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Abstract 

We calculate gaugino masses in string-derived models with hidden-sector 

gaugino condensation. The linear multiplet formulation for the dilaton super­

field is used to implement perturbative modular invariance. The contribution 

arising from quantum effects in the observable sector includes the term re­

cently found in generic supergravity models. A much larger contribution is 

present if matter fields with Standard Model gauge couplings also couple to the 

Green-Schwarz counter term. We comment on the relation of our Kahler U{l} 

superspace formalism to other calculations. 
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It was recently pointed out (1, 2] that the super-Weyl anomaly of standard N = 1 

supergravity generates a gaugino mass proportional to the beta-function coefficient, 

which may solve the problem of small gaugino masses found in certain classes of 

models. 

In this paper we consider a class of string-derived models [3]-(5] in which gaug­

ino condensation occurs in a hidden sector with modular invariant couplings. That 

is, the field theoretic quantum anomaly that breaks invariance under the modular 

transformation (T -duality) 

T aT- ib 
--+ icT + d' 

ab- cd = 1, a,b,c,d E Z, (1) 

is explicitly canceled by a universal Green-Schwarz (GS) counter term together with 

model-dependent string threshold corrections. Gaugino masses in these models were 

found in [5] to be suppressed with respect to the gravitino mass-although not as 

severely as in some gauge-mediated models [6]. However, in [5] a contribution was 

omitted that generates, among others, the term found in [1, 2]. In this paper we 

correct this omission. The additional correction is obtained by an analysis of the 

superspace expression for the loop correction, as well as by an explicit calculation 

using component fields and Pauli-Villars regularization. In these models the anomaly 

associated with the Kahler transformation (1) is explicitly canceled. Because Kahler 

and super-Weyl transformations are intimately connected in the Kahler U(1) super­

space formalism [7] that we use, one might expect the mass term found in [1, 2] to be 

absent in this class of models. However, this term has its origin in the running of the 

couplings from the string scale to the condensation scale, and is therefore independent 

of the string scale physics. In addition, we find a contribution that depends on the 

unknown couplings of matter fields in the GS term - a situation similar to the case 

for scalar masses discussed in (5]. 

In the linear supermultiplet formulation the dilaton f is the lowest component of 

a vector superfield L that satisfies the modified linearity condition 

( 
2 -) - ~ - V -8R L=Wa,W, (2) 
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where the superfield R is related to elements of the supervielbein, wa is a Yang-Mills 

superfield strength, and the summation over gauge indices is suppressed. The Bianchi 

identity 

(v2
- 24R) wawa- (t>2

- 24R) W 0 W 0 
=total derivative (3) 

follows immediately from (2). To describe gaugino condensation [8, 9], a vector mul­

tiplet V is introduced whose components include those of a linear multiplet L as well 

as chiral and anti-chiral superfields U, D that are the (anti-)chiral projections of V: 

"""'"(v2 -·sR) v = u, - (v2
- sfl) V = D, (4) 

and are interpreted as condensate superfields for a strongly coupled (confined) hidden 

Yang_;Mills sector: U ~ (WaWa)h· With this construction the superfield U has the 

correct Kahler U(l) weight as well as the correct constraint, that is, the counterpart 

of the Bianchi identity (3). This construction was generalized in [4] to the case of 

several gaugino condensates, and it was found that the results are dominated by the 

condensate of the gauge group Ya = Y+ with the largest ,8-function coefficient ba = b+, 
where 

(5) 

'with Ca and C1 quadratic Casimir operators in the adjoint and matter representa­

tions, respectively. For this reason we include only a single condensate here. When 

both the condensate and t~e weakly coupled, unconfined Yang-Mills sectors are in­

cluded, the linearity condition takes the form 

- (v 2
- sR) v 

a 

- (v2
- sfl) v (6) 

a 

We consider a class of orbifold compactifications with three untwisted moduli 

chiral superfields T 1 and matter chiral superfields <J>A. The Kalher potential is 

K = k(V) + L l + L eqfj<I>Aj2 + O(<I>4
), l = -ln(T1 + '1'1), (7) 

I A 
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where the parameters qf ~re the modular weights of <PA, and the relevant part of the 

Lagrangian is 

Leff = £1 + LLa, £1 = LKE +.Cas+ Lth + Lvy + Lpot, (8) 
a 

where 

LKE= I d40 E [-2 + f(V)], k(V) =In V + g(V), (9) 

contains the kinetic energy terms for the dilaton, chiral and gravity superfields, as 

well as the tree-level Yang-Mills terms. The functions f(V), g(V) parameterize non­

perturbative string effects. They satisfy the conditions 

V g'(V) = j- V j'(V), g(O) = j(O) = 0, (10) 

which ensure that the Einstein term has canonical form [3], and that they vanish in 

weak coupling limit: g2 /2 = (£) = (VI) -+ 0. The term 

~I d4
0 ~U [b~ 1n(e-KI

2U) + ~ b0 lnl1°] + h.c., 

1 ' 1 
87r2 ( Ca- c~)' ~ ba = 127r2Cf, b' a (11) 

is the generalization to supergravity [10, 11] of the Veneziano-Yankielowicz superpo­

tential term [12], including [13] gauge invariant composite matter fields l1°, and 

- 1 I 4 E K/2 ( Q I .Cpot - 2 d 0 Re WIT , T) + h.c. {12) 

is a superpotential for the matter condensates. In (11) C!! refers to the confined 

matter superfields <PA of the strongly coupled sector. 

The operators La are the quantum corrections from light field loops to the uncon­

fined Yang-Mills couplings: 

3 



where o;1 is the chiral superfield propagator [14]: 

(14) 

in our notation, 1 and Px. is the chiral projection operator: Px. wa = wa, that reduces 

in the flat space limit to (160) - 1'D21J2 . The function [15] 

L (c- b~) l +(ca-CM) k(V) + 22:CA.ln(1 + PAV), 
I A 

C- Ca + L (1- 2qf) C~\ C = CE8 = 30, (15) 
A 

determines the renormalized coupling constant [5, 10, 16] 9a(f.l-s) at the string scale 

f.J-s: 

( 
1 ~ f - b~k(f) + ~ ~~ ln(1 + fpA) 

- ~ 1~~2 ln [I7J(it1)12(t1 + fl)] ), J.l-s = ( et(k-l)), (16) 

and the functions 

(17) 

govern the running of the gauge couplings from the string scale to the normalization 

scale f.J-2 = - < 0 >. La and Cvy are anomalous under (1). This anomaly is canceled 

by two counter terms: the GS term [17] 

Cas 

Vas {18) 

1 We set the background space-time curvature scalar r to zero throughout this paper. A term 

proportional to r >.>. would result in a contribution to the gaugino mass through a Weyl rescaling, 

but we find that such terms are suppress~d by powers of f.L-2 or m-2 where m is the Pauli-Villars 

mass introduced below. 
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and the term induced by string loop corrections [18] 

.Cth =- 64
1
7r2 ~I d4

8 ~ ln7J
2(iT1

) (b~U + ~b~(WaWa)a) + h.c.. (19) 

The parameters b~ vanish for orbifold compactifications with no N = 2 supersym­

metry sector [19]. For a = +, the qf are modular weights of the confined matter 

superfields. Note that we have not introduced kinetic terms for the condensate su­

perfield; that is, we are treating the condensate as static. A dynamical condensate 

has been studied [20], in the case of an E8 gauge group, and it was found that the 

bound state masses are above the condensation scale; when these states are integrated· 

out the theory reduces to the static case considered here. 

To evaluate the gaugino masses, we set all matter fields to zero in the vacuum: 

< ¢JA >=< cpA! >= 0. First recall that "D-terms" like .Cas and .CKE can be cast in 

the form of "F -terms" by integration by parts: 

(20) 

These and the remaining "F-terms" can be evaluated using the standard construc­

tion [7] 

r 

with 

-~v2waw I 4 a 

For example, 

--X-A, u = uj, M = -6RI = (M)*, £=vi, 
yii, pi= -~v2rii F = -~v2ul 

4 ' u 4 ' 

-~ (F2 +iF· P)- M.A.A + 2~i 'JZ>.A + · · ·. 

1 I 4 E( -2 ) .Cas -
16 

d 8 R V - BR VVas + h.c. 

5 
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1 I 4 E (""( Q -2 ) 
16 

d (} R ~ W Wa)a Vas + VV Vas + h.c. + · · · 

~ L (>;i 1J>>.l- >.>.F1 g'1) + h.c. + · · ·. (23) 
8 I 

The evaluation of the component form of £ 1 is rather involved and has been carried 

out explicitly in [3, 4] neglecting the unconfined Yang-Mills fields. To include the 

latter terms we need only make the substitutions 

(24) 

in those results. Using the vacuum values found in (4): 

the contribution of £ 1 to observable sector gaugino masses found in [5] is 

1 - 1 
£1 3 - 2 >.i 1J> >. + --n2 (1 + fg') (1 + b+f) u>.>. + h.c., 

2g5 16.r. 
(26) 

where me is the gravitino mass, and 

g, = (Jl~ f) (27) 

is the tree-level field theory coupling constant. The requirement that the vacuum 

energy vanishes gives the condition [4) 

(28) 

so that, taking into account gauge coupling renormalization, one gets a contribution 

to the gaugino mass [5) 

m(l) ( ) = _ ( 3g~ (J-tc)b~ u) = 3g~(J-tc)b+ m _ 
a 1-tc 8(1 + b+f) 2(1 + b+f) a' 

(29) 

where J-tc = lulk is the condensation scale in reduced Planck units. A gravitino mass 

in the TeV range requires b+ ~ 1/30, so this contribution to the gaugino masses 

6 



is quite small, although it is possible that two-loop renormalization effects between 

the condensation scale and the weak scale can bring masses of this order within 

experimental bounds [21]. 

To evaluate (13) we drop [2] terms of order < RR/D >~ -m~/4p,2 to obtain 

([V2
, /(Dx)J) <P = ( 8R [f'(Dx)D + R {f'(Dx) + /"(Dx)D} V2

]) <P. (30) 

where <P is chiral; only the first term on the right hand side contributes to gaugino 

masses; this is the contribution found in [1, 2]. To lowest order in perturbation theory, 

fa(D) = (3Ca- C!:) In (ofp,;), 

([V2
, !a(D)J) -Xa = 8 ( R) ( 3Ca- c::) Aa. 

In addition we have: 

Using the vacuum values (25), we obtain 

12~7r2 (v2 [fa(Dx)- Ba]) 

-~{(3Ca- CM)b+- {1 + b+£) X 
1287r 

[r1
(£g' + 1)(Ca- CM) + 2 ~ c~ (1 :~PA)l }, 

giving for the full contribution at the condensation scale f-tc 

We now obtain for the gaugino masses 

( ) _ g~(f-tc) [3b+{1 + b~£) _ 3b ~ C~pA(1 + b+£) l _ 
ma f-tc - 2 1 + b+f a+ L: 47r2b+(1 + fpA) ma. 

7 
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Next we explicitly calculate the gaugino masses using a Pauli-Villars (PV) regu­

larization that has been formulated [22] for supergravity Lagrangians with the dilaton 

in a chiral multiplet. For present purposes, we need only consider the regulation of 

loops containing gauge-charged fields. Because the results below depend only on the 

Kahler potential for the PV fields and their couplings to the GS term, it is st~aight­

forward to transcribe the analysis to the case where the dilaton is described by a 

linear supermultiplet. 

To regulate loop corrections to the Yang-Mills self-energy, one needs gi').uge-charged 

PV chiral supermultiplets: zA with signature 'TJA, that transform under gauge trans­

formations according to representations RA; YA with the same signature that trans­

form according to the conjugate representation RA; and cl>~, with signature 'TJ~, that 

transforms according to the adjoint representation of the gauge group. In order 

to cancel the logarithmic divergences in the Yang-Mills self-energy, the Casimirs 

TrRA (rarb) = 8abCR.A, and the signatures of the PV fields must s~tisfy 

L'TJACRA=-C~, L1J~=3. (36) 
A a 

The Kahler potential for these fields takes the form (setting light gauge-charged fields 

to zero in the background) 

Kpv = L [gi(V)eL:Ia~giiZAI2 + gX(V)eL:I.B~g~IYA12] 
A 

+ L9a(V)ea"L;191 jcf>~j 2 L:gn(V)Gn(T)jcf>nj2, (37) 
a,a n 

The V-dependence of Kpv requires an additional term .Cpv = J d49Efpv(V) in the 

Lagrangian, where fpv is related to Kpv by the differential equation in (10) that 

relates f to g: 

fpv(V) = L:Jn(V)Gn(T)jci>nj2, Vg~ = fn- Vf~, cl>71 = zA,YA,ci>~. (38) 
n 

The component Lagrangian can be obtained following the methods outlined in [3]. 

As shown i:n. [15], supersymmetry of the modular anomaly from field theory quantum 
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corrections imposes constraints on the parameters in (37): 

1 L7J~aa, L 7JA (a~+ !3~) eRA =- L e~qf, 
a A A 

0 L 7JA (In h~ +In h~) eRA, L 7]~ In ha = k, 
A a 

hn(V) fn(V) + 9n(V). (39) 

in agreement with the requirements for full one-loop regularization (22]. Among the 

fields ~A there is a subset Z;{ with the same modular weights and the same gauge · 

couplings as the light fields <[>A. If the parameters PA in the Green-Schwarz term are 

nonvanishing, we also require 

A,a 

qf, L: TJ!A = -1. 
a 

The potential for the PV scalar fields c/>n = c/>a, zA, YA is 

where 

V = 1~£2 (fg'(f) + 1) lu(l + b+f)- 4£WPV eK/2r 
-~~b u-4WPVeK/212 +K _pnpm 

16 + nm ' 

_pm j(nm {~Gn<f>n [(pn- b+)hn + h~ (1 + fb+)] +~eKI2w:v} + 0(¢~), 

(40) 

(41) 

Knm ( j(nm) -l = Gnhn (1 + Pnf] 8nm, Pn,pz = 0. ( 42) 

The superpotential WPv contains quadratic terms in the PV fields that give their 

masses. These give rise to "B-terms" in the potential (41) which take the form 

(43) 

9 



The first term in this expression is independent of the PV Kahler potential - i.e., of the 

effective cut-offs - and of the details of the supersymmetry breaking mechanism. It is 

precisely the contribution found in [1, 2]. Here it arises from the presence of the Kahler 

potential in the condensate Lagrangian (11) as dictated by local supersymmetry. As 

noted previously [23], the structure of this term embeds the evolution of the gauge 

coupling constant from the string scale to the condensation scale. The PV Lagrangian 

also contains the terms (in four-component spinor notation) 

Lpv 3 L Knn [ -8a~n8ac/>n + ix2 1/>x2 + V'ii (X~(~nTaxD + h.c.)] 
n 

- L [J.L~nlc/>nl 2 + ~J.Lmn (XRXT + h.c.)]' 
n,m 

(44) 

In terms of the normalized fields <1.>~ = (K~)nn<Pn, the interaction terms are 

n 

(45) 

where mn is the mass of <l>~. The Feynman amplitude Fa = -i < .\~ICettiA£ > for 

A£ -t XL + c/>fi -t c/>m + X'1J. -t AR gives a COntribution 

C 1 _\a .\a h iF. _\a )..a h 
eff 3 -2ma R L + .C. = 2 a R L + .c., 

(46) 

Using the constraints (36), (39) and (40), this reduces to the result found in (33). 

Aside from the renormalization of the coupling constants, there are three contri­

butions from La in (35). The first, proportional to b~, gives a negligible correction to 

(29). The second term modifies the result (29) of [5] by a factor (neglecting b+£,....., .03) 

'T}a ~ (1- ba/b+) ~ [0.6, 1.1, 1.8] for 9a = [SU(3), SU(2), U(1)], (47) 

if we assume just the MSSM contribution to the ,8-functions. The third term depends 

on the unknown parameters p A. It was found in [5] that the squark, slepton and Higgs 

10 



masses ms also depend on these parameters. If the matter fields decouple from the 

GS term, one has 

PA=O, ms=ma, (48) 

and the full correction to the gaugino masses is given by (47). If the GS term is 

proportional to Kahler potential we get 

PA = b, ms ~ lOma. (49) 

Analyses of dynamical symmetry breaking in the MSSM favor smaller masses for 

at least the stop and Higgs particles. Another possibility is that the GS term de­

pends only on the metric of the compact 6-manifold, in which case it couples only to 

untwisted fields: 

P
untw _ b 
A - ' P

tw _ 0 
A- ' 

mtw = 0 
s ' 

(50) 

resulting in a mass hierarchy among generations as has been proposed by some au­

thors [24]. For a single Standard Model generation, I: A c: = 2, so in this scenario, 

with n untwisted generations, the last term in (35) dominates, and one gets the 

following gaugino masses at the condensation scale: 

( ) 
naa(J.tc)b(l + fb+) lOnaa(J.tc) 

ma 1-lc ~ - 7rb+(l +£b) ma ~- 7r ma· (51) 

Finally, we address the generality of the result (34) in the broader context of 

the class of string-derived models that we are considering. It would be modified if 

modular invariance is broken by string nonperturbative effects, such as a moduli­

dependence of the functions g(V), f(V) as was found for a particular orbifold [25]. 

Modular invariance of the effective Lagrangian for the condensate ensures that the 

moduli are stabilized at one of the two self-dual points in the fundamental domain: 

tl = 1, ei1rl6 . Together with the condition that the vacuum energy vanishes, this 

assures that their F -components vanish in the vacuum: < F1 >= 0. The potential 

for the moduli and the dilaton [4] is 

11 



(52) 

so the condition (28), responsible for the suppression of gaugino masses if PA = 0, 

holds only to corrections of order ( < pi > )2 . If < pi >"I= 0, there are additional 

corrections to gaugino masses from: 

b~ I ['T/'(ti) 1 l 
.Cth + .Ccs + L .Ca 3 - L 32 2 p -(ti) - 4R ti . 

a a,I 7r 11 e 
(53) 

Since the term in brackets vanishes at the self-dual points, both corrections are of 

order ( < pi > )2 , and will be small if the moduli are stabilized near the self-dual 

points. Moreover, the second contribution is absent in the Z3 , Z7 orbifolds that appear 

promising for model building [26]. The condition (28) provides several phenomeno­

logically desirable features [5] of our model, namely moduli masses much larger than 

the gravitino mass: 

(54) 

and a suppression of the axion decay constant by a factor of about 50 with respect to 

earlier estimates [27]. Moreover, the result that <pi >= 0 avoids a potential source 

of unwanted flavor-changing neutral currents. A detailed analysis of the phenomenol­

ogy of this class of models will be given elsewhere [21]. 

In concluding, we wish to emphasize that the gaugino mass contribution equal 

to m0 = f3(g2)m0/2g2 is a model independent result in our Kahler U(l) superspace 

formalism, in agreement with the assertion made in (2]. In the formalism of (1], the 

auxiliary field of the supergravity multiplet differs from the field M used here by a 

Weyl rotation that depends on the Kahler potential. As a result, the analogous term 

that they find is not model independent; for example they get no contribution in 

no-scale models [28]. In our formalism, m 0 in this case is exactly canceled by the 

contribution from Ba in (13). Consider for example the simplest no-scale model with 

Kahler potential 

K = -3ln(T + T- L I<I>AI 2
), <</>A >= 0, < W >"I= 0, (55) 

A 

12 



e.g. W = cl>3+ constant. In this model (with no cancellation of the modular anomaly) 

(56) 

the vacuum values satisfy 

(57) 

and we obtain 

(58) 

in agreement with [28]. We find the same cancellation in a PV calculation for this 

model. 
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