressure at rv 1 x 10-10 torr. Xe was adsorbed on the sample by 

Langmuir dosing using a leak valve. Xe/ Ag(111) X-ray structure results (114] show 

Xe to form an ordered incommensurate hexagonal layer on the Ag(111) surface. 

A time-resolved spectrum of the clean Ag(111) surface state was taken before 

deposition, in order to calibrate time zero on the delay stage, to determine the 

instrument function width, and to determine the n = 1 clean surface lifetime as a 
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sanity check for the system. Time-resolved TPPE spectra were acquired for each of 

one to six layers of Xe. The n = 1 and n = 2 traces correspond to an exponential rise 

and decay convolved with a Gaussian instrument function, as shown in Figure 4.20. 

The n = 1 lifetime increases monotonically with each additional layer of Xe while the 

lifetime of the n = 2 state initially increases with the addition of a monolayer of Xe, 

decreases slightly at 3 layers, then increases again at five and six layers (Figure 4.20). 

The n = 3 state lifetime possesses a similar oscillation at three layers and remains 

approximately constant from five to six layers, suggesting a second oscillation. 

4.4.1 Quantum Well Model Estimates of Lifetimes 

In order to quantify the possible contributions to the binding energies of the 

image potential and QW states, a 1D quantum-mechanical model which explicitly 

includes the polarizability of the metal substrate and adlayer as well as the substrate 

and adlayer band structure is used [108]. As shown in the previous section, the model 

results are in good agreement with experimental binding energies. Implicit in this 

model is the quantum confinement due to the band gap of the substrate and the 

image potential barrier in the vacuum. As is shown below, "a simple extension yields 

lifetime predictions for Xe QW states based on wavefunction penetration into the 

substrate. The Ag(111) substrate bands are treated within the two-band nearly free 

electron (NFE) approximation. The two band NFE approximation was chosen since 

it had been successfully applied [61] to describe the substrate for the related case · 

of surface states in the band gap of a metal. The two-band parameters were taken 

from calculations of clean Ag image and surface state binding energies [62]. In the 

overlayer the potential was set to the Xe CB minimum of -0.5 eV with an effective 

mass of 0.55me. In the vacuum the potential was taken from the continuum dielectric 

model [118, 120]. The continuum dielectric model yields the image potential outside 

a dielectric slab on a metal surface, accounting for the polarizability of the metal 

and adlayer. The dielectric constant of the layer was set to the literature value [136] 

of E = 2. The eigenstates of the model potential were determined by numerical 

integration, and binding energies and wavefunctions were determined for 1-10 layers 
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Figure 4.20: Ultrafast time-resolved two-photon photoemission traces (a) for the 
n = 1 state for one to four layers of Xe (symbols) along with a fit obtained by 
convolving a single exponential with a Gaussian instrument function. Lifetimes (b) 
of the n = 1, 2 and 3 states for 1-6 layers of Xe extracted from the time-resolved 
data (filled circles). Lifetime predictions taken from the 1-D model (open circles) are 
in qualitative agreement with the oscillations in lifetime apparent in the data. The 
experimental error bars are calculated for a 95% confidence limit. 
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of Xe. The probability densities are shown in Figure 4.21. 

Lifetime predictions were obtained from this model as follows. Since Xe has 

a large gap, it can be assumed that very few decay channels are present within 

the Xe layer, and therefore the primary decay pathway for excited electrons at the 

Xej Ag(111) interface is recombination with a vacancy in the substrate. Based on this 

assumption, the lifetime should depend on wavefunction overlap with the substrate. 

A model which has proven successful in obtaining qualitative lifetime predictions 

from calculated wavefunctions starts by assuming that the coupling to the crystal is 

related to the penetration p of the image state into the bulk, where p is defined as 

the probability density in the bulk [69, 72-74], 

p = /_
0

00 

'ljJ*'ljJdz. ( 4.51) 

The lifetime broadening r of the image state is related to the linewidth of the bulk 

crystal conduction band fb(E) by p · fb(E). Calculated lifetimes using a value of rb 

based directly on independent photoemission data [75] are shown in Figure 4.20. The 

value of rb at a given energy is given by an expression obtained by empirically fitting 

photoemission and inverse photoemission linewidths over a range of 2 to 50 eV, 

fb(E) = 0.13(E- E1 ). (4.52) 

The n = 1 state is at -0.77 eV, or 3.79 eV above E1. This yields arb of 490 meV. 

The trends and overall magnitudes of the n = 2 and 3 lifetimes are reproduced by 

this simple model. These trends can be understood by considering two effects which 

have an opposite impact on lifetime. First, the semi-classical round trip time in a 

simple square well varies as the width squared. Assuming the lifetime is inversely 

proportional to the attempt rate, the lifetime should increase as the square of the 

number of layers. The second effect is due to the presence of the soft image barrier in 

the vacuum: For a monolayer, the image potential well in the vacuum is both wider 

and deeper than that of the layer. As the layer thickness increases, the increased dis­

tance from the metal substrate weakens the image potential in the vacuum while the 

layer potential gets wider. At a certain thickness, approximately when the Xe layer 

terminates near a node in the zero-order image state wavefunction, it is energetically 
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Figure 4.21: The electron probability density '1/J*'l/J for the quantum well model for 
the n = 1 and 2 states for 1 ,3, and 6 layers of X e. The model predicts that the 
probability density in the layer increases for the n = 2 state as the number of layers 
increases. The vertical lines represent the layer-vacuum boundary. 
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favorable for the electron to move inside the layer, resulting in increased probability 

density in the layer, as can be seen by comparing the n = 2 wavefunction for one 

and three layers (Figure 4.21). The expectation value (z) decreases, resulting in an 

increase in the probability density in the substrate which reduces the lifetime. A 

given image potential state effectively becomes a QW state in successive steps, the 

number of which is determined by the number of nodes in the zero-order hydrogenic 

wavefunction, i.e., the quantum number. For example, the calculations indicate that 

n = 3, having two nodes in the wavefunction, will have two oscillations in lifetime 

before the simple square well behavior takes over. 

Degeneracy of the image state with the substrate conduction band results in a 

decrease in lifetime relative to image states within the gap [130]. The fact that the 

lifetime of the n = 3 state in the presence of a monolayer of Xe is shorter (the 

lifetimes for n = 1, 2 and 3 are 210, 210, and 180 fs, respectively) than that of n = 1 

and n = 2 could be explained in terms of the degeneracy of the n = 3 state with 

the bulk. However, for the similar case of a monolayer of cyclohexane (C6H12 ) on 

Ag(111), the lifetimes of the n = 1, 2 and 3 states are 200, 220, and 660 fs. The 

work function of Xe/Ag(111) is 30 meV lower than·the value of 4.09 eV measured 

for cyclohexane on the same substrate, placing the n = 3 state in the presence of 

a Xe monolayer within the band gap, according to previous measurements of the 

Ag(111) band gap [26]. That then= 3 lifetime in the presence of a monolayer of Xe 

is shorter than that of the n = 3 state in the presence of a monolayer of cyclohexane 

despite the fact that the former is within the band gap of the substrate rules out 

degeneracy as the cause of the difference in lifetime. Rather, this suggests that the 

difference in lifetime is due to differences in the potential within the layer. The 

main difference is that the alkanes possess a negative (repulsive) electron affinity, 

which prohibits the formation of quantum well states. No oscillations are observed 

or predicted in the lifetime for n-heptane/ Ag(111) as a function of coverage. The 

lifetimes increase monotonically, consistent with a picture in which the negative 

electron affinity excludes the electron from the layer. In contrast, appreciable electron 

density in the layer and the formation of quantum well states related to the band 

structure are observed for Xe layers [108]. 
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The model results for then= 1 state predict that its lifetime should also increase 

quadratically with layer thickness. This conflicts with the data, which indicate that 

the lifetimes for n = 1 reach limiting values by five or six layers. A possible interpre­

tation is that the n = 1 state ceases to evolve as an image state at the Xe-vacuum 

interface [108] and becomes a screened image state of the mE:tal inside the Xe slab. 

The finite lifetime of an electron in bulk Xe, which may have an effect on measured 

lifetimes, is not taken into account. Also, for thicker layers defects and the pres­

ence of islands of adsorbate instead of continuous layer may shorten the lifetime. 

In order to determine the relative importance of these effects, a more sophisticated, 

self-consistent approach to the potential in the overlayer is required. Recently, so­

phisticated self-consistent pseudopotential calculations of image state lifetimes on Li, 

Cu, and Ag surfaces were reported [53]. The results of those calculations point to the 

importance of nonlocal effects (correlation) on image state lifetimes. Interestingly, 

the results of empirical multiple reflection theory calculations compare favorably with 

the pseudopotential calculations, which mirror recent experimental results. When 

nonlocal effects are left out of the pseudopotential calculations, the lifetime of the 

image states is overestimated. The nonlocal effects are important to the lifetime, 

since they include the interaction of electrons in the vacuum with electrons in the 

metal. It should be noted that nonlocal effects are implicit (but approximate) in 

the multiple reflection formalism, which assumes delocalized Bloch waves in the sub­

strate. Multiple reflection theory also approximates the important many body effects 

by including the image potential. An interesting question is what effect the overlayer 

has on the importance of nonlocal effects. Unfortunately, the self-consistent pseu­

dopotential model could not be readily adapted for the current system, due to the 

large number of electrons in the Xe and the difficulty in handling relativistic effects. 

Since the calculated wavefunctions successfully account for the lifetimes of the 

quantum well states, we conclude that the wavefunctions correctly describe the par­

titioning of conduction electrons between the three spatial regions of this model 

interface, i.e., between a noble metal, an insulator, and vacuum, as illustrated in 

Figure 4.21. In addition, we have shown that the electron lifetime as a function of 

thickness displays a characteristic oscillation marking the onset of QW electronic 
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behavior. Femtosecond layer-by-layer TPPE constitutes a new approach to under­

standing the complex dynamics of electrons at interfaces leading to stringent tests 

for electronic structure theory and dynamics. 
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Chapter 5 

Conclusions 

In the present work, the binding energies and dynamics of excited electronic levels 

in thin layer quantum wells have been determined by the technique of two photon 

photoemission. The results have been interpreted in terms of the bulk electronic 

properties of the Xe adsorbate, through the conduction band minimum and effective 

mass as well as the dielectric constant. The layer-by-layer data show a pronounced 

effect of coverage on binding energy and lifetimes of excited electronic states. Individ­

ual, well-separated peaks in the energy spectrum were associated with each coverage. 

This indicated complete layers at the monolayer through trilayer coverages and large, 

ordered islands at higher coverages from 6-9 layers. The individual peaks at each 

coverage were shown to possess a dispersion which also depended on coverage. The 

lifetimes of the excited electrons exhibited oscillations as a function of coverage. 

These effects were interpreted in terms of fundamental physical properties of 

the overlayer material and the substrate, and yielded precise information about the 

electronic structure of the overlayers and the spatial extent of overlayer electronic 

states. At low coverages, the excited electrons were shown to reside primarily outside 

the layer and the binding energies of the image states are determined largely by 

the polarizability of the layer and substrate. The polarizability of the adsorbate 

and substrate was modeled using a dielectric continuum approximation. At higher, 

coverages, the electrons overlap significantly with the Xe overlayer and the coverage 

dependence of the binding energies was explained in terms of a quantum size effect 
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which was shown to yield the perpendicular dispersion of the Xe conduction band, 

described by a band minimum and effective mass. The dispersion within the plane 

of the surface was qualitatively explained in terms of the bulk Xe effective mass and 

the probability density of the excited electron within the layer. 

It was shown that the affinity level of the overlayer material is important in deter­

mining the coverage-dependent behavior of the states. For electronic states initially 

energetically below the bulk affinity level of the layer material, the layer acts as a 

barrier and the electron is pushed further out into the vacuum with each additional 

layer. For these states, the electron resides primarily in the image well outside the 

layer. The image well outside the layer has contributions from the polarizability of 

the layer as well as contributions from the substrate image potential. The layer po­

larizability term 1/ 4Ez dominates the potential at high coverage. For states initially 

energetically above the layer affinity level, the layer presents an attractive quantum 

well. For very thin layers, however, the confinement energy of the layer makes it 

energetically unfavorable for the electron to reside in the layer. The lifetimes of the 

excited quantum well states possess a significant oscillation or decrease in lifetime as 

a function of coverage which was interpreted as marking the onset of quantum well 

electronic behavior. The results were modeled quantitatively in terms of a penetra­

tion model which confirmed the experimentally observed oscillations in lifetime are 

a result to the onset of quantum well electronic behavior, as the decrease in lifetime 

was accompanied by a substantial increase in the probability amplitude in the layer. 

Thus the difference in the coverage dependence of the lifetimes for the n = 1 state 

versus the n = 2 and 3 states can be interpreted as a measure of the way the spatial 

extent changes as the coverage increases. 

The models which were developed to interpret these results were based on the 

multiple reflection theory for image states on metal surfaces. The effect of the over­

layer was modeled by modifying the image potential in the vacuum to take into 

account the presence of the layer. Inside the layer the potential was that of a one di­

mensional box, -with the potential set to the minimum of the bulk conduction band of 

the overlayer material. On the substrate side, the wavefunction solutions of the box 

were joined with the nearly-free electron solutions of the bulk. On the vacuum side, 



125 

the wavefunctions were joined to solutions for the image potential, which contains 

contributions from the layer polarizability as well as the substrate image potential. 

The calculation results underlined the importance of the substrate band structure in 

the lifetime in some cases. For states near the substrate band edge, small changes 

in the energy of the state or the position of the vacuum level result in large changes 

in the penetration into the substrate. Wavefunction penetration into the substrate 

is directly related to the inverse lifetime. 

It was also shown that the TPPE results provide a sensitive measure of the 

dispersion or effective mass of the relevant electronic bands ofthe overlayer material. 

The coverage dependence of the binding energies yields a measure of the overlayer 

band dispersion along the surface normal while angle-resolved measurements yield 

information about the dispersion along the surface parallel. The interpretation of the 

dispersion data is somewhat complicated by the presence of the substrate bands, but 

this effect can be modeled reasonably well using the quantum well model developed. 

An important development in this research was the realization of the significance 

of coherence and dephasing in the time-resolved spectra. The lineshapes of TPPE 

features along both the energy axis and the time axis are affected by the coherence 

dephasing process. Coherence dephasing results in a delayed rise in the population 

of the excited state, a feature observed in many spectra. The delayed rise time is 

associated with the coherence dephasing time. The energy peaks in the spectrum are 

experimentally observed to narrow as a function of pump-probe delay. In the past, it 

has been difficult to model coherence dephasing in time-resolved TPPE spectroscopy 

because of the large number of parameters to determine given a single kinetics trace. 

But since the TOF spectrometer allows us to obtain a complete, high resolution en­

ergy spectrum at each time delay, the size of the data set is greatly increased. The 

determination of the dephasing parameters of the optical Bloch equations for the 

system by the application of non-linear least squares minimization on the complete 

three-dimensional data set should yield more information than is currently available 

about the various decay processes of electrons at surfaces. Ideally, such a determi­

nation should yield additional information about the relative contributions from the 

various processes involved in dephasing: pure dephasing, electron-electron scatter-
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ing, defect scattering, and momentum relaxation. Proper analysis of the results can 

yield information about hole state lifetimes, as well. 

The relatively long dephasing times open up the possibility of phase-locked mul­

tiple pulse experiments yielding multidimensional data sets roughly analogous to 2D 

NMR results. This also opens up the possibility of quantum control of electrons and 

chemical reactions on surfaces. The surface provides a way to align molecules, and 

provides a straightforward method for cooling them. Cold, well-aligned molecules 

are important for quantum control, since pure populations are required in order for 

quantum-mechanical interference effects to be manifest. Also, the enhanced sur­

face sensitivity of techniques such as TPPE allows the measure of subtle effects or 

processes with low cross-sections. 

Another possible area of study for future work is the excitation mechanism for 

negative ions at surfaces. There has been a lot of work published recently which 

assumes the importance of a hot electron distribution in the formation of dissociative 

and non-dissociative negative ion states at surfaces [137, 138]. The qualitative picture 

that has emerged is: absorption of one or more photons in the bulk near the surface 

excites one or more electrons. The electron or electrons quickly exchange energy 

with other electrons resulting in a thermalized hot electron distribution. There is 

then electron transport which carries a number of these. hot electrons to the surface 

where they attach to adsorbate molecules. 

There is a different possible scenario: direct excitation from bulk-like or surface 

electronic states to negative ion states of the adsorbate. The distinction is not merely 

semantical, as the photon energy and polarization dependence for the two mecha­

nisms should be distinct. In particular, direct excitation is favored for adsorbates 

with an electron affinity level nearer the vacuum level, since hot electron lifetimes 

at this energy are very short, making transport from the bulk to the surface quite 

inefficient. 

It should be straightforward, in principle, to study the relative importance of the 

hot electron-mediated versus direct mechanism. There are several possible experi­

mental approaches to the problem. One is to compare rates of negative ion formation 

for a range of wavelengths, examining the effect of off resonant versus on resonant 
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pump wavelengths (in the hot electron-mediated picture, resonance should not be a 

factor). In the absence of a surface state, the valence band edge could be employed 

as the initial state. Another approach is to examine the relative rates for negative ion 

formation for a homologous series of adsorbates with different negative ion energies. 

Also, the polarization of the incident light can be manipulated to favor one process 

or the other, since direct surface photoexcitation is favored for p polarized light. In 

addition, the dependence on crystal material can be examined, since hot electron 

dynamics in transition metals are highly dependent on the position of the occupied 

d band. 

An interesting but as yet unexplored subject is hot electron dynamics and coher­

ence dephasing in quantum wells. The impact of the quantum size effect on dynamics 

and transport of hot electrons is as yet unknown. Possible materials which would 

be amenable to study include semiconductors and metals. Current and future work 

would also benefit immensely from additional detailed, self-consistent calculations of 

the excited electronic structure of adsorbate systems. Such calculations coupled with 

the experimental results presented here would greatly enhance our understanding of 

the electronic structure of Xe/ Ag(lll), but require state-of-the-art techniques in or­

der to properly take into account many body effects, nonlocal effects (exchange and 

correlation), and relativistic effects due to the large Z atoms comprising the interface. 

Technological improvements on the current state of the two photon photoemission 

technique may also facilitate studies of systems more important to chemistry and 

catalysis. The use of vacuum ultraviolet or soft X-ray sources would improve the 

chemical sensitivity and specificity of the technique. The detection of photodesorbed 

ions and molecules instead of photoelectrons is another possibility. 

In closing, the physics and chemistry of the interaction of light with excited elec­

trons at adsorbate-covered surface is fundamentally complex, involving some of the 

more difficult aspects of solid state physics: many body effects, coherence, energy 

transfer, carrier transport, defect scattering, quantum confinement, and tunneling. 

This complexity also makes the system interesting, since information is yielded about 

important processes, assuming the data can be decomposed to yield information 

about the various processes at the surface by the appropriate application of exper-
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imental and theoretical technique. Angle-resolved and coverage-resolved techniques 

were shown to be promising as experimental methods to decompose various processes 

or effects at the interface. 

This work has shown that both the experimental and theoretical problems as­

sociated with the study of electron dynamics at interfaces are indeed tractable. It 

was also shown that the interwoven complexities inherent in this system can in some 

important cases be separated and adequately explained by the application of simple 

physical ideas to the results of systematic experimental investigations. The cur­

rent ability to describe the observed behavior of electrons at surfaces in terms of 

the subtle interplay of many-body interactions, effective mass, the surface barrier, 

quantum confinement, and dielectric effects is in part due to the many experimen­

tal degrees of freedom and quality of data afforded by the technique of two photon 

photoemission. The success of this work is also due to the fact that the experiment 

brings together two mature experimental methodologies, ultrafast pump-probe spec­

troscopy and angle-resolved photoemission, and its explanatory power is leveraged 

from the large body of knowledge in these two fields. This technique has continuing 

promise as an important window into electronic and chemical processes at surfaces. 

' I 
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Appendix A 

Data Acquisition Programs 

I* 
MCBACQ.C MCB (multichannel buffer) DATA ACQUISITION PROGRAM 

Purpose: 

Simple program to collect data for argv[1] seconds of 
LIVE_TIME and exit. The program communicates with the MCB 
via the mailbox i/o interface of the MCB card. It sets up 
and starts a scan with argv[1] seconds of LIVE_PRESET . 

. Then the program waits for the scan to finish. LIVE_TIME 
may differ substantially from wall clock ~ime, so the 
program may only terminate when LIVE_TIME==LIVE_PRESET. 
LIVE_TIME is read from the MCB. However, asking the MCB for 
the LIVE_TIME too often does not let the MCB perform its 
data acquisition duties. Therefore, the c.ode tries to guess 
how much longer it should sleep before the scan is 
finished. 

Requires DIALOG.C and DIALOG.H code Copyright EG&G Ortec 

*I 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
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#include <time.h> 
#include <dialog.h> 
#define CLOCKS_PER_SEC 1000 
#define SCAN_TIME 15 I* Scan duration in seconds *I 

char mcb_env_var[81]; I* MCB environment variable storage *I 

main(int argc, char *argv[]) 
{ 

char response[129], pctbuf[12]; 
char cmd_ptr[129], *lstr="00750"; 
int mcb_number = 1, cmd_len = 0, 

max_resp = 128, max_cmd = 128; 
int type = MCB$918 ; 
int i, sum, resp_len, ioerr, errmac, errmic; 
int scan_duration, elap, ltime, rtime; 
clock_t timeo; 
*Cmd_ptr=NULL; 

I* SHAREPOR is the shared memory port addr (see dialog.c) *I 
I* the port is used for communication with the MCB *I 
I* SHAREMEM is the actual RAM address *I 
I* that's where the actual data is *I 

1**********************************************************1 
I* Check for a time argument (command line) *I 
1************************.**********************************1 

if(argc > 1) { I* 1 or more params *I 
scan_duration = atoi(argv[1]); 

} else { 
scan_duration = SCAN_TIME; 

} 

I********************************************** 
assume MCB 1, do mcb_dialogO to see if card 

is present and working 
***********************************************I 

printf ("MCBACQ Vi. 00\n"); 

I************************************************************** 
Now use mcb_dialog to send the following sequence of 
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commands to MCB: 
STOP 
CLEAR_ ALL 
CLEAR_PRESETS (probably unnecessary, done by CLEAR_ALL) 
SET_LIVE_PRESET 50*scan_duration (20ms ticks) 
START 
ACQUIRE (wait loop for scan_duration sees) 
(check LIVE_TIME to see if equal to 50*scan_duration) 
(if not, estimate how long until scan is finished, goto A) 
STOP 
CLEAR_PRESETS 

***************************************************************I 
ioerr = mcb_read(mcb_number,type,max_resp, 

response,&resp_len); 
if(ioerr > 0) { 

print_resp(response,resp_len); 
} 

if(ioerr < 0) { 
printf( 11 IIO Error number %i\n 11 ,ioerr); 

} 

I* Send STOP *l 

sprintf(cmd_ptr, 11 STOP 11
); 

cmd_len=strlen(cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max_resp,response,&resp_len, 
&errmac,&errmic); 

print_resp(response,resp_len); 
I* print percent response *I 
sprintf(pctbuf, 11 %%%3.3d%3.3d 11 ,errmac,errmic); 
sum = 0; I* calculate checksum *I 
for(i = 0; i < 7; i++) { 

sum+= pctbuf[i]; 
} 

sum %= 256; I* checksum mod 256 *I 
printf( 11 %s%3.3d<CR>\n11 ,pctbuf,sum); 

I* Send CLEAR_ALL *I 
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sprintf(cmd_ptr, 11 CLEAR_ALL 11
); 

cmd_len=strlen(cmd_ptr); 
printf( 11 Sending %s to MCB\n 11 ,cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max_resp,response,&resp_len, 
&errmac,&errmic); 

print_resp(response,resp_len); 
sprintf(pctbuf, 11 %%%3.3d%3.3d 11 ,errmac,errmic); 
sum = 0; I* calculate checksum *I 
for(i = 0; i < 7; i++) { 

sum+= pctbuf[i]; 
} 

sum %= 256; I* checksum mod 256 *I 
printf( 11 %s%3.3d<CR>\n11 ,pctbuf,sum); 

I* Send SET_LIVE_PRESET *I 

sprintf(cmd_ptr, 11 SET_LIVE_PRESET %i 11 ,scan_duration *50); 
cmd_len=strlen(cmd_ptr); 
printf( 11 Sending %s to MCB\n 11 ,cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max_resp,response,&resp_len, 
&errmac,&errmic); 

print_resp(response,resp_len); 
sprintf(pctbuf, 11 %%%3.3d%3.3d 11 ,errmac,errmic); 
sum = 0; I* calculate checksum *I 
for(i = 0; i < 7; i++) { 

sum+= pctbuf[i]; 
} 

sum %= 256; I* checksum mod 256 *I 
printf( 11 %s%3.3d<CR>\n 11 ,pctbuf,sum); 

I* Send START *I 

sprintf(cmd_ptr, 11 START 11
); 

cmd_len=strlen(cmd_ptr); 
printf( 11 Sending %s to MCB\n 11 ,cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max_resp,response,&resp_len, 
&errmac,&errmic); 
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print_resp(response,resp_len); 
sprintf(pctbuf, 11 %%%3.3d%3.3d 11 ,errmac,errmic); 
sum = 0; I* calculate checksum *I 
for(i = 0; i < 7; i++) { 

sum+= pctbuf[i]; 
} 

sum %= 256; I* checksum mod 256 *I 
printf( 11 %s%3.3d<CR>\n 11 ,pctbuf,sum); 

I* start wait loop *I 

timeo=clock(); I* DOS has no sleep function, so loop *I 
do { 

elap=clock()-timeo; 
I* assume .5 sees of deadtime *I 

} while( elap < CLOCKS_PER_SEC * scan_duration ); 

I* check the livetime *I 

resp_len=O; 
do { 

sprintf(cmd_ptr, 11 SHOW_LIVE 11
); 

cmd~len=strlen(cmd_ptr); 

printf( 11 Sending %s to MCB\n 11 ,cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max_resp,response,&resp_len, 
&errmac,&errmic); 

} while( resp_len < 5 ); I* loop until we get a response *I 
print_resp(response,resp_len); 
sprintf(pctbuf, 11 %%%3.3d%3.3d 11 ,errmac,errmic); 
sum = 0; I* calculate checksum *I 
for(i = 0; i < 7; i++) { 

sum+= pctbuf[i]; 
} 

sum %= 256; I* checksum mod 256 *I 
printf( 11 %s%3.3d<CR>\n'' ,pctbuf ,sum); 

I* BUSY-WAIT loop to keep the program from terminating 
before the scan is finished *I 

do { 
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strncpy(lstr,response+7,4); 
printf( 11 livetime ticks so far: %s\n 11 ,lstr); 
ltime=atoi(lstr); 
if ( 50*scan_duration-ltime < 10 ) { 

rtime=10; 
} else { 

rtime=50*scan_duration-ltime; 
} 

timeo=clock () ; 
do { 

elap=clock()-timeo; 
I* wait until rtime*20 clock ticks have passed *I 
} while (elap < rtime*20) ; 

do { 
sprintf(cmd_ptr, 11 SHOW_LIVE 11

); 

cmd_len=strlen(cmd_ptr); 
printf( 11 Sending Command: %s 11 ,cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max_resp,response,&resp_len, 
&errmac,&errmic); 

} while( resp_len < 5 ); 
print_resp(response,resp_len); 

} while (ltime < scan_duration*50); 

I* Send CLEAR_PRESETS *I 

sprintf(cmd_ptr, 11 CLEAR_PRESETS 11
); 

cmd_len=strlen(cmd_ptr); 
printf( 11 Sending %s to MCB\n 11 ,cmd_ptr); 
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len, 

max~resp,response,&resp_len, 

&errmac,&errmic); 
sprintf(pctbuf, 11 %%%3.3d%3.3d 11 ,errmac,errmic); 
sum = 0; I* calculate checksum *I 
for(i = 0; i < 7; i++) { 

sum+= pctbuf[i]; 
} 

sum %= 256; I* checksum mod 256 *I 
printf( 11 %s%3.3d<CR>\n 11 ,pctbuf,sum); 
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} 

I* 
* 
* C Call: 
* print_resp(response,resp_len); 

* 
*I 
void print_resp(char *response, int resp_len) 
{ 

int outchars = 0, i; 
char buffer[129], *ptr; 

for(i = 0, ptr = buffer; i < resp_len; i++) { 

} 

if(isprint(response[i])) { I* printable char *I 
*ptr++ = response[i]; 
outchars++; 

} else if(response[i] -- '\r') { I* carriage return *I 
strcpy(ptr, 11 <CR> 11

); 

ptr += 4; 
outchars += 4; 

} else if(response[i] -- '\n') { I* linefeed *I· 
strcpy(ptr, 11 <LF> 11

); 

ptr += 4; 
outchars += 4; 

} else { 
sprintf(ptr, 11 <-%c> 11 ,response[i]+64); 
ptr += 4; 
outchars += 4; 

} 

if(outchars > 72) { 
sprintf(ptr, 11 

••• \n 
ptr += strlen(ptr); 
break; 

} 

I* if line gets too long *I 
<Extra Characters Deleted> 11

); 

if(outchars > 0) { 
*ptr++ = !\n'; 

I* if any chars printed *I 

} 

145 



} 

*ptr++ = '\0'; 
printf("%s",buffer); 

MCBMAT3.C 

#include <stdio.h> 
#include <string.h> 
#include <malloc.h> 

Program to read dual port memory 
and write it to a mat-file. The 
name of the matfile is argv[1]. 
The dual-port memory contains 8000 
long int (32 bit) values representing a 
histogram of electron energies. 

April '95 JDM 

modified to automatically select the 
appropriate data type to save space 
(long int, int, char) Sept '97 JDM 

Also, fixed base address alignment error 
(manual was incorrect) 

Note: this is a 16-bit DOS program. 
Type "int" is 16 bits. 

#define BASEADD OxD0000250L I* Segment:Offset 0000:0250 *I 
#define MASK Ox7FFFFFFFL I* Keep all but ROI bit *I 
#define MAXCHAN Ox4000 I* Set for maximum # of channels *I 

main(int argc, char *argv[]) 
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{ 

unsigned long data_val; I* storage for channel data value *I 
unsigned long *data_buf, 

chan_data, 
mattype, I* type of MATfile to write *I 
mcbmax; I* max value in MCB *I 

unsigned long far *chan_ptr; I* pointer to data memory 
(far only works in DOS) *I 

unsigned char mcb; I* MCB number *I 

int start_chan, 
end_chan, 
loop; 

char filename[20], 

I* starting channel to display *I 
I* ending channel to display *I 

*varname; I* file format is 8+3 chars long: month, 
day, 11 Scan number 11 and spec number *I 

FILE *fp_mat; 

I* We only use MCB number 1 *I 

mcb = 1; 
strcpy(varname, 11 mmddn000 11

); 

I* We use channels 1 thru 8000 *I 

start_ chan = 1; 
end_chan = 8000; 
data_buf=(unsigned lopg *)malloc(8000*sizeof(unsigned long)); 

I* Point to dual-port memory 
(this is the unportable DOS way) *I 

chan_ptr = (unsigned long far *)BASEADD; 

I* sanity check command line *I 

if (argc != 2) 
{ 
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} 

printf ( 11 USAGE :mcbmat filenarne\n 11
); 

exit(!); 

I* read data into buffer array *I 
mcbmax=O; 
for (loop = start_chan; loop <= end_chan; loop++) 

{ 

} 

I* read data from pointed to channel and 
mask off ROI bit *I 

chan_data =MASK & *(chan_ptr +loop); 
if (chan_data > mcbmax) mcbmax=chan_data; 
data_buf[loop]=chan_data; 

I* determine the type (to save disk space) *I 
if (mcbmax<257) mattype=50; I* unsigned char *I 
else if (mcbmax<32769) mattype=40 ; I* 16 bit uint *I 
else mattype=20; I* 32~bit uint *I 

I* open output file *I 
varnarne = argv[1]; 
sprintf (f ilenarne, 11 %s. mat 11 

, varnarne) ; 
printf ( 11 saving MCB data to %s\n 11 ,filename); 
fp_mat = fopen(filenarne, 11 Wb 11

); 

I* first save MATLAB header info *I 
headrnat(fp_mat,mattype,varnarne,1,8000,0); 

I* save channel data *I 
if (mattype==50) { 

for (loop = start_chan; loop <= end_chan; loop++) 
{ 

} 

chan_data=(unsigned char)data_buf[loop]; 
fwrite(&chan_data,sizeof(unsigned char),1,fp_mat); 

} else if (mattype==40) { 
for (loop = start_chan; loop <= end_chan; loop++) 

{ 

} 

chan_data=(unsigned int)data_buf[loop]; 
fwrite(&chan_data,sizeof(unsigned int),1,fp_mat); 
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} 

} else { I* mattype = 20 *I 
for (loop = start_chan; loop <= end_chan; loop++) 

{ 

chan_data=(unsigned long)data_buf[loop]; 
fwrite(&chan_data,sizeof(unsigned long),1,fp_mat); 

} 

fclose(fp_mat); 

I* 
* headmat -- write a header in version 1.0 MATfile format. 
* See "The Matlab External Interface Guide" for details. 
*I 

typedef struct { 
long type; I* type *I 
long mrows; I* row dimension *I 
long ncols; I* column dimension *I 
long imagf; I* flag indicating imag part *I 
long namlen; I* name length (including NULL) *I 

} Fmatrix; 

headmat(fp, type, 
FILE *fp; 

pname, mrows, ncols, imagf) 
I* File pointer *I 

{ 

1 int type; I* Type flag: 20 unsigned long int (32 bit), 
40 unsigned int16, 50 unsigned char *I 

I* See LOAD 
int mrows; 
int ncols; 
int imagf; 
char *pname; 

in reference section of guide for more info. *I 
I* row dimension *I 

Fmatrix x; 
int mn; 

x.type = type; 
x.mrows = mrows; 
x.ncols = ncols; 
x.imagf = ima:gf; 

I* column dimension *I 
I* imaginary flag *I· 
I* pointer to matrix name *I 

x.namlen = strlen(pname) + 1; 
mn = x.mrows * x.ncols; 
fwrite(&x, sizeof(Fmatrix), 1, fp); 
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fwrite(pname, sizeof(char), (int)x.namlen, fp); 
} 

I* STAGE.C: 

move the translation stage, version 2, for Klinger CC1.1, 
moving it in 1 micron steps. Stage is controlled by the 
National Instruments GPIB card. 

See CC1.1 manual for command syntax 

Jason McNeill, April 1995 

Be sure to include mibm.obj in cl line and 
/AM for Medium Memory Model 

Usage format: 

stage type y 

where type is: o (set origin) 
a (absolute position) 
+ (relative position, positive) 
- (relative position, negative) 

and y is either 0 for origin search 
or (any number) for stage movement 

#include <stdio.h> 
#include <string.h> 
#include 11 ibde.cl.h 11 I* GPIB declarations *I 

extern int ibfind(), l* gpib functions *I 
ibclrO, 
ibwrtO, 
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ibrd(), 
ibonl(), 
ibloc(); 

int stage; I* stage device number in gpib calls *I 

main (int argc, char *argv[]) 
{ 

void 
error(), 
finderr(), 
set_originO, 
move_relativeneg(), 
move_absolute () , 
move_telativepos(); 

char 
movtyps[2], 
movdists[20]; 

const char 
*Originstr = 11011, 
*absolutestr = 11a11, 
*relativepos = 11+11, 
*relativeneg = 11_11. 

• 

I* parse argc, argv *I 

if ( argc > 1) { 
strcpy(movtyps, argv[1]); 
strcpy(movdists, argv[2]); 

} 

else { 

} 

printf( 11 usage: stage <movtype> y\n 11 ); 
exit(1); 

I* open GPIB device number 7 *I 

if ( (stage = ibfind ( 11 DEV7 11 )) < 0) finderrO; 
if( ibclr(stage) & ERR) error(); 
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} 

I* depending on the value of *movtyps[O], choose a function, 
either set_origin, move_absolute, move_relativepos, or 
move_relativeneg *I 

if ( *movtyps == *Originstr ) 
set_origin(movdists); 

if ( *movtyps == *absolutestr ) 
move_absolute(movdists); 

if ( *movtyps == *relativepos ) 
move_relativepos(movdists); 

if ( *movtyps == *relativeneg ) 
move_relativeneg(movdists); 

void finderr() { I* Error: can't find device *I 
printf( 11 Ibfind error; possibly device does not match\n 11

); 

printf( 11 configuration name DEV7\n 11
); 

} 

void error() { I* general GPIB error handler 
11 ibsta11 and 11 iberr 11 declared in 
header ibdecl.h *I 

} 

printf( 11 GPIB function call error\n 11
); 

printf( 11 ibsta=Ox%x, iberr=Ox%x, 11 ,ibsta,iberr); 
printf( 11 ibcnt=Ox%x\n 11 ,ibcnt); 

void set_origin(char *stageto) { I* sets origin of stage *I 
char *outstr = 11 A\015 11

; 

} 

printf( 11 setting origin\n 11
) 

ibwrt(stage, outstr, 2); 
if (ibsta & ERR) error(); 

void move_absolute(char *Stageto) { 
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} 

char outstr[10]; 
int lng; 

I* move to an absolute position *I 

printf( 11 moving to absolute position %s microns\n11 ,stageto) 
sprintf(outstr, 11 P %s\015 11

, stageto); 
lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
I* ask stage for status, this instruction effectively 

pauses the computer until the stage finishes stepping. 
Without this instruction, we would start taking data 
before the stage was finished *I 

sprintf(outstr, 11 B\015 11
); 

lng=strlen(outstr); 
ibwrt (stage, outstr, lng); 

void move_relativepos(char *stageto) { 

} 

char outstr[10]; 
int lng; 

I* move to a relative (+) position *I 

printfC'moving stage forwards %s microns\n 11 ,stageto) 
sprintf(outstr, 11 N %s\015 11

, stageto); 
lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
sprintf(outstr, 11 +\015 11

); 

lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
sprintf(outstr,"G\015"); 
lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
sprintf(outstr,"B\015 11

); 

lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
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void move_relativeneg(char *Stageto) { 

} 

char outstr[10]; 
int lng; 

/*move to a (-) relative position *I 

printf (!•moving stage backwards %s microris\n 11
, stageto) 

sprintf(outstr, 11 N %s\015 11
, stageto); 

lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
sprintf(outstr, 11 -\015 11

); 

lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
sprintf(outstt, 11 G\015 11

); 

lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 
sprintf(outstr, 11B\015 11

); 

lng = strlen(outstr); 
ibwrt (stage, outstr, lng); 
if (ibsta & ERR) error(); 

SCOPE.C 

using National Instruments GPIB card, grab a waveform from a 
LeCroy 9300 digital oscilloscope. Takes 2500 points from 
math trace A. 

This program is useful as a general way to download a 
waveform from the digital oscilloscope in order to 
analyze it on a computer. Its primary use was to acquire 
waveforms from a Varian Auger spectrometer and to acquire 
autocorrelation traces from the INRAD autocorrelator. 
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-Jason McNeill (Oct 1993) *I 

I* Be sure to include mib*.obj in cl line, 
/AM for medium memory model *I 

I* compile with 11 -DNO_SCOPE 11 to test without digital scope *I 

#include <stdio.h> 
#include <string.h> 
#include 11 decl.h 11 

I* from decl.h 

extern int ibsta, 
iberr, 
ibcnt; 

*l 

char file_name[32]; 
void · save_dataO, get_new_filename(); 
int data[2500]; 
#ifndef NO_SCOPE 
int ibfind(), 

ibclr(), 
ibwrtO, 
ibrd(), 
ibonl(), 
ibloc(); I* from mcib*.obj *I 

#endif 

main (int argc, char *argv[]) 
{ 

void error(), finderr(); 
int scope, cnt, ndat; 

I* assume argv[1] is the output file name *I 
if ( argc > 1) 

strcpy(file_name, argv[1]); 
else 

strcpy(file_name, 11 auger. tmp 11
); 
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I* open GPIB device 4 *I 
#ifndef NO_SCOPE 

if ( (scope = ibfind ( 11 DEV4 11
)) < 0) finderrO; 

I* clear device *I 

if( ibclr(scope) & ERR) error(); 

I* set scope output format to two-byte word, binary *I 

ibwrt (scope, 11 CFMT OFF, WORD, BIN 11 ,19); 
I* check gpib status *I 
if (ibsta & ERR) error(); 

I* set scope output format to 11 header off 11 

(header contains information on scope dwell time, 
voltage scale) *I 

ibwrt (scope, 11 CHDR OFF 11
, 8); 

if (ibsta & ERR) error(); 

I* set scope output to little-endian (PC byte order) *I 
ibwrt (scope, 11 CORD L0 11

, 7); 
if (ibsta & ERR) error(); 

I* tell scope to send 2500 points *I 
ibwrt (scope, 11 WFSU NP, 2500 11

, 13); 
if (ibsta & ERR) error(); 

I* ask to send DAT1, data block, of TA, trace A *I 
ibwrt (scope, 11 TA: WF? DATi", 11) ; 
if (ibsta & ERR) error(); 

I* now read 2500 points (5000 bytes) into <data> *I 
cnt = 5000; 
ibrd (scope, data, cnt); 

#else 
cnt=5000; 

#end if 
I* tell how many bytes received *I 
printf( 11 %d bytes received\n 11

, cnt); 
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#ifndef 'NO_SCOPE 
I* Now send a clear to the scope *I 
ibclr (scope); 
ibloc· (scope); 
ibonl (scope,O); 

#end if 

} 

ndat = cntl2; 

save_data(ndat); 
return(O); 

void finderr() { 

I* Error: can't find device *I 

} 

printf( 11 Ibfind error; possibly device does not match\n 11
); 

printf( 11 configuration name DEV4\n 11
); 

void error() { 

printf( 11 GPIB function call error\n 11
); 

#ifndef NO_SCOPE 
printf( 11 ibsta=Ox%x, iberr=Ox%x, 11 ,ibsta,iberr); 
printf( 11 ibcnt=Ox%x\n 11 ,ibcnt); 

#end if 
} 

void save_data(int num) 
{ 

int i; 
char input[20]; 
FILE *Stream; 

if ((stream = fopen(file_name, 11 rb 11
)) ! = NULL){ 

fclose(stream); 
printf( 11 %s\n 11 ,file_name); 
printf ( 11 File Already Exists!!! \n 11

); 

printf( 11 Do you want to OVERWRITE?\n 11
); 
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} 

} 

printf("Answer Y or N\n"); 
gets (input);· 
if (input[O] != 'y' && input[O] != 'Y') 

get_new_filename(); 

if ((stream= fopen(file_name, "wb")) ==NULL){ 
printf{I'Unable to open file for writing, exiting ... \n"); 
exit(!); 

} 

for (i=O; i != num; i++) I* write out the 2500 data 
points to file *I 

fprintf (stream, "%i \n", data [i]); 
fclose(stream); 

void get_new_filename() 
{ 

} 

char input[20]; 
FILE *stream; 
stream=NULL; 
do{ 

printf ("The last file was %s\n", file_name); 
printf("Input new data file name.\n"); 
gets (file_name); 
if ((stream = fopen(file_name, "rb")) ! = NULL){ 

fclose(stream); 

} 

printf ("File Already Exists!!! \n"); 
printf("Do you want to OVERWRITE?\n"); 
printf("Answer Y or N\n"); 
gets(input); I* security hole *I 
if (input[O] == 'y' I I input[O] == 'Y') 

unlink(file_name); 

} while ( input[O]_ != 'y' 
&& input[O] != 'Y' 
&& stream !=NULL); 
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% TRTPPE.M 
% A data acquisition script written in the MATLAB scripting 
% language for the purpose of acquiring two-photon 
% photoemission time-of-flight spectra at a series of 
% optical time delays determined by setting the position of 
% a mechanical translation stage. This version allows 
% three different step sizes. The three step sizes are 
% useful when the kinetics trace has fast and slow 
% components which need to be resolved. The instrument 
% control aspects are contained in three DOS executable 
% programs: stage.exe, mcbacq.exe, and mcbmat.exe. These 
% programs were written in C by Jason McNeill. 
% 
% Original version DYNA.M written in 1995 by Jason McNeill. 
% Nien-Hui Ge contributed code for variable step sizes. 
% Modified to work with MCBACQ.EXE in 1997 by Jason McNeill. 
% 
% Some scan parameters are specified in the following section. 
% Scan parameters are saved in a file named MMDDXOOO.mat, 
% where MM, DD, and X are the month, day, and scan number, 
% respectively. A complete histogram of electron counts as 
% a function of energy is saved at each stage position, in 
% files named MMDDXYYY.mat. 

%uses \dyna\stage.exe to move stage. See source code for command 
% format. 

% uses \dyna\mcbacq.exe to start acquisition and acquire for 
% argv[1] seconds. 

%uses \dyna\mcbmat.exe to write data to a .MAT file. 
% File name specified by argv[1] . 

% User configurable section: 
b4orig=70; %number of microns before tO (length of baseline) 

% this is maximum positive number on stage controller 
aftorig=70;% number of microns after tO 

% this is the most negative number on the controller 
% total stage range = b4orig+aftorig 



endshort=40; % total number of microns acquired in stepshort 
stepshort=5; % short stepsize in microns 
endmid=60; % total number of microns acquired in stepmid 
stepmid=2; % medium stepsize in microns 
steplong=5; % long stepsize in microns 
acqtime=15; % data acquisition time per step 

%Do Not edit after this line unless you know what you are doing. 

% debug flag, set to "1" if you want debugging messages 

debug=O; 

% Create vector <strang> describing stage positions 

ststart = aftorig; %start stage 50 microns after tO. 
tot=b4orig+aftorig; %total stage range 

%These three lines contributed by N.-H. Ge. 
stlong=O:steplong:(tot-endshort-endmid); 
stmid=(tot-endshort-endmid+stepmid):stepmid: (tot-endshort); 
stshort=(tot-endshort+stepshort):stepshort:tot; 

%set stage at these points, used for the stage driving program 
strang= [stlong,stmid,stshort]; 

%the stage is mounted "backwards", so strangfwd represents the 
% stage delay for <+> corresponding to longer delay 
%between visible and UV pulses. 

strangfwd=(tot-strang(length(strang) :-1:1)); 
%real stage positions, starting from 0 toward positive delay 

time=strangfwd*200/30; 
%time array used for the time-dependence analysis 

% Advise user of current settings for time stepi 

tmpstr = ['stage will scan from' ,num2str(-b4orig),' urn(', ... 
num2str(-b4orig*6.66),'fs) to ']; 

disp(tmpstr); 
tmpstr = [num2str(endshort-b4orig),' urn(', ... 
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num2str((endshort-b4orig)*6.66), ... 
'fs) in steps of ',num2str(stepshort),' urn(', ... 
num2str(stepshort*6.66),' fs) to ']; 

disp(tmpstr); 
tmpstr = [num2str(endmid+endshort-b4orig),' urn(', ... 

num2str((endmid+endshort-b4orig)*6.66), ... 
'fs) in steps of ',num2str(stepmid) ,' urn(', ... 
num2str(stepmid*6.66),' fs) to ']; 

disp(tmpstr); 
tmpstr = [num2str(aftorig),' urn(' ,num2str((aftorig)*6.66), ... 

'fs) in steps of ',num2str(steplong),' urn(', ... 
num2str(steplong*6.66),' fs).']; 

. disp(tmpstr); 
tmpstr = ['total number of steps: ',num2str(length(strang))]; 
disp(tmpstr); 
disp(' '); 

% Query user for output file name, number of scans 

prefs=''; %prefixes 
direcn=''; %directions (forwards or backwards) 
nscan=input('enter number of scans '); 
disp(' ') 
disp('') 
for count = 1:nscan 

disp(['scan number ',num2str(count)]); 
prefs (count,:)= ... 

input('Enter 5-letter scan name prefix (ex: ap27g) ','s'); 
direcn(count)=input('(f) forwards or (b) backwards? ','s'); 
disp(' '); 
disp (' ') ; 

end 
disp(['enter comment line']); 
comment=input('? ','s'); 

% Information about scan is stored in mmddxOOO.mat 

eval(['save ',prefs(1, :),'000 comment strang ststart' , ... 
'prefs b4orig aftorig nscan direcn' , .. . 
' stepshort stepmid steplong stshort', .. . 
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' stmid stlong strangfwd time']); 
durnrny=input('press return to start '); 

% Main Loop 

strangf=strang(length(strang) :-1:1); 
strangb=strang; 
for j = 1:nscan 

tmpstr=num2str(length(strang)); 
if (length(tmpstr) == 2), 

tmpstr = [' 0' , tmpstr] ; 
end 
if (length(tmpstr) == 1), 

tmpstr = ['00' ,tmpstr]; 
end 
disp(''); 
pref=prefs(j,:); 

if debug, 
disp(['Scans will be saved in files ', ... 

pref,'001.mat through ',pref,tmpstr,' .mat']); 
disp(' '); 
disp('Moving stage to origin of time delay scan'); 

end 

% I assume that when the program is started, the stage is 
%near 11 t0 11

, when the pump and probe pulses are overlapped. 
% We need a baseline measurement before tO. The amount of 
%baseline before tO is specified by 11 Ststart 11

• 

eval(['!\dyna\stage- ',num2str(ststart)]); 

if debug, 
disp (.'Setting stage software origin') ; 

end 

% set stage software origin to current position 
!\dyna\stage o 0 

if debug, 
if direcn(j)=='f', 
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disp('scanning in forwards mode'); 
else 

disp('scanning in backwards mode'); 
end 

end 

% loop over stage positions <strang> 
for count= 1:length(strang), 

% set stage position, (depends on scan direction) 
if direcn(j)=='f', 

% if it is a "forward" scan, move stage to "strangf" 
eval(['!\dyna\stage a' ,num2str(strangf(count))]); 

else 
% else it is a backward scan, move stage to "strangb" 
eval([' !\dyna\stage a ',num2str(strangb(count))]); 

end 

% acquire spectrum 
eval([' !\mcbacq\mcbacq'+num2str(acqtime)]); 

% set tmpstr to the stage position index 
if direcn(j)=='f', 

tmpstr=num2str(count); 
else 

tmpstr=num2str(length(strang)-count+1); 
end 

% pad stage position index with leading zeroes 
if (length(tmpstr) == 2), 

tmpstr = ['0' ,tmpstr]; 
end 
if (length(tmpstr) == 1), 

tmpstr = ['00' ,tmpstr]; 
end 

% store spectrum 
eval(['!\dyna\mcbmat ',pref,tmpstr]); 

end %end stage loop 

if debug, 
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disp(''); 
disp('Setting stage back to zero'); 

end 

% move stage back to software origin 
!\dyna\stage a 0 
eval(['!\dyna\stage + ',num2str(ststart)]); 
disp(['finished acquiring prefix ',pref]) 

end % end scan loop 

disp('finished with set of scans'); 
% end script 
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Appendix B 

Software for Multiple Reflection 

Theory 

% SCHROD.M 

% A Program for finding image state wavefunctions and binding 
% energies using the approximations of Multiple Reflection Theory. 

% Multiple Reflection Theory uses confluent hypergeometric functions 
% to describe the wavefunctions of the image potential. However, it 
% is numerically more convenient to use Runge-Kutta to solve the 
% Schrodinger equation, rewritten as a pair of coupled ordinary 
% differential equations: 

% y1 '=y2 
% y2'=2m(e-v)y1 

% This is a two-point boundary value problem. The wavefunction must 
%match the metal at z=O, and must 11 vanish 11 at 11 infinity 11

• This code 
% looks for energies where the wavefunction is small at large z (say, 
% 120A). Strictly speaking, the exact point along the z axis where 
% the wavefunction is evaluated should have an influence on the 
% calculated binding energy. The program makes no guarantees and it 
% is up to the user to verify that the 11 zfinal 11 parameter is 



% sufficiently large so as to have a negligible impact on the 
% resulting wavefunctions and binding energies. 

% Relies on INITVS.M for initialization of the substrate band 
% parameters. 

% Relies on PSIS.M for the NFE wavefunction of the substrate. 

% the ydot function name (containing the differential equations) is 
% HAMILAG.M 

% the following are used by the hamiltonian (ydot file) 
%and so must be declared global (ODE doesn't pass parameters). 

global ee xcutau hartree 

% atomic units conversion 
hartree = 27.2114; % eV 
bohr = .529177; % Angstroms 

disp('SCHROD.M:') 
disp('Clean Ag(111) Binding Energy and wavefunctions') 

outs=input('enter the output filename ','s'); 
xcutoff=input('enter the xcutoff parameter '); 
tO=O; % the point from which we are integrating 
zfinal=input('enter zfinal parameter '); 
% zfinal should be at least twice the classical turning point 

global kpar 
kpar=input('enter k parallel in A--1 '); 
tfinal=zfinal/bohr; 
xcutau=xcutoff/bohr; 

%Precision of calculated binding energies, in meV. Must be small 
% to ensure accurate wavefunctions. Calculated wavefunctions are 
%very sensitive to the precision of the binding energies. 
£PRECISION = 1e-6; 

initvs % initialize the substrate band parameters 

counter=O; 
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yfinal=O; 
ypfinal=O; 

%for clean Ag, an example range is [-1: .1:-.5 -.45:.05: .1] 

range=input('enter range '); 

% Now some setup options for the Matlab 5 ODE solver. 
% See ODE45 and ODESET documentation for details 

options=odeset('AbsTol',1e-10,'RelTol' ,1e-8,'MaxStep' ,.5); 
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% The above options are reasonable guesses that seem to work well for 
% the clean surface. If necessary, you should change them to see if 
%you can increase speed affecting accuracy. Check to make sure 
% integrator takes several steps in any region where is a change in 
% the slope of the potential. 

tic; % start timer 

disp('Finding approximate eigenenergies ... '); 

% first loop through a range to find approx eigenenergies 

for bind=range, 
counter=counter+1; 
ee=bind/hartree; 
% initial wavefunction value and initial wavefunction slope are 
% the initial y values supplied to ydot file. The slope must be 
%multiplied by <bohr>. 
[xpsix, xpsipx] = psis(bind,O); 
yO=[xpsix xpsipx*bohr]'; 

% set the slope and value to NFE values at origin, integrate the 
% 1-D Schrodinger Equation. 
[t,y] = ode45('hamilag' ,[tO tfinal] ,yO,options); 
yfinal(counter)=y(length(y),1); 

end 

% look for a sign change 



bounds=[]; 
ptr2=0; 
ptr=1; 

% Find the number of eigensolutions by counting the 
% number of times the wavefunction solution (as a 
% function of energy) crosses zero (the sign changes) 
% at large z. Record the energy region in which 
% the solution is thought to reside in the <bounds> 
% variable. 

osgn=sign(yfinal (1)); 

while ptr < length(range) 
ptr=ptr+1; 
if sign(yfinal(ptr)) -= osgn, 

ptr2=ptr2+1; 
bounds(ptr2,:)=[range(ptr-1),range(ptr)]; 

end 
osgn=sign(yfinal(ptr)); 

end 

disp(['Number of eigenvalues is ' int2str(ptr2)]) 
eeig=O; 
sstr=' '; 
disp('Refining eigenenergies ... ') 

% perform a binary search for each eigenenergy 
for eign=1:ptr2, 

range=bounds(eign,:); %binary search is slow, but always works 
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elower=min(range); %(provided there is only one root in range) 
eupper=max(range); 

% starting values for the binary search 
bind=elower; % find yfinal at lower bound 
ee=bind/hartree; 
[xpsix xpsipx] = psis(bind,O); %initial wavefunction value 

% and initial slope 
yO=[xpsix, xpsipx*bohr]'; %are the initial y values 

% supplied to ydot file 

% integrate the 1-D Schrodinger Equation. 
[t,y] = ode45('hamilag' ,[tO tfinal] ,yO,options); 



yflower=y(length(y),1); % yfinal at lower bound 
bind=eupper; % find yfinal at upper bound 
ee=bind/hartree; 
[xpsix, xpsipx] = psis(bind,O); %initial wavefunction value 

% and initial slope 
yO=[xpsix, xpsipx*bohr]'; %are the initial y values 

% supplied to ydot file 

% integrate the 1-D Schrodinger Equation. 
[t,y] = ode45('hamilag' ,[tO tfinal] ,yO,options); 
yfupper=y(length(y),1); % yfinal at upper bound 
if sign(yfupper) ==sign(yflower), 

end 

disp('No sign change over interval, search not possible') 
disp('Perhaps the <range> variable is improperly defined') 
error('CALCULATION HALTED') 
stop % This shouldn't happen. 

% iterate until EPRECISION is reached. 
while abs(eupper-elower) > EPRECISION, 

bind=(elower+eupper)/2; % find yfinal in the middle 
ee=bind/hartree; 
[xpsix, xpsipx] = psis(bind,O); %initial wavefunction value 

% and initial slope 
yO=[xpsix, xpsipx*bohr]'; %are the initial y values 

% supplied to ydot file 

% set the slope and value to NFE values at origin 
[t,y] = ode45('hamilag',[t0 tfinal] ,yO,options); 
yfmid=y(length(y),1); % yfinal in the middle 
if sign(yfmid) -= sign(yflower), 
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eupper=bind; % if there is a sign change between lower 
yfupper=yfmid; % bound and middle, then the new upper bound is 

% the middle 
else 

elower=bind; 
yflower=yfmid; % new lower bound is the middle 

end 
end 
eval(['y' ,int2str(eign),'=y(: ,1);']); % y(:,1) is the wavefunction 

% y(:,2) is the slope 
eval(['x' ,int2str(eign),'=t;']); 



sstr=[sstr,' y' ,int2str(eign),' x' ,int2str(eign)]; 
eeig(eign)=elower; 

end 

xpot=tO: .1:40; 
ypot=xpot; 

for ctr=1:length(xpot), 
[blah,ypot(ctr)]=hamilag(xpot(ctr),[1 1]); 

end % the potential is in xpot,ypot, units are bohr, hartree 

% Zero out the divergent part and normalize wavefunction 

cut=zfinal-1; 
ctr=O; 
xl=-101: .1:-.1; 
yl=xl; 
if length(eeig) > 2, 

nn=3; 
else 

nn=length(eeig); 
end 

yall= []; 

for bind= eeig(1:nn), 
ctr = ctr + 1; 

for ctr2=1:length(xl), %inefficient for loop 
yl(ctr2) =psis( bind, xl(ctr2) ); %substrate part of 

% wavefunction 
end 

eval(['xm=[xl x' ,int2str(ctr),'(:)''*bohr] ;']); 
eval(['ym=[yl y' ,int2str(ctr),'(:)''] ;']); 
xall=-100: .1:cut; 
ya=interp1(xm,ym,xall,'cubic'); 

% The numerical wavefunction solution always starts increasing 

170 

% exponentially at some large value of <z>. The following section 
% attempts to truncate the divergent part. This doesn't always 
% work. This approach assumes the divergent part is exponential. 



%Using the slope of log(psi=ya) at large <z>, we can extrapolate 
% linearly to where <ya> last crosses zero. 

dy=log(abs(ya(length(ya))))-log(abs(ya(length(ya)-10))); 
dx=xall(length(ya))-xall(length(ya)-10); 
expslope=dy/dx; 
expintercept=log(abs(ya(length(ya))))-expslope*xall(length(ya)); 
%first guess zero when y=exp(-5), this works well 
% for clean Ag(111) 
guesszero=(-5-expintercept)/expslope; 
zidx=min(find(xall>guesszero)); %index corresponding to ya = 0. 
% try to find minimum within 200 points of guess 
[minval,dzero]=min(abs(ya((zidx-200):(zidx+200)))); 
zidx=zidx+dzero-200; 
idx=zidx:length(xall); %return array of indices corresponding 

% to x > guesszero 
ya(idx)=zeros(size(idx)); %zero out indices where ya starts to 

% diverge exponentially 
% normalize 
yarea = sqrt( sum(ya.~2 * ( xall(2) - xall(1) ) ) ); 
ya=ya/yarea; 
yall(ctr, :)=ya(:)'; 

end 
toe %display time required to calculate 

% wavefunctions are in xall, yall. Length unit is Angstroms. 
% Eigenenergies are in <eeig>. Always examine the wavefunctions 
% as a sanity check to make sure the binding energies are 
% meaningful. 

% xpot, ypot is the potential in hartree and bohr radii. 

% save to the initially specified MAT file. 
eval(['save ', outs, ' range xcutoff zfinal bohr hartree' ... 

,' eeig xpot ypot xall yall cfe hbar']); 

% end SCHROD.M 

% INITV .M 
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% This script initializes many constants used to 
% find solutions to the problem of a Coulomb 
%potential on a NFE metal (2-band). 

% First, some fundamental constants 

global ryd me qe cfe hbar kpar 

ryd=13.6056981; % Rydberg, in eV 

hbar=1.0546e-34; % J * S 

me=9.1096e-31; %Kg, mass electron 

qe=1.602e-19; %Coulombs, fundamental charge 

cfe=sqrt(hbar~2/(2*qe*me}*1e20); %energy-wavevector relation, 
%eV & Angstroms 

% Now NFE metal parameters 

% This is for Ag(111) 
global cs egs vgs as wfns efermis ps emaxqs 

global MU ML kpar 
MU=1.6; %effective mass of the upper band edge 

ML=.6; %effective mass of the lower band edge 

as=2.36; %lattice spacing, 
%we will assume is independent of k parallel 

ps=pi/as; %wavevector p, valid only in gap, 
%will assume is independent of kpar 

Mave=(MU+ML)/2; %average effective mass for CB and VB, use 
%to calculate Eg 
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egs=9.64+cfe~2*kpar~2/Mave; %energy at g/2, NOT independent of kpar 
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% most calcs were done using 2.075 
vgs=2.075+Dwidth/2; %gap half-width, NOT independent of kpar 

cs=sqrt(egs)/ps; %Along gamma-L, E-k relation 

%helps in determining the proper branch of q 
emaxqs=(4*egs~2-vgs~2)/(4*egs); 

%work function, subtract .45 for Xe/Ag(111), independent of kpar 
wfns= 4.56; 

efermis=7.865; %fermi level wrt gamma, independent of kpar 

function [tpsi, tpsip]=psis(e,z) 

% This function returns the crystal wavefunction, 
% for half-layer termination 

global ps cs as 

% wavefunction 

tpsi = exp( -qs(e) * ( z + as/2 ) ) * cos( ps * ... 
( z + as/2) + deltas(e)); 

% wavefunction slope 

tpsip= -qs(e) * exp( -qs(e) * ( z + as/2 ) ) * 
cos( ps * ( z + as/2 ) + deltas(e) ) -
ps * exp( -qs(e) * ( z+as/2 ) ) * ... 
sin( ps * ( z + as/2) + deltas(e) ); 

function en=enets(e1) 

% ENETS -- substrate 
% finds the net energy wrt the gamma point of the substrate 
% uses efermi wfns 

global efermis wfns 
en=e1+efermis+wfns; 
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function d=deltas(e1) 
% 
%DELTA- finds delta given eg vg emaxq p c 
% 
global egs vgs emaxqs ps cs 

% if-then else to pick correct branch of the arctangent 

if enets(e1) > (egs+vgs) % above upper band edge 
d=O; 

else 
if enets(e1) < (egs - vgs) % below lower band edge 

d=-pi/2; 
else 

if enets(e1) > emaxqs % upper half of band 
d=real(asin(2*qs(e1)*cs-2*ps/vgs)/2); · 

else % lower half of band 
d=real(-pi/2-asin(2*qs(e1)*cs-2*ps/vgs)/2); 

end 
end 

~~ 

function q=qs(e1) 

% function QS.M 
% calculates the imaginary part of the electron wavevector 
% in the gap 

global egs vgs cs 

% if in the gap, compute <q>, else q=O 
if (enets(e1) > (egs-vgs)) & (enets(e1) < (egs+vgs)), 

q = sqrt( sqrt( 4 * enets(e1) * egs + vgs-2) - ... 
enets(e1) - egs) I (-cs); 

else 
q=O; 

end 

function [yp,v] = hamilag(x,y) 

% function HAMILAG.M 

I ' 
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% Time-independent Schrodinger equation for an Image potential, 
% written as a pair of coupled ordinary differential equations. 

global ee xcutau kpar cfe hartree 
if x < xcutau, 

v= -1/4/xcutau + cfe~2 * kpar~2 I hartree; 
%the kpar part takes into account parallel energy 
ke= -2*(~e-v); 

else 
v=-1/4/x+cfe~2*kpar~2/hartree; 

%the kpar part takes into account parallel energy 
ke= -2*(ee-v); 

end 
yp=[y(2), ke*y(1)] '; 
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