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Abstract 

We consider some large systems of differential equations that have 
been introduced as model many-body problems. These systems have 
solutions that oscillate on a wide range of time scales. We apply the 
formalism of optimal prediction to these systems, using conditional ex
pectations of the equations of motion to construct effective equations 
for the most slowly-varying quantities. We verify the accuracy of the 
effective equations in examples, comparing solutions of the original 
and new systems, and we show that the new equations give accurate 
answers for slow variables with relatively little computational effort. 

This ~ork was supported in part by the Department of Energy's Office 
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In a recent paper[l], Stuart and Warren considered a particular Hamilto

nian dynamical system as a model of a particle interacting with a heat bath. 

This dynamical system consisted of many particles connected by springs, and 

by choosing the masses of the particles to vary over a wide range, these au

thors caused stiffness in Hamilton's equations of motion that mimicked the 

stiffness which limits more realistic molecular dynamics computations. They 

then introduced a· variety of numerical schemes for integrating the equa

tions of motion, and asked what would happen if the schemes were grossly 

underresolved in time. Stuart and Warren showed that schemes could be 

found which yielded correct answers for slowly-varying degrees of freedom, 

even when most of the dynamics was underresolved in time (i.e., even when 

the time step was much larger than the periods of most normal modes of 

oscillation). 

This observation, that a scheme may be optimized to work well at poor 

resolution, is similar to the claims of optimal prediction [3, 4]. Optimal pre

diction is a formalism for reducing a large system of differential equations 

into a smaller system of differential equations. The smaller system is designed 

to yield expectations of solutions to the larger system and to be computa

tionally practical when the larger system is not. Since Stuart and Warren 
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have found schemes for large, stiff systems that work with big time steps, it 

is natural to ask whether there are smaller systems of differential equations 

(just describing the_ slower modes) that would work at these big time steps. 

In this paper, we apply optimal prediction to the Stuart-Warren model. 

We reduce their original, large system of differential equations to a much 

smaller system, and show that the resolved integration of the smaller system 

reproduces the benefits of their large-~t schemes. We then add more inter

actions to the original mass-and-spring model, so that every mass interacts 

with every other mass. The same optimal prediction formalism applies to 

this more elaborate example, and defines a renormalization of spring con

stants. We demonstrate the computational savings· of the reduced equations 

for this new model as well. 

Our methods are not limited to the model problems. Our results are 

potentially relevant for all mechanics problems involving oscillatory motion 

and a wide range of time scales. For a review of problems and methods of 

this type, including molecular dynamics, orbital mechanics, and electronic 

oscillators, see [9). 
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1 Formulas for conditional expectations 

In this paper, we assume that some dynamical variables are of interest and 

others are irrelevant and unknown. We take all the unknown quantities to be 

random variables, and we assume we are given a prior probability distribution 

to describe their statistics. Since we are considering Hamiltonian equations, 

we take this prior distribution to be the canonical ensemble. 

The canonical ensemble is defined by the probability density, P = e-H 

where H is the Hamiltonian. If H is quadratic in canonical variables; as in 

the examples presented here, then P is a Gaus.sian distribution. 

Our general approach is to pick some particular variables to compute, 

which we call "collective variables," and to treat the values of these variables 

as conditions when we compute expectations of everything else. Since P will 

be Gaussian, we will be interested in conditional expectations with respect to 

Gaussian distributions. This section presents general formulas for computing 

such expectations. 

Let x1 ... XN be Gaussian random variables distributed with density 

(1) 

We denote expectations with respect to this density by (·), and (x;) = 
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I:f:1 Aij1bj. Now suppose that x1 ••. Xn are given for all n < N. The 

conditio~al expectations of Xn+1 ••• XN conditioned by x1 .•• Xn are denot~d 

(x;}n, i = n + 1, ... , , N and are given explicitly by 

n n 

(xi}n = (x;} + L L A~1 M;;,!(xv- (xv} ), i = n + 1, ... , N (2) 
~=1 v=1 

where M,.,v = A;; for Jl., v = 1, ... , n and M-1 is the inverse of then x n 

(not N x N) matrix (see [3, 4] for details). 

In this paper, all matrices A;j will be of the form, 

(3) 

for some real numbers a =f 0 and b =f -aj N. These matrices are always 

invertible (they form a group) and the formula for the inverse is 

_ 1 1 bja 
A;i = -;_o;i- a+ Nb. (4) 

If these x; variables are functions of time, and if they obey a system of 

N first-order differential equations 

i = 1, ... ,N (5) 

then the first approximation of optimal prediction states that if x1 ... Xn are 

known at an initial time and Xn+l ••• XN are not, then 

J1. = 1, ... ,n (6) 
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is an accurate system of n < N differential equations for the Xt ••• Xn on 

average, at least for short times. Note that the right-hand sides of (6) 

are functions of x 1 ... Xn through conditions on the expectation, and not 

of Xn+l· •. XN. 

2 The original model 

Stuart and Warren [1] (see also [2] and [8]) considered a one-dimensional 

collection of particles connected by springs. There was one distinguished 

particle, with mass 1, coordinate Q and momentum P. The distinguished 

particle was connected, by springs of spring constant k, to N other particles 

with masses k / P, coordinates % and momenta Pi, j = 1 ... N representing 

a heat bath (see Ford and Kac [6]). 

The motion of this collection of particles and springs is defined by the 

Hamiltonian 

H(Q,P;ql, ... ,qN;p~, ... ,pN) 

= ~(Q2 + p2) + t [ p~ + ~k(Q- qj)2] (7) 
2 . 2m3· 2 

J=l 

where (Q, P) and (qi,Pi) are canonically conjugate dynamical variables for 
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j = 1, . . . , N and mj = k I j 2 • The associated equations of motion are 

N 

_P = -Q + k 2) qj - Q) 
j=l (8) 

j=1, ... ,N 

j=1, ... ,N 

If Q were fixed, then each qi would oscillate harmonically with frequency 

Wj = j. A discretization of the 2N + 2 equations (8) would therefore be 

resolved in time if tl.t « 12L = 2
N11'. If this condition on tl.t were violated, 

WN 

then the result of the computation would depend on how the equations were 

discretized. The intriguing result of [1 J is that some schemes will give the 

right evolution for Q and P when tl.t ~ ~ and others will not. For instance, 

if the scheme is 

qj+l- qj 
tlt = p'J+l lmi 

pn
3
_ +1 _ pn

3
_ 

-=----=- = k(Qn _ q
3
n) 

tl.t 

(9) 

then u = 0 (a symplectic method) gives'the right answer for Q and P, but 

u = 1 (another convergent method) does not. 

Figure 1 shows a fu~ly-resolved .calculation (tl.t = 10.::.2 IN) of P(t) starting 

·7 



from P(O) = 0, Q(O) = 1.5, with %(0) and Pi(O) chosen randomly from the 

canonical ensemble, i.e., chosen with probability density e-H. This figure 

also shows a calculation made from the same initial condition, but using the 

symplectic scheme (equation (9) with 0' = 0) and b.t = 1/N, a time step one 

hundred times larger. This b.t is too large to resolve most normal modes, but 

the two calculations overlap; they are indistinguishable. Clearly, the fastest 

oscillations in the model (8) do not need to be resolved in order to get P(t) 

right. 

3 Optimal prediction of the original model 

If we choose our collective variables to be Q, P, q1, . . . , qn and Pt, . . . , Pn for 

some 0 ~ n ~ N, then the optimal prediction equations of the model (8) have 

the same form as the original equations. Taking the conditional expectations 

of the right-hand sides of (8) and evaluating the expectations using (2), we 

find that 

n 

.r = -Q + k L(q~- Q) 
~=1 {10) 

f.L = 1, ... ,n 

f.L = 1, ... ,n 
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on average. It comes as no surprise, therefore, that the motion of Q can 

be computed with large !:lt: pick the t:lt desired, find an n « N such that 

t:lt « 2
;, and perfqrm a resolved integration of (10) with this n and t:lt. A 

reasonable approximation for P(t) is guaranteed at least for short times. 

Figure 2 duplicates the fully-resolved solution from Figure 1, and also 

shows the solution to the same problem as computed by a resolved inte

gration of (10), instead of an underresolved implementation of (9). Both 

calculations used the same large t:lt = 10-2 /n = 1/N. The underresolved 

calculation duplicates the exact solution in high-frequency detail, but the op

timal prediction involves less computation since it is n-dimensional instead 

of N-dimensional. The optimal prediction has the additional advantage that 

it did not use the initial data qn+l(O) ... qN(O), Pn+t(O) ... pN(O) and may 

claim to be an average answer over all possible values of these data. 

4 A new model 

Realistic molecular dynamics involves more complex interactions than are 

present in the model (8). In particular, in reality every particle would interact 

with every other, and the interactions would be nonlinear. 

Nonlinear interactions require perturbative treatment in optimal predic-
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tion. There has been recent progress on this problem (see [5]), but nonlocal 

interaction is simple to analyze. We therefore consider the generalization of 

the model (8) whe:J;e every q1 .•. qN is coupled to every other q1 ... qN by a 

spring: 

H(Q,P;q~, ... ,qNiPb··· ,pN) 

~ ~(Q' + P') + t. [;;!; + ~kq(Q- q;)'] 
1 

N N 

+ 2kq I: I: (qj- ql)2 (u) 
j=1 l=j+l 

Q=P 
N 

P = -Q + kq I: ( qj - Q) 
j=1 

j = 1, ... ,N 
(12) 

N 

'PJ = kq ( Q - qj) + kq L ( ql - %) l j = 1, ... l N. 
1=1 

We have. introduced two new spring constants in this formula: kq, for the 

couplings between the distinguished particle and all the others; and kq, for 

all the couplings among the others. 

5 Optimal prediction of the new model 

We derive the optimal prediction equations of the system (12) for Q, P, 

q1 ... qn, P1 ..• Pn by averaging over qn+ 1 ... qN, Pn+1 ... PN. When Q and P 
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are constrained;·the canonical probability density e-H remains Gaussian, and 

it factorizes in the q's and p's: 

(13) 

where 

(14) 

If, for some n < N, q1 ••. qn and p1 .•• Pn are also constrained, then the 

conditional expectations of qn+l 0 •• qN and Pn+l .. 0 PN are given according 

to (2) by 

n n 

(q;}n = (q;} + L L Aj~M;;,}(qv- (qv}) (16) 
JL=l v=l 

where M~'" = A;;, p,, v = 1,. 0 0 , n are the components of the n x n matrix 

M. 

Taking conditional expectations of the equations of motion (12), these 
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elementary expectations imply that 

(Q)n = p 
n 

(P)n = .-Q + kQ L)qiL- Q) 

(17) 
p = 1, ... ,n 

n 

(piL)n = kQ(Q- qiL) + k~ L)qv- qiL), p = 1, ... ,n 
v=l 

where 

(18) 

and 

kq 
C=1+(N-n)k k 

Q+nq 
(19) 

The first approximation of optimal prediction (6) yields the system 

Q=P 
n 

P = -Q + kQ I)qiL- Q) 

p = 1, ... ,n 
{20) 

n 

P!L = kQ(Q- qiL) + k~ L(qv- qiL), p = 1, ... ,n 
v=l 

which is interpreted as an approximate evolution rule for averages of Q, P, 

q1 ... qn and P1 ... Pn. 

The only difference between the reduced equations {20) and the original 

equations· {12) is in the coupling constants, kQ and k9 • This is unexpected. 
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The reduced equations can be derived by ignoring the lighter particles and 

just rescaling the spring constants. It amounts to a dynamical analogue of 

renormalization in physics [7]. 

We performed a more rigorous test· of the new model, comparing it to 

an actual mean evolution. The results are shown in Figure 3. We once 

again picked initial data Q(O) = 1.5, P(O) = 0, and chose q1 ... qn, Pl ... Pn 

(n = 10) from the canonical distribution for N particles (N = 1000 at kQ = 

kq = 1. We then generated an ensemble of 100 sets of values for qn+l ... qN, 

Pn+l ... PN, and for each set integrated the equations (12). Averaging over 

ail 100 solutions yielded the first curve for P(t). We then discarded the 

ensemble and used the original q1 ... qn, p1 ... Pn as initial conditions for the 

reduced system (20), which we integrated with tlt = 10-2 /n = 1/ N. This 

tlt is small enough to resolve the reduced dynamics but much too large to 

resolve the original dynamics. The solution for P(t) from (20) is the second 

curve. Finally, for comparison we performed the naive experiment of simply 

truncating the big system (12) to n degrees of freedom, effectively ignoring 

the lighter particles without rescaling kQ and kq by the factor C, which in 

this case is 9.1818 ... This produced the third curve. 

The figure shows that the reduced system accurately predicts the average 
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evolution of P(t), and it does so at a computational savings of 99 percent of 

the degrees of freedom and a factor of roughly 100 in time step. 

6 Conclusions 

We have shown how some large systems of differential equations with many 

time scales may be systematically reduced to smaller systems with weaker 

time step conditions by the probabilistic technique of optimal prediction. 

The similarities between our examples and practical models of molecular 

dynamics suggest that our methods might be useful for more realistic systems 

of equations. 

7 Acknowledgements 

The author thanks ... 

References 

[1] A.M. Stuart and J.O. Warren. Analysis and experiments for a compu

tational model of a heat bath. SCCM Technical Report SCCM-98-17 

(1998). Available from http:/ jwww-sccm.stanford.edu. 

14 



[2] B. Cano, A.M. Stuart, E. Siili and J.O. Warren. ~tiff oscillatory sys

tems, delta jumps and white noise. SCCM Technical Report SCCM-99-

01 (1999). Av~lable from http:/ /www-sccm.stanford.edu. 

[3] A.J. Chorin, A. Kast and R. Kupferman. Unresolved computation and 

optimal predictions. Comm. Pure Appl. Math., in press. 

[4] A.J. Chorin, A. Kast and R. Kupferman. On the prediction of large

scale dynamics using underresolved computations. AMS Contemporary 

Mathematics, in press. 

[5] A.J. Chorin and D. Levy. In preparation. 

[6] G.W. Ford and M. Kac. On the quantum Langevin equation. J. Stat. 

Phys. 46, 803 (1987). 

[7] J.C. Collins. Renormalization: an introduction to renormalization, the 

renoqnalization group, and the operator-product expansion. New York: 

Cambridge University Press (1984). 

[8] G.W. Ford, J.T. Lewis and R.F. O'Connell. Quantum Langevin equa

tion. Phys. Rev. A. 37, 4419 (1988). 

15 



[9] L.R. Petzold, 1.0. Jay and J. Yen. Numerical solution of highly oscilla

tory differential equations. Acta Numerica 6, 437 (1997). 

16 



P(t), original model, N=104 

O.Sr---.----,---.---,----,---.---.----,---,...-----, 

exact solution 
underresolved symplectic met o 

Figure 1: The evolution of P(t) determined in two ways: by solving the equa
tions of motion (8) with f).t = 10-2 /N (exact solution); and by applying the 
symplectic scheme (9) with f).t = 1/N (underresolved symplectic method). 
For these calculations, N = 104 and kQ = kq = 1. The two solutions overlap 
on the scale of this plot. 
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a. 

P(t), original model, N=104
, n=Hf 

0.5.----r----.-----.----r----.-----.---~----.-----~---, 

-1 

exact solution 
optimal predictio 

........ : 
·.·. 

,I".: 

-3L----L----~----L----L----~----L---~----~----L---~ 

0 0.1 0.2 0.3 0.4 0.5 
time 

0.6 0.7 0.8 0.9 

Figure 2: The evolution of P( t) determined in two ways: by solving the 
equations of motion (8) for N = 104 with fj.t = 10-2 /N (exact evolution); and 
by solving the reduced equations (20) with n = 102 and /j.t = 1/ N = 10-2 /n 
(optimal prediction). For these calculations, kQ = kq = 1. 
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Figure 3: The average evolution of P( t) determined in three ways: by solving 
the equations of motion (12) for 100 different initial conditions, with N = 103

, 

/).t = 10-2 /N, and then averaging all 100 solutions (mean evolution); by 
solving the reduced equations (20) once, with n == 10 and /).t = 1/N = 
1 o-2 

/ n (optimal prediction); and by solving the reduced equations ( 20) once 
with n = 10, i).t = 10-2 /n but without rescaling the couplings, kq and k9 , 

by the factor C = 9.1818 ... 
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