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Abstract. Processing the data from a large variety of zero-pressure-gradient boundary 

layer flows shows that the Reynolds-number-dependent scaling law, which the present authors 

obtained earlier for pipes, gives an accurate description of the velocity distribution in a self

similar intermediate region of distances from the wall adjacent to the viscous sublayer. The 

appropriate length scale that enters the definition of the boundary layer Reynolds number 

is found for all the flows under investigation. 

Another intermediate self-similar region between the free stream and the first intermedi:. 

ate region is found under conditions of weak free stream turbulence. The effects of turbulence 

in the free stream and of wall roughness are assessed, and conclusions are drawn. 
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1 Introduction 

Asymptotic laws for wall-bounded turbulent shear flows at large Reynolds numbers are 

considered. Classical examples of such flows are the flows in pipes, channels, and boundary 

layers. This class of flows is of major fundamental and practical importance. All these flows 

share as dimensional governing parameters the shear stress at the wall T and the fluid's 

properties, its density p and dynamic viscosity 1-"· From these parameters two important 

quantities can be formed: the dynamic or friction velocity u* = (TIp)~ and the length scale 

o = v lu*, where v = J-tl p is the fluid's kinematic viscosity. The length scale o is tiny at 

large Reynolds numbers, and in the layer where the dimensionless distance of the wall y I o 
is less than, say, 70 (viscous sublayer) the viscous stress is comparable with the Reynolds 

stress created by vortices. Outside this viscous sublayer, at yjO > 70, the contribution of the 

viscous stress is small. We emphasize that 'small' is not always synonymous with 'negligible', 

and indeed we will see that here is a case where it is not. 

In 1930, the great mechanician Th. von Karman proposed in explicit form the hypothesis 

that outside the viscous sublayer the contribution of viscosity can be neglected. On the basis 

of this assumption he derived the universal (i.e. Reynolds number independent) logarithmic 

law for the distribution of the mean velocity u over the cross-section: 

u 1 
</J=-=-lnry+C, 

u* K 
(1) 

where y is the distance from the wall; the constants K (the von Karman constant) and C 

should be identical for all turbulent wall-bounded shear flows at high Reynolds numbers, 

and the law ( 1) should be valid in intermediate regions between, on one hand, the viscous 

sub layer and, on the other, the external parts of the flows, e.g. vicinity of the axis in pipe 

flow, or vicinity of the external flow in the boundary layer. In 1932, L. Prandtl, the greatest 

mechanician of this century, came to the law (1) using a different approach, but effectively 

w.ith the same basic assumption. The la~ (1) is known as the von Karman-Prandtl universal 

logarithmic law. More recent derivations which, however, follow the same. ideas and the same 

basic assumption, often in an implicit form, can be found in monographs by Landau and 

Lifshits (1987), Monin and Yaglom (1971), Schlichting (1968) and in a recent textbook by 

Spurk (1997). 

According to the von Karman-Prandtllaw (1), all experimental points corresponding to 

the intermediate region should collapse on a single uniYersal straight line in the traditional 

coordinates ln TJ, </J. 
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Subsequent investigations showed, however, that this is not what happens. First, the 

experiments showed systematic deviations from the universallogarit~mic law (1) even if one 

is willing to tolerate a variation in the constants r;, and C (from less than 0.4 to 0.45 forK, and 

from less than 5.0 to 6.3 for C). Furthermore, using analytic and experimental arguments, 

the present authors ·showed [Barenblatt (1991, 1993); Barenblatt and Prostokishin (1993); 

Barenblatt, Chorin and Prostokishin (1997b); Chorin (1998)] that the fundamental von 

Karman hypothesis on which the derivation of the universal law (1) was based, i.e. the 

assumption that the influence of viscosity disappears totally outside the viscous sublayer, 

is inadequate. In fact, this hypothesis should be replaced by the more complicated one of 

incomplete similarity, so that the influence of viscosity in the intermediate region remains, 

but the viscosity enters only in power combination with other factors. This means that the 

influence of the Reynolds number, i.e. both of the viscosity and the external length scale, 

e.g. the pipe diameter, remains and should be taken into account in the intermediate region. 

For the readers' convenience we present here briefly the concept of incomplete similarity; 

a more detailed exposition can be found in Barenblatt, (1996). The mean velocity gradient 

oyu in turbulent shear flows can be represented in the general form suggested by dimensional 

analysis 

Oyu = u* <I>( 1], Re) . 
y 

In the intermediate region, 1J = u*yjv is large, and we consider the case of large Reynolds 
/ 

number. The basic von Karman hypothesis corresponds to the assumption that the dimen-

sionless function <I>( 1], Re) at large 1J and Re can be replaced by a constant 1/ K, its limit as 

17 ---+ oo, Re ---+ oo. This corresponds to complete similarity both in 1] and Re. The assump

tion of incomplete similarity in 17 means that at large 1J a finite limit of the function <I> does 

not exist, but that this function can be represented as 

<I>= C(Re)7Ja(Re) 

i.e., the velocity gradient has a scaling intermediate asymptotics. Here the functions C(Re) 

and a(Re) should be specified. 

Using some additional analytic and experimental arguments the present authors came to 

the Reynolds-number-dependent scaling law of the form 

¢=..!!.._=(Co ln Re + Cl)7Jc;ln Re . 
. u* 

(2) 

where the constants C0 , C1 and a must be universal. The scaling law (2) was compared 

with what seemed (and seems to us up to now) to be the best available data for turbulent 
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pipe flows, obtained by Nikuradze (1932), under the guidance of Prandtl at his Institute in 

Gottingen. The compa~ison has yielded the following values for the coefficients 

1 
Co= ;;; ' · v3 

when the Reynolds number Re was taken in the form 

R 
ud 

e=-. 
1/ 

(3) 

(4) 

Here u is the average velocity (the total flux divided by the pipe cross-section area) and dis 

the pipe diameter. The final result has the form 

¢ = (J__ ln Re + Q)ry3/2 In Re J3 2 
(5) 

or, equivalently 
3 

a= . 
2ln Re 

(6) 

The scaling law (5) produces separate curves ¢(ln ry,Re) in the traditional (ln ry, ¢) plane, 

one for each value of the Reynolds number. This is the principal difference between the law 

(5) and the universal logarithmic law (1). We showed that the family (5) of curves having Re 

as parameter has an envelope, and that in the lnry, ¢plane this envelope is close to a straight 

line, analogous to (1) with the values "' = 0.4 and C = 5.1. Therefore, if the experimental 

points are close to the envelope they can lead to the illusion that they confirm the universal 

logarithmic law (1). 

The Reynolds-number-dependent scaling law can be reduced to a self-similar universal 

form 
1 ( 2a¢ ) 1/J =· -ln J3 = ln ry , 
a 3+5a 

3 
(7) a= 2ln Re' 

so that contrary to what happens in the (ln ry, ¢) plane, in the (ln ry, 1/J) plane the experimental 

points should collapse onto a single straight line-the bisectrix of the first quadrant. This 

statement received a ringing confirmation from the processing of Nikuradze's 1932 data 

(Barenblatt and Prostokishin (1993); Barenblatt, Chorin and Prostokishin (1997b)). 

An important remark should be made here. Izakson, Millikan and von Mises (IMM, see, 

e.g. Monin and Yaglom (1971)) gave an elegant derivation of the universal logarithmic law 

based on what is now known as matched asymptotic expansions. This derivation, which 

seemed to be unbreakable, persuaded fluid dynamicists that this law was a truth which 

will enter future turbulence theory essentially unchanged. In the papers of the present 
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authors (Barenblatt, Chorin (1996, 1997)), it was demonstrated that the scaling law (2) is 

compatible with the properly modified IMM procedure. The method of vanishing viscosity 

(Chorin, (1988, 1994)) was used in this modification. 

Let us turn now to shear flows other than flows in pipes. By the same logic, the scaling 

law (5) should be also valid for an intermediate region adjacent to the viscous sublayer for 

all good quality experiments performed in turbulent shear flows at large Re. 

The first question is, what is the appropriate definition of the Reynolds number for these 

flows which will make the formula (5) applicable? This is a very important point-if the 

universal Reynolds-number-independent logarithmic law were valid, the definition of the 

Reynolds number would be irrelevant provided it were sufficiently large. For the scaling law 

(5) this is not the case. Indeed, if the scaling law (5) has general applicability it should be 

possible to find, for every turbulent shear flow at large Reynolds number, an appropriate 

definition of the Reynolds number which will make the scaling law ( 5) valid. 

There exists nowadays a large amount of data for an important class of wall-bounded 

turbulent shear flows: turbulent zero-pressure-gradient boundary layers. These data were 

obtained over the last 25 years by various authors using various set-ups. For boundary layers 

the traditional definition of the Reynolds number is 

ue 
Reo=- (8) 

l/ 

where U is the free stream velocity, and () is a characteristic length scale-the momentum 

displacement thickness. The question which we asked ourselves was, is it possible to find for 

each of these flows a particular length scale A, so that the scaling law (5) will be valid for 

all of them with the same values of the constants. Of course, in each case the length-scale 

A could be influenced by the contingencies of the particular experiment, but the question of 

decisive importance is whether such a length scale exists. The answer within the accuracy 

of the experiments is affirmative. 

We present here the results of the processing all the experimental data available to us, in 

particular, all the data collected in a very instructive review by Fernholz and Finley (1996). 

We show that for all of these flows, without any exception, the scaling law (5) is observed 

with an instructive accuracy over the whole intermediate region, if the Reynolds number is 

defined properly, i.e., if the characteristic length A entering the Reynolds number 

UA 
Re=- (9) 

l/ 

is properly determined. Moreover, we show that for all the flows where the turbulence in 

the external flow is small, there exists a sharply distinguishable second intermediate region 
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between the first one where the scaling law.(5) is valid and the external homogeneous flow. 

The average velocity distribution in this second intermediate region is also self-similar of 

scaling type: 

¢ = Brl (10) 

where B and {3 are constants. 

However, a Reynolds number dependence of the power {3 was not observed. Within the 

accuracy of the experimental data {3 is close to 1/5. When the turbulence in the external 

homogeneous flow becomes significant, the second self-similar region deteriorates and the 

power {3 decreases with growing external turbulence until the second intermediate region 

disappears completely. 

2 The first group of zero-pressure-gradient boundary 
layer experiments 

We will explain later why we divided the experimental data into three groups. Here it 

is sufficient to note that all available sets of experimental data were eventually taken into 

account. 

The original data were always presented by their authors in the form of graphs in the tra

ditional (ln TJ, ¢)plane, suggested by the universal logarithmic law (1). The shape of original 

graphs was always similar to the one presented qualitatively in Figure 1a. Therefore, the 

first rather trivial step was to replot the data in the doubly logarithmic coordinates (lg TJ, ¢) 

appropriate for revealing the scaling laws. The result was instructive: for all experiments of 

the first group (in chronological order), specifically: Collins, Coles, Hike, 1 (1978); Erm and 

Joubert (1991); Smith2 (1994); Naguib3 (1992), and Nagib and Hites4 (1995); Krogstad and 

Antonia (1998), the data outside the viscous sublayer (lg TJ > 1.5) have the characteristic 

shape of a broken line, shown qualitatively in Figure 1b and quantitatively in Figures 2-6. 

Thus, the two straight lines forming the broken line that were revealed in the lg TJ, lg ¢ 

plane have as equations 

(I) ¢ = Arya ; (II) ¢ = Bryf3 . 

The coefficients A, a, B, {3 were obtained by us through statistical processing. 

1The data were obtained by scanning the graphs in the review by Fernholz and Finley (1996). 
2The data were obtained by scanning the graphs in the review by Fernholz and Finley (1996). 
3The data in digital form were provided to us by Dr. M. Hites. 
4The data in digital form were provided to us by Dr. M. Hites. 
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Figure 1. (a) Schematic representation of the experimental data in traditional coordinates 
ln 7], </>. (b) Schematic representation of the experimental data in (ln 7], ln 4>) coordinates for 
experiments of the first group. 

7 



We assume as before that the effective Reynolds number Re has the form (9): Re = U Ajv, 

where U is the free stream velocity and A is a length scale. The basic question is, whether 

one can find in each case a length scale A which plays the same role for the intermediate 

region (I) of the boundary layer as the diameter does for pipe flow? In other words, whether 

it is possible to find a length scale A, perhaps influenced by individual features of the flow, so 

that the scaling law (5) is valid for the first intermediate region (I)? To answer this question 

we have taken the values A and a, obtained by statistical processing of the experimental 

data in the first intermediate scaling region, and then calculated two values ln Re1 , ln Re2 , 

by solving the equations suggested by the scaling law (5): 

1 5 
-ln Re1 +-==A y'3 2 

(12) 

If these values ln Re1 , ln Re2 obtained by solving the two different equations (12) are indeed 

close, i.e., if they coincide within experimental accuracy, then the unique length scale A can 

be determined and the experimental scaling law in the region (I) coincides with the basic 

scaling law (5). 

Table 1 shows that these values are close, the difference slightly exceeds 3% in only two 

cases; in all other cases it is less. Thus, we can introduce for all these flows the mean 

Reynolds number 

(13) 

and consider Re as an estimate of the effective Reynolds number of the boundary layer flow. 

Naturally, the ratio Re8/Re = ()/A is different for different flows. 
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Table 1 

Figure Ree a A lnRe1 lnRe2 lnRe Ree/Re ~ 

Collins D.J., Coles D.E., and Hiks J.W. (1978} 

Fig.2 (a) 5,938 0.129 9.10 11.43 11.63 11.53 0.06 0.203 

Fig.2 (b) 6,800 0.125 9.23 11.66 12.00 11.83 0.05 0.195 

Fig.2 (c) 7,880 0. 1'23 9.41 11.97 12.21 12.09 0.04 0.202 

Erm L.P. and Joubert P.N. (1991) 

Fig.3 (a} 697 0.163 7.83 9.23 9.20 9.22 0.07 0.202 

Fig.3 (b) 1,003 0.159 7.96 9.46 9.43 9.45 0.08 0.192 

Fig.3 (c) 1,568 0.156 7.99 9.51 9.62 9.56 0.11 0.202 

Fig.3 (d) 2,226 0.148 8.28 10.01 10.14 10.07 0.09 0.214 

Fig.3 (e) 2,788 0.140 8.66 10.67 10.71 10.69 0.06 0.206 

Naguib A.M. {1992) and Hites M. and Nagib H. (1995) 

Fig.4 (a} 4,550 0.154 7.95 9.44 9.74 9.59 0.31 0.22 

Fig.4 (b) 6,240 0.152 8.08 9.66 9.87 9.77 0.36 0.20 

Fig.4 (c) 9,590 0.143 8.37 10.17 10.49 10.33 0.31 0.206 

Fig.4 (d 13,800 0.131 8.94 11.15 11.45 11.30 0.17 0.193 

Fig.4 (e) 21,300 0.138 8.61 10.58 10.87 10.73 0.47 0.22 

Fig.4 (f) 29,900 0.130 8.99 11.24 11.54 11.39 0.34 0.204 

Fig.4 (g) 41,800 0.124 9.30 11.78 12.10 11.94 0.27 0.201 

Fig.4 (h) 48,900 0.122 9.39 11.93 12.30 12.11 0.27 0.192 

Smith R.W. (1994} 

Fig.5 (a) 4,996 0.146 8.36 10.15 10.27 10.21 0.18 0.20 

Fig.5 (b) 12,990 0.130 9.08 11.40 11.54 11.47 0.14 0.167 

Krogstad P .-A. and Antonia R.A. (1998) 

Fig.6 12,570 0.146 8.38 10.18 10.27 10.23 0.45 0.201 

9 



1.4 

(II) 

1.35 

1.3 

--e. 
b.O -

1.25 

(I) 

1.2 

1.15 

0 

1.11L~------L-------~2--------~~5------~3~------~3.5 1.5 

lg 1] 

Figure 2. (a) The experiments by Collins, Coles, Hike,\1978) Re
0 

= 5, 938. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 2. (b) The experiments by Collins, Coles, Hike, (1978) Reo = 6, 800. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 2. (c) The experiments by Collins, Coles, Hike, (1978). Re8 = 7, 880. Both self-similar 
intermediate regions (I) and (II) are clearly seen. 
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Figure 3. (a) The experiments by Erm and Joubert, {1991). Re8 = 697. Both self-similar 
intermediate regions (I) and {II) are clearly seen. 
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Figure 3. (b) The experiments by Erm and Joubert, (1991). Re8 = 1, 003. Both self-similar 
intermediate regions, (I) and (II) are clearly seen. 
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Figure 3. (c) The experiments by Erm and Joubert, (1991). Re6 = 1, 568. Both self-similar 
intermediate regions (I) and (II) are clearly seen. 
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Figure 3. (d) The experiments by Erm and Joubert,ll991) Reo= 2, 226. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 3. (e) The experiments by Erm and Joubert, (1991). Reo= 2, 788. Both self-similar 
intermediate regions (I) and (II) are clearly seen. 
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Figure 4. (a) The experiments by Naguib,(l992).Re8 = 4, 550. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 4. {b) The experiments by Naguib,(l992). Re9 = 6, 240. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 

19 



1.5 

(II) 

1.2 

1.15 

lg 7] 

Figure 4. (c) The experiments by Hites and Nagib,(l995). Re8 = 9, 590. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 4. (d) The experiments by Nagib and Hites, (1995). Re8 = 13, 800. Both self-similar 
intermediate regions (I) and (II) are clearly seen. 
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Figure 4. (e) The experiments by Hites and Nagib,(1995). Re8 = 21,300. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 4. (f) The experiments by Hites and Nagib,(l995). Re11 = 29,.900. 
Both self-similar intermediate regions (I) and (II) are clearly seen. 
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Figure 4. (g) The experiments by Nagib and Hites, (1995). Ree = 41, 800. Both self-similar 
intermediate regions (I) and (II) are clearly seen.' 
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Figure 4. (h) The experiments by Nagib and Hites, (1995). Res= 48,900. Both self-similar 
intermediate regions (I) and (II) are clearly seen. 
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Figure 5. (a) The experiments of Smith,Q994).Re8 = 4, 996. The first self-similar 
intermediate region (I) is clearly seen, the second region (II) can be revealed. 
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Figure 5. (b) The experiments of Smith,(1994) Re9 = 12, 990. The first self-similar 
intermediate region (I) is clearly seen, the second region (II) can be revealed. 
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Figure 6. The experiments of Krogstad and Antonia,(l998).Re0 = 12, 570. 
Both self-similar intermediate regions (I) and (II) can be clearly seen. 
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3 Zero-pressure-gradient boundary layer beneath a tur
bulent free stream: The experiments of Hancock and 
Bradshaw 

The experiments of Hancock and Bradshaw (1989) revealed a new feature important for 

our analysis. Examination of these experimental data suggested that we separate the other 

experiments into two groups. In the Hancock and Bradshaw experiments the free stream 

was turbulized by a grid in all series, except one. Thus, processing the data from these 

experiments we were able not only to compare the scaling law (5) with experimental data 

once again but also to investigate the influence of the turbul.ence of the external flow on the 

second self-similar intermediate region. The results of the processing are presented in Table 

2 and Figures 7 and 8. In both Table 2 and Figures 7 and 8 the intensity of turbulence 

is shown by the value of u' /U, where u' is the mean square velocity fluctuation in the free 

stream. 

Table 2 

Figure Reo a A ln Re1 ln Re2 ln Re u'/U Ree/Re {3 

Hancock, P.E. and Bradshaw, P. (1989) 
Fig.8a 4,680 0.140 8.66 10.67 10.71 10.69 0.0003 0.11 0.20 
Fig.8b 2,980 0.138 8.77 10.86 10.91 10.88 0.024 0.06 0.18 
Fig.8c 5,760 0.137 8.80 10.91 10.95 10.93 0.026 0.10 
Fig.8d 4,320 0.150 8.22 9.91 10.00 9.95 0.041 0.21 
Fig.8e 3,710 0.122 9.49 12.11 12.30 12.20 0.040 0.02 
Fig.8f 3,100 0.128 9.13 11.48 11.70 11.59 0.058 0.03 
Fig.8g 3,860 0.129 9.07 11.38 11.63 11.50 0.058 0.04 

First of all, our processing showed that the first self-similar intermediate layer is clearly 

seen in all these experiments, both in the absence of the external turbulence, and in its 

presence. The values of ln Re1 and ln Re2 are close. This means that the basic scaling law 

(5) is valid in the intermediate region adjacent to the viscous sublayer. At the same time, 

the second self-similar region is clearly observed and well-defined only when the external 

turbulence is weak (Figure 8a and to a lesser extent, Figure 8b) so that the external turbu

lence leads to a drastic reduction of the power {3, and even to the deterioration of the second 

self-similar intermediate region so that {3 becomes indeterminate. We illustrate the influence 

of the free stream turbulence additionally by Figure 7(b). 

The experiments of Hancock and Bradshaw are instructive because they suggest at least 

one possible reason for the destruction of the intermediate self-similar region adjacent to the 

external flow that is observed in the experiments of the next group. 
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Figure 7. (a) The experiments by Hancock and Bradshaw, (1989) -a general view. o, see 
Figure 8(a); +,see Figure 8(b); x, see Figure 8(c); 0, see Figure8(d); ~.see Figure 8(e); 
o, see Figure 8(f); *• see Figure 8(g). 
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Figure 7. (b) The same data as in Figure 7(a) with the coordinates 

1.5 2 

( x = ln TJ - ~ ln Re ( ln ~+ln ietJ'3) , ¢). The deviations from the axis x = 0 reflect the 

influence of the turbulence of the free stream. 
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Figure 8. (a) The experiments by Hancock and Bradshaw, (1989). Re8 = 4, 680, u' /U = 
0.0003. Both self-similar intermediate regions are clearly seen. 
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Figure 8. (b) The experiments by Hancock and Bradshaw, (1989). Ree = 2,980, u'/U = 
0.024. Both self-similar intermediate structures (I) and (II) are clearly seen. 
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Figure 8. (c) The experiments by Hancock and Bradshaw, (1989). Re8 = 5, 760, u' /U = 
0.026. The first self-similar intermediate region (I) is clearly seen, the second is not revealed. 
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Figure 8. (d) The experiments by Hancock and Bradshaw, (1989). Re6 = 4,320, u'/U = 
0.041. The first self-similar intermediate region (I) is clearly seen, the second is not revealed. 

36 

•' 



1.45 .-------.----,----..,-----r-----,,-, 

1.4 

1.35 

1.3 

~ 
b.O ........ 

1.25 

1.2 

1.15 

1.11L __ _J1.~5 _ _..:.__:_-:2----:2"!":.5~--~3----:;;3~.5~~ 
lg 1] 

Figure 8. (e) The experiments by Hancock and Bradshaw, (1989). Ree = 3, 710, u'JU = 
0.040. The first self-similar intermediate region (I) is clearly seen, the second is not revealed. 
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Figure 8. (f) The experiments by Hancock and Bradshaw, {1989). Re
8 

= 3, 100, u'fU = 
0.058. The first self-similar intermediate region (I) is seen, although with a larger scatter. 
The second is not revealed. 
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Figure 8. (g) The experiments of Hancock and Bradshaw, (1989). Re8 = 3, 860, u' /U = 

0.058. The first self-similar intermediate region (I) is seen, although with a larger scatter. 
The second is not revealed. 
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4 The remaining group of zero-pressure-gradient bound
ary layer experiments 

In this section the results· of the processing are presented for all the remaining series of 

experiments. For all of them we used the data presented in the form of graphs in the review 

of Fernholz and Finley (1996). The results of the processing are presented in Table 3 and in 

Figures 9-15. 

All the data reveal the self-similar structure in the first intermediate region adjacent to 

the viscous sublayer. The scaling laws obtained for this region give values of ln Re1 and 

ln Re2 , close to each other, although the difference between ln Re1 and ln Re2 is sometimes 

larger than in the experiments of the first group. The scaling law (5) is confirmed by all 

these experiments. At the same time, for this group of experiments the second self-similar 

structure adjacent to the free stream turns out to be less clear-cut, if it is there at all. 

Therefore, for this group of experiments, we did not present the estimates for the values of 

/3. Nevertheless we note that when it was possible to obtain estimates of f3 they always gave 

a j]less than 0.2. Note also that for all these experiments the number of experimental points 

belonging to the region adjacent to the free stream was less than for the experiments of 

the first group: this was an additional argument for our reluctance to show here the second 

self-similar layer. As explained in Section 3, we suggest that the turbulence of the external 

flow in the experiments of this remaining group was more significant. 
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I _; . Table 3. 

Figure Ree a A lnRe1 lnRe2 1lnRe Ree/Re 

Winter K.G., Gaudet L., (1973) 
Fig. 9 (a) 32,150 0.133 8.86 11.02 11.32 11 .17 0.45 
Fig. 9 (b) 42,230 0.122 9.37 11.90 12.30 12.10 0.24 
Fig. 9 (c) 77,010 0.115 10.30 13.51 13.04 13.27 0.13 
Fig. 9 (d) 96,280 0.107 10.56 13.96 14.02 13.99 0.08 
Fig. 9 (f) 136,600 0.101 10.99 14.71 14.85 14.78 0.05 
Fig. 9 (e) 167,600 0.096 11.65 15.85 15.63 15.74 0.02 
Fig. 9 (g) 210,600 0.096 11.30 15.24 15.63 15.43 0.04 

Purtell L.P ., Klebanov P .S., Buckley F.T. (1981) 
Fig. 10 (a) 1,002 0.170 7.39 8.47 8.82 8.64 0.18 
Fig. 10 (b) 1,837 0.164 7.62 8.87 9.15 9.01 0.23 
Fig. 10 (c) 5,122 0.149 8.11 9.72 10.07 9.89 0.26" 

Erm L.P. (1988) 
Fig. 11 (a) 2,244 0.155 8.04 9.60 9.68 9.64 0.15. 

Fig. 11 (b) 2,777 0.157 '7.99 9.51 '9.55 9.53 0.20 

Petrie H.L., Fontaine A.A., Sommer S.T., Brungart T.A. (1990) 
Fig. 12 35,530 0.119 9.76 12.57 12.61 12.59 0.12 

Bruns J., Dengel P ., Fernholz H.H. (1992). 
and Fernholz H.H., ·Krause E., Nockemann M., Schober M. (1995) 

Fig. 13 (a) 2,573 0.151 8.46 10.32 9.93 10.13 0.10 
Fig. 13 (b) 5,023 0.144 8.85 11.00 10.42 10.70 0.11 
Fig. 13 (c) 7,139 0.148 '8.49 10.37 10.14 10.25 0.25 
Fig. 13 (d) 16,080 0.142 8.45 10.31 10.56 10.43 0.47 
Fig. 13 (e) 20,920 0.137 8.51 10.41 10.95 10.68 0.48 
Fig. 13 (f) 41 ,260 0.132 8.63 10.62 11.36 10.98 0.70 
Fig. 13 (g) 57,720 0.130 8.71 10.76 11.54 11.14 0.84 

Djenidi L. & Antonia R.A. (1993) 
Fig. 14 a 1,033 0.163 7.88 9.32 9.19 9.25 0.10 
Fig. 14 b 1,320 0.152 8.32 10.08 9.87 9.97 0.06 

Warnack 0.(1994) 
Fig. 15 (a) 2,552 0.152 8.29 10.03 9.87 9.95 0.12 
Fig. 15 (b) 4,736 0.149 8.20 9.87 10.07 9.97 0.22 
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Figure 9. (a) The experiments of Winter and Gaudet, (1973). Reo = 32,150. The first 
self-similar intermediate region (I) is seen, although with a larger scatter. The second is not 
revealed. 
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Figure 9. (b) The experiments of Winter and Gaudet, (1973). Re
6 

= 42,230. The first 
self-similar intermediate region (I) is seen, although with a larger scatter. The second is not 
revealed. 
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Figure 9. (c) The experiments of Winter and Gaudet, (1973). Reo = 77,010. The first 
self-similar intermediate region (I) is seen, although with a larger scatter. The second is not 
revealed. 
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Figure 9. (d) The experiments of Winter and Gaudet, (1973). Reo = 96,280. The first 
self-similar intermediate region (I) is seen, although with a larger scatter. The second is not 
revealed. 

45 



1.5 1 

1.45 

1.25 

1.2 

1.15 

1.1~--_.----~--~~--~----~--~~--~----~--~ 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 

lg 1] 

Figure 9. (e) The experiments of Winter and Gaudet, (1973). Ree = 136,600. The first 
self-similar intermediate region (I) is seen, although with a larger scatter. The number of 
points is not enough to make a definite estimate for the second region, but the slope (3 is 
less than 0.2. · 
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Figure 9. (f) The experiments of Winter and Gaudet, (1973). Ree = 167,600. The first 
self-similar intermediate region {I) is seen, although with a larger scatter. The second is not 
revealed. 
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Figure 9. (g) The experiments of Winter and Gaudet, (1973). Reo = 210,600. The first 
self-similar intermediate region (I) is seen, although With a larger scatter. The second is not 
revealed. 
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Figure 10. (a) The experiments of Purtell, Klebanov and Buckley, (1981). Reo = 1, 002. 
The first self-similar region (I) is revealed in spite of the small number of points. The second 
self-similar region is not revealed. 
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Figure 10. (b) The experiments of Purtell, Klebanov and Buckley, (1981). Reo = 1, 837. 
The first self-similar region (I) is revealed in spite of the small number of points. The second 
self-similar region is revealed. 
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Figure 10. (c) The experiments of Purtell, Klebanov and Buckley, (1981). Re
8 

= 5, 122. 
The first self-similar region (I) is revealed. The' second self-similar region is not revealed. 
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Figure 11. (a) The experiments of Erm, (1988). Ree = 2, 244. The first self-similar region 
(I) is revealed. The second self-similar region is not revealed. 
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Figure 11. (b) The experiments of Erm,(1988). Re0 = 2, 777. The first self-similar region (I) 
is revealed. The second self-similar region is not revealed. 
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Figure 12. The experiments of Petrie, Fontaine, Sommer and Brungart, (1990). Ree = 

35,530. The first self-similar region (I) is revealed. The second self-similar region is not 
revealed. 
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Figure 13. (a) The experiments of Bruns et al., (1992), and Fernholz et 8.1., (1995). Ree = 
2, 573. The first self-similar region (I) is revealed. The second self-similar region is not 
revealed. 
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Figure 13. (b) The experiments of Bruns et al.,(1992) and Fernholz et al.,Q-995). Re
0 

= 5, 023. 
The first self-similar region (I) is revealed. The second self-similar region is not revealed. ' 
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Figure 13. (c) The experiments of Bruns et a1.,(199~ and Fernholz et al.,(1991!).Ree = 7, 139. 
The first self-similar region (I) is revealed. The second self-similar region is not revealed .. 
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Figure 13. (d) The experiments of Bruns et al., (1992), and Fernholz et al., (1995). Re
8 

= 

16, 080. The first self-similar region (I) is revealed. The second self-siniila.r region is not 
revealed. 
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Figure 13. (e) The experiments of Bruns et al., (1992), and Fernholz et al., (1995). Re11 = 
20,920. The first self-similar region (I) is revealed. The second self-similar region is not 
revealed. 
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Figure 13. (f) The experiments of Bruns et al., (1992), and Fernholz et al., (1995). Ree = 
41,260. The first self-similar region (I) is revealed. The second self-similar region is not 
revealed. 
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Figure 13. (g) The experiments of Bruns et al., (1992), and Fernholz et al., (1995). Reo = 
57,720. The first self-similar region (I) is revealed. The second self-similar region is not 
revealed. 
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Figure 14. (a) The experiments of Djenidi and Antonia,(1993). Re
8 

= 1, 033. The first self
similar region (I) is revealed although with a larger scatter. The second self-similar region 
can be traced. 
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Figure 14. (b) The experiments of Djenidi and Antonia, (1993). Re
8 

= 1, 320. The first 
self-similar region (I) can be revealed although with a larger scatter. The second self-similar 
region is not revealed. 
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Figure 15. (a) The experiments of Warnack,(1994). Re8 = 2, 552. The first self-similar region 
(I) is clearly seen. The second self-similar region can be traced. 
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Figure 15. (b) The experiments of Warnack,(l994). Reo = 4, 736. The first self-similar region 
(I) is clearly seen. The second self-similar region can be traced. 
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5 Checking universality 

The universal form of the scaling law 

1 ( 2a¢ ) 1/J = -ln J3 = ln 17 
a 3+5a 

(14) 

gives another way to demonstrate clearly the applicability of the scaling law (5) to the first 

intermediate region of the flow adjacent to the viscous sublayer. According to relation (??), 

in the coordinates (ln 17, 'If;), all experimental points should collapse onto the bisectrix of the 

first quadrant. In Figure 16a are represented the data of Erm and Joubert (1991), Smith 

(1994), and Krogstad and Antonia (1998). It is seen that the data collapse on the bisectrix 

with sufficient accuracy to confirm the scaling law (5). The parameter a was calculated 

according to the formula a ~ (3/2ln Re), ln Re was taken here to be (ln Re1 + ln Re2)/2 

(see Tables 1 and 3). 

In Figure 16b the results of the experiments of Winter and Gaudet (1973), are presented. 

These experiments are specially interesting because they cover a large range of Reynolds 

numbers (see Table 3). The collapse onto the bisectrix, although with a larger scatter than 

for the data presented in Figure 16a, is clearly demonstrated. 

In Figure 16c we present the results of the experiments of Bruns et al (1992), and Fernholz 

et al. (1995). Basically they also collapse onto the bisectrix, although with yet larger scatter, 

and some systematic deviation at large 7]. This deviation can be explained, at least partially, 

by the absence of a sharp outer boundary of the first intermediate region, unlike the situation 

in the experiments of the first group. 

In Figure 16d are presented the results of all the experiments except those by Naguib 

(1992); Naguib and Hites (1995), which will be discussed later, and the experiments by 

Winter and Gaudet and Bruns et al. and Fernholz et al. presented separately in Figures 

16b and 16c. As is seen, the correspondence to the universal form (??) of the scaling law (5) 

is reasonable. By contrast, Figure 16e,(a) representing the experiments by Naguib (1992), 

and Nagib and Hites (1995), shows a systematic deviation, in fact a parallel shift, from the 

bisectrix of the first quadrant. We have already seen such a shift, in the analysis of the 

pipe experiments of the Princeton group (Zagarola et al. (1996)); in our papers on pipe flow 

(Barenblatt, Chorin, and Prostokishin (1997a, 1997b)). we concluded that the shift was due 

to the effects of wall roughness, which increases the effective viscosity. To understand the 

shift better, we analyzed also the data in the paper of Krogstad and Antonia (1998) where 

a rough wall was used deliberately, albeit for a very large roughness. Indeed, we found that 
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in these experiments the experimental points lie much below the bisectrix. Furthermore, in 

these experiments ln Re1 and ln Re2 differed significantly, and we therefore picked the value 

of a that corresponds to ln Re1 . The result is a pair of lines parallel to the bisectrix but far 

below it (Figure 16e,(b)) . 

. More generally, it is very likely that any outside cause that increases the level of turbu

lence should also increase the effective viscosity, and thus shift the points in the (ln ry, 'ljJ) 

plane downwards. A case in point is the set of experiments of Hancock and Bradshaw (1989) 

discussed above, where turbulence was created by a grid in the free stream. The parallel 

downward shift is indeed observed (Figure 16f), and it is of the same order of magnitude as 

the shift in the experiments of Nagib et al. Note that in the experiments of Nagib et al. the 

second intermediate region is intact, and it is therefore likely that the shift in the universal 

description of the first intermediate region is due to the disturbance close to the wall, i.e., 

to roughness, just as in the experiment of Zagarola et al. (1996). 
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Figure 16. (a) The experiments of Erm and Joubert, (1991) (*); Smith, (1994) (D) and 
Krogstad and Antonia, (1998) ( <J); and Petrie et al., (1990) (t>) collapse on the bisectrix of 
the first quadrant in accordance with the universal form (14) of the scaling law (5). 
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Figure 16. (b) The data of Winter and Gaudet, (1973), (V') collapse on the bisectrix of the 
first quadrant in accordance with the universal form (14) of the scaling law (5). 
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Figure 16. (c) The data of Bruns et al, 1973, and Fernholz et al,(199~(1)) basically collapse 
on the bisectrix of the first quadrant in accordance with the quasi-universal form (14) of the 
scaling law ( 5). 
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Figure 16. (d) The data of all experiments except of those by Naguib, (1992), and Nagib 
and Hites, (1995); Bruns et al., (1992), and Fernholz et al., (1995), collapse on the bisectrix 
of the first quadrant in accordance with the universal form (14) of the scaling law (5): ( o) 
Collins et al., (1978); (t>) Petrie et al., (1990); (+) Erm, (1988); (<>) Putell et al., (1981); (*) 
Djenidi and Antonia, (1993); (x) Warnack, (1994); (<1) Krogstad and Antonia, (1998); (V) 

Winter and Gaudet, (1973). . 
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Figure 16. (e) (a) The data of Naguib, (1992), and Nagib and Hites, (1995), show a system

atic deviation from the bisectric of the first quadrant. 
(b) The data of Krogstad an Antonia, (1998), related to rough walls. The experimental 

points lie much lower than bisectric. For the evaluation of 1/J the value a= 3/2 ln Re1 was 

taken. 

72 



7~---------.---------,,---------.----------.--------~ 

6.5 

6 

ln 7J 

* sq" . . 
*0 *X • * 9• I 

0 . 
X 

0 -~. 

6 

Q ~ .. 
* . a·· .. 
)<• 

*Q .. ,. 

6.5 

· . 

. .. 

7 

Figure 16. (f) The data of Hancock and Bradshaw, (1989), show the parallel shift from 
the bisectrix of the same order as in the experiments by Nagib et al. (·) Nagib et al., 
(*) Hancock and Bradshaw, u'fU = 0.0003; 0.024; 0.026; (x) Hancock and Bradshaw, 
u' /U = 0.040, 0.041, ( o) Hancock and Bradshaw, u' /U = 0.058. 
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6 Conclusion 

The Reynolds-number-dependent scaling law 

.r~, = 3!:_ = (~ln Re + Q)TJ3/2ln Re 
'P u* . .j3 2 ' 

(15) 

·was established earlier for the intermediate region of pipe flows between the viscous sublayer 

and the close vicinity of the pipe axis. The Reynolds number Re was determined as Re 

= u djv, where u is the average velocity, and d the pipe diameter. Attempts (Zagarola and 

Smits (1998)) to adjust the constants of the universal logarithmic law so that this law is 

valid in a small region of distances from the wall (y less than 0.07 of the pipe radius) are 

immaterial because these data correspond to the envelope of the family of scaling laws. 

In the present work we show that the scaling law (5) gives an accurate description of the 

mean velocity distribution over the self-similar intermediate region adjacent to the viscous 

sublayer for a wide variety of zero-pressure-gradient boundary layer flows. The Reynolds 

number is defined as Re = U A/ v, where U is the free stream velocity and A is a length scale 

which is well defined for all the flows under investigation. 

We also show that under conditions of weak free stream turbulence there exists a second 

intermediate self-similar region between the first one, where the scaling law is valid, and the 

free stream. This second region deteriorates under the influence of free stream turbulence. 

The validity of the scaling law for boundary layer flows constitutes strong argument in 

favor of its validity for a wide class of wall-bounded turbulent shear flows at large Reynolds 

numbers. The plotting of the experimental data in universal coordinates yields a sensitive 

gauge of the presence of wall roughness. 

Finally, we feel that the affirmation of the effectiveness of incomplete similarity and of 

vanishing-viscosity asymptotics for turbulent shear flows at large Reynolds numbers has 

broad implications for other manifestations of turbulence, e.g. in jets, wakes, mixing layers, 

and local structure, and should lead to a reconsideration of the basic tools used in the study 

of turbulent flows. 
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