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Abstract 

A dual probability model is constructed for the La
tent Semantic Indexing (LSI) using the cosine simi
larity measure. Both the document-document sim
ilarity matrix and the term-term similarity matrix 
naturally arise from the maximum likelihood esti
mation of the model parameters, and the optimal 
solutions are the latent semantic vectors of of LSI. 
Dimensionality reduction is justified by the statis
tical significance of latent semantic vectors as mea
sured by the likelihood of the model. This leads to 
a statistical criterion for the optimal semantic di
mensions, answering a critical open question in LSI 
with practical importance. Thus the model estab
lishes a statistical framework for LSI. Ambiguities 
related to statistical modeling of LSI are clarified. 

1 Introduction 

Automatic document retrieval to a user query, such 
as searching documents on Internet search engines, 
often matches the keywords in the query to the 
index words for all documents in the database, fol
lowing the vector-space model for information re
trieval (IR)[l]. Latent semantic indexing (LSI) [2, 
3, 4, 5) is a successful scheme to go beyond 

lexical matching to address the well-known prob
lem of using individual keywords to identify the 
content of documents. LSI attempts to capture 
the underlying or latent semantic structures, which 
better index the documents than individual index
ing terms, by the truncated singular value decom
position ( SVD) of the term-document matrix X. 
The effectiveness of LSI has been demonstrated em
pirically in several text collections as increased av
erage retrieval precision. 

Clearly, a theoretical and quantitative under
standing beyond empirical evidences is desirable. 
To date, several theoretical results or explanations 
[6, 7, 8, 9] have appeared, and these studies pro
vide better understanding of LSI. However, many 
fundamental questions remain unresolved. 

In this paper, we outline a dual probabilistic 
model for LSI based on the similarity concept widely 
used in vector-space model. For this model, the 
t~rm-similarity matrix JO(T and document simi
larity matrix )(l'X naturally arise during the max
imum likelihood estimation, and LSI is the optimal 
solution of the model. 

From statistical point of view, LSI amounts to 
an effective dimensionality reduction, i.e., reduce 
the problem dimension to k-dim LSI space. Di
mensions with small singular values are thus often 
viewed as representing semantic noises and thus 
are ignored. This generic argument, considering 
its fundamental· importance, needs to be clarified, 
quantified and verified. Our model provides a mech
anism to do so by checking the statistical signifi
cance of the semantic dimensions: If a few seman
tic dimensions can effectively characterize the data 
statistically, as indicated by the likelihood of the 
model, we believe they also effectively represent the 
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semantic meanings/relationships a.s defined by the 
cosine similarity. 

Thus the likelihood is the key to the verification 
· of optimal semantic subspace that LSI advocates. 

We give some theoretical results a.nd a.n illustrative 
example to support the existence of such optimal 
semantic subspace. In doing so, a. criterion for de
termining the optimal semantic dimensions ca.n be 
defined, addressing a. critical open question in LSI 
with practical importance. 

2 Latent Semantic Indexing 

In vector-space model of information retrieval, the 
term to document association relation is represented 
a.s a. term-document matrix 

containing the frequence of the d index terms oc
curring in the n documents a.nd properly weighted 
by other fa.ctors[3, 10]. Here Xi is a. d-component 
column vector representing a. document ((xiy:. = 
xi). t.B is a. n-component row vector representing 
a. term (( t.B)j = xf). (In this paper, ca. pi tal let
ters refer to matrices, bold face lower-case letters 
to vectors; subscripts refer to documents, super
scripts refer to terms; a, f3 sum over a.ll d terms 
a.nd i, j sum over a.ll n documents.)· Given a. user 
query q, consisting of a. set of terms (keywords), 
the system calculate a. n-component score vector 
s = qT X a.s the relevance of each document to the 
query. The relevant documents a.re sorted accord
ing to the score a.nd returned to user. 

LSI re-represents both terms a.nd documents in 
a. new vector space with sma.ller k dimensions, in 
order to capture the underlying or latent structures 
(indices). This is done through the truncated sin
gular value decomposition, X Uk"£k V[, or ex
plicitly, 

(2) 

2 

where u1 · · · uk a.nd v 1 · · · vk a.re left a.nd right singu
lar vectors. a 11 · · ·, ak a.re singular values. Ma.th
ema.tica.lly, the truncated SVD is the best approx
imation of X in the reduced k-dimensional sub
space. In this k-dim LSI subspace, query is repre
sented as qTUk, a.nd documents a.re represented as 
columns of "E,k V{. The score vector is calculated 
as s = ( qTUk)("£k V{). 

Here we point out a.n important feature of LSI: 
if document vectors (columns of X) are normalized 
to one in the original d-dim space, their represen
tations (columns of "E,k V{) in the reduced k-dim 
LSI subspace a.re also normalized to one. To prove 
this, we have 

("£kV{f("£kV{) = (Uk"£kV{f(Uk"£kV{) ~ XTX 
(3) 

Since columns of X a.re normalized, diagonal ele
ments of xrx a.re a.ll one's, which implies the nor
malization of columns of "£k V{. Therefore, LSI will 
preserve the uniform scale if we start with normal
ized document vectors. For this reason, we believe 
that documents should be normalized before LSI 
is applied. We assume so in this paper, without 
loss of generality. Therefore, cosine similarity is 
equivalent to dot-product similarity in both spaces. 
Note that Eq.3 also indicates that the docume!lt
document similarities a.re preserved in the LSI k
dim subspace. [6] further proved that this preser
vation is a.n optimal one. 

Typica.lly taking k = 200 - 300 (fa.r more less 
than either d, or n), LSI increases the retrieval 
precision for the query. The optimal k to achieve 
best precision is currently determined by exhaus
tive evaluation. How to calculate it directly from 
X remains a.n open question[4]. 

3 Similarity matrices 

Our starting point is the understanding of matri
ces X~X a.nd XXT , since they determine the SVD 
a.nd give arise to latent semantic vectors Ut. · · · Uk 

and v 1 ... vk. xrx is the similarity matrix be
tween documents, using the cosine or dot-product 



C. Ding, ACM SIGIR'99, Berkeley, CA, August 1999 

similarity measure in vector-space IR models: 

d 

sim(x1.x2) = x1 · x2 = L x}x~ (4) 
a= I 

Note the document-document similarity is defined 
in the space spanned by the d indexing terms (terril 
space). This similarity measure is of fundamental 
important in vector-space IR models. The dot
product between two term vectors t 1, t 2 (rows of 
X): 

n 

sim(t\ t2) = t 1 · t 2 = ,L:t} · t~ (5) 
i=l 

measures their co-occurrences through all documents 
in the collection, therefore their closeness or simi
larity[l,2]. xxr contains dot-products of all pairs 
of term and is the term-term similarity matrix. 
In several automatic text categorization methods, 
terms are often first clustered according their co
occurrences in documents using XJ(l' . A statisti
cal models of LSI in document space should involve 
both )(Tx and X)(T . We will show later they in
deed arise naturally in our model. 

Here we emphasize the dual relationship be
tween documents and terms. As discussed above, 
similarity between documents are defined in term
space, and similarity between terms are defined 
in document-space. This fundamental relationship 
between documents and terms naturally corresponds 
to the occurrence of right and left singular vector 
in SVD, and is a key feature of our statistical mod
eling. 

4 Dual Probability Model 

If we view each document as a data entry in the 
d-dimensional term-space (index space), there are 
reasons to believe that documents do not occur 
entirely randomly. Thus we assume they occur 
according to certain probability distribution, and 
can be modeled by standard statistical methods. 
This idea is similar to, e.g., the Naive Bayes docu
ment classification approach where documents are 
assumed to be governed or generated by a proba
bility distribution. 

3 

Consider a column vector c representing a doc
ument, characterizing a Latent semantic structure 
in LSI: The probability of the occurrence of a doc
ument Xi is related to its similarity ( cf. Eq .4) to 
the latent structure vector c. Motivated by the 
widespread use of Gaussian distribution, we as
sume the documents are distributed according to 
the probability 

(6) 

where the normalization constant Z( c) = f exp( x · 
c )2dx. The next step is to find c as the optimal 
paramet~r for the probability model subject to the 
constraint lei = 1. For this purpose, we use the 
maximum likelihood estimation (MLE), a standard 
method in statistics. In MLE, we try to find the 
c that maximize the following log-likelihood func
tion: 

n 

f(c) = logllp(xilc) = cTXXTc- nlogZ(c) (7) 
i=l 

assuming data are independently, identically dis
tributed. Here we have used 

i=l a,{J=I 

The term-term similarity matrix XJ(l' arises as nat
ural consequence of the model. We point out that 
it is term similarity matrix XXT arise here, not the 
document similarity matrix xrx (as one might had 
expected). Here documents are data which live in 
the index space (term space). XJ(l' measures the 
"correlation" between components of data when 
properly normalized, and would not change much 
if more data are included, thus serves a role similar 
to the covariance matrix in a principle component 
analysis. The conventional covariance matrix on 
the data set Ut • · · Un must subtract the averages 
and would look qualitatively different from xxr 
due to the sparsity of the data matrix X. Thus 
LSI is not principle component analysis, although 
they are similar. 

In general, finding c that maximizes f( c) in
volves rather complicated numerical procedure, par
ticularly difficult because Z( c) is an integral in 
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d = 103 - 105 dimensional space and is analyti
cally intractable. However, note that nlogZ( c) is 
a very slow changing function in comparing to the 
first term cT XJ(1' c, and thus can be ignored. In 
essence, c is similar to the mean vector p, in Gaus
sian distribution where the norm~zation z is, in~ 
dependent. of p,. Thus we expect Z(c) to be nearly 
independent of c. 

Therefore, we need only to maximize the first 
term, CT xx:r c. The symmetric positive-definite 
matrix xx_T has the spectral decomposition: XXT = 
L~=l AaUa-u;, At ~ A2 ~ · · · ~ Ap, here Aa, Ua 
are the ath eigenvalue and eigenvector.· Thus the 
optimal solution is c = Ut. 

We can improve the statistical modeling of the 
data by using k characteristic document vectors, 
and generalizing Eq.6 to 

p(xlct .. ·Ck) ex: e<x·cl)2+ .. -+(x·ck)2 (9) 

with the constraint that they are mutually orthog
onal. Following the same maximum likelihood es
timation procedure, the optimal solution for model 
parameters c1 · · · Ck are the first k eigenvectors of 
xx.T , Ut · · · uk, exactly the left singular vectors of 
LSI/SVD ( cf Eq.2). The optimal m9del is· therefore 

p(xlut · · ·uk) = e<x·u1)
2

+··-+(x·uk)
2 
/Zk (10) 

where Zk = Z(u1 · · ·uk) is the normalization con
stant. 

The above analysis of modeling documents are 
carried out in term-space. We can also model terms 
t 1 . · ·td as defined by their co-occurrences in the 
document collection, the document space. In this 
model, the data are the terms, indexed by docu
ments. Consider a (normalized) row vector r repre
senting a term. Using the term similarity measure 
Eq.5, we assume r characterizes the data according 
to the probability 

p(tlr) = e<t·r)
2 
/Z(r), (11) 

similar to Eq.6. To find optimal r, we calcula~e the 
log-likelihood, 

d 

f(r) =log II p(talr) = rTXTXr- dlogZ(r) (12) 
cx=l 

after some algebra, and noting 

d 

L tftj = (XTX)ij 
cx=l 

4 

(13) 

The document-document similarity m~trix x:rx arise 
again as direct consequence of the model. The sym
metric positive-definite matrix x!X has the spec
tral decomposition: AT A = L:i=t ~i( vif vi, 6 ~ 
6 ~ · · · ~ ~n, here (i, vi are the ith eigenvalue and 
eigenvector. Thus the optimal solution is r = v1. 

We may also use k characteristic row vectors 
to model the data, and the optimal solution is the 
right singuiar vectors v1 · · · vk of the SVD. Thus 
we obtain the final probability representation 

p(tlvl .. ·vk) = e<t·vl)2+··-+(t·vk)2 /Zk. (14) 

We have constructed a dual probability model, 
one for documents in te.rm-space using the docu
ment similarity, and another for terms in document
space using term similarity. For both models, the 
optimal solutions for the model parameters are found 
to be exactly the LSI/SVD vectors. Thus LSI is 
the optimal solution ·of the model, and we refer to 
Ut · · · Uk and v 1 · · · vk as latent semantic or index 
vectors, meaning they identify the latent structures 
in LSI. . 

Eqs.10,14 are dual probability representations 
of the LSI. This dual relationship is further en
hanced by the following facts: (a) xx:r and x:rx 
have the same eigenvalues 

Aj = ~j = a}, j = 1, · · ·, k; 

(b) left· and right LSI vectors are related by 

Uj = (1/aj)Xvj, j = 1,· · ·,k. 

Thus both probability models have the same ma.'<:
imum log-likelihood 

fk = ai + · · · + a~ - nlogZk (15) 

with the only difference in the normalization con
stants. This is a direct consequence of dual rela
tionship between terms and documents. In partic
ular, for statistical modeling of the observed term
text co-occurrence data, both probability models 
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should be considered with same number k, as is 
the case in the SVD. Eq.15 also indicates that the 
statistical significance of each LSI vector is propor
tional to the square of its singular values ( o'[ in the 
likelihood). Therefore, contributions of LSI vectors 
with small singular values is much smaller than Ui 

itself as it appear in the SVD ( cf. Eq.2). This is 
an important result of the theory. 

5 Optimal Semantic Subspace 

The central theme in LSI is that the LSI subspace 
captures the essential mainingful semantic associ
ations while reducing redundant and noisy seman
tic information. Our model proyide the means to 
verify this claim, by measuring the statistical sig
nificance of the LSI vectors. We can compute the 
numerical values of the likelihood and verify that as 
more latent index vectors are included in the prob
ability density Eq.lO, the likelihood of the model 
increases, indicating the improvement of the qual
ity of statistical model and hence the effectiveness 
~f LSI. We further conjecture that latent index vec
tors with small eigenvalues contain statistically in
significant information, and their inclusion in the 
probability density will not increase the the likeli
hood. In LSI, they represent redundant and noisy 
semantic information. 

Thus the likelihood is the key to verify the ex
istence of the optimal semantic subspace. The log
likelihood for the k latent vectors is 

ik = i(u1 · · · uk) = >.1 + · · · + >.k- nlogZk (16) 

In general, zk = Z(ul ... Uk) is difficult to calcu
late, because it is an integral in a high d-dimensional 
space ( d = 103 - 105 ): 

Z J J (X·U1)2+··+(x•Uk)2d 1 d d k= •·· e X··· X. 

Fortunately in maximum likelihood analysis, what 
matters is the relative variation of log-likelihood vs 
k, not the absolute values. To this goal, we may 
proceed using statistical sampling. In the statisti
cal modeling: data (documents) are samples drawn 
randomly from the population, thus 

n 
zk ~ 2: e<x··ul)2+··+<x•·Uk)2 dxi (17) 

i=l 
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Figure 1: The log-likelihood for modeling docu~ 
ments in term space. 

This is an unbiased estimate, and the appro~ma
tion improves as n increases. If all dxi have same 
size, we can take them out of the sum. In general 
case, we may also factor them out by a properly de
fined average (dx) = (TJ/n)'£i=1 dxi, where TJ"' 1 
and is weakly dependent on k. We may further 
absorb the difference in the discrete summation (a 
proportional constant of Eq.17) into (dx}, and ob
tain 

n 
zk = (dx) L e(x;·ud+··+(x;·uk)

2 = (dx)Zk (18) 
i=l 

The key point here is that (dx} depends on the 
given text collection, but independent (or very weakly 
dependent) of k. In the following likelihood analy
sis, we will ignore (dx), and compute Zk only. Thus 
we have a practical method to calculate zk. 

5.1 An illustrative example 

Here we use a concrete example to illustrate some 
of the useful concepts. For this goal, we adopt 
the example of 17 book titles reviewed in SIAM 
Review(5]. They are indexed by 16 terms, resulting 
in the 16x17 term-document matrix. After normal
izing each document vector (column of X) to 1, we 
compute the left singular vectors (eigenvectors of 
XJ(l' ), and the log-likelihood ( cf. Eq.16), as shown 
in Figure 1. The likelihood increases steadily as k 
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Figure 2: The log-likelihood for modeling terms in 
document space. 

increases from 1 to 5, ~lea.rly indicating that the 
probability model provides better statistical mod
eling of the documents a.s more LSI vectors a.re in
cluded; the likelihood fluctuate for k > 6, indicat
ing no meaningful statistical information a.re rep
resented by those latent index vectors with smaller 
eigenvalues. 

To model the terms, we computed the right 
singular vectors (eigenvectors of xrx ), a.nd the 
log-likelihood, a.s shown in Figure 2. One see the 
likelihood peaked at around k = 7 a.nd fluctuate af
terwards. These two likelihood curves behave qual
itatively similarly, indicating the kind of feature we 
expect if we believe LSI vectors with small singu
lar values a.re statistically unimportant. It would 
be very interesting to repeat these calculations on· 
much large text collections. Clearly the optimal k 
ca.n be determined by this statistical model. In this 
collection, kopt = 5 rv 7. 

5.2 Likelihood Analysis 

One ma.y a.sk if the likelihood curves for the book 
title collection will hold for general cases. After a.ll, 
as more parameters a.re included in the model, one 
would expect the likelihood continue to increase. 
The answer is that even though Z k (c) changes very 
slowly indeed, an approximation is still made in 
finding the optimal analytic solution to Eq.9 in the 

6 

MLE procedure. Thus the likelihood is not guar
anteed to monotonically increase in our model. 

Given this clarification, we have some theoret
ical indications that the likelihood behavior of the 
book titles example is likely true for general cases. 
We ca.n prove the following relation 

(19) 

for reasonably large k. By "reasonably large k", 
we mean that in 

n 
zk+l = L e(x;·ul)2+··+(x;·uk)2+(x;·Uk+1)2 

i=l 

e(x;·uk+d
2 

is statistically independent of 
e(x;·ul)2+··+(x;·uk)2 so we ca.n write 

n . n [L e(x;·u1)2+··+(x;·uk)2][ ~ L e(X;·Uk+tl2] 

i=l n i=l 

Zk(1 + >.k+t/n), 

after expanding e(x;·uk+d
2 ~ 1 +(xi. uk+1 ) 2 since 

lxi · Uk+tl ::; 1, and using Eq.8. Substituting this 
into Eq.16 for Zk+b we obtain Eq.19. 

This relation indicates a pla.tea.u or a. peak in 
the likelihood curve, instead of a. monotonic in
crease. The theory does not predict whether it will 
be a peak or a. pla.tea.u. 

6 Invariance Properties 

We have outlined the dual model a.nd worked out a. 
few results. Here we mention the invaria.nce prop
erties of the model. First, the model is invariant 
with respect to (w.r.t.) the order that terms or doc~ 
uments a.re indexed, since they depend on the dot
product which is invariant w.r.t. the order. The 
SVD a.nd singular vector a.nd 'values a.re also in
variant, since they depends on xxr a.nd xrx 

' both of which a.re invariant w.r.t. the order. 

Second, the projections in the k-dim subspace 
preserve the dot-product similarity. The document 
projections, columns of U'[ X = Ek V{, preserve 
the similarity a.s shown in Eq.3. The term projec
tions, columns of V{ XT = EkU{, also preserve the 
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term-term similarity, 

(EkU[f(EkUJ) = (UkEkV{)(UkEkV{f ~ XXT 
(20) 

up to the minor difference due to the truncation in 
SVD. In particular, if these quantities are normal
ized in the original space, they will remain normal
. ized in the LSI subspace. 

Third, the model is invariant with respect to 
incorporating a scale parameter s, an average sim
ilarity, in Eq.9, 

(21) 

similar to the standard deviation in Gaussian dis
tributions. We obtain same LSI vectors and same 
likelihood curves except that the vertical scale is 
enlarged. 

7 Related work 

Traditional IR probabilistic models, such as the bi
nary independence retrieval model [11, 12] focus on 
relevance to queries. There, relevance to a specific 
query is pre-determined or iteratively determined 
in the relevance feedback, on individual query ba
sis. Our new approach focuses ,on the data, the 
term-document matrix X, ignoring query-specific 
information at present. 

As discussed above, similarity matrices xxT ' 
xrx are key considerations of our model. xrx is 
used as the primary target in the multi-dimensional 
scaling interpretation[6] of LSI. where it is shown 
that LSI/SVD is the best approximation to XTX 
in the reduced k-dimensional subspace. There, the 
document-document similarity are also generalized 
to include arbitrary weighting, which can be simi
larly carried out in our model. 

Minimum description length principle is used 
in [9] to determine optimal k which is rather close 
to the experimentally determined value. The re
lations between the model and the term-document 
matrix there require further clarifications, howe~er. 

7 

8 Concluding remarks 

In this ~paper, we introduced a dual probability 
model for LSI based ·on the fundamental cosine 
(dot-product) similarity measures. Similarity ma
trices are then direct consequences of the model, 
and latent semantic vectors of LSI/SVD are the 
optimal solutions of the model. The latent se
mantic relationship, as characterized by the latent 
semantic vectors, are then related to the statis
tical significance as they are used in characterize 
(parametrize) the probability distribution. The like
lihood is then proposed to quantify this signifi
cance. Both the illustrative example and our theo
retical understanding ( cf. Eq.19) indicate a plateau 
(or peak) in the likelihood curve. This signals the 
existence of an optimal semantic subspace with much 
smaller dimensions that effectively capture the es
sential associative semantic relationship between 
terms and documents, consistent with the empiri
cal evidences and the general intuition. 

LSI/SVD techniques have been used in infor
mation filtering (document classification) and com
putationallinguistics (e.g., [4, 13, 14]). Our model 
applies to these cases too, as long as the seman
tic structures defined by the dot-product similarity 
remains the essential relationship there. In text 
classification[4, 14], documents are projected int9 
the LSI subspace; the same semantic relations re
main in this new feature space as in the retrieval 
cases. In word sense disambiguation[13], the rel
evant relationship is the ·cosine between two vec
tors in the context space and thus our theory ap
plies here also. In all these cases, it is the ap
propriate similarity matrix, not the conventional 
covariance matrix, that determine the meaningful 
reduced subspace. 

The dual probability model outlined here is a 
constructive model. It can be further extended. 
One may try to add the query-related information 
for IR or other factors relevant for the particular 

' application. 

In summary, we believe this model establishes a 
sound theoretical framework for LSI and LSI/SVD · 
related dimensionality reduction methods, and an
swer some of the f~ndamental questions in infor-
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mation retrieval and filtering. 
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