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Abstract

SUPERSYMMETRIC VERSIONS OF THE STANDARD MODEL
by

André Luiz Carvalho de Gouvéa

Doctor of Philosophy in Physics
University of California, Berkeley

Professor Hitoshi Murayama, Chair

The Standard Model of particle physics is one of the most successful models in
physics. With only a handful of parameters, it is capable of predicting/explaining
the results of all high energy physics experiments, with astounding precision. The
Standard Model, however, is by no means free of problems. |

‘ The Standard Model, which is a quantum field theory, must be an effective
description of some other, unknown, theory. This is known because of ultraviolet
divergences, which have to be regularized and renormalized. F‘urthermpre, because
- of the so-éalled hierarchy vproblem, there must be new, beyond the Standard Model,
physics at or slightly below the TeV energy scale, which is within the reach of the
next generation of accelerator experiments. | |

Low-energy supersymmetry is one of the most popular solutions to the hier-
archy problem. It is, therefore, important to try and predict what experimental

1



signals one should look for if Nature is supersymmetric at the TeV scale.

This dissertation addresses some of the possible manifestations of supersym-
metric versions of the Standard Model. Most of the issues will concern the so-
~ called Minimal Supersymmetric Standard Model (MSSM), where the Standard

Model Lagrangian is supersymmetrized and the smallest allowed‘ number of extra
fields/parameters is added. The parameter space of the MSSM can already be
conétrained by current experiments. One particular methéd for constraining the
gluino (supersymmetric partner of the gluon) mass will be studied, where one uses
the existing LEP 4-jet data to rule out the existence of light gluinos.

The minimal parameterizations of the MSSM (in particular of the supersym-
metry breaking parts of the MSSM) will be presented and criticized, and a differenf
(less minimal) alternative will be suggested and analyzed. Some attention will be

“given to fnodels with the gauge mediation of supersyrﬂmetry breaking, in partic-
ular the cosmology.of such models will be stﬁdied. The p-problem in such models
is also discussed in detail, and the Next-to-Minimal Supersymmetric Standard

Model is presented and studied as a solution.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1] is one of the most successful
models in the entire history of physics. It contains only a handful of fundamental
fields (quarks, leptons, gauge bosons, the Higgs boson) and free parametérs (gauge
and Yukawa couplings, Higgs self-coupling and Higgs mass-squared) and is capable
of explaining all experimental particle physics resuvlts.* Sbme physical quantities,
such as the anomalous magnetic moments of the muon and the electron [3] have
been calculate and measured with unprecedented accuracy, and the agreement
between theory and experiment is astounding.

The SM is a quantum field theory (more specifically a gauge theory)>, and, as
such, is plagued with ultraviolet divergences. These divergences can be properly
regularized and renormalized away, such that, in the end, one has a ﬁnjte and
predictive theory. From a more fundamental point of view, one is led to describe
the SM as a “low” energy effective theory of some, yet unknown, more fundamental
théory. From this perspective, the need for regularizing/renormalizing the SM
is simply an indication that the SM is not appropriate for describing physical

processes which involve energy scales higher than some unknown cut-off. It is

*Recently there has been evidence of physics beyond the SM in the neutrino sector [2]. The

new experimental data can be explained, however, if one adds neutrino masses to the SM.



important to remember that the dependence of physical quantities on the cut-off

energy scale is removed by allowing the physical parameters (masses and coupling
constants) to vary as a function of the probed energy scale (running parameters),
via a renormalization group analisis [1].

If this modern understanding of the SM is correct, beyond the SM physics
should be detectedvalread}‘/ at the multi-hundred GeV level. This is due to the “hi-
erarchy problem”, which is closely related to the presence of fundamental écalars
in the .SM, and is briefly discussed in the next paragraphs.

Quahtqm field theory is supposed to be valid up to the Planck Scale (Mp; =
(Gn /hc);l/ 2 ~ 10 GeV), where gravitational effects become comparable to the
SM gauge interactions and quantum field theoyy is neéessarily inapblicable. In
order to detefmine the range of vaLlidity for the Standard Model, however, one
must be more careful.

In the presence of fundamental scalars, which is the case of the Standard Model

Higgs field, one must worry about the following issue: the scalar Higgs potential

is
mg o | A0y '

V(H) = 5 [HI*+ FIH[, (1.1)
where both m2 and )¢ are bare parameters, which are to be be renormalized.
Quantum corrections to m? are quadratically divergent, and, after renormalization,
the effective Higgs mass-squared parameter is m? ~ m2 + A%, where A is the
scale where the SM ceases to be an appropriate description for physics (cut-off).

Numerically, electroweak symmetry breaking requires m? ~ —(100)? (GeV)?. If

2



A ~ Mp, an incredible amount of fine tuning (1 part in 10%4) is required in order
to explain electroweak symmetry breaking. It is clear that a “natural” order of
magnitude value for the Higgs mass-squared parameter is A%. This is the hierarchy
problem. It is a clash between the fact that quantum field theory should be a good
language for describing physics up to the Planck Scale l(A ~ Mp;) and the fact
that the Higgs mass-squared parameter, which should “naturally” be of order A?,
is forced, in order explain electroweak symmetry, to be 34 orders of magnitude
smaller. Any satisfactory soiution to this prbblems predicts that there is new
physics at the several hundred GeV énergy scale.

There are different types of solution to the hierarzzhy problem. Some imply
that there are no fundamental scalars, and that the Higgs boson is in reality a
composite field, made up of some (extra) fundamental fermions (4]. Another, very
recent, solution [5] implies that quantum ﬁeld theory actually breaks down at
the TeV scale, where gravity becomes strong. In order to be phenomenologically
viable, thié solution requires that there are ‘more, compactified, dirﬁensions, in
which the gravitional ﬁeld propagates.

The other type of soli1tion implies that there is some symmetry reason which
fprbids scalar mass-squared parameters from being renormalized by Az._ This is
exactly what happens in the case of fermion masses. Chiral symmetry-pi‘e'vents
massless fermions from acquiring a rﬁass due to quantum effects and furthermore
guarantees that fermion masses are only logarithmically renormalized, as my =

myo(1 + log(A/p)), where myyq is the bare fermion mass, u is the renormalization



scale and A is the cut-off. Supersymmetry (SUSY) is a symmetry which transforms
scalars into fermions (and vice-versa) [6], and therefore, because fermion masses
only receive logarithmic corrections, so do the scalar mass-squared parameters.

Presently, despite a lot of experimental effort, there is no evidence for physics
beyond the SM. There are many manifestations for new physics, and they fall
into three “general” catégories: (i) precision measurements, or measurements of
very suppreseed 'qua,r_ltities, such as anomalous magnetic moments, very rare decay
processes r(such.as K — mvi), CP-violation, etc; (ii) violation of global (accidental
within the SM) symmetries, such as baryon number (proton decay), lepton number
(v — e'y),>etc; (iii) direct detection of new “fundamental” degrees of freedom (in
the case of SUSY, supersymmetric partners of thel SM fields).

- Given the situation of experimental particle physics today, unbiased/non-
motivated searches for new physics are impfact’ical, if not impossible, and phe-
nomenological models are fundament,;a,l. This dissertation discusses low energy
SUSY as the solution to the I;ierarchy problem, in particular how supersymmetric
versions of the SM are‘ modeled and constrained.

This thesis is organized as follows: in Chap. 2 The minimal supersymmetric
standard model (MSSM) is briefly introduced and.discussed. In particular its
parameter space will be introduced and its particle spectrum spelled out.} Present
experimental constraints on the MSSM are briefly discussed and one procédure for
excluding light gluinos, which are particularly elusive, with LEP data is proposed

and discussed. In Chap. 3 the need for properly parameterizing of the MSSM,



in particular its SUSY breaking sector, is addressed, and a brief review of the
“standard” paraterizations is provided. These are analyzed and criticized, and
an improved parameterization is proposed and discussed. In Chap. 4 the gauge
mediation of SUSY breaking is addressed in some detail? and, in particular, the
cosmology of such models is studied. In Chap. 5 the “problem of the y-parameter”
is carefully introduced and studied in models with the gauge mediation of SUSY
breaking. The Next-to-Minimal Supersymmetric SM is.presented vand studied as
a possible solution. Chap. 6 contains a summary of the results obtained and some

conclusions.



Chaptef 2

The Minimal Supersymmetric Standard Model

In this chapter, the Minimal Supersymmetric Stahdard Model (M_SSM) is in-
troduced. In the first section, its particle content at iow energies (belo§v the
electroweak symmetry breaking scale) is described. In the second section, a brief
discussion of what is known about the paramétef spaée of the MSSM follows, and

the third section discusses one particular way of searching for light gluinos.

2.1 The MSSM

The Minimal S.upers'ymmetric Standard Model (MSSM) is the smallest (as far
as the number .of fundamental fields is concerned) extension of the Standard Model
of particle physics (SM) which is supersymmetric. It contains all_ the SM fermion
and gauge boson fields, plus their supersymmetric partners, the “sfermions,” which
are scalar fields, and the “gauginos,” which are fermions. It also contains two scalar
Higgs doublets, plus their fermionic éuperpartners, the “higgsinos” (7).

The SM Lagrangian consists of the most general renormalizable Lagrangian
which is invariant under a specific gauge group, with matter fields which transform
under certain representations of this gauge group.

The SM gauge group is the direct product of three simple compact groups,



SU (3);, the color gauge group, which mediates strong interactions, SU(2)., and
U(1)y, which are responsible for mediating the electroweak interactions. The
subscripts L and Y stand for “le.ft—handed” and “weak hypercharge” respectively.
The electroweak part Qf the SM gaugé group is spontaneously broken by a scalar
field (‘the Higgs field) condensate, yielding the electromagnetic gauge interactions
(U(1)em) and the weak interactions, which are mediated by massive Wi, Z° vector
bosons.

The SM fermions can be described in terms of left-handed chiral fermions
and their anti-particles. Explicitly vthey are, according to their gauge quantum

numbers:

(e (e (e e
e () () () e

ui= @), (), ) (2.1.3)
di = (dc)L, (sc)[,, (bc)L, ’ (2.1.4)
éi = (ec)[,, (MC)L, (TC)L. (2.1.5)

The superscript ¢ stands for charge conjugate. u; = (u°)L is therefore a left-
handed anti-up-quark. It is an SU(2) singlet. Its anti-particle is the right-
handed up-quark. This representation will prove to be particularly usefu1 when
one describes the MSSM Lagrangian.

Before writing the MSSM Lagrangian, it is useful to describe chiral and vector



superfields (see [6]). Matter particles and their supersymmetric partners can be
nicely accommodated into chiral superfields, which can be written in terms of

component fields as
o(y) = $(y) + V20Y(y) + 6°F(y), (2.1.6)

y* = z* + 190", where z* (u = 0,1,2,3) are the space-time coordinates, and
Ba, 05 (o, & = 1,2, spinorial indices) are the fermionic coordinates. ¢ is the scalar
component of the superfield, 1s the left-handed chiral fermion cofnponent and
F' is an auxiliary complex scalar field.

Gauge bosons and their fermionic components fit into a so-called vector super-
field, which, in the Wess-Zumino gauge [6], can be written in terms of component
fields as

V = —004GA,(z) + (~if?0A(z) + H.c) + —;—5202D(:r), (21

A, is the vector (gauge) field, A, is a left-handed chiral fermion field (gaugino)
and D is an auxiliary real scalar field. In the case of nonabelian gauge groups,
it is understood that V = V,T, where T* are group generators. Furthermore,
the field strength of a given gauge field is part of a chiral superfield W,, where
o = 1,2 is a spinorial index, which is given by

Wo = -—%D%_wDaew (2.1.8)
Where D, D are the derivatives with respect to the fermionic directions, and V is

a vector superfield.



In the case of an abelian gauge group, and in the Wess-Zumino gauge,
Wa(y) = =ida(y) + (D) - 5(0"0")2F0 ) 05 + (0, N)ay (219

Where F* = g*A¥ — 0¥ A* is the field strength tensor for the abelian gauge field
A*.

The most general renormalizable Lagrangian for the MSSM can be written
explicitly, with the help of the superfield notation brieﬂy described above and the
algebra of the fermionic coordinates, 8, and ; [6]. The only inputs are the gauge

group and the matter content.
Lussm = Lmatter + Ly m + Lsoft- (2.1.10)

Each one of the components of Lyussm will be described in detail below.

The “matter” content of the Lagrangian is contained in Lyaser, given by

Liatter = / d‘e (Q:r eV QQ; + uf 'e'w(")u,- +dl ey, 4 LT e 2V,
+e;! e—zv(e)ei + HZ 6—2V(Hu)Hu + H; ’e—ZV(Hd)Hd)

+ (/d29W+h.c.) _, (2.1-i1)

}

where 7 = 1,2,3 is a family index, Q; are the quark doublet chiral superfields,
which transform like (3, 2, +1/6) under the SU(3).xSU(2). xU(1)y gauge group,
u; are the up-type quark chiral superfields, which transform like (3,1, —2/3), d;
are the down—type quark chiral superfields, which transform like (3,1, +1/3), L;

are the lepton doublet chiral superfields, which transform like (1,2, —1/2), e; are



the charged lepton chiral superfields, which tranéform like (1,1, +1), H, is the up-
type Higgs doublet chiral superfield, which transforms like (1,2, +1/2), and Hy is
the down-type Higgs doublet chiral superfield, which transforms like (1,2, —-1/2).
V(@) is short hand notation for V,STg + V"' T§ +VP¢s. V is the vector superfield
containing the S U 3), S U (2)p, or U(D)y gaﬁge bosons. T are the generators‘of
the group in the representation which acts on ®, ¢ is the weak hypercharge of @,
a=1.‘..8colorsandl:1,2,3. |

The superpotential W is given by

W = pH,Hg+ N;LiejHg+ A;Qid;Hy + NQuuiHy

+p;HyL; + ;\ﬁjkLiLjek + :\gijidJ‘Lk -+ ;\gj;uidjdk, (2112)

where the \’s areﬁthe Yukawa couplings which yield the fermion masses, u is a
dimensionful paramet‘er (with dimension of mass). The interactions described in
the second line of Eq.(2.1.12) have no SM analog, and are a big source of concern.
In particular,. a non-zero \ implies violation of lepton ﬂurﬁber, X violation of
baryon number and M violation of both.* Constraints, rhainly from flavor chang-
ing neutral current processes and proton decay, on some of these baryon/lepton
number violating couplings are particularly severe [8]. Fig. 2.1 depicts one of the
contributions to proton decay due to the A4 and M interactions.

One can get rid of the “tilde” couplings in Eq.(2.1.12) by imposing a global

symmetry, namely R-parity, on the Lagrangian. R-parity is a gobal symmetry

*Note that the fi;H,L; can be made to vanish by appropriately gauge rotating the L; and

H, superfields.
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Figure 2.1: One of the many proton decay diagrams which arise in the M_SSM in
the absence of R-parity.

which does not commute with supersymmetry (SUSY), and therefore particles
and their supersymmetric partners have different charges. If one chooses charges
such that the “normal” SM fields (quarks, gauge bosons, Higgs scalars) have charge
+1 and all other fields have charge —1, the second line in Eq.(2.1.12) is forbidden.
An interesting consequencé of R—parity is that superpartners can only be pair
produced, and that the lightest superpartner is absolutely stable. This feature
" plays a fundaméntal role in cosmology and in collider searches for SUSY.

It is important to remember that, in the SM, all the renormalizable interactions
allowed by the gauge é&mmetries are i)resent. All global symmetries, such as lepton
and baryon number, é,re accidental, and do not have to be imposed a priori. In
the MSSM, on the other hand, it seems-that irﬁposing R-parity is necessary for
rendering it ph%nomenologically vigble. |

The Young-Mills part of the Lagrangian, Ly s, contains the kinetic energy and

self interaction terms for the gauge bosons and their superpartners.

1
Lym = /d?' WaWa + ——WaWt

Tog g7 Wathe,  (2113)

where W2, a = 1...8 are the SU(3), chiral superfield field strengths, W}, i =
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1...3 are the SU(2), chiral superfield field strengths and W, is the U(1)y field
strength chiral superfield. g’s are the appropriate gauge coupling constants. Note
that the gauge fields and their SUSY partners are not canonically normalized.
This can be done by redefining V — gV.

In order for the MSSM to be phenomenologically viable, it is necessary to
break SUSY_ at some high scale. The main reason for this is that SUSY im-
plies that fermions and their superpartnes have the same maés, and, e.g., a light
(m :511;keV) scalar electroﬁ is experimeﬁtally fuled out. SUSY bréaking can be
parameterized at low energies by a set of explicitly SUSY breaking terms. It is im-
portant, howevér, that the explicit SUSY breaking pdfaméters do not reintroduce
quadratic divergenceé in the theory. Termé which fall in this category are referred

to as “soft.” The soft SUSY breaking part of the Lagrangian, Lsogt, is given by

| L ) )
~Lip = 3 (M;5® + Mi® + Mgh) + iy, | Hal? + mif, | H, [
+mZIQIQ; + mPI LIL; + miTula; + mi?dld; + miiele;

,—mgHqu + A:iJQ,JJHd + Af,jQ,-z'Z,-H,, + A:jiziéde, (2.1.14)

“where § are the gluino fields, @ are the W-ino fields, and b is the B-ino field. In
order to solve the gauge hierarchy problem, SUSY breaking parameters must be

of O(1) TeV or less.
It is important to check if electroweak symmetry breaking can occur within the

MSSM. This is, of course, required in order to make the model phenomenologically

viable.
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The tree-level Higgs potential of the MSSM is given by

V = m?|Hy> 4+ mi|H,|? - mi(HyH, +cc)+

+%%(H}.6‘Hd + HIGH,)? + %’2(|Hd|2 — |H,%)?, (2.1.15)

where
mi = u’+mi, - (2.1.16)
my = pi+miy,. (2.1.17)

In the MSSM, one can show that the vacuum can always be gauge rotated to the

~ following configuration

Hd=(’(’)".>, Huzl(i). (2.1.18)

It is assumed that no other scalar fields, such as squarks and sleptons, acquire
non-zero vacuum expectation values. This has to be checked in order to guarantee
| that the color gauge group is unbroken and baryon/lepton number is conserved.
The two expectation values need to satisfy v + v2 = v2 = (174 GeV)? in order
to reproduce the observed M, and it is conventional to parameterize Vthem by
Vg = VCOS B, v, = vsinf. The minimization condition of the potential can be

rewritten in the following form:

M2 » , M, — mh, tan” :
=z = . 2.1.19

2 wo tan2g -1’ (- )
om} = (2p*+mi, +mi )sin28. (2.1.20)

It is important to note that u? is positive definite because p is a parameter in the
superpotential. It turns out that m2/(sin28) must also be positive in order to
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avoid a ruﬁaway behavior in the Higgs potential. Electroweak symmetry breéking
occurs, therefore, if Egs. (2.1.19) and (2.1.20) can be simultaneously satisfied.

Eqgs. (2.1.19) and (2.1.20) are more readily satisfied if —m%_ is positive at
the electroweak symmetry breaking scale. Interestingly enough, it seems that the
MSSM has a tendency to favor —m%, > 0 at the weak scale, even if +m%;_ > 0
at a higher energy scale. Note also that, in the absence of SUSY breaking terms;
electroweak symmetry is not be broken. It is, therefore, part of the common lofe
that the MSSM plus SUSY breaking leads “nafurally” to electroweak symmetry
breaking, and that SUSY breaking “triggers” electroweak symmetry breaking.
This issue will be further analyzed and this lore criticized in future ch.aptefsv.

After electroweak symmetry breaking, oﬁe can identify the remaining propa-
gating degrees of freedom and their masses [7]. They are:

(1) the usual SM fermions, the quarks and the leptons, Which acqﬁire masses
through interactions with the Higgs boson fields, contained in the superpdteﬁtial
(Eq. (2.1.12)). Note that in order for all fermions to become massive, both Higgs
doublets must acquire non-zero vacuum expectation values. This is one of the
reasons why there are two Higgs doublets in the MSSM. Another reason is to cancel
the gauge anomalies introduced by the fermionic partner of one Higgs boson.

(2) squarks and sleptons, the scalar partners of “ordinary” matter. These
are usually denoted by the corresponding SM fermion symbol with a tilde (e.g.
fr is the supersymmetric partner of the left-handed muon, the “smuon”). Note

that they already have SUSY breaking mass-squared parameters, and they acquire
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~ “left-right” masses after electroweak symmetry breaking.

(3) the gluino (usually referred to as g), the supersymmetric partner of the
gluon, which has a SUSY breaking mass M; (see Eq.(2.1.14)). Note that the
gluino is a Majorana SU(3). octet fermion. |

(4) the supersymmetric partners of the electroweak gauge bosons (usually re-
ferred to as W-inos, 1171,'2,3 and B-ino b) and the Higgs bosons (Higgsinos, flu,d.),
which acquire mixing mass terms after electroweak symmetry breaking. The mass
matrices can be diagonalized and the final propagating degrees of freedom are two
“charginos,” )"(:1",2, which are Dirac fermions, and four Majorana neutral fermions,
the “neutralinos,” X3,3,. The interactions of the charginos and neutralinos de-
pend heavily on the mixing parameters.

(5) the Higgg_scalars, which are the analog of the. Higgs boson in the SM.
Because there are two Higgs scalar fields which acquire vacuum expectation values,
 there are five real degrees of freedom left after electroweak symmetry breaking
(three are “eaten” by the weak vector bosons). They are: two real scalars, the
“light” Higgs scalar, h® and the “heavy” Higgs scalar, H, one pseudo-scalar, A°
and one charged scalar, H*. It is easy to compute, at tree level, the mass of the

light Higgs boson

mie = % (Mi + M3 — \/(Mﬁ + M%)2 — 4MZM? cos? 2ﬂ) , (2.1.21)

t1t is clear that scalar fields do not have a “handedness” degree of freedom. It is, however,
common to refer to right/left-handed sfermions in the sense that they are partners of particular

right/left-handed chiral fermions.
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where M2 is the Z° vector boson mass-squared and M% = 2m2/(sin28) (see
Eq. (2.1.20)) is the pseudo-scalar Higgs mass-squared. One can therefore ver‘ify
that, at tree level, m3, < M%. Since the light Higgs boson is in general very
similar to the SM Higgs boson, the MSSM would be almost completely ruled out
by SM Higgs boson searches [3]. Quantum corrections, however, have a tendency
to push the light Hiégs boson mass up, and the constraint above is somewhat
alleviated. Still, the light Higgs boson mass is relatively light, and, in the MSSM,
~ cannot exceed mpo < 130 GeV [9]. Note that this constraint seems to agree with
the present day electroweak precision data analysis [10], which currently indicates

the existence of a light Higgs boson.

2‘.2 What is known about the MSSM

In this section, a very brief description of what is known about the MSSM, in
particular its parameters such as scalar masses and mixing angles, is given. A few
constraints from rare/forbidden processes will be mentibned, along with a few of
the most popular search strategies at accelerator‘f?,cilities.

The MSSM, briefly introduced in the previous secfion, has a huge number of
parameters. In particular, one can easily note that the soft SUSY breaking part of
the Lagrangian (Eq.( 2.1.14)) aione contains over 100 complex parameters! Most
of these are severely constraint by rare or forbidden processes [11].

Some of the flavor non-diagonal components of the soft scalar maés-squared pa-

rameters lead to unacceptable flavor changing neutral currents. A non-zero (m?2)!?
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Figure 2.2: One of the SUSY contributions to 4~ — e~vy. The cross repre-
sents the insertion of the (m?)!? off-diagonal slepton mass-squared parameter (see

Eq. (2.1.14)).

can lead to a large u — ey (muon and electron number violation) branching ratio.
Fig. 2.2 illustrates one of the dominant contributions, while other contributions
come from virtual sneutrinos and neutralinos running in the loop. The cross in-
dicates the insertion of the flavor changing parameter (m2)!28h. p — ey is a
partiéularly powerful way of seaching for flavor changing interactions, given that
theoretical predictions are particularly clean and are not plagued by strong inter-
action long-distance effects. See [12, 13] for details and numerical coﬁstraints on
SUSY breaking parameters.

Anothér big constraint to the MSSM parameter sz;,ce comes from K° < K°

mixing and CP violation. Fig. 2.3 depicts one of the many SUSY contributions
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Figure 2.3: One of the SUSY contributions to K% +» K° mixing. § represents
any of the squarks. Here, the flavor-changing effects have been rotated to the §gq'

couplings.

to K° <+ K° mixing. Note that, unlike in Fig. 2.2, in F.ig.- 2.3 the flavor changing
_interactions have been “rotated” to the quari(-squa;k-gluino vertex. This hap-
pens because the unitary.rotation that diagb;lalizes the quark mass matrix is not
neceésarily equal to the one that diagonalizés the squark mass matrix, due to
the SUSY breaking parameters in Eq.(2.1.14). This is similar to what happens in
weak interactions, where the unitary rotation that diagonalizes thé up-type masses
is different from the one that diagonalizes down-type masses. The end result is
flavor changing neutral currents mediated by weak effects [1]. For a quantitative
description of constraints on the MSSM parameter space due to flavor changing
neutral currents avnd" Cp-violation in the kaon system, see for example [13].
Direct searches for supefSymmetric particles aré_ also underway, mostly at the
LEP (Large Electron-Positron) collider at CERN and the Tevatron collider at Fer-
milab. Future experiments, such as the LHC (Large Hadron Collider) at CERN

and a possible NLC (Néxt Linear Collider), whose future location is still unknown,
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will spent a large fraction of their resources looking for low-energy SUSY. No sign
of superparners has been discovered to the present date, and what the experi-
ments have been able to do is set upper bounds on parameters, such as couplings
and masses, of the MSSM. This, in general, tends to be very much model depen-
dent, in particular because the MSSM has too rhany parameters. Setting model
independent bounds on sparticle masses, f.'or example, is very tricky.

A few of the SUSY search strategies for hadron and lepton machines will be
briefly presented below; For thorough reviews, see, for example, [14, 15, 16]. For
a complete listing of all bounds on superpartnér masses and couplings, see {3].

In most of the SUSY collider searches, R-parity is assumed. There are two very
important consequences, which have already been briefly mentioned: (i) superpart-
ners can oniy be produced in pairs at collider facilities and (ii) a superpartner has
to decay to another superparther plus any number of ordinary matter particles. In
particular, thfs implies that thé lightest superpartner (LSP) must be stable. Even
if a small amount of R-parity violation is allowed, it is usually true that the LSP
is long-lived enough that it does not decay inside high energy physics detectors. |
The effects of a stable LSP on collider experiments depend on whether or not the
LSP is charged: A neutral LSP will leave the detéctor without interacting, and
yields a large missing energy signature. An electrically charged LSP will can be
detected via dE/dxr measurements as a heavy stable charged object. It is inter-
esting to note that cosmological considerations prefer a neutral LSP, in particular

the lightest neutralino, %?.
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At lepton colliders {14, 16}, the hope is to produce a pair of superpartners, such
as €été, xiTx17, v.TU. 7, ete, and directly look for their decéy products. Note
that the decay products of each particular superpartne; depend on the values of
the MSSM parameters. Standard signs for SUSY at lepton colliders include many

energetic leptons and large missing energy. As an example, assume the following

production and decay processes:

€++6_ — /]’R+[L;27

‘ ["R_))‘Z(l)+l'l’+a

where x? is the LSP. The signal ~to look for is two energetic muons, plus a large
amount of missing energy. The largest physics background one would have to
worry about is W+W~ production, followed by the decay W* — u* + V()
Another model independent constraint comes from thé precise measurement of the
Z° boson decay width at LEP [3]. This is a particularly robust bound because it
consists of an inclusive process, t.e., the res;ﬂt does not depend on the identification
and reconstruction of particular final states. For example, all 7 masses are bound
to be largef than 2 43 GéV because of this measurement. This is similar to the
bound on the number of light neutrino species [17].

At hadron colliders (14, 15], it is expected that mostly strongly interacting
part.icles, squarks and gluinos, will be produced. Furthermore, it is often thought
that squarks and gluinos are heavier than other superpartners, which only interact

via electroweak interactions. The reason for this prejudice will be discussed in the
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next chapter. It is therefore assumed that gluinos and squarks will generate long
décay chains. Typical SUSY signatures are multi-jet events with large é,mounts of
missing energy or multi-leptons plus jets plus missing energy. The main physics
backgrounds come from the production of massive vector bosons which further

decay into neutrinos, which carry away the missing energy. As an example, assume

p+‘ﬁ — §+§’
g—q+gq,
G X +qd and § = 30 +¢

X ox+a+d,

where x? is the LSP. The final state for the decay chain outline above is 6 jets
plus missing energy.

Another sigature of SUSY at hadron machines is 3 charged leptons plus missing
energy [18]. This comes from the production of a virtual W-boson, which decays
into x7 + x3. This is likely to happen if x{ (x3) has a large W-ino (Z-ino)
component. It is further assumed that x — [+ v+ x$ and X3 — 1 + 1+ x3.
In some of the most popular parameterizations of the MSSM (see next chapter)
this a realistic possibility. Its biggest advantage is thé fact that it is very clean,
and almost background free. The only physics background consists of W% + Z°
production, with both W and Z decaying leptonically. It is, however, easy to
reﬁmve this background by imposing that the invariant mass of each lepton pair

. 1s different from the Z-boson mass.
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In summary, there are already several constraints on the MSSM papameter
spéce, some of them very strong.. On the other hand, the MSSM has too many
parameters, and it is hard to constrain those parameters in a model independent’
way. Finally, it is worthwhile to mention that, if some sign of new physics is
- discovered in the next generation of collider, it is still very challenging to determine
if SUSY has been discovered or not_." Furthermore, even if it is established that
low-energy SUSY has beeﬁ detected, determining the MSSM parameters is still
very challenging (see {19] for a study of how SUSY parameters might be measured

at the LHC).

2.3 Excluding Light.Gluinos from Z Decays

Supersymmetry is one of the primary targets of extensive searches at various
collider experiments, most impoftahtly at the CERN e*e- collidér, LEP, and the
Fermilab pp collider, Tevatron [14, 15]. Negative searches at these and previous
colliders have already put significant constraints on the parameter space of low-
_energy supersymmetry, as briefly described earlier. However, a light gluino below
the few GeV mass range has surprisingly weak experimental constraints as em-
phasized recently by Qarious authors [20., 21, 22] (see, however, an opposing view
[23]). It is an extremely important task to verify or exclude a gluino in this light
window experimentally. While the Tevatron Run II is expected to extend the
reach of heavy gluinos up to a few hundréd GeV, little effort is devoted to defini-

“tively exclude or verify the light gluino window. On the other hand, a careful
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reexamination of the existent data may reveal an overlooked constraint on a light
gluino; this is the‘motivation to study the existent data in detail.

In this section the published data on Z decays into four jets [24, 25, 26, 27,
28, 29] is reaﬁalyzed, and it is found that they aiready exclude a gluino lighter
than 1.5 GeV/c? at more than 90% confidence lével. It is assumed that the gluino
does not decay inside the detector..Since the published results use only 1991 and
1992 data, it is conceivable that the currently available da',ta,. if analyzed properly,
ccould put a much more significant constraint on a light gluino.

First, the existent constraints on a light gluino are briefly reviewed (see [21, 30]
for more details). The negative searches at beam durﬁp experiments have excluded
a light gluino which decays iﬁside the detecfor into photino, which in turn interacts
with the neutrino detector. However, a gluino tends to leave the detector without
decaying if the squark mass is above a few hundred GeV/cz. [31, 32]. Even if
the gluino decays, the photino interacts very wéa.kly in this case and cannot Be
detected. If the gluino does not decay, it forms bound states such as gluinoball 3g,
glueballiﬁo 9§ or baryon-like states, especially udsg [33]. Other states are likely to
decay into these neutral bound states, and searches for exotic charged hadrons may
not apply unless a qharged gluino bound state decays on'ly Weakly. On the other
~ hand, the mass region above 1.5 C‘}eV/c2 and below 4 GeV/c? is excluded from
quarkonium decay T — ynj, Qhere ng is the pseudo-scalar gluinoball, independent
of thel gluino lifetime [34, 21]. Whether .the bound extends to lower masses is .

controversial because of the applicability of perturbative QCD calculations [34].
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The mass rahge abové_ 4 Ge\//c_2 is expected to give a shorter lifetime and is
excluded by a negative search for events with missing energy at UA1 [35]. The
authors of [36] claim that the limit from UA1 extends down to 3 GeV/c?. In any
case, the least constrained region is the mass range below 1.5 GeV/c?, where the
gluino is relatively stable so that it does not decay inside detectors. This is the
window of interest in this section.

It is important to emphasize that the best method to exclu'de the gluino mass
range below 1.5 GeV/c? is to use inclusive pfocesses rather than searching for
specific bound states with certain decay modes. The i;),tter search would heav-
ily dep’end on assumptions such as the mass spectrum of various gluino bound
states and their decay modes and decay lifetimes. One would have to design ex-
periments and put constraints with all possible theoretical assumptions on gluino -
bound states in order to exclude the light gluino definitively. On the other hand,
~ the constraints would be much less sensitive to theoretical assumptions if they
were baséd on inclusive processes where pertufbative QCD is applicable. There
are several possibilities pointed out in the literature along this line. The most pop- .
ular one.is to study the effect of light gluinos in tl;e running of the QCD coupling
constant o;. It was even pointed out that the values of a; from higher energy
measurements tend to be higher than those extrapolated from lower energies us-
ing QCD with the ordinary quark flavors, and that the data actually prefer the
existence of a light gluino to compensate the slight discrepancy [20, 37, 38]. How-

ever, this issue remains controversial {39, 40, 41]. Even though the discrepancy
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between low-energy and high-energy measurements is diminishing [42], still the
data are not precise ehough to exélude or verify a light gluino definitively. The
second one is its effect on the Altarelli-Parisi evolution of the nucleon structure
functions [43, 44]. Unfor‘tunately the effect is too small to be tested using the
present experiméntal data. It might be that the more recent HERA data couldv
improve the situation, but making a definite statement on the existence of a light
gluino appears to be difficult. The third one is to study the angular correlations
in the so-called “3+1” jet events at HERA [45]. However, the effect of the light
gluino was found to be negligible. The final one, which is employed in this sectionv,
» is the study of four jet correlations in e*e™ collisions [46, 41, 47]. Previous studies
did not find significant constraints, blit given the size of the current LEP data,
this seems tb be the most promising direction.v

The only data used in this section are studies of 'QCD color factors [27, 28,
29]. The experimental groups at LEP have performed impressive analyses of the
hadronic Z decays into four jets, extracting QCD color factors C4/Cr vand Tr/Cp?
from jet angular distributions, to confirm SU(3) as the QCD gauge group and five
'light quark flavors. The angular distributions of ¢gqq final state differ from those
of ¢ggg, where g refers to a generic quark and g to a gluon. Three angles are

commonly used in four-jet analyses: the Bengtsson-Zerwas (BZ) angle xzz [48),

!The QCD color factors are defined by Crl = 3, T°T® and Tré®® = Tr(T°T®) for the
fundamental representation, and C46% = Tr(T°T®) for the adjoint representation. 7% (a =

1,...,8) are group generators in each representations.
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the mociiﬁed Nachtmann—Reiter (NR) angle 855 [49], and the opening angle of |
the” two less energetic jets asq. If there exists a light gluino g, the final staté
q3gg also contributes to the Z decays into four jets. The angular distributions of
Q34339 would be identiéal tb those of qGqq. Therefore, a possible light gluino would
change the extracted Tr/Cr but not C4/Cp. Apart from the mass effects, Tr/Cr
should increase by a factor of (5 + 3)/5, because the gluino is a color-octet and
counts effectively as three additional massless quarks. Note that these analyses do
not use the overall rate of four-jet évents since it is sensitive to the choice of a; in
the absence of next-to-leading order (NLO) calculations. So far the experimental
analysis which used the highest statistics is the one by OPAL [29], which also
briefly discussed constraints on a light gluino. They found that the light gluirio is
barely outside the 68% confidence level contour and decided the data did not put
a significant constraint.

However, most of thé previous analyseé are not carefully designed to study
the effect of a light gluin§ because of the following reasén. When one discusses a
péésible light gluino, QCD with fhe color grouﬁ SU(3) should be assumed. Given
overwhelming experimental evidences of QCD, it is not wise to, for instance, vary
the number of colors N, = 3 when one studies the effect of a particle (light gluino)
added to QCD. Therefore, the QCD color factor C4/Cr is fixed to be that of the
SU(3) group, 9/4. Second, it is already known that there; are five quark flavors u,
d, s, ¢ and b, which appear in Z hadronic decays. When one puts constraints on

an additional contribution from a light gluino, one should not vary the number
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of flavors below 5, or equivalently, Tr/CFr below 3/ 8. The only LEP paper which
analyzed data in a way close to this spirit, and put ‘an upper bound on possible
additional q@fjcj—tyhe final states, is the one from OPAL [25]; but it used very
limited statistics. All more recent papers [27, 28, 29]‘ varied both C’A/Cl} and
Tr/Cr without constraints. By reanalyzing data with these constraints a much
more significant bound on a light gluino than reported can be placed. Actually,
fixing the group to be SU(3) (C4/Cr = 9/4) has the greatest impact on the
confidence level, while restricting 7r/Cr > 3/8 has a much smaller effect (actually
it makes the significance worse). Furthermore the finite mass of the bottom quark
is included in the analysis, which slightly improves the significance. Overall, a
‘massless gluino is excluded élready better than at 90% confidence level by the
OPAL 1991 and 1992 data only [29].

The reported contour .on the C4/Cr, Tr/Cr plane is shown in Fig. 2.4.
C4/Cr = 9/4 is fixed because of the philosophy of the present study, stated
above. Since one-dimensional x? distributions have much higher confidence lev-
els than two-dimensional ones, this change improves the significance of the data
drastically. From their ;<2 contours, x? is minimiéed with fixed C4/Cr = 9/4, and
Ax? is defined Erelativé to the x2 at the minimum (Tr/Cp = 0.36). The confidence
levels are calculated using a one-dimensional x? distribution with Ax? defined
in this manner. This is a conservative choice because Ax? < x2. One obtains
Tr/Cp = 0.36 & 0.15 with fixed C4/Cr. If one had used this central value and

the standard deviation, a massless gluino would be excluded at 95% confidence
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level. However, one also needs to impose another constraint, 7x/ Cp. > 3/8, which
can be easily taken into account. The standard method is to use the Gaussian
distrii)ution only in the physical region, and scale the normalization of the distri-
bution so that the total probability in the physical region becomes unity. Since
the central value is very close to the theoretical value of fhe QCD, this effectively
increases the probability of alleing light gluinos by a faétor of two; numerically
the confidence level is 88%.

Finz;lly, the effect of the finite mass of the bottom quark and gluinos on the
extracted Tr/Cr are studied. The authors of [50] studied the effect éf the finite
mass of quarks on the four-jet rates. They also looked at the angular'distributions
~and reported there were little changes. Even though it is true that the distributions
do not change drastically, they gradually become similar to those of gqgy final state
as one increases the mass of the quark, and hence the extracted Tr/Cr from_the fit
to the distributions has a relatively large effect due to the finite mass of the bottom
quark. The papers [27, 28] do not take this effect into account at all. The OPAL
experiment [29] used pa;'ton level event generatoré by the authots of [50] and [47]
to study the effect. They have found a surprisingly large effect: the bbttom quark
contribution to Tr/Cr was about one half of a massless quark at y.; = 0.03.
Their estimate was confirmed in a detailed parton-level calculation based on the
done in [51], neglecting the interference betweeﬁ primary and secondary quarks.
This approkirﬁation is known to be better than a few percent. On the other hand,

this approximation has the clear advantage of enabling us to distinguish primary
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Figure 2.4: Extraéted QCD color factors from the OPAL analysis [29]. The shown
x? values correspoﬁd to 39.3%, 68% and 95% confidence levels with two degrees
of freedom. The constraint Cy/Cr = 9/4 is imposed (vertical solid line) and one
is limited to the unshaded region (T/Cr > 3/8) in order to put cqnstraints ofl
a possible light gluino contribution to the four-jet events from Z decays. See the

text for more details.
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and secondary quarks unambiguously. The numerical code used in this section‘
~ employs helicity amplitude techniques using the HELAS package [52], which made
it straight-forward to incorporate finite masses in the four-jet distributions.

The ﬁhite mass affects the extracted Tr/Cr in two ways. First, the rate
of producing secondary massive quarks’is suppressed compared to the massless
case as shown with the solid line in Fig. 2.5. For instance, there is about 20%
suppression with m, = 5 GeV/c? and Y.,y = 0.03. This result is consistent with
[50]. The mass of the primary quark has little offect on the rate: only a 6%
suppreésion for my = 5 GeV/c®. That the distributions in BZ and NR angles
with a massive primary quark are indistinguishable from the massless case was
also checked. These observations are consistent ‘with naive expectations, because
the primary quarks are much more energetic than the secondary ones and hence
the mass effect is suppressed by m?/E?. Therefore the finite mass of primary
quarks is neglected hereafter. Second, the NR and BZ angle distributions gradually
approach those of the gdgg final state as one increases‘ the mass of the secondary
quarks. We are not aware of detailed analyses of these distributions with massive
quarks in the literature. The distributions are shown in Fig. 2.6 normalized so
that the total area below the curve is unity, in order for the effect on the rate and
that on the distribution to be clearly separated. The distributions are fit as linear
combinations of gGgg and massless ¢gqq distributions to determine the effective
Tr /CF, in order to fnimic the experimental analyses. The fit is surprisingly good;

this was checked for quark masses between 0 and 5 G‘eV/ c?. Combined with the
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reduction in tvhe rate, the net effect of the finite mass of secondary quarks is shown
in Fig. 2.5. With m, = 5 GeV/c? for secondary bottom quarks, the overall ratIe
of qgbb final state is.reduced. to 82.5%, while the fit to angular distributions gives
a Tp/Cp reduced to 76.4% (BZ) or 85.5% (NR) compared to that of a massless
‘quark flavor (3/8), on top of the reduction in the rate. In total, secondary bottom
quarks contribute to Tr/Cr as 3/8%0.630 or 3/8 x0.705, which is not a negligible
suppression. The extracted Trp/CF from the data is an average of Tr/Cr from
five flavors. The reported Tr/Cr in [29] includes a correction to compensate the
apparent suppression due to the finite bottom quark mass. Such a correction in
turn effectively enhances the additional contribution from gluinos by a factor of
5/(4 +0.630) or 5/ (4 +0.705). Note that this slight enhancement effect does not
change signiﬁcanﬂy even when one varies m; from 4 to 5 GeV/c?, as can be seen
in Fig. 2.5. | | |

The actual OPAL analysis [29] fits the vdata in the three dimensional space
spanned by BZ, NR and o34 angles af@er bin-by-bin systematic corrections from
Monte Carlo simulations. 'Such an analysis is beyond the scope of this dissertation.
The total effect of the finite mass is assumed to be somewhere between the effects
on BZ or NR angles since as4 is not as effective. iﬁ extracting Tr/Cr. As it is
clear from Fig. 2.6, fits to distributions of massive quarks give apparent additional
contributions to ¢ggg and hence C4/CF. They are completely negligible, however,
compared to the size of the true gggg which is about one order of magnitude

larger than the sum of all ¢gqq final states, and hence such contributions will be
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Figure 2.5: Effective contribution to Tr/Cr of a massive secondary quark relative
to the massless cvase. The solid line shows the re‘duction in the rate alone. The
" other two lines include the effect that the distributions in BZ and NR angles
change due to finite quark mass. ye,: = 0.03 and /s = mzc® = 91.17 GeV was

assumed.

neglected hereafter.

Given the above considerations, the exclusion confidence levels én a light gluino
for varying gluino masses is presented in Fig. 2.7. For both curves, mp = 5 GeV/ c?
was used together with the effective Tp/Cr extracted from the fits to BZ and NR
angles.‘ The finite masé effect of the gluino is treated in the same manner. First
of all, it is clear that the finite mass effect which was studied depends little on the

choice of BZ or NR angles, and hence we believe it mimics the true experimental
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Figure 2.6: The distributions in BZ and NR angles of the ¢gqq final state where
the secondary quark has a mass of 5 GeV/c?. They can be fit extremely well as
a linear combination of massless ¢gqg and ¢ggg distributions. y.: = 0.03 and

V/8 = mzc? was assumed.

fits (which use BZ, NR and a3, angles simultaneously in a three-dimensional fit
with 295 bins) quite well. Second, the confidence level is extremely flat up to
2 GeV/c%. This implies that one does not need to worry about complication due

to non-perturbative dynamics in defining the gluino mass.¥ The lower bound of

$There are several possible definitions of gluino mass which may appear in experimental
constraints: the mass of glueballino m(R®), the constituent mass M cons:(§), the MS current
mass mg(mg), the on-shell (pole) mass mpoe(g), and one half the mass of the pseudo-scalar
gluinoball m(nz)/2. The varioué definitions are not expected to differ much from each other if

mg 2 2 GeV/c?. One may worry about this ambiguity for smaller gluino masses, but the result
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Figure 2.7: Exclusion confidence level of a light gluino as a function of its mass.
Two curves are shown depending on the method of estimating the finite mass
effects. In either case, a light gluino of mass below 1.5 GeV/c? is excluded at more

than 90% conﬁdence level.

~ 1.5 GeV/c? at 90% confidence ievel is already in the perturbative region. It is
quite 1ikely that the gluino mass relevant to this analysis is‘ a running mass defined
at the scale Q% ~ Yeurm?%. 1t is then. straight-forward to convert the bound to the
on-shell gluino mass: the lower bound of m;(0.03m%) = 1.5 GeV/c? in the MS
scheme correqunds to Mot (§) = 2.8 GeV/2.

It is important to comment that the clever jet reconstruction method used

presented here is insensitive to it since the confidence level in Fig. 2.7 is extremely flat up to

- 2GeV/c2.
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in the OPAL analysis [29] is particularly suited for the study of light gluinos in
four-jet events. They did not scale the measured jet energies by an overall ratio
E.,is/mz, as done traditionally in sifnilar analyses, but instead used the angular
information of the jets to calculate the energy of each jet using energy and momen-
tum conservation. This method avoids uncertainties in the gluino fragmentation.
Since it is not well understood how a gluino fragments, one should use a similar
method to avoid dependence on assumptions about the gluino fragmentation in
future studies.

Unfortunately, the present ana‘lysis is .limited to leading-order (LO) calcula-
tions. It is a natural question whether NLO corrections may change the present
conclusions. First of all, one expects 'that the corrections to the angular vari-
ables used in the analysis are presumably not large. The NLOvcorrectionsrare
important when a variable involves a;, such as 3- and 4-jet rates, thrust, etc.
The variables used in the present aﬁalysis are not proportional to powers of a,
and hence scale-independent at tile LO approximations. This is analogous to the
case of the forward-backward asymmetry which is an (integrated) angular variable
and is o independent'at the LO. It does receiQe an NLO correction of c(as/7),
where ¢ ~ 0.85{ in the case 0f a massless quark [53]. In the case at hand, one also
expects a correction to the angular distributions of the order of ag(u)/m, where
p? ~ YeutM% is probably an educated guess.v Then a typical size of the NLO cor-
rection is about 5%. However, a correction of this order of magnitude may still

be of concern because of the following reason. The gggg final state is roughly an
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order of magnitude larger than the ¢ggq final state. Therefore, a 5% correction
to g@gg may result in a 50% correction ﬁo gqqq final state, to be compared with a
possible 60% contribution from the gluino.

One may argue, however, .that such a higher order correction is not likely to
change the conclusion reached in this section. Firstvof all, the helicity structure
and the color flow in the ¢ggg final state and ¢gqq final state are quite different. If '
a correction to the ¢ggg final state changes the conclusion, the following must be
happening: the correction term to the gggg exactly mimics an additional contri-
bution to the ggqq final state in the angular distributions with a negative sign such
as to mask the contribution from the ¢ggg final state, This does not seem to be
likely because they _havé different structures in the helicities and colors. .Moréover,
 the data do not indicate that the NLO correction is large; OPAL data [29)] are
fit very well by the LO Monte Carlo on three-dimensional histograms of 295 bins
with x?/d.o.f = 290/292. This excellent #greement between ghe matrix element
calculé,tion and the data found in [29] supports the émallness of the NLO correc-
tions empirically. Howevér, the calcuiations of NLO corrections are necessary to
justify it.9 For future studies, it is also desirable to compare different Monte Carlo
programs, while only JETSET was used in recent experiinental papers [27,. 28, 29].

Finally, it is worth emphasizing that the result in this section is based on

91t is encouraging that partial NLO calculations were done after the completion of this work
[54]. A preliminary study shows that the correction from leading terms in 1/N? expansion is

small [55].
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the 1991 and 1992 OPAL data with 1.1M hadronic Z’s [29]. The statistical and
systematic uncertainties are comparable in their paper. Given the current size of
the LEP “data, which is more than an order of magnitude larger, the statistical
uncertainty should reduce substantially once all of the data has been analyzed.
This change alone couid drastically improve the sensitivity to the light gluino in

four-jet events. On the other hand, it is not obvious how systematic uncertainties

can be further reduced. The largest systematic uncertainty originates in the bin-

by-bin acceptancé corrections which needed to be done before performing a fit in
BZ,.NR, and the opening angle space. It is not clear how this uncertainty can
be reduced if one employs the same method. Perhaps rchoosing larger values of
Yeut Teduces the uncertainty while reducing _the statistics at the same time. There
could be an optimal choice of ¥y, for this particular purpose. Some of the other
large systematic uncertainties are specific to the OPAL experiment and could be
reduced by averaging results from all four experiments. In any case, there is no
doubt that a better result from the currently available data set can be expected.

In summary, the published OPAL 1991 and 1992 data on the QCD color factors
[29] was reanalyzed in order to constrain possible additional contributions to four-
jet events in Z decays due to ¢@gg final states. The main difference from the
original OPAL study is to fix C4/Cr = 9/4 as required by QCD. Tr/Cr >
3/8 is further imposed, and the finite mva,ss effects of both the bottom quark
and the gluino are carefully included. One finds that a light gluino with a mass

below 1.5 GeV/c? is excluded at better than 90% confidence level. The result is
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insensitive to assumptions about what bound state it forms, the definition of its
mass, and the gluino fragmentation provided that it does not decay inside the
detectors. The currently available data set should be ﬁmch more sensitive to a
possible additional contribution from the light gluino.! It is also argued that the
NLO corrections are unlikely to modify the conclusion; still, this assertion needs to
be justified by explicit calculations in the future. As a by-product of this analysis,
the effect of finite bottom quark mass on BZ and NR distributions was discussed
in detail, which turn out to be not negligible when extracting QCD color factors

at current precisions.

A paper by ALEPH [56] came out after the completion of this work, which claims to exclude
a light gluino below 6.3 GeV by combining the four-jet angular variables with the two-jet rate.

This type of analysis may be more sensitive to the NLO corrections.
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Chapter 3

Parameterizing the MSSM

In this chapter, thé “standard” parameterizations of the MSSM will_ be de-
scribed. Furthérmore, it will bé shown that the phenomenology arising from these
parameterizations is ’far too constrained, and a less constfained parameterization
will be proposed. Sorﬁe phenomenological implications of the proposed parame-

terization will be discussed.

3.1 Introduction

Supersymmetry (SUSY) is regarded as one of the mbst promising extensions
of the Standard Model. A supersymmetric version of the Standard Model will
be the subject of exhaustive searches in this aﬁd the next generation of éollider
experiments. |

The Lagrangian of the minimal supersymmetric extension of the Standard
Mddel, the so-called “Minimal Supersymmetric Standard Model” (MSSM); con-
sists of a SUSY-preserving piece and a SUSY-breaking piece [57], as described in
the previbus chapter. The SUSY-preserving piece contains all of the Standard
Model- gaugé and Yukawa couplings plus the so-called y-term, once R-parity is

imposed to prevent baryon/ leptdn number violation. In this chapter, an exact or
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approximate R-parity is assumed, which implies that the lightest supersymmetric
particle (LSP) does not decay inside detectors.

The SUSY—breaking Lagrangian will, ultimately, be determined by the physics
of supersymmetry breaking and flavor but-at the moment the best approach is to
simply parameterize it with a general set of explicitly SUSY-breaking parameters.

A general explicit soft SUSY-breaking Lagrangian

Lsvsy = —miy,|Hal* — my, |Hul* + (BuH,Hy + Hee.)

S mPEE~ 3 (Madade +He), (3.L.1)
F a=1,2,3

where F' = @Q, L,u,d,e and 7,j =1,2,3 for each gene;ation, contains more than
100 new parameters and makés the study of the MSSM parameter space imprac-
tical. Furthermore, a random-choice of SUSY-breaking parameters is most likely
ruled out, because of flavor changing effects and CP-violation. In light of this

situation, simplifying assumptions are not only welcome but necessary.

3.2 The Standard Parameterizations

In this section, the two most common parameterizations of the SUSY breaking
sector of the MSSM will be described. They solve the experimental constraints
mentioned above by imposing that most of the MSSM parameters vanish, and
that there is a large degeneracy in the scalar mass-squared .pa'rameters. Both are
inspired by SUSY breaking mechanisms, even though in the “hidden sector” or
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“minimal supergravity” models a very special form (which is, in general, hard to
justify) for the high eneré;y Lagrangian is required in order to yield the required
scalér mass-squared degeneracy.

The “minimal supergravity” or “hidden sector” framework is the most com-
monly used set of assumptions imposed on the MSSM. In these models, SUSY is
broken in a hidden sector and SUSY breaking effects are transfnitted to the elec-
troweak sector via nonrenormalizable operators, which are supressed .by inverse
powers of the Planck mass. Because it has nothing to do with supergravityv itself,
this framework will be referred to as the “Very Minimal Supersymmetric Standard
Model” (VMSSM), to avoid confusion. It assumes a universal scalar mass-squared,

gaugino mass, and trilinear coupling:

m% = m269 for all F,
F
2 2 2
my, = My, = My,
M, = My, for all a,

A7 = Ao/\;j for all f, (3.2.1)

" where /\"fj are the ordinary Yukawa couplings, at the grand unified (GUT) scale.
The VMSSM 'is, therefore, parametérized by five real parameters: m3, Mi/,, Ao,
u, and B [58].

More recently a lot of work has been done on models with the gauge mediation
of SUSY breaking (GMSB) (59]. In these models, SUSY is broken in a secluded

sector, and the effects of SUSY breaking are mediated to the electroweak sector
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via gauge interaction loop effects. More will be said about these models in future
chapters. For now, the only relevant information one needs to extract from these
models is that the MSSM soft SUSY breaking parameters are predicted to be, at

the messenger scale M,

— & NF
Ma——-47rNM’_

245
Mg

mt =2 (£)° (v (2)" + 0o (2)" + Goe (2)°).

Ajej = 0 for all f, | (3.2.2)

where o, = g2/4m and g, are the gauge coupling constants in the SU(5) normal-
ization. Y is the hypercharge of the F= Q,ﬁ, c?, L, é, Hu,v Hy, scalars, C,z = 3/4
for weak SU(2) doublets (zero for singlets) and Cyz = 4/3 for color triplets (zero
for color singlets). Again, just five real parameters are introduced: F/M, M, N s My
and B. Note that Eq. (3.2.2) guarantees that squarks of different families-are de-
generaté at the messenger scale andv therefore FCNC .effects are safely subpressed.
The fact that FCNC are naturally suppressed is one of the main motivations for
models with the GMSB [59]. |

It is importaﬁt to noté that the particle spectra of models withv the GMSB are
similar to those of the VMSSM* and, therefore, the remainder of this chapter will

concentrate on.the VMSSM and possible modifications to it.

*The major difference from the VMSSM is that the gravitino (G) is most likely the LSP. This

can lead, e.g., to photonic signatures from the decay x9 — 'yf}' .
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3.3 Consequences of the Minimal Parameterization

The issue which is ihportant to address is how restrictive the VMSSM is to
collider phenomenology. It is important to be able to explore diverse particle
spectra while still satisfying all experimental bounds and keeping the number of
parameters small, and the fact that the. VMSSM has only a handful of param-
eters (instead of over 100) is of some concern. In this section the issue of how
experimental constraits restrict the VMSSM will be addressed.

Only constraints from particle physics will be considered throughout the chap-
ter.- In our opinion, it is n.ot wise to impose any cosmologiéal constraints on the
parameter 'space for the éxperimental analysis of _collider data. Even though cos-
mology does provide many useful constraints on parameters of particle physics,
cosmology at temperatures between the electroweak scale and nucleosynthesis may
be much more complex than usually assumed. For instance, mést models of SUSY
breaking éreate cosmological problems, which can be avoided only by invoking in-
flation at temperatures below the electroweak scale [60]. Such a drastic change
removes the constraints that the LSP must be neutral and should not overclose the
Universe. Very small R-parity violaping coupliﬁgs can also evade the cosmological
constraints without any consequences to collider phenomenology [61]). In light of
this discussion, the parametef space sh01;ld be explored without much theoretical
prejudice.

First, the VMSSM parameter space and spectrum will be briefly reviewed.
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The soft SUSY-breaking parameters at the weak scale -are found by solving the
renormalization group (RG) equations [62], whicvh are quoted in Appendix F. In
Table 3.1 the results of numerically running the 1-loop RG equations from thé
GUT scale down to 500 GeV as a function of m3, My, and Ao, for tan 3 = 10
are quoted as an example. The parameters ¢ and B run “by themselves”, and one
can, therefore, specify tlheir input values at the weak scale.

It is necessary to .check that the electroweak symrhetry has been broken and
that Mz = 91 GeV. This is done by choosing 42 such that

2 _ M N my, — my, tan®
s 2 tanf—1

(3.3.1)

where tan J is the ratio of Higgs boson vacuum expectation values, v, /vq. This
* is, of course, a tree-level result, which is known to.’réceive corrections of order a
few percent [63] at one-loop. In ofdér'to keep the presentation simple, however,
only use the tree-level results will be used. Another condition which must be
satisfied involves the B—térm. Once tan g is specified, the B-barameter is uniquely
determined and is related to the pseudoscalar Higgs mass squared, |

B

TR (3.3.2)

mizm%d+m%,u+2u2=2

To prevent a runaway behavior in the Higgs scalar potentiél m? must be positive.
- After imposing Egs. (3.3.1,3.3.2), the VMSSM contains only four extra real free
parameters: mg, My, Ag, tan B, plus a discrete choice, sign(u).

Table 3.1 indicates the structure of the particle spectrum: colored sparticles

are heavier than sparticles that only transform under SU(2), x U(1)y which in
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Table 3.1: SUSY-breaking parameters at a scale of 500 GeV from the 1-loop RG
equaﬁons with the VMSSM boundary conditions at Mgyr = 1.86 x 10'° GeV,
for (A) the first/second generation sfermions and (B) the rest with tan 4 = 10.
The masses of first/second generation fermions have been neglected, and h(m;) =
165/(174sin 3) was used. The table is to be read as follows: each soft parameter
is avlinear combination of the input parameters, with the coefficients given in the
table. For example, m%,d = 0.95mZ+0.38(My/2)? —0.01(Ag)®—0.04M; /40— 1/2Dy

and Ad' = A+ 3.41M1/2.

(A) | m§ | (My2)* | Dy Ao | Myy2

m3 1| 562 | 1/6 || Az | 1 | 3.44

mi | 1| 050 |-1/2 ) 4;] 1 | 3.41

mi| 1| 521 |-2/3| 4:| 1 | 067

mi | 1| 517 [ y3 || - |- -

m%i| 1| 015 1 -1 -] -
(B) | m§ | (My2)? | (Ao)? | MyjpAo | Dy Ao | My
m% | 0.63 | 470 |-004| —0.14 | 1/6 | A; | 028 2.04
m? | 099 | 050 |—000| —0.00 |-1/2| 4; | 0385 3.12

m? | 028 | 345 | —0.07| —0.26 |—2/3 || A; | 098] 0.64

m?2 0.97 5.09 —-0.01 | —-0.03 1/3 | My | O 0.43

m2 | 0.98 0.14 | —0.01 | —0.00 1 M| 0 | 0.83

2 0.95 0.38 | —001| —0.04 | —1/2|| M3z | 0 | 2.61

m%, | —0.08| -215 | —010| —0.39 | 1/2 || - | - -
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turn are heavier than those that only transform under U(1)y. Furthermore 2 can

be numerically evaluated with the help of Eq. (3.3.1),

p: = 2.18(Mys2)? + 0.09m3 + 0.10(A)* +

1 |
+ 0.39My/540 - 5Mg, (3.3.3)

for tan 8 = 10. From gluino seérches, My, 2 77 GeV (for M3 2 200 GeV), and
therefére u? 2 2.14M2. 1t is then safe to say that the lightest neutralino is an
almost pure B-ino of mass mge ~ M; [64].

- There are two LSP candidates: the right-handed scalar tau (7g) and the lightest
~ neutralino (%7). It is easy to see that ] is always the LSP unless m§ S (0.04M7),—
1890) (GeV)?, for tan 8 = 10. In theories with the GMSB one can actually have
a 7r LSP for a lz;rger portion of the parameter space if the number of messengers

(N) is large enough [59].

3.4 A Less Constrained Parameterization

In this section a “Lg;ss Minimal Supersymmetric Standard Model” | (LMSSM)
is proposed, which adds only one extra parameter to the VMSSM: the Fayet-
Hliopoulos D-term for the U(1)y gauge groﬁp, Dy. Unlike the VMSSM, this
framework will prove to be general enough to allow the following additional phe-
nomenological possibilities: av stéble charged slepton, a higgsino-like neutralino,
or a sneutrino as the LSP. Different particle spectra result in very different decay

patterns, lifetimes and branching ratios which lead to different signals for SUSY
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searches, as will be discussed later.

15; Fayet-Iliopoulos D-term for the U(1)y gauge group is indeed generated in
many interesting theoretical scenarios. A kinetic mixing between U(1l)y and a
different U(1) can induce a D-term once the other U(1) develops a D-component
vacuum expectation value [65]. Thé other U(1) can be a part of the gauge group
responsible for dynamical SUSY breaking, or an anomalous U(1) in superstring
theory whose anomaly is canceled by the Green—Schwarz mechanism. In models
with the éMSB it can also be the messenger U(1) [66]. The goal of this section
is, however, to stﬁdy the effect of the parameter Dy on phenomenology, therefore,
its origin will not be discuused any further.

In bthe LMSSM the Fayet-Iliopoulos D-term (Dy) changes the mass squared
parameters of all the scalars to m% = mf;,’v + YDy at some energy scale, where
the subscript V stands for VMSSM and Y} is the hypercharge of the scalar F.
Note that YDy is flavor-blind and, therefore, the flavor-changing constraints are
safely avoided.

~ There is one very important simplification which is peculiar to the parameter
Dy. Dy runs by itself and hence it does not matter at what energy scale the scalar
mass;squared parameters are modified. Therefore, it is convenient to calculate
m2F~,V at the weak scale from the inputs m3, My, and Ay (see Table 3.1) and add
the weak-scale value of Yz Dy.

Similarly to the VMSSM, electroweak symmetry breaking imposes constraints
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on the parameter space. One way to satisfy Eq. (3.3.1) is to choose Dy such that

(3.4.1)

M2 L m¥, v —my, ytan® g Dy
g TH tan?g — 1 . 2cos28’

Note that the form of Eq. (3.3.2) is unchahged. The free parameters are, therefore,
m, M2, Ao, tan 3, and p. ' (3.4.2)

Unlike in the VMSSM, u is a free parameter in the LMSSM. It does not, for
example, have to be larger than M, or even M;. This will change pheﬂomenology
drastically. Note that exactly the same Strategy can be followed to add Dy as an
extra parameter to modéls with the GMSB. Again, it is important to note thaﬁ
the one-loop effective potential changes the value of Dy extracted from Eq. (3.4.1)
and, therefore, the plots presented in Figs. 3.1 and 3.2 will be somewhat distorted.t
However, none of the qualitative features of the parameterization are lost.
Varying Dy (or u) affects different parameters in different ways. For negative
Dy, &, d;; and Q; (i is a generation index) become lighter (the effect on m? and mz
is, however, small because of their hypercharges), while other sfermions become

N

heavier. In this case the absolute value of the u-term is larger than in the VMSSM
“(see Eq. (3.4.1)). If Dy is large enough compared to M/, 7 becomes the LSP.
Note that, unlike in the VMSSM, this happens for a large range of values of mj.

Fig. 3.1 depicts the nature of the LSP in the (u, M) plane for fixed values of

tWe have numerically verified that the extracted value of Dy changes only by 10-20% when
the full one-loop effective Higgs potential is taken into account. For a complete discussion of

one-loop effects in the VMSSM spectrum see, e.g., [63].
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Figure 3.1: Parameter space analysis indicating the nature of the LSP. The solid
line indicates the points allowed by the VMSSM and the dashed line represents
poihts where the gaugino content of %} is 50%. Ay = 0, m§ = 500% (GeV)?
and tan 8 = 10. The bounds m4 > 65 GeV, m; > 43 GeV, m; > 67 GeV (if

mz < mi?)’ and Mg+ > 65 GeV were imposed.

m? and tan 8. For smaller (larger) values of mZ or larger (smaller) values of tan 3,
the size of the physically allowed region decreases (increases), but the qualitative
. features of the figure remain the same i(with the exception of large tan 8 2 30, see
below). See Fig. 3.2.

For positive Dy, L; and @; become lighter, while all other sfermion masses
increase. In this case the absolute value of p is smaller than in the VMSSM. The
consequences of this are many (see Fig. 3.1). 7, can become the LSP. If y is small

enough, % can be the LSP but with a large higgsino content. The mass splitting
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Figure 3.2: Same as Fig. 3.1, for Ag =0, m2 = 7002 (GeV)? and tan 3 = 2.

between t’s is enhanced with respect to the VMSSM. Finally, if tanﬂ. < 30 and
1 is large, the left-handed # can become the LSP due to left-right mixing in the
. Inass sqﬁared matrix. |
We would like to draw attention to the ezistence of different particle spectra
for different regions in the parameter space rather than the size of those regions
(see Fig. 3.1). Like the VMSSM, the LMSSM should be considered as a parame-
terization and not a fr;odel, and the fact that diverse spectra can 'occur is what is

of interest.

3.5 Some Phenomenological Consequences

In this section, interesting aspects of the phenomenology of the spectra outlined

above are discussed semi-quantitatively.
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If 7 is the LSP, héavy stable charged particles become a good signature for
SUSY searcheé. An ahalysis of this situation was done in the context of models
with the GMSB where the 75 is the LSP [67]. Heavyv stable charged particles
might be found by looking for an excess of hits in the muon chambers, or tracks
with anomalously large dF/dz in the tracking chambers.

If the LSP is a higgsino-like neutralino, the phenomenology is very different
from the VMSSM case, where the LSP is an almost puré B-ino [68]. In this case
there are four fermions relatively close in mass: %%, %3 and Xi, which are all
higgsino—like. In this situation experimental searches are much harder. Chargino
searches become more difficult because the mass splitting between % and %9
becomes very small (mili — mge =~ .m%V/Ml/z in the limit of My > p, mwy), and
%+ will decay into missing transverse ehergy (#7) plus low energy leptons or jets

(Eij ~ 6 GeV if M, = 600 GeV). Experimental searches for chargino signals at
the Teva.troﬁ usually require that Ew > 15 GeV [58].1

At hadron machines the amount of £ is reduced because of the small coupling
between ﬁrst and second generation squarks and ¥>*. The main decay mode of
a squark is § — q;ZgAV‘&or ¢'%%, and the heavief chargino/neutralinos, which are
gaugino-like, further decay via, e.g., X5 = XYH*. The decay chains are therefore
much longer and the amount of £ should decrease. It is interesting to note that

there might be a significant increase in the number of top quark, b-jet, and 7

If the splitting between ¥f and %) is small enough, i.e. Am < 1 GeV, the chargino will

v decay with a displaced vertex. This, however, requires that M, 26 TeV.
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events because of the production of heavy Higgs boson states (H%*, A%), which
have large branching ratios into third generation fermions.

The clean tri-lepton signature at hadron machines will decrease by an order of
magnitude mainly because of the smaller leptonic branching ratio for X3 and )”(fc _
Note that this effect is not restricted to the pure higgsino-like neutralino limit,
but also applies to a mixed x? [58].

If the LSP is 7, the decay modes of the heavier particles change dramatically.
There are diffe‘rent possibilities, depending on m; and Mo ..

If m; < myo the main decay mode for sleptons is l~ — Vi or'l — vl'yy.

. Charginos, on the other hand, decay into two particles, namely x* — ol or.—-> lv.

The pair production of two sleptons at an ete™ machine will yield, for instance,
| lj3F, which is the typical chargino pair production signal in the VMSSM. The
production of a chargino-pair will yield acoplanar leptqns plus F, which is the
typical slepton signal at e*e™ machines in the VMSSM. The two leptons, however,
do not have to be of the same flavor. There are, of coursé,. ways of distinguishing a
sleptbn signature in the VMSSM from the chargino signal in this scenario because
the cross sections and angular distributions are quite different.

Ano.ther important feature is the visible decay %} — [l. This makes the produc-
tion ¢ — X3x? a feasible SUSY signature. Furthermore squarks decay dominantly
as ¢ — qx? because 4; are much lighter than Q~,~‘ or d;, and hence the squarks pro-
duced are dominantly ;. This can lead to a rather impressive four leptons plus

jets plus Z1 signature at hadron machines. The total fraction of 4/ events is only
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~ about 0.5% because typically BR(X? — I) ~ 1/3 and BR(l — #l'vy) ~ 20% for
[,I' = e or yu, but they have much lower backgrounds [58].

In the case m; > mye both the %1 and the I decay into two on-shell particies
(I = %%1). The %9, though unstable, is still invisible, because its only allowed decay
mode is ¥) — vi. This scenario has, therefore, four “virtual LSPs” (3 & and the
xY). In this case the amount of F in hadron machines is virtually unchanged with
respect to the VMSSM [69]. Note that the clean tri-lepton signature is enhanced
(given that 3 — Il is allowed with reasonable branching ratio) because both the
%% and the [ always decay into one charged lepton.

Finally, there is another type of signature, which has no VMSSM analog, if the
sneutrino is the LSP and tan 3 2 4: visible sneutrino decays, .17,. — I=7%0, . In this
case the first and second generation sneutrinos are heavier than 7, enough to decay
visibly. The other allowed sneutrino decays are & — v, 7, and & — yvrv,. For
tan 8 = 10, m2 = 500%(GeV)?, m,;r =75 GeV and M; = 185 GeV, Am ~ 15 GeV, |
and the visible branching ratio is;vapproxima,tely 7%. In this scenario, there is a
very stfiking signature for 9} (I = u,e) production in e*e~ machines if one of
the sneutrinos decays visibly and the other invisibly. One expects to see [£7F plus
Er ‘for 2 x (.07 x 93) = 13% of all 5} produced, for the parameters mentioned
earlier. It is important to note that, for larger tan(3), Am can be significantly
larger, and therefore both the 7 and the [ are easily visible at LEP (for tan 8 ~ 16,
Am ~ 35 GeV). The main backgrounds for this signal are ete™ — W+W‘ and

vy — 7tr~. However, simple kinematic cuts should efficiently suppress these
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events, because their kinematics are q\iite different from the signal’s. ‘A systematic
study of the appropriate cuts is beyond the scope of this chapter. There is also
the possibility that .171 decays with a displaced vertex, if Am is small enough. In
this case, however, the visiblebbranching ratio is significantly smaller because of

the phase space reduction due to the tau mass.

3.6 Summary

In summary, the standard parameterizatiovns of the MSSM, as far as collider
.ph,enorr'lenology' is concerned, were‘described. It was shown that the so-called
“Minimal Supergravity Inspired” Supersymmetric Standard Model is too restric-
tive as far as collider phenomenology is éoncerned. The addition of only one extra
parameter to the VMSSM, the Fayet-Iliopoulos D-term for U(1)y, was proposed
and it was shown that it is capable of yielding a much more diverse phenomenology
while still satisfying all experimental conétraints.

While the VMSSM almost always yields a B-ino-like LSP, the LMSSM also
allows U, ¥ or Higgsino-like X LSP. It was verified that for each one of these cases
there are important phenomenological consequences, including new signatures for
SUSY and the disappearance of other “standard” signétures. Even fhough the
LMSSM is n{ot advocted as the model of SUSY breaking, it is important to em-

;

phasize that it is a much less restrictive, and yet workable, parameterization of

the SUSY breaking sector.
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Chapter 4

Cosmology of Models with Gauge Mediated

SUSY Breaking

4.1 Introduction

The promise of low-energy supersymmetry (SUSY) is to stabilize the hierarchy
between the weak scale andv a higher scale of new physics, e.g. the Planck scale
(see, e.g., [70]). SUSY, however, has to be spontaneously broken because we do
not see degenerate pairs of particles and their superpartners. Moreover, there are
stringent pheﬁomenological constraints on the spectrum of superparticles such as
the degeneracy among squarks or sleptons at the percent lével (see, e.g., [71]).
Therefore, constructing viable mechanisms of SUSY breaking has been regarded
as one of the most important issues in SUSY model building.

Recently, the idea of generating SUSY-breaking masses via gauge interactions
has attracted interests (Low-Energy Gauge Mediation, or LEGM) [72, 73, 74]. In
this scheme, the SUSY breaking effects appear in the supersymmetric Standard
Model in the following manner. There is a sector which breaks SUSY dynamically
at around a 107 GeV scale, and it generates .SU'SY breaking effects in the so-

called messenger sector at around 10° GeV, which further induce SUSY breaking
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masses of order 103 GeV in the supersymmetric Standard Model via ordinary gauge
interactions. This mechanism guarantees the required degeneracy among squarks,
sleptons at a high degree, and also generates the masses for scalars and gauginos
at comparable magnitudes as desired phenomenologically. There have been active .
studies on the phenomenology of such models [75, 76]. On the other hand, there
has been little discussion on cosmological consequences of this mechanism, except
issues concerning stable particles in the messenger sector [77]. Since the scheme
completely differs from the conventional hidden sector scenario-at high energies,
early cosmology is expected tQ differ substantially as well.

There are (at least) two. ingredients in the LEGM models which may lead to a
cosmology different from the hidden sector case. The first ié a very small gravitino
mass. Since SUSY is broken at around 107 GeV, compared to around 10!° GeV
in the hidden sector scenario, the gravitino mass is much lighter: m3/, ~ 100 keV
compared to 100 GeV. The second is that the SUSY breaking effects “shut off” at
high energies.* In particular, the flat directions in the supersymmetric Standard
Model have very different potentials at large field amplitudes.

In this chapter, the implicétions of the LEGM models to cosmology are stud-
ied. In Sec. 4.2, the cosmological constraints on light gravitinos mainly based on
the analysis by Moroi, Murayama and Yamaguchi [79), is firts discussed. Then, in
Sec. 4.3, particular attention is paid to the estimate of the gravitino mass in the

LEGM models, and it is argued that it is highly unlikely to be lighter than 2h%keV

* A similar effect was discussed in 78] in the context of the sliding singlet mechanism.
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as required by cosmology. This point implies that there must be a substantial en-
tropy production, which casts a concern on the baryon as.ymmetry. Therefore, the
‘attention will be turned to a possible mechanism of baryogenesis at a relatively
low temperature, using. the idea of Affleck and Dine [80]. The important point
in the LEGM models is that the SUSY breaking effects due to the messenger in-
teraction “shut off” at high energies. Therefore, in Sec. 4.4, a 2-loop calculation
to determine the shape of the potential for the flat direction was performed. In
Sec. 4.5, the possible value of the baryon-to-entropy ratio which can be induced
| by the Affleck-Dine baryogenesis is estimated. For a sufﬁciently large amplitude
of the ﬁat direction, the potential is dominated by the supergravity contribution
father than the LEGM contribution, and one will see that the Affleck-Dine baryo-
genesis works well enough to explain the present value of the baryon assfmmetry.
Furthermore, in Secv. 4.6, it is pointed out that the string moduli, if present within
-the LEGM models, cause a serious problem because they are stable and their co-
~herent oscillations grossly overciose the Universe. However, a possible solution to
the problem is also shown. Since the Afﬂeck—Dine baryogenesis is so efficient, thé
" baryon asymmetry can survive the enormous entropy production required to dilute
the moduli fields, possibly by thermal inflation [81]. Fina]ly, Sec. 4.7, contains a

summary and some conclusions.

4.2 Cosmology of a Light Gravitino

In this section, a brief review of the cosmology with a light stable gravitino [79]
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is given.* If a stable gravitino is thermalized in the early Universe, :cmd if it is not
diluted by some mechanism (such as a late inflation ;cmd/ or a substantial entropy
production), its mass density may exceed the closure limit: 93/2' <7 1. Since the
number density of the gravitino is fixed once the gravitinos are thermalized, the

above argument sets an upper bound on the gravitino mass [82]:
mass S 2h*keV : without dilution, (4.2.1)

where h is the Hubble conétant in units of 100km/sec/Mpc. In" other words,
if the graviﬁnb mass is heavier than 2h® keV, some mechanism is necessary to
dilufe the gravitino in order hOt_fO overclose the Universe. Since the gravitinos
‘are produced more at a higher temperature, one can obtain ah upper bound on
the maximal temperature, Timax, from which the ordinary radiation dominated
Universe starts. For example, in the inflationary Universe, Tmax' corresponds to.
the so-called reheating température Try which is typically higher than Ty 2 108
GeV, if there is no significant entropy production after reheating. If Tpn,. turns
“out to be less than 10® GeV or so, we judge that one needs a substantial entropy
production bélow Tru. It is worthwhile to recall that the recent measurements. .
prefer h ~ 0.7 and hence the upper bound is about 1 keV.
The crucial point about the light gravitino is that the interaction of the (lon-
gitudinal component of) gravitino becomes stronger as the gravitino mass gets

lighter. This is because the longitudinal component of the gravitino behaves like

the goldstino, whose interaction is proportional to. (F)~! ~ (mgz;2M,)~?, where

*In this chapter, the absolute conservation of R-parity is assumed.
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M, = 2.4 x 10'® GeV is the reduced Planck scale. For the light gravitino, the
interaction of the longitudinal component of the gravitino (~ the goldstino) v to

the chiral multiplet (¢, x) and to the gauge niultiplet (Au, A) is given by [83]

Z'm m2 _ m2
————————w JNAFH + —x ¢ 'l/)X ¢* + h.c., 4.2.2
8fm3/2M ['7/1'7 ] \/_m3/2M ( L) | ( )

where mg, m,, and m, represent the masses of ¢, x, and A.! As indicated in Eq.
(4.2.2), the interaction of ¥ becomes stronger as the gravitino mass gets smaller.

In the thermal bath, two types of the processes may contribute to overproduce
the gravitino: one is the decay of the sparticle X into its superpartner X and the
gravitino, X — 1/)+ X, and the other is the scattering précesses, T+y =P+ 2
where z,y, z are relevant (s)particles. The decay process is significant especially
for the case Mg/ S 100keV. The par£ial decay width of a sparticle X into the

gravitino is estimated as

1 m?-{ :
DX = ¢+ X) ~ o AT (4.2.3)

with my; being the mass of X, and it becomes large as the gravitino mass gets
- small. This decay process produces gravitinos as n3;2+3Hnz/, = I"(X' = Y+X)ng

where H is the expansion rate of the Universe at the given time.* Here and below,

tHere, 9 représents the spin 1 field, though the gravitino has spin 3. In the high energy

limit, .4 is related to the longitudinal (helicity’ +1/2) component of the gravitino, 9! /20 88

;‘/2 ~ \/ 2/36“1/)/171,3/2

HIf the gravitino number density is large, there is also a damping term because of the detailed
balance, (r.h.s.) = I(X =Y+ X)ng(1-nz/pz/ng /2) where n3] /2 is the thermal equilibrium value

of n3/2.
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ng/2 is the number density of gravitinos in the Universe at a given time. If the
gravitino mass is in the range 2h%keV < m3/2 S 100keV, the decay rate becomes
so large that the decay process overproduces the gravitino dnce the sparticles are
thermalized [79]. Thus, if the gravitino mass is in this range, Ty, should be
~ lower than about my; ~ 100 GeV — 1 TeV depending on the mass spectrum of
superparticles, or the Universe is overclosed.}

If the gravitino mass is heavier than O(100keV), the decay process becomes
unimp‘or;tant ahd the most important production mechanisms of .gravitinos are
scattering processes. In this case, the Boltzmann equation for the number density |

of the gravitino, ng/,, is given by
‘7;L3/2 + 3Hn3/2 = Etoth?ada (424)

where H is the expansion rate of the Universe, i, is the thermally averaged
total cross section, and ng = (¢(3)/7%)T3. At high energies the first term in
\

Eq. '('4.2.2) ‘becomes more significant than the second one, and hence L.y is as

large as O(g3ms/m3,, M?). After a detailed calculation, one obtains [79]

g m
it ~ 5.9 G8_ zﬂ]‘\}%, | (4.2.5)

where g3 and mg3 are the gauge coupling constant and the gaugino mass for

SU(3)c- Solving Eq. (4.2.4), and taking account of the effect of the dilution factor,

SA similar argument can be applied to the decay process of the particles in the messenger
sector or the SUSY breaking sector. 1In that case, the decay rate becomes much larger since the
parent particle is much heavier. Thus, if the particles in those sectors are thermalized, the lower

bound on the gravitino mass becomes more stringent than ~ 100keV.
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9+(Tmax)/9+(T) (where g.(T) is the number of the relativistic degrees of freedom

in the thermal bath with temperature T'), the number density of the gravitino is

given by
n32(T) _  gu(T)  LrotTraa
Trad 9+ (Tinax) H 7=l ,
< a0t () () (om) - 429
Using g.(T S 1MeV) ~ 3.9, and g.(Tiax) ~ 200, one obtains
{Uaj2 = M_N Lxh™t (1(?(;1/:\/)—1 (1’?3/)2 (15%?\/) , (427)

C
and the condition {23/ < 1 sets an upper bound on Tj,,c. In summary, the upper

bound on T,y is given by [79)

100GeV — 1TeV " @ 2h%keV S mgjp S 100keV
Tax S , .(4.2.8)
10TeV x 1? (1) (Z82) ™ : majp 2 100keV

The above constraints are summarized in the Fig. 4.1. As one can see, the
upper bound on T, is much lower than the usual reheating temperature after
ordinary inflation, Tgy 2 10%. To reduce the number density of the gravitino,

theréfore, a large entropy production is required.

4.3 Light Gravitino in the LEGM Models

- The cosmological constraints on a light stable gravitino was discussed in the
_previous section, and it was shown that one needs to dilute gravitinos produced
in the early Universe somehow if mj/, 2 2h* keV. In this section the gravitino
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Figure 4.1: The upper bound on T;,‘;,x as a functipn of the gravitino mass from the
reqﬁirement that the relic stable gravitinos do not overclose the Univerée. The
.Hubble parameter is taken to be Hy = 100 Mpc/ km/sec. There is no constraint
below m3/, = 2 keV, which is represented by the vertical line. For smaller Hy,
the constraints become more stringent. The upper bound on T, shifts towards
smaller Tpnax as (Hg)2. The vertical line mbves towards smaller mg, also as (Hg)?.

Note that the current data prefer Ho ~ 70 Mpc/km/sec.
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mass in the LEGM models is estimated carefully and foundvunlikely to be below
2h? keV. -

In the scheme of the LEGM models, there are three sectors: the dynamic‘al
SUSY breaking (DSB) sector which originally breaks SUSY, the ordinary sector
which consists of the particles in the minimal SUSY standard model (MSSM),
and thg messenger sector which mediates the SUSY breaking from the DSB sector
into the ordinary sector. The scales for these sectors have a larée hierarchy, since
they are related by loop factors: Apsg >> Amess > Mgsuysy, where Apsp, Amess and
Msysy represent the scales for the dynamical SUSY breaking sector, messenger
sector, and the ord;nary‘sector (~ electroweak scale), respectively.

In the LEGM models a gauge interaction, which becomes .strong at the scale
Apss, induces a non-perturbative superpoténtial. Due to non—perturbaiive ef-
fects, F-components of chiral multiplets in the SUSY breaking sector acqﬁire non-
vanishing VEVs, .(Fo) ~ A}cp, and SUSY is dynamically broken. .As,suming a

vanishing cosmological constant, the gravitino mass in this model is given by

_ (Fo)  Abss
mgj = \/§M* M*V . (431)

In the next stage, the SUSY breaking is fed down to the messenger sector by
integrating out the U(1)mess interaction. The messenger sector contains a gauge
singlet S, whose A- and F-component Fg acquire VEVs after minimizing the
potential.* The scale of these VEVs are related to the original SUSY breaking

scales Apsp as (S) ~ (Fs)'/? ~ O(glesAsp/167%). The ratio of (Fs) to (S)

*One actually needs a substantially more complicated messenger sector than the original ones
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determines the masses of the sparticles in the ordinary sector. By counting the

loop factors, one obtains

_ (Fs) Jmess [——77
Amess = T‘ST = "‘Cm.essﬁ m3/2M*, (432)

where Kpmess is supposed to be of O(1) [74], and Gmess 1S the gauge coupling constant
for the U(1)ness gauge interaction. In the messenger sector, there are also 5+ 5 -
representation of SU(5), i.e. SU(2), doublets (L and L) and SU(3), triplets (Q

and Q). These have the superpotential
Woness = MSLL + %5Q0. (4.3.3)

Once S and Fs acquire VEVs, the scalar components of L and L (@ and Q) have

a mass matriic of the form

NUS)? A(Fs)
: ' (4.3.4)
MFs) N¥(S)?
while the fermionic components have mass A(S). Therefore, SUSY is broken in
the mass spectrum of vector-like 5 + 5 messenger fields. By integrating out-the
messenger fields, the soft SUSY breaking parameéters are induced in the ordinary
sector. With N pairs of vector-like 5 + 5 multiplét, the gauginb masses, mgi,
maqa, and mqs are given by

2

mai = fgiﬁciAmessNSa ' (435)

(72, 73, 74] in order to avoid a run-away global minimum {84, 85]. Such details are, however,

beyond the scope of this chapter.
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il

3 in our convention. On the other hand, the masses

where c3 = ¢, =1, and ¢, =

for the sfermions m; (f = g, dr, 4u,lL, and €g) are given by [86]

. 3 2 \?2
m? = 202 N5 3 Ci | 25 ) (4.3.6)
=1 167

Here, C, = §Y2 with Y being the usual hypercharge, and C; = % and % if f is in
the fundamental repfesentation of SU(3). and SU(2), and C; = 0 for the gauge
singlets. |
Combining the ﬁbove relations with the experimental bounds on the sparticle
masses, one can obtain a lower bound on Apess, and hence the gravitino mass.
A lighter state gives us a more stringent constraint. For most parameters, the

lightest among the sfermions is the right handed seléctron, whose mass mg, is

given by'

2 A 2
m, ~ 1?0 (g—lg—ﬁi;éﬁ)-) A2 N5 — m% sin® b cos 2. (4.3.7)

For tan 8 close to 1, the right-handed selectron mass gives us a stringent bound

on the messenger scale. Even if one adopts a conservative constraint of mg, >

tIn fact, the selectron mass receives a correction from renormalization effects. However, the
correction is less than 10%, and the following arguments are almost unchanged even if one

includes such effects.
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45GeV,t one obtains

Amess 2 2 x 10°GeV x (4.3.8)

1
VN5
If tanf is large, the D-term contribution enhances the right handed selectron

mass, and ms, can be larger than the experimental limit with smaller value of

Amess- In that case, however, the sneutrino mass m;,
2 . 3 gg(Amess) 2 9 g%(AmeSS) 2 A2 L1 2
R + AT ess Vs + oMMz cos 268, (4.3.9)

receives a negative contribution from the D-term, and Apess is still constrained to
be larger than ~ 2 x 10*GeV. Therefore, the bound {4.3.8) holds for all values of
taﬁ B. |

In order to translate the above constraint (4.3.8') into a lower bound on the
gravitino mass, one needs information about the gauge coupling constant of the
U(1) mess; 1arger gmess (at the messengér scale) gives us a less stringent constraint
on the gravitino mass. However, if gmes is too large at the messenger scale, it
blows up below the.Planck scale or even below the GUT scale.! By using the

1-loop renormalization group equation, the U(1)mess gauge coupling constant at

_*LEP-II has placed stronger limits on the m;, but as a function of the neutralino mass. The
mass difference between m; and the lightest neutralino ~ B is not large in the LEGM models,
and the constraint weakens substantially in this situation. The model-independent LEP bound

is used because of this reason.
$There is the logical possibility of employing an asymptotically free non-abelian gauge group

as the messenger group, and assume that its scale parameter is very close to Apsp. This would,

however, require an exponential fine-tuning of parameters.
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the messenger scale is constrained by

g?ness(Amess) < 1
1672 bmess ln(Agut/A?ness) ’

(4.3.10)

where Aqy is the cutoff scale where the perturbative picture may break down, and
bmess = 24 Q?ness, 4 1s the sum of the squared charge of the messengers. Typically,
bmess ~ 10. (For the model proposed in [73], byess = %, and for a model given in
[74], bmess = 14.) Assuming bmess = 10 and Aeys ~ Mgur, gme;s at the messenger

scale is constrained to be smaller than ~ 0.5, and

-2

-2 . 2 ‘
mae 2 T0keV x ’“1"\‘;:8 (g(‘)“‘;s) ( 4;32\/) . (4.3.11)

II.I‘ the minimal model, N5 = 1, and if the perturbative unification of the gauge
coupling constants in the MSSM is assumed, Ns < 4 [75]. Therefore,. in any case,
the lower bound above is about one or two order of magnitude larger than the
cosmological upper bound (4.2.1). Notice that the lower bound on the gravitino
mass increases as the experimental lower bound on the sparticle masses increases.Y

Based on the above estimations, the caﬂonical set of the parameters is .deﬁned

for the following analysis:

YA collorary tg this analysis is that it is unlikely to see the decay of a sparticle into the
gravitino. inside a collider detector. This casts some doubts on the naturalness of lly~y signature
at CDF in the LEGM models. A possible way out is to employ the vector-like model [87] and
couple a singlet field directly to the messenger fields in the superpotential [88]. This model,
however, probably suffers from a tunneling fo a colo.r— and charge-breaking supersymmetric

minimum if all coupling constants are O(1) [85].
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Amess = 3 x 10*GeV, (4.3.13)

(F5)'/* = (S) = Amess: (4.3.14)

NoAte that it is easy to raise the gravitino mass; one only has to assume a smaller
value for the gauge coupling constant for the U(1)pmess- In the following analysis,
the above set of parameters is basically assumed, and a discussion of how the
_results change as the parameters vary is included.

The above estimations are based on perturbative calculations, and one may
worry that a strong coupling in the dynamical sector méy allow oné to lower
the gravitino mass. Such a scenario seems unlikely, however. To see this, it
is convenient to define the “vacuum polarizations” from the DSB sector for the

U(1) mess gaﬁge multiplet:

F.T. (01T (AuA)|0)p; = ig*TLA(¢2) g (4.3.15)

F.T. (O[T (A)|0)1p; = (—i){4MA(¢") + (g™}, (4.3.16)

F.T.(0|T(DD)|0),p; = iHD(g2), - (4.3.17)

where F.T. sfands for the four-dimensional Fourier Transform to the momentum
space, and 1PI for one-particle irreducible diagrams. At tree level, I, = II, =
I D' = ¥ = 0. These quantitieé receivé radiative corrections of O(g2../167?) if
the perturbative calculation is‘ reliable. The messenger scale in the LEGM model
is induced by integrating out the SUSY breaking sector and‘the U(1) mess gauge

multiplet. By using II4, II) and IIp, the SUSY breaking scalar mass in the
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messenger sector (~ the messenger scale) is given by

diq 1
mrzness ~ gr2ness / (275q4—zq_2{3nz4(q2) - 4H/\(q2) + HD(qz)}' (4318)

If one is limited to the physics of the DSB sector, there is no pole in the IT functions
at ¢2 = 0 which, if present, implies the Higgs mechanism for the U(1)mess gauge
group. The only singularities in II functions are, thefefore, branch cuts which
appear above certain threshold ¢ 2 A}gp which is the only scale in the problem.

Then the integrations in Eq. (4.3.18) can be Wick rotated and one obtains

2 o0
M~ =028 [% G (3T,(<g2) = ATI\(—a2) +TIp(~gB)}.  (43.19)

Now it is clear that the integration is purely Euclidean, and hence all IT functions
are far off-shell. Thus, the perturbative result is essentially reliable even when the
DSB sector is strongly coupled. It is also useful to recall that similar calculations
of vacuum polarization amplitudes in QCD tend fo agree with lowest ordef pertur-
bative results for the running of the fine-structure constant, or the scaied-up QCD
estimate of the electroweak S-parameter.!l It is therefore concluded that there is

no significant enhancement of the resulting m2 ., and hence the estimates of the

INote that the S-parameter is defined by the vacuum polarization amplitudes at ¢?> =0, and
hence more sensitive to thé non-perturbative effects than Eq. (4.3.19), which smears them over
a wide range of ¢2. Still, a perturbative estimate of S differs from the scaled-up QCD only by.
a factor of two. One may also estimate the S-parameter by assuming that it is dominated by
the p and a; poles. Then the result is obtained by the tree-level process. Even so, the coupling
of the resonances to the current operator has a factor of 1/47 and the counting of 1/4x factors

remains the same in as the perturbative one-loop result.
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messenger scale and the resulting gravitino mass (4.3.11) can be trusted.

The constraint (4.3.11) sets severe bounds on cosmology. In particular, some
mechanisrn to generate a dilution factor of ~ (mgz/s/2h*keV) at a relatively
low temperature below the upper bound on the maximum temperature given in
Eq. (4.2.8) and in Fig. 4.1 is needed, if the grﬁvitino mass is l.arger than 2h%keV.
Furthermore, even if one adopts such a large entropy production at a low tem-
perature, baryogenesis may still be a problem. The Affleck-Dine mechanism [80]
for baryogenesis is one of the possibilities to generate baryons at a relatively low
temperature.**

Howeverv, in thé LEGM models, the behavior of the flat direction at la‘rge
amplitude is quite different from the usual supergravity case. Thus, even if one
assumes' the Affleck-Dine mechanism, if is a non-trivial question Whether thére
can be enough baryon number density. In the following sections, this péssibility is
pursued, and as a result, it will be shown that the Afleck-Dine mechanism works
sufficiently well, enough to explain the present value of the baryon-to-entrppy

ratio.

**Electroweak baryogenesis may be another possibility to generate baryon asymmetry at rel-
atively low temperatures. However, the resulting baryon-to-photon raf;io depends on the details
of the complicated d&namics of the phase transition. Furthermore, the generated baryon asym-
metry would not be large, if any, and would probably not survive a huge entropy production to

dilute the string moduli fields as discussed in Sec. 4.6.
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4.4 Flat Directions in the LEGM Models

As discussed in the previous sections, the constraint from the gravitino cos-
mology is quite severe in models with the LEGM. Therefore, it is preferable to
look for bé,ryogenesis scenarios which do not require high temperatures.

The discussion will focus on the Afleck—Dine baryogenesis in the LEGM rﬁodels
in this chapter. There is one crucial difference from hidden sector models: the
potential along the MSSM flat directions is not sirhply parabolic. Therefore the
form of the potential is discussed first in this section, and its implication to the
Aﬂéleck—Dine baryogenesis are discussed in the next section.

In hidden sector models, where the SUSY breaking effect is mediated by
Planck-scale operators, the soft SUSY breaking parameters are actually “hard”,
in the sense that they renormalize as usual mass terms between the Planck-scale
and the weak scale. On the other hand, the SUSY breaking scalar mass terms are
Suppressed beyond the messenger scale in the LEGM models.

This is analogous to the situation in the QCD. The current masses of the quarks
renormaliz.e according to the ordinary perturbation theory. They are “hard”
masses. However the constituent quark masses are suppressed by a power of
the energy: “soft”. This is because the constituent’quark masses are dynamically
generated by the spontaneous chiral symmetry breaking, which is characterized
by the order parameter (gg). The constituent quark mass has to be proportional

to this order parameter. At high momentum transfer, a dimensional analysis then
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indicates that the effective constituent mass behaves as mconst(Q2) ~{qq)/ Q%

The same argument applies to the soft S.USY breaking masses from the LEGM.
SUSY is broken by an F-compbnent of a chiral superfield, (Fs) # 0. The soft
SUSY breaking scalar mass is necessarily proportional to the order parameter of
SUSY breaking, i.e., m? o< {Fs){(Fs). A dimensional analysis indicates that it is
suppressed at high mo;nentum transfers, m?(Q?) ~ (Fs)!(Fs)/Q*. Therefore, the
SUSY breaking parameters “shut off” at high énergies.

The potential of a MSSM flat direction is given simply by V = m?2|¢|?, where
m? is a soft SUSY.break.ing mass. A renormalization gréup improvement yields
V = m2(|.d>[2)|¢|2. In the hidden sector case, m2(|<z;|2) has only a logarithmic
dependence on |¢|? and hence can bé taken approximately constant uﬁless it crosses
bzero at some energy scale. For most cosmologicai applications, this is a sufficiently
- good description. In the LEGM models, however, the effective mass m?(|¢|?)
exhibits a power dependenqe on |¢|?> which cannot be neglected. One expects
that rﬁ2(|¢|2) behaves as (Fs)f(FS) /|¢|? for large |¢|, and hence the potential
behaves approximately like a constant for |¢| > (), which is the mass scale of the
messengers.

An explicit two-loop calculation of the effective potential V(@) was performed,
and its details are presented in Appendix A. Here only the result is qu.oted. As
expected, the potential behaves parabolically around th'e'origin,.while it becomes .

approximately constant for large |¢|; actually it keeps growing slowly as (In |$|?)%.
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The potential of a MSSM flat direction behaves as

v~ (i) (552 1o+ oqary (441
for small |¢] < (S), and
vy (122
V(g) ~ Vo (ln ( 5)2) (4.4.2)
with
Vo ~ g (Fs)? ~ (3 x 10°GeV)*, - - (4.4.3)

(47)*
for large |¢| > (S). Here, g generically refers to standard model gauge coupling
consténts.* |
For extremely large |¢|, however, the contribution from supergravity be-
comes important. Supergravity generates a contribution to the scalar potentials
~ m3,|¢|? for any |#|."! To determine the relative importance of the LEGM and
supergravity contributions, one should ’compare their derivatives V', because this

is the quantity which appears in the equation of motion. The derivative of the

*One may wonder why Egs. (4.4.2) and (4;4.3) have only two powers of gauge coupling
_ coqsta.nts despite the two-loop-ness of the effective potential. This is the result of an explicit
calculation, and it can also be explained in a simple way. When the field value is large, the
standard model gauge multiplets acquire large masses of order.g¢. The effective potential is
generated by the exchange of heavy gauge multiplets, and hence it is suppressed by 1/|g¢i2.

This cancels two powers in gauge coupling constants.
tThis is true for the minimal supergravity and its variants. This contribution, however, is not

there in no-scale supergravity, or in general, in supergravity with Heisenberg symmetry [89, 90}.

In such a case, ¢eq must be taken at M, in the rest of the discussions.
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potential from the LEGM is

ov 2¢° |9)?
36~ om (1“ W) ’ (449

which is to be compared with the supergravity contribution 8V/8¢ = m2 /29*. The
supergravity contribution is more important above a threshold value ¢., which is

given by

Ly ) 2
o {25 (100)
. m§/2 (S)?

2
~ 7 x 10" GeV x (—”M—) Wt ) (4.4.5)
100keV 3 x 103 GeV :

The motion of the flat direction is determined by the effective potential given in
this section and the canonical kinetic term, and there is no need to include the

wave function renormalization factor at this order in perturbation theory. See

Appendix B for details. -

4.5 Affleck—Dine Baryogenesis in the LEGM ModelS

The goal of this section is to estimate the size of the baryon-to-entropy ratio
from Afﬁeck-Diﬁe baryogenesis in the LEGM models. Because of the multiple
scales in the problem, the discussion becomes somewhat complicated. The basic
conclusion is that the Affleck-Dine baryogenesis works as efficiently as in the
hidden sector case, but in a much more non-trivial manner. Finally the possible
dilution of gravitinos via the decay of the Affleck-Dine flat direction is discussed,
and it is determined that the gravitinos can be diluted below the closure limit if
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the initial amplitude of the flat direction is sufficiently large.

v

4.5.1 Generalities

In Affleck-Dine baryogenesis [80], one assumes that a MSSM flat direction
has a llarge'amplitude at the end of the primordial inflation. The mechanism to
achieve a large amplitude varies: a negative curvature from a non-minimal Kébler
potential [91], or no-scale supergravity [90]. In any case, it tends to be equal to or
“larger than the expansion rate of the Universe during inflation Hi; ~ 10! GeV
- 1013 Gev depending on inflationary scenarios. It will be phenomenologically
parameterized just as the initial amplitude ¢,.

A typical assumption is that there is a baryon-number violating Kahler poten-
tial term K ~ [*q*ud®/M?, where M, is the reduced Planck scale.* The SUSY

breaking effects from the LEGM generates a term in the potential

4 2f. |2 L2\ 2
4 g I9 SI l¢l 1 *_%_CJC
0O ~ /d6(47r)4 TP ln<S)2 M2lq'u.d + h.c.

*
*It could also well be the GUT-scale Mgyr. However, in this chapter, this form of the

baryon number violating operétor is assumed for simplicity. The extension to the case with
K ~ I*q*u®d® /My is trivial, and one /can easily estimate the resulting baryon-to-entropy
ratio. .

tThis has not been calculated explicitly. This form is expected based on the analogy to
the calculation of the effective potential in the previous section. Thé only difference is that

the previous one arises from the kinetic term ¢*¢ in the Kahler potential rather than from a

non-renormalizable term [*q*u°d®/M? here.
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|¢|2 "'* c_ Jc
e (l S )2) E a°d® + h.c., (4.5.1)

while the supergravity effect induces an operator in the scalar potential

o~ [d% |0;5°|2 . 3¢ ud +he. = A;g g acd® + h.c. (4.5.2)
The LEGM -operator is dominant if |¢g| S @eq, while the supergravity one dom-
inates if |@o| X @eq. Therefore, the two cases are discussed separately below.
In either case, the size of the baryon-number violating operator is much smaller
than in the hidden sector case (Appendi# E). It turns out, however, that the
baryogenesis proceeds efficiently with these operators.

Below, the fields are generically referred to as ¢, without distinction among

various species. The baryon number in the scalar sector is given by |
np = i(@'$ — ¢¢"), (4.5.3)

while the baryon number violating operator is written as

I¢|2 1 4 *4\
O [ma/z |¢|2 (ln (S)2> ] M2 (9" + ¢*). (454)

4.5.2  |¢o| R deq

For sufficiently large |¢o| (|do| 2 deq), the supergravity contribution is initially
- important, and the field begins to roll down the potential when the expansion
rate of the Universe H is comparable to H ~ mg,. First, the primordial baryon

number asymmetry will be estimated for || < deq-
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A rough estimation of the baryon asymmetry, which is generated just after
the start of the oscillation of the ¢ field can be done only by using simple order
of magnitude arguments. With the above baryon number violating operator, the

time evolution of the baryon number is given by

(4.5.5)

7:LB+3H’N«B=’I:<@ 30(]5*)

6% " o
When the field begins to roll down the potential, ité initial motion is slow, and
one can neglect the np term in the equation (see Appendix D). Then the resulting

baryon number can be estimated by [92]

i (80, 80., -

Using the approximate order of magnitude of the op'erator and H ~ mg3/3, one

obtains

masolm(dh
B~ _3/‘21\42—0) (4.5.7)

It depends on the imaginary part of the initial amplitudé. The entropy of the
radiation at this stage is given by s ~ ¢, T2 while the energy density prag ~ g.T* ~

' mj;;M?2. By putting them together, one can estimate the baryon-to-entropy ratio,

' 4
ng _ _is_1m(dp) 10 <|¢0|) ( Ma/2 )_1/2 :
— ~ G, — =~ 4 %10 X sm4¢9 y 458
s miIMI? M, ) \100keV 0, (458)

where the initial amplitude is parameterized as ¢y = |¢o|e’®®. As one can see, a
large baryon asymmetry can be generated, if the initial amplitude of ¢ is not too
small. Therefore, a large enough baryon number can remain in this scenario, even

if there is a substantial entropy production after the Affleck-Dine baryogenesis.
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Note that one obtains exactly the same expression in the hidden séctor models,
but with a different mg3/,.

The present baryon-to-entropy ratio is also given by the above formula, if
there is no significant entropy production. However, in a realistic situation, there
can be entropy productiont In particular, the decéy of the Affleck-Dine field ¢
may produce a large amount of entropy. Furthermore, for mgje 2 2h2 keV, a
‘non-negligible entropy production is needed to dilute the primordial gravitino. If
there is an entropy production after the Affleck-Dine baryogenesis, the primordial
baryon number density is also diluted. In the following, how an entropy production
affects the results is discussed. .

The enfropy. production due to the decay of vthe flat direction can be esti-
mated. As discussed in the previous section, ¢ starts to oécillate when T =T ~
g /4 /ms /2 M.., if |go| 2 eq. During |g| 2 geq, the potential for ¢ is dominated

by the supergravity contribution, and hence
|8I°R® = const. (deq S 18] S |¢0l)- | (4.5.9)

Thus, the temperature at |¢| ~ @eq, Which is denoted T, is estimated as

e 2/3 _
Toq ~ To (I ¢:|) . (4.5.10)

For |#| < ¢eq, the potential for the flat direction is dominated by the LEGM
piece, and the evolution for ¢ does not obey the relation (4.5.9). By using the

virial theorem, the evolution of the flat direction can be estimated, and is given
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|¢|R® = const.  ((S) S |¢] S deq)- (4.5.11)

(See Appendix C.) By using the above relations, one obtains the dilution factor
due to the decay of the flat direction.

Now an important question is at what ﬁela amplitude ¢ decays into radiation.
When the motion is dominated by a parabolic term, the time dependénce of the
oscillation is known (just a harmonic oscillator), and one can calculate the rate
of particle production in such a background. The result is known to be the same |
as the single particle decay rate, if the amplitude is not too large compared fo
the oscillation frequenéy. Once the amplitude becomes comparable to (S), the
potential is almost parabolic, and one_.ﬁnds that the coherent oscillation decays
into radiation rapidly. On the other hand, a éorresponding calculation is difficult
when the potential is dominated by the logarithmic term. In the analysis, the
decay amplitude, ¢qec is regarded, as a free parameter, and the @4e.-dependence

of the results is discussed.}

The temperature of the background radiation at the decay time of the flat

tFor a canonical par.ameter,. ddgec ~ 10° GeV is considered for estimating dilution factors.
Since ¢ decays at ¢ ~ (S) ~ 3 x 10* GeV at latest, this choice gives the minimum estimate of
the baryon asymmetry. If ¢ decays earlier, the dilution factor is less and the baryon asymmetry
is larger. The: dilution factor is likely to be overestimated with this choice. This point will be
addressed later, du;ing the discussion of a possible dilution of gravitinos from the decay of the

flat direction.
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direction, Tyec, is given by

1/3 1/3 2/3
(i) () (@)

On the contrary, the energy density of the flat direction is

paat ~ Vo. | o (4.5.13)

Then, if pga; 2 Prag, the dilution factor from the decay is giVen by

D ~ (pﬁat)3/4 ~ ( VO )3/4 )
Prad 4T ec
6 x 108 !¢0| ? ¢deC -t ( m3/2 )_1/2 _—‘/Ol/i_ 4 5 14)
M, 105GeV 100keV A3x103 GeV |

Note that D ~ 1if paac S prad, OF in terms of the initial amplitude, ¢ S 1014 GeV.
p . .

Combining the above dilqtion factor with the estimation of the primordial
baryon number density giyen in Eq. (4.5.8), one obtains the present baryon num-
ber asymmetry. In order to make a pessirﬁistic estimate of the resulting baryon
asyﬁlmetry, it is assumed that the flat direction decays only when its amplitude is
as small as (S). This assumption maximizes the entropy production, and hence,
gives the minimﬁm value for the baryon asymmetry. If it decays earlier, then the
‘entropy production is less and hence the baryon ésymmetry is larger. With this
caveat in min‘d,. one can make an estimaté of the ré;;lting baryon-to-entropy ratio,

and in the case with entropy production (D > 1), the resulting baryon-to-entropy

ratio is given by

np -1, -1/4 Im(¢3)
S~ D
Mg o M«

I¢0| 2 ¢dec V()1/4 .
~ . (4515
70 % (M, 105 Gev ) | 3x 109 Gev ) S0 40 (45.15)
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Note that the result is independent of the gravitino mass. It is intriguing that the

final result is more or less the same as in the hidden sector case Eq. (E.9).

4.5.3  |do| S eq

Next, the case of |@o| S ¢eq is discussed.! In this case, the potential for the

flat direction is dominated by the LEGM-piece, and the flat direction starts to

move when H ~ \/IV’(¢0)|/|¢0] ~ \/%~(ln|¢0|2/(5)2)/|¢0|. The temperature at

this stage, Ty, is estimated as
TE ~ g7 *M,—2— | In 9ol )™ (4.5.16)

Then, by using Eq.(4.5.6), one can estimate the resulting baryon number density,
and hence the baryon—to-entropy ratio. Note that the baryon-number-violating
dperator O is different from the previous case.

. /
Following exactly the same steps as in the previous case, one finds

12 2\3/2 2 g2 Y2
ng ~ V0 Im(¢g) (1n|¢o|) _ %"l (1n|¢0|> sindfy,  (4.5.17)

MZ| o] (5)? M; (5)?

when the flat direction starts to move. Therefore, the baryon-to-entropy ratio is

$As noted before, the no-scale supergravity does not generate a potential term proportional
- to m§ /2 and hence the evolution of the flat direction is always dominated by the LEGM piece.
Then the formulae presented in this subsection must be used even for a larger |¢g| ~ M.. Such
a large |¢o]| is indeed expected in the no-scale Case because the flat directions remain flat even

during the inflation [90}.
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given by

3/4
np - |<l50|9/2 |<150|2 .
— ~ g 1/4‘/01/4]\/[*7/2 In SE sin 46. | |
9/2 1/4 -1
: —14 |0l Vo :
6 X 107 % (-————1012 GeV) (————————3 108 GeV) sin46, (4.5.18)

which is typically too small. It is useful to note that the above formula is larger
by a factor of the logarithm than the correspondin'g formula Eq. (4.5.8) for the
case Pg & Peq When @g = ¢eq is substituted. Of course such a discontinuity cannot
exist. It simply means that there is a transition region at ¢ ~ ¢eq Where there is
-~ a Slight rise in ng/s when ¢y ~ ¢eq is crossed from above. |

The 'dilﬁtion factor can be estimated also along the lines of the previous case.
One has

Pdec

1/3 :

and hence (if pgay > prad),

o\ (%o \" "
D ~ ~ 1 ~ 232
Prad g*Tdec * d’dec(ln |¢0I2/(S)2)3/4

woaxot (AL V(e N
1012 GeV, 105 GeV ) e

(More correctly, the dilution factor is D = ((pgat + prad) /prad)?’/ 4 and cannot be
less than unity.) Therefore, the dilution factor is much less important than in the

previous case.

4.5.4 Numerical Analysis

A more detailed behavior of the baryon-to-entropy ratio can be studied by a
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numerical calculation.” Here, in order to better see the behavior of the results,
the resulting baryon-to-entropy ratio for a particular set of parameters: V,; =
(3x10°GeV)*, (S) = 3 x 10* GeV, @aec = 10° GeV, and sin 46, = 1 is sho&n. The
results for other sets of parameters can be easily estimated by using Eqgs.(4.5.8)
and (4.5.15). First, the equation of motion for the flat direction,

s+3s+ 2 o (4.5.21)

55
V= m3/2|¢|2+%<1n<'g2) i+ g (i %H

The calculation starts at a temperatlire much higher than Ty (T = 10Tp), and

is solved, with the potential¥

(6% +6™). (4.5.22)

follow the evolution of the flat direction as well as the temperature of the thermal
bath. With the initial value ¢9 = 0.2M,e"/%, the initial motion is shown in
Fig. 4.2. As one can see, ¢ starts an elliptical motion due to the baryon-number
violating term in the potential. This means that a non-vanishing ba_ryon number
is generated once ¢ starts to oscillate. The generatqd baryon number was indeed
found to be consistent with the estima’pes in the previous subsections within a
| factor of a few. B

With the motion of the flat direction, one can calculate the béryon number

by using Eq.(4.5.3), and hence the baryon-to-entropy ratio. After several cycles

¥The potential given in Eq.(4.5.22) is unbounded-below for ¢ 2 M,, and higher-dimension
operators are supposed to stabilize it. However, it is only necessary to consider initial amplitudes
less than ~ M, in the present analysis, and hence the postulated potential is a good enough

approximation.
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Imo/M.

Figure 4.2: The initial motion of the flat direction with the potential given in Eq.

(4.5.22). Here, ms/, = 100 keV, and ¢ = 0.2M,e™/® was taken.
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of oscillation, the baryon-to-entropy ratio becomes almost constant. Then, the

evolution of ¢ and T can be easily traced by using Eqs.(4.5.9) and (4.5.11) with
RT = const. Finally, the dilution factor, D = ((prad + p¢)/Praa)*’*, at the decay
time of ¢ is calculated, and the primordial baryon-to-entropy ratio is multiplied
by D! to obtain the resulting baryon asymmetry.

Fig. 4.3 shows the |¢o| dependence of the present baryon-to-entropy raﬁio, ng/s.
Frdm the figure, one can seé that the results based on the order of magnitude es-
‘timations provide good approximations. For a sufficiently large ¢q such that the
entropy production is significant, the resultant baryon-to-entropy ratio is indepen-
- dent of the gravitino mass, and is proportional to |@o|%. It was also checked that
the approximafe formula (4.5.15) reproduces the behavior for the large |¢o| region.
For a smaller value of |¢g| S 10 GeV, the entropy production from the decay
becomes negligible.. The result then is proportional to |¢o|* (Eq. (4.5.8)). For an
even srﬁaller |dol S deq ~ 7 x 10™ GeV x (100 keV /mg/2), the behavior goes over
to |¢o|*/? (Eq. (4.5.18)). As noted in the paragraph below Eq. (4.5.18), there is a
transition region from ~ 10¢eq t0 ¢eq, where the curves fall less steeply because a
logarithmic enhancement factor comes in. In any case, the baryon-to-entropy can
clearly be sufficiently large in this scenario, as required by the standard big-bang
nucleosynthesis ng/s ~ 1071, if the initial amplitude is larger than 101314 GeV. -

A more precise estimate of the baryon asymmetry requires the specification of
the flat direction, the relevant operator, and the size of the initial amplitude. The

usual caveat concerning the B — L invariance applies: If one employs an operator
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Figure 4.3: The resulting baryon-to-entropy ratio as a function of the initial ampli-
tude qbo.. The parameters are taken to be V5 = (3x 103GeV)%, 6y =« / 8, Pdec = 10°
GeV, and m3/; = 1 keV (dotted line), m3/, = 100 keV (solid line), and mz/, = 10

MeV (dashed line).
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which pr‘eserves B - L symme£ry like that generated by SU(5) grand unified
‘models, it may be wiped out again by the electroweak sphaleron effect [94]. One
needs to either preserve the B and L asymmetries using a Bose condensate [93],
or by generating a B — L asymmetry [95, 96]. In view of the discussions of the
next section, we find that the protection of B via a Bose condensate is a likely

scenario.

4.5.5 Diluting Gravitinos

In the LEGM modelé, the mass of the gravitino is about 100 keV, and its mass
density exceeds the closure limit if T}, is larger than (1- - 10) TeV, as discussed in
Sec. 4.2. Since the reheating after fhe primordial inflation raises the temperature
typically above Truy X 10® GeV or so, it is assumed that the gravitinos were
once thermalized, which is of course the worse case scenario. It will be discussed
Whether the decay of the flat direction can generate a large enough entropy to
dilute gravitinos below the closuré limit.

Before discussing the implication of the entropy production to the gravitino, it |
is useful to estimate the freeze-out temperature of the gravitino, Tieeze, which is
the temperature at which the expans-ion rate of the Universe becomes comprable
to the production rate of the gravitino: H(Ttreeze) ~ ZtotMrad(Ltreeze). By using the

gravitino production cross section given in Eq. (4.2.5), one obtains

N. m3/2 )2(mG3)—2
Ttreeze ~ 200TeV x (1001(6\/ 1Tev/) - | (4523)
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Below Tireeze, the expansion rate of the Universe becomes larger than the pro-
duction rate of the gravitino, and hence the gravitino cannot be thermalized.
Therefore, an entropy pfoduction at T S Tireeze dilutes gravitinos produced before
the entrqpy production. On the contrary, even if the entropy is produced when
T 2 Ttreeze, -t;he gravitino is thermalized again, and its number density is deter-
mined by the thermal distributions. If the energy density of the flat directio_n
dominates the energy density of the Universe, decay of the flat direction ¢ reheats
the Universe. The reheating temperature is estimated as Tg ~ (Vo)l/ t1-10
TeV. Comparing this reheating témperature to Eq. (4.5.23), one can see that the
gravitino cannot be thermalized after the decay of ¢. In other words, graviti-
nos produced before the decay of ¢ are diluted with a dilution factor given in
Eq. (4.5.14), if the decay of ¢ produces the entropy.

If the gravitino mass is larger than ~ 1 keV, a substantial entropy production
is needed; otherwise, the Universe is overclosed by the mass density of the grav-
itino. By assuming that the gravitino is thermalized, one can estimate thé number
density of the gravitino as

3 9.(T)

=2 o) D). 4.5.24
29*(Tfreeze) ad( ) ( )

nay2(T)
Then, requiring Q3,2 = D™'mg3/3n3/2/pc < 1, one obtains
> B2 (M_) . 5
D 250 x h~? (o | (4.5.25)

Comparing the above constraint with Eq. (4.5.14), one can see that the decay
of the flat direction can produce enough entropy to dilute the gravitinos away.
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For example, for @qec ~ 10° GeV and m3/» ~ 100 keV, the dilution factor is
large enough, if |@o| 2 101-15 GeV. Even with such a large dilution, the présent
baryon-to-entropy ratio can be sufficiently large (see Eq. (4.5.15)).

If the flat directibn deéays at an amplitude ‘larger than ~ 10° GeV, the dilution
factor given in Eq. (4.5.14) becomes smaller, and. the entropy production due to
the decay of ¢ may not be enough to decrease the gravitino density. In addition,
for mé/z < 100 keV, the rehéating temperature Ty ~ %—1/ * ~1—10 TeV may be
higher than the freeze-out temperature of the gravitino. In these cases, one has
to é,ssume an extra source of the entropy production of O(mgs/2/2h%keV) after the
reheating. Even in this case, thé estimation of the primordial baryon-to-entropy
ratio (4.5.8) is still valid, and the final baryon asymmetry can be as large as the one
estimated by Eq. (4.5.15) and an additional dilution factor Eq. (4.5.25) required
to dilute the gravitinos. Therefofe, Affleck-Dine baryogenesis can generate a big

| enough baryon asymmetry to explain the present value of the baryon-to-entropy
ratio.

In fact, one can crudely estimate the decay amplitude @dec €ven when itAis in
the region of the logarithmic potential, if its motion is circular rather than elliptic.
The change from the original Affleck-Dine estimate of the decay rate Eq. (E.7)
is that the rotation frequeﬁcy of the ¢ field is given by (Voln(|9|2/(S)?))¥2 /|4

rather than mg/,. Since the quantity of interest is a dilution factor, it is assumed
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that the flat direction dominates the Universe, and the field decays when

A2 1 (Voln(ldueel2/(S)?)\ > Vi | faec)?
T, ~ (9‘—> ( ~Ho~ 2 p  (4.5.26
¢ T |¢dec|2 ‘(ﬁdecl2 v M* <S>2 . ( )

and
1/5
as\? l¢dec|2 M2
|Paec| ~ [(W> VoM, (ln 5E
' " 1/5
’ 5 .
8 x 10° GeV x <(3 SSTiE GeV)‘*) i (4.5.27)

_ Therefore, the decay amplitude does not change much from the value assumed
before. On the other'hand, the case with an elliptic orbit is more difficult to deal
with. We are not aware of any study on the decay rate of ¢ for an arbitrary elliptic
motion even for the parabolic potential. The other limit of almost linear motion
is discussed in the literature and tends to give a larger decay raﬁe, and hénce a
larger dgec [97]. However, we believe the motion of the ¢ field in the casé of our
interest here, namely for |¢o| Z 10*~1° GeV to dilute gravitinos, to be quite far
from a lineér one, and ¢gyec is not likely to be much larger than‘ our estimate. One
concludes that ¢gec is not rﬁuch larger than the minimum possible value 10° GeV,

which is used in most of the present discussions.

4.6 Cosmology of String Moduli

It is pointed out in this section that the moduli fields in the string theory, if
they acquire masses in the LEGM models, are stable and drastically overclose the
Universe.
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According to a general analysis [98], string rﬁoduli acquire masses comparable

to the gravitino mass mg/,. Their initial amplitude is likely to be of the order of the
string or Planck scale because it is the only scale in the problem. The cosmologiéal
problem of the moduli fields is discuss';ed extensively in the literature in the context
of hidden sector models (for fhe original chapte;, see [99]). There, the moduli fields
acquire masses of the order of 1 TeV, and decay after nucleosynthesis, thereby
spoiling the success of the nucleosynthesis theory. Even if one pushes the mass
»tob 10 TeV so that the moduli fields decay before nucleosynthesis, the enormous
productioﬁ of entropy with Ia dilution factor of order M, /ms/> ~ 10** wipes out
all pre-existing baryon asymmetry. This problem may be solved by adopting the.
Affleck-Dine baryogenesis [100], or by the thermal inﬂafion [81] (see Appendix E
for more discussions).

In the LEGM models, the situation is completely different.* The string moduli
are stabie within the cosmological time scale, and are still oscillating around their
potential minima. A dimensional analysis gives the decay .fate of a moduli field
to be T ~ m},,/8mM? ~ (3 x 10'® years)™, for mg/y ~ 100 keV. Therefore there
is a problem concerning its energy density.

The est;mation of the moduli energy density is straight-forward. When a

3

 moduli field begins to oscillate, the expansion rate is H ~ mg/. The entropy at

*It was argued that the problem does not exist [101] if SUSY is broken dynamically, which is
true for scalar fields which directly participate in the dynarhical SUSY breaking. However, the

string moduli fields were not considered in this discussion.

91



this stage is given by s ~ g/ 4(m3/2M*)3/2. Assuming the initial amplitude to be

of order M,, the ratio of the moduli energy density to the entropy is given by

1/2
—m"i?—) . (4.6.1)

Pmoduli W a-1/4 /2 6 V (
—_— g, (m3/2M,.) 1.3 x 10° Ge 100 keV

s
Since both the energy density of .the moduli and the entropy are diluted by the ex-
pansion with the same rate R‘v3, the ratio remains constént until now unless there
is entropy production. On the other‘l.land, the total energy density is bounded

from above by the critical density p.,

Pmoduli < Pec = 3.6 X 10—9h2 GeV. (4.6.2)

s Snow
where Snow is the present value of the entropy density. The predicted ratio
Eq. (4.6.1) is in gross conflict with the constraint Eq. (4.6.2).

| It is not clear how such an enormous energy density can be diluted. First of
all, the necessary dilutioﬁ factor is at least 10'°. Furthermore, one.,needs ;uch
an entrdpy production at a very late‘z‘ stage of the Universe, with H < mg)s,
or equivalently, T < g« 1 4(m;;/gM,,)l/2 = 1.3 x 10° GeV for mg/, = 100 keV..
One needs to create a baryon asymmetry either after such an enormous entropy
production at a very late stage, or large enough- to survive the enbrmpus entropy
production. |
Actually, the Affleck—Dine mechanism may create a large enough baryon asym-
metry to survive the enormous entropy production which dilutes the string moduli
below the critical density as will be shown below.
A quantity which remains constant over an entropy production is the ratio of
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the baryon number and the moduli energy density, because both of them scale
as R73. In the previous section, it was estimated that the initial baryon number
density is np ~ mg/Im¢s/M2, at the time when the flat direction begins to
oscillate, i.e., H ~ mg/,. In fact, this is the same time as when the moduli fields
begin to oscillate, and the energy density of the moduli is pmoduu ~ m3 /sz.

Therefore, their ratio is determined at this stage:

Pmoduli Mf
o~ Im—}. .6.
o m3/2 ( m py ) (4.6.3)
or equivalently,
ﬁB Pmoduli |60l \*
moduli -1 . .
—~ — 46,. 4.6.
. . xm3/2( *) sin 46, (4.6.4)

Combining the above.equation with the constraint (4.6.2), one finds

4 —~1 4
DB < Pyl @) indfo ~ _52( M3/ ) (|¢ol) :
S o X My (M* sindfo ~ 4 x 100"\ fo0ev)  \ 2z, ) Sin4%-

s Snow

(4.6.5)

As one can see, if |¢o| & 107 GeV, the baryon-to—entfopy ratio may be larger than
~ 10710 even if one assumes a large entropy production té dilute the moduli field.
The important' question is whether one can have a brief period of inflation at
such a late stage of Universe to dilute string moduli in the LEGM models. The
inflationary expansion rate Hinf must be less than Hiy S mase ~ 100 keV, i.e.
the energy density of the inflation pine S (ms/2M,)? ~ (107 GeV)?. Moreover,

the e-folding should not exceed 20 or so in order to keep the primordial density

fluctuation generated by a “standard” inflation with Hiye ~ 10'1-10"® GeV [103].
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.On the other hand, an e-folding of N 2 5 is sufficient to dilute the string moduli
by 107!5. A thermal inflation [81] may offer a natural solution to these questiohs.

Fortunately, it seems to be unnecessaryvto introduce new energy scales into the
model in the framework of the thermal inflation. Suppose a positive mass square(i
of m? ~ (100 GeV)? is generated for a scalar field x due to higher order loops at the
energy scale of Apgg ~ 107 GeV. The renormalization group running of the mass
squared may drive it negative at a scale slightly below Apgp. If the scalar field is a
flat direction of both F- and D-terms in the potential, it developé a minimum at
v S Apss. This is an idgal potential for a thermal inflation. The scalar field may
initially be stuck at the origin because of the thermal‘effects, ‘giving a cosmological
constant. As.the radiation gets red-shifted, the thermal effects turn off and the
field rolls down the potential to its true minimum x = v. The e-folding in.this
case is roughly N = 3 In(v/m) ~ ;In(Apss/m) ~ 5 [81] which is exactly what is
needed to dilute the string moduli below the critical density.

It may be interesting to éompare this result with the case of the hidden sector
SUSY breaking scenario with the Poionyi field or with the string moduli. (Here-
after, they Will be called generically as “Polonyi fields”. See Appendii E for .the
estimation of baryon asymmetry in this case.) Note that Eq. (4.6.4) is valid.
Thus, the question is the constraint on the energy dénsity of the Polonyi field, p,.

In this case, the Polonyi' field decays much faster than the LEGM case since its
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mass is larger, and a typical lifetime for the Polonyi field is given by

: -1
: Nen mg/z 3 ( mg/e )3
~ | — ~1 —t .0.
T, ( I 2 0°sec x oV ) (4.6.6)

where Ny, ~ O(10) is tHe number of the decay channel. Thus, it does not con-
tribute to the mass density of the present Uhiverse, and the constraint (4.6.2)
cannot be applied. However, it may affect the great success of the standard big-
bang nucleosynthesis (BBN) scenario.

The mass density of the Polonyi field speeds up the expansion rate of the
Universe when the neutron decouples from the thermai bath (i.e., T ~ 1MeV),
which may result in an over production of “He. Furthermore, the radiativerdecay
of the Polonyi field induces cascade photons which cause the photofission process
and change the primordial abundances of the light nuclei. The constraiht on the
primordial density of the Polonyi field strongly depends on its lifetime 7, [102]. If
7, S 10* sec, nucleosynthesis requires p,/s < 1075 GeV. For a Polonyi field with
a.longer lifetime_, the constraint becomes more stringent. For a Polonyi field with
7, S 10¢7% sec, which is the case for the Polonyi méss typically larger than a
few TeV, its mass density is constrained as p,/s S 1077 GeV. These constrain’cs
on p,/s are compared to the estimate of the baryon-to-entropy ratio (E.14) which
holds irrespective of the presénce of a substaptial dilution of Polonyi field by, e.g.,

| a late inflation, | |
_ s
?32 ~ 885 X M3, (%’}) sin 46;.

Thus, for this range of the Polonyi mass, the resulting baryon-to-entropy ratio
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may still be as large as 107'% if |¢o| ~ M., and hence the Affleck-Dine scénariq
may provide us a reasonable value for the baryon-to-entropy ratio. However, if
the Polonyi field has a longer lifetime_, as for a sub-TeV Polonyi mass as usually
expected, the constraint on p, becomes even more stringent. In particular, for the
case with 7, 2 107 sec, which typically corresponds to m, < 100 GeV, p,/s S
10713 GeV. In this case, the result is too small to be identiﬁgd as the present

baryon asymmetry of the Universe.

4.7 Conclusion:

The 'cosmology of the LEGM modéls was studied. First, the lo§ver bound
on the gravitino mass was estimated, and it was shown that the bound conflicts
with the cosmological constraint if the primordial gravitino is not diluted. This
fact indicates a huge entropy production at a relatively low temperature, and the
conventional scenario of baryogenesis may not work well.

In this case, the Afﬁeck—Dine baryogenesis is one interesting ppssibility. The
size of the baryon number violatiﬁg operators is much smaller than in the hidden
sector mbdels. However the flat direction begins ’c‘gn‘move at a much léter stage
which in turn increases the baryon number. rThe dilution factor due té the decay
of flat direction also has a complicated dependence on parameters. After putting
all the effects together, it was found that the Affleck-Dine baryogenesis works
efficiently for an initial amplitude of the flat direction, |¢o| 2 10! GeV. It was

also discussed that the decay of the MSSM flat direction may provide enough
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entropy to dilute the primordial gravitino for a relatively large initial amplitude
of the flat direction, |¢g| 2 101415 GeV. Therefore, the gravitino pr‘oblemvin the
LEGM models may be solved if one assumes such a large initial amplitude. |

The cosmological implication of the moduli fields in string theory was also
discussed. Their masses are of the order of the gravitino mass, and their lifetime
| is much larger than the present #ge of the Universe in the LEGM models. The
mass density of the moduli field may overclose the Universe. To dilute the moduli
ﬁelds, a very late inflation is needed. It was shown that t;he baryon asymmetry
generated by Affleck-Dine baryogenesis can be large enough to sﬁrvive such é late
inflation for |¢y| 2 1017 GeV, even if one assumes a huge entropy production to

dilute the primordial moduli field below the critical density.
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Chapter 5

The p-Problem and the Next-to-Minimal SSM

5.1 Introduction

The primary motivation for suprersymmetry (SUSY) is tb stabilize the small-
ness of the electroweak scale against radiative corrections [106, 107, 108], which
can be as large as the Planck scale if the Higgs bosons are truly elementary. Once
the electroweak scale is set in the tree-level Lagrangian, it only receives logarith-
mic radiative corrections, and ﬁence its order of magﬁiﬁude is-not changed. More-
over, the electroweak symmetry remains unbroken in the Minimal Supersymmetric
Standard Model (MSSM) in the absence of explicit SUSY-breaking parameters.
Therefore, one can view the electrowéak symmetry‘breaking as being triggered
by the soft SUSY breaking. Indeed, the soft SUSbereaking mass-squared of the
Higgs boson can be driven negative due to the top quark loop [109] while all the
other scalar bosons still have positive mass-squared. In this sense, there is nothing
special about the Higgs boson. It is just oﬁé of many scalar bosons, which happens
to acquire a negative mass-squared due to the top quark loop. This idea eliminates
one of the least appealing features of the Standard Model. However, there are at
least two open questions. First, SUSY by itse.luf does not explain why the e.lec;

troweak scale is small to begin with. Therefore, SUSY makes the smallness of the
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electroweak scale “technically natural,” but not truly natural. Second, the MSSM
contains one dimensionful parameter (the p-parameter), allowed by SUSY, in the
superpotetial. The natural values of u are either the Planck mass (the only natu-
ral dimensionful parameter available) or zero, but recent experimental éonstraints
imposed by LEP2 imply that a nonzero p < 50 GeV is required [110].

SUSY, fortunately, can potentially explain the smallness of the electroweak
scale if it is broken dynamically [107]. The perturbative non-renormalization
theorem forbids the generation of a mass sca;le in the superpotential if‘ it is-ab-
sent at the ‘tree-level. However, non-perturbative. effects can violate the non-
renormalization theorem, and a mass scale can be generated by dimensional trans-
mutation: Agysy ~ Mplancke'8”2/92'b0', if an asymptotically free gauge theory is
responsible for SUSY breaking. There has been major progress in building médels
of dynamical SUSY breaking {111, 112, 113, 114, 115, 116, 117], which became pos-
sible with the detailed understanding of the nbn—perturbative dynamics of SUSY
gauge theories [118]. Furthermore, the s&cglled gauge mediation of SUSY break-
ing (GMSB) [108, 119] can generate soft SUSY-breaking parameters in the SUSY
Standard Model in a phenomenologically desired form. Therefore, there is hope
of understanding t]he smaliness of the electroweak scale in a truly natural manner.

However, the o:ther question remains largely unanswered: how can the dimen-
sionful parameters in the superpotential naturally be of the order of the SUSY-
breaking parameters? There have been extensive discussions on this subject in the

literature, which are briefly summarized in Sec. 5.2. Unfortunately, many of the
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proposed fnechanisms rely on either small parameters, accidental cancellations, or
the absence éf interactions allowed by symmetries. The current situation is found
to be rather unsatisfactory.

A natural di_rection to follow is to start with a superpotential which does nbt
contain a dimensionful parameter and hope that the electroweak scale is ge;lerated
splely due to the soft SUSY-breaking parameters. The simplest modell which can
potentially‘work along this line is the Next-to-Minimal Supersymmetric Standard
Model (NMSSM) [120], which replaces the yu-parameter by the vacuum expectation
value of an electroweak singlet superfield. This possibility is revisited with detailed
quant.itative studies in this éhapfcer. Unfortunately, the conclusion reached here'
is ‘negat'ive. The NMSSM by itself does not produce a phenomenologically viable
electroweak symmetry breaking even if one varies the messenger scale. The major
ekperimental constraints include Higgs boson and slepton searches. Certain simple
modifications can evade phenomenological constraints, but require a cancellation
among parameters accuréte to a few percent. All of these points are presented
quantitatively in this chapter, and we hope that the results prompt further in-
vestigatiohs in understanding the'origin of the u-parameter in models with the
GMSB.

The chapter is organized as follows. In the next section, the situation of the -
p-problem in models with the GMSB is reviewed, and various proposals to explain
the origin of the u-parameter are discussed. None of them, however, are found

- to be entirely satisfactory. Even if one accepts one of the proposed models, it is
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still necessary to check whether the generated p-parameter is phenomenologically
allowed. This quesfion is addressed in Sec. 5.3, and it is determined that the
currently available experimental lower bounds on superpérticle masses already
require a cancellation of order 10% between the u-parameter and soft SUSY-
breaking parameters to reproduce the observed M. Then, the quantitative results
of electroweak symmetry breaking in the NMSSM with the GMSB are presented
in Sec. 5.4, and it is found that there is no phenorﬁenologically viable. ﬁarameter.
set even if one varies the messe.nger_scale from 10° to 10'® GeV. Various simple
modifications of the NMSSM are studied in Sec. 5.5, and it is shown that they |
either do not break electroweak symmetry in a phenomenologically viable manﬁer

or require a cancellation among parameters of order 1%. Sec. 5.6 contains the

conclusions.

5.2 The p-problem in the GMSB

In this section, the u-problem in the MSSM is reviewed, and various attempts
to solve it in the context of the GMSB are presented.
The parameter p is the only dimensionful quantity present in the superpotential

of the MSSM
W = /LHqu + )\ijLiede + Athded + )\ZQ,UJHU (521)

Here, Qi, Li, ui, di, e; are the matter chiral superfields with the obvious nota-

tion, and H,, H,; the Higgs doublets.” Note that u is part of the supersymmetric
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Lagrangian, and hence its origin is, naively, unrelated to the origin of the soft

SUSY-breaking terms

Vi = mi, | Hal® +my, | HJ?
+mBQI0; + mP L Ly + mPal; + mPdld; + m2iele,

d

—mgH;Hd + Ay@l(i]Hd + AijQiﬁjHu + Afjf/iéde. (522)

Phenorhenology, on the other hand, dictates that the values of Both 4 and the soft
SUSY-breaking masses should be around the weak scale (100 GeV), if SUSY is to
be responsible for stabilizing the Higgs mass. Therefore, the important question
is how the mechanism of SUSY breaking can induce a p-parameter naturally, at
the samé order of magﬁitude as the other soft SUSY;breaking parameters in the
Lagrangian.

Ohe popular scenario of SUSY breaking is the so-called “hidden sector” SUSY
breaking in supergravity (SUGRA) [121]. In hidden sector models, SUSY is broken
in the hidden sector by some mechanism, such as the Polonyi model [122], gaugino
condensation [123], or the O’Rafeartaigh rﬁodel [124], and the effects of SUSY
breaking are mediated to the fields in the MSSM only by interactions suppressed
by the Planck scale. It therefore requires SUSY breaking at a scale A ~ 10 GeV
if the soft SUSY-breaking masses are generated as A2/ Mpyanek- 'This class of models
is able to generate the appropriate soft SUSY-breaking masses and y-parameter
gi_ven that the y-term is forbidden in the supersymmetric limit by appropriate

symmetries, and arises due to SUSY breaking (see, for example, the Giudice—
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Masiero mechanism [125]). Hidden sector models have, on the other hand, to face
serious bounds imposed by flavor-changing neutral currents (FCNC) [126]. Low-
energy constraints such as the smallness of K°-K0 mixing require the matrices
mgj ,-mz-"j to have eigenvalues degenerate to a few percent, or their eigenvectors
to be strongly “aligned” with the eigenvectors of the Yukawa matrices /\fj (the
same is true for AY). Within the SUGRA framework alone, there is no natural
mechanism to guarantee the degeneracy or the alignment [127]. In this case, flavor
symmetries are probably necessary to ensure either degeneracy [128] or alignment
[127] and‘suppress FCNC, and some of the models présented are also capable
~ of generating the p-term through flavor symmetry breaking [129, 130]. There is
also the possibility ‘that' étring theory generates degenerate squark masses if, for
instance, the dilaton field provides the dominant contribution to the soft SUSY-
breaking masses [131].

The gauge mediation of ‘supersymmetry bréaking is an alternative mechanism
which can naturally enéure the degeneracy of squarks masses and therefore sup-
| press the dangerous FCONC effects. SUSY is somehov;z broken (hopefully dynam-
ically via dimensional transmutation to generate a large hierarchy), and SUSY-
~ breaking effects are mediated to the fields iq the supersymmetric Standard Model
by the Standard Modei gauge interactions. /Mediating SUSY breaking via gauge
interactions is not a novel idea [108, 119]. It allows for. SUSY breaking at a
lower scale (when compared to SUGRA inspired models) and, becéuse all SUSY-

breaking effects are transmitted by flavor blind interactions (the Standard Model
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gauge interactions), squarks of different families have the same mass. This scheme
has attracted a lot of interest after the pioneering works by the authors of refer-
ences (111, 112, 113], which showed‘ that one can successfully mediate the SUSY-
breaking effects via gauge interactions with. the help of a so-called “messenger
sector.” Their scheme can easily incorporate dynamical SUSY breaking and can
explain the origin of the large hierarchy between the Planck (string, grand unified
(GUT)) scale and the weak scale. |

The GMSB itself, however, has nothing to say ab.out the ﬂ-parameter unless
one introduces extra fields which couple to the particle content of the MSSM. The
p-problem in the GMSB is the primary interest of this chapter. Many solutions
to the u-problerﬁ have been suggested by different authors and all of them require |
the introduction of new fields and/or interactions. Some of these solutions will be
.rev.iewed shortly.

In the original models [111, 112, 113], SUSY is broken dynamically in a so-called
SUSY—breaking sector and the breaking effects are transmitted to the supersym-
metric Standard Model via a messénger sector. rIfhe energy scale of the messenger
sector is given by A ~ 10%-10° GeV. There aré, however, models which do not have
a separafe messenger sector so that the sector which breaks SUSY dynamically is
- directly coupled to the Standard Model gauge group {115, 116, 117]. In this case,
the effective messenger scale tends to be much higher. For the purposes of this
- chapter, it is enough to employ a simple version of the messenger sector, as in the.

original models, and take the messenger scale A as a free parameter.
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The messenger sector can be described by the superpotential
. ) .
Ws = 5/\53 + kSO O™ + k,5¢q + xS, | (5.2.3)

where S is a singlet superfield, ®* are charged under a U(1) assoéiated with the
SUSY-breaking sector and are singlets under the Standard Model SU(3) x SU(2) x
U(1) gauge gréup. The superfield ¢ (§) transforms as a (3(3),1,41/3) under the
Standard Model, while ! (I) transforms as (1, 2, F1 /2).

It is assumed that the scalar components of ®* acquire negative SUSY- _
breaking masses-squared due to its interaction with the SUSY-breaking sec-
‘tor (uéually accomplished by the so-called “messenger U(1)” gauge interaction

[112, 113]), and the potential associated with the scalar component of S reads
Vs = ~|ma[P(@H[2 + & [2) + |sSP*|? + |6SD[2 + k@D~ + ASP?, (5.2.4)

neglecting terms containing [ or q It is easy to see that the scalar and the F'
components of S acquire vacuum expectation values (VEVs) (S) and (Fs) and
therefore ¢ and ! acquire supersymmetric masses propoftional to (S) and SUSY-
‘breaking masses-squared pfoportional to (Fs).* This effect feeds down to the
MSSM through loop corrections. Gauginos acquire Majorapamasses at one loop,
while sfermions acquire SUSY—breaking masses-squared at two loops. The calcu-

lation of these soft SUSY-breaking parameters was done long ago (see [108, 119])

*There is a run-away direction ¢ = §, [ =l in this potential [132]. This problem can be avoided
by introducing more S fields to the messenger sector. Such details are, however, irrelevant for

the rest of this discussion.
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and its result is well known. At the messenger scale:

M, = %nB, (5.2.5)
3 2 2 2
m}i = 2nB? (gY,-2 (Z—;) + O ((%i) + Cj; (Z—;) ) . .(5'2'6)

Here and below, all o; = g2/4r are in the SU(5) normalization, B = (Fs)/(S) in
fhe messenger sector discussed above, and n detérmines the number of messenger
sector superfields responsible for mediating SUSY breaking. In the example de-
scribed above, which will be referred to as the model with the minimal GMSB,
n = 1. Y is the hypercharge of the particle, Cy - 3/4 for weak SU(2) dou-
blets (zero for singlets) and Cs = 4/3 for color triplets (zero for color singlets).
Eq. (5.2.6) guarantees that squarks of different families are degeneraté at the mes-
senger scale and therefore FCNC effects are safely suppressed. It is interesting to
note that, for small n, gaugino masses and sfermion masses.are comparable. For
very large n, on the other hand, sfermion masses can be significantly smaller than
gaugino masses (by a factor /n).

In the mechanism described above, trilinear couplings are not generated at the
same order (in loop expagsion) at the messenger scale. This is not the case in
general, and some models can generate trilinear coupliﬁgs with values comparable
to the other soft SUSY-breaking parameters even at the messenger scale [116]. For

most of the discussions in this chapter,
AP, 4(A) =0, . (5.2.7)

will be considered, unless otherwise noted.
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The GMSB does not generate a u-term because of the non-renormal‘ization
theorem. Therefore 1 is an input of the model, and, because it has difnensions of
mass, its only nonzero natural value is Mpianck (Mstring, Mcur). This is clearly
not allowed phenomenologically. The p-term must, therefore, be forbidden at the
Planck scale (by, say, a Z3 symmetry) and generated dynamically. Bel_ow, various
attempts to generate the y-term in fhe contexf of the GMSB are reviewed. The
following list is not meant to be .exhaustive and the descriptions of the various
éttempts are by no means complete. The review below only intends to show
that many attempts have been -mé,de while none of them appears to be entirely

satisfactory.

The simplest solution would be to introduce a term in the superpotential [112]
W D kSH H,, (5.2.8)

where S is the sinélet superfield in Eq. (5.2.3). In such a scenario x = k(S) and
m32 = k(Fs). m2 is the SUSY—breé,king Higgs mixing mass-squared in Eq. (5.2.2).

Phenomenology impdses that both u and \/773 are of the order of the weak
scale, unless one is willing to accept a drastic cancellation among parameters to

reproduce the observed M. Therefore,

(k(S))* ~ k{Fs) ~ (100 GeV)?, (5.2.9)
(Fs) A
and
o (Fs)



This situation is already excluded experimentally. Eq. (5.2.5) states that the
gluino mass is given by (a3/47)(Fs)/(S), and if Eq. (5.2.10) is satisfied one would
arrive at Mz o~ 1 GeV, which is unacceptable. The same is true for all the other
rsloft SUSY-breaking masses. This is a general consequence of Eq. (5.2.11). It
implies that \/77% > p if all experimental bounds on the SUSY spectrum are to
be éatisﬁed, while SU(2) x U(1) breaking requires Eq. (5.2.9). Some authors refer
to this puzzle as the u-problem in the GMSB [133]. |

Another simple solution that does not require the introduction of any ektra
superfields into the t‘heory éouples the Higgs sﬁperﬁelds to the g superfields present
in Eq. (5.2.3) [133]. In the minimal messenger sector [112, 113], one may have,
instead of ¢ and [, a complete 5 +§ nr&ultiplet of SU(5) to preserve the gauge
coupling unification. One can also use a 10 + 10 for this purpose, and generate
gaugino masses and scalar masses-squared with n =3. In this case, one can couple
the components ) in 10 that have the same qﬁantum numbers as left-handed
quark doublets and the components u that have the same quantum numbers as
right-handed up quarks (or their corresponding components in 10) fo the vHiggs
doublets. Explicitly, W D M Hy Qi+ Mg H,Qu. This will induce, in the Lagrangian,

a one-loop term proportional to

(5.2.12)

MAs [ 4 HiH,S1S!
1672 /d 0 StS

The F vacuum expectation value of S will generate p ~ Ay (P;?) and m3 ~

2
%&% (%s))) . Again one runs into Eq. (5.2.11) and must hunt for other solutions.
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A-l} of the models described above couple the MSSM Higgs sup‘erﬁelds to those
in the messenger sector. Not only did one encounter the problem of Eq. (5.2.11),
but some of the coupling constants i-ntroduced had to be made fairly small because
of the magnitude of (S) and (Fy). Anothér class of solutions tries to get around
this issue by introducing another singlet superfield, whose vacuum expectation
value would ge'neratevthe p-term.

One motivation for such models is to utilize the extra singlet to solve the
déublet—triplet Higgs splitting in SU(5) grand _uniﬁed‘theories via a sliding sin;
glet mechanism [134]. This mechanism is known to be unstable‘ against radiative

.corrections if the soft SUSY-breaking parameters are generate(i at a scale higher

than the GUT scale, but can be stable for the low-energy GMSB [135]. Ciafaloni
and Pomarol [136] claim that such a solution would generate a viable u-term. We
believe, however, that thé condition_é that they impose on thev soft SUSY-breaking
parameters can never be satisﬁedi in the context of the GMSB, where all soft
SUSY-breakiﬁg masses are tightly related. This will be discussed in Sec. 5.5.

'Thé simplest model with the addition of an extraj singlet one can irhagine,

referred to as the NMSSM [120], involves substituting the yu-term in the MSSM

superpotential by

MH H,N — §N3. (5.2.13)

The minimization of the scalar potential for Hy, H, and N at the weak scale
should produce VEVs vy aﬁd v, for both Higgs bosons, thus breaking SU(2) x

U(1), and z for the singlet. u would be equal to Az. The m$ term would arise
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due to renormalization grouf) (RG) running éf the A-term AA\H H,N from the
messenger scale to the weak scale. m§ would be equal to AA,z.

Dine and Nelson [111] claim that this model does not work for the low-energy
GMSB. A detailed analysis was not bresented in their papper, and the problém
will be explained in Sec. 5.4. They suggest the introduction of an extra light pair
of rq’ +¢@ and I' +1" as a means to produce a viable spectrum. They did not,
however, publish a quantitative analysis of the model, and say nothing about its
.naturalness. Agashe and Graesser [137] study this scenario and show that there
is indeed a solution, but it is fine-tuned. They present a possibility to ease the
fine-tuning by emplbying many lepton-like messengers while keeping the number
of quark-like messengers small. In Sécs. 5.4 and 5.5, the case for both the high-
and low-energy. GMSB is analyzed in gréat detail.

‘There are ways of giving N a VEV which are not related to electroweak sym-
metry breaking. In Ref. [112] two mechanisms are introduced, neither of them

| very appealing, where the N VEV is generated at the messenger scale. Namély,
L, A2
WD —§kSN S (5.2.14)

or

W > —k,Ngg — kNI (5.2.15)

in addition to the NMSSM. S, ¢ and [ are the messenger sector superfields present

in Eq. (5.2.3).
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In the case of Eq. (5.2.14), a potential
Vy = |kN? + ks{S)N|? — ksN?(Fg) - (5.2.16)

is generated for N in the presence of (S) and (Fs) VEVs. If one assumes kg to
~ be small, N develops a VEV T = \/E@, and p = %m assuming all other

couplings to be of order one. It is easy to see, a posteriori, that kg must indeed |
be small if one is to geﬁerate a phenomenologically viable s. Unfortunately this
case requirés that the soft SUSY—breaking masses-squared ~ (di [47)2({Fs)/(S))?
and p? ~ kg (Fs) are accidentally of the same order of malgnifucie." |

The superpotential coupling Eq. (5.2.15) would lead to a potential

1 (Kg(Fs))?
3272 Ke(S)

Vn D |EN?> — k,N — (I < q). (5.2.17)

T hé linear terms in N arise via tédpole one-loop diagrams involving ¢’s and I’s.
This would lead to z3® = %%3—21;259-%%)1 + (I +> ¢). Again k, and k; would have to
be small. This solution still faces the problem of ‘explaining why a term NS2 is
not present in the superpotential.- Note that the presence of such a term would
lead to an unacceptably large VEV for N. One may argue, however, that this

is “technically natural” because the absence of a term in the superpotential is

preserved by radiative corrections. An even more serious problem is the need to

tAlthough kg has to be small, its smallness is natural in the sense of 't Hooft. It can be
interpreted as being generated due to the breaking of some global symmetry, such as N —
/3N and H, , — €*"*/3H; 5, while S is invariant. This type of symmetry would also explain

the suppression of a term NS? in the superpotential, which would be of order (ks)?.
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suppress the kinetic mixing [ d*@STN + h.c. to ensure Fy < Fg; an unacceptably
large m§ = AFy would be generated otherwise. An order unity kinetic mixing
can be induced via radiative corrections between the ultraviolet cutoff, say the
Planck scale, and the messenger scale, and the bare parameter has to be chosen
very-carefully so that the unwanted mixing term can be canceled at the messenger
scale'. This kinetic mixing can be forbidden if there are two sets éf messenger
'ﬁélds and if the field N couples off-diagonally, e.g., W = N¢,g, etc [138]. Then
the tadpole term mentioned above is also forbidden, but a negative mass squared
for the N field can be generated instead. This would lead to the NMSSM in
a successful rhanner; again the pararheters must be caréfully chosen as in the
NMSSM with extra light quark pairs _(see Sec. 5.5).

Another solution with ‘extra singlets, which points é,n interesting way around -
Eq. (5.2.11), was suggestéd by Dvali, Giudice and Pomarol [133]. Their idea is to

generate the u-term via the following one-loop effective term in the Lagrangian:

/ 240 HyH,D*D,(S!S)
(S ’

' (5.2.18)
where D, is the supersymmetric covariant derivative. This works because D?
cancels 62 in S, while leaving 62 in ST. Then the integral over d6? can be done
and the p-term is generated, while m? is not. The m term would arise at higher
loops, or via some other mechanism.

An explicit realization of this mechanism [133] is the following. Suppose a sin-

glet field N acquires a linear term M2N in the superpotential due to its coupling to
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the messenger sector. Then the superpotential W = N(Y?+ H,H,; — M?) leads to
a minimum with (Y) = M, N = 0. However, by further coupling N to the messen-

ger superfields, i.e. Ngq etc, a one-loop diagram of messenger fields generates the

operator —— [d*0NSt(S51S)/(S1S), which contains V ~ —;N(Fs)2/(S). Note -
67 16
that this is the same linear potential generated in the case of Eq. (5.2.15). This

~ tadpole term induces a VEV for N of order (N) ~ 25 (Fs)?/(S)/(Y)? which is of

1672

the order of the weak scale if (Y)2 =M 2 (Fs). The Y field plays a crucial role:
it slides to cancel the F-component VEV of N before the tadpole is added aﬁd,
after SUSY is broken, its VEV is shifted and leads to (Fyn) = m2 7~ 12, as required
by phenomenoiogy. Note that the‘ p-parameter obtained .he're can Be understood
as a consequence of the effective Lagrangian Eq. (5.2.18), which is generated upon
integrating out N and Y before substituting the effect of the VEVs of S.

The necessary linear term (M2N) in the superpotential for N can be easily
generated by the kinetic mixiné between N and S or also by other rﬁechanisms,
as pointed out in reference [139]. One apparent drawback of tlﬁs realization is
that one needs a set of new fields whose interéctions are arranged in a rather
spe\cial way. Furtherm;)re one would expect the presence of a term proportional
to SH,H, in the superpotential. This happens because both S and N c_oﬁple to
the messengers, that is, W D Sq@ + Ngqq, and have, therefore, the same quéntum
numbers. It has already been argued that a coupling SH,H, has to vanish (see
Eq. (528)) Finally it is worthwhile to point out that this model also suffers from

the cancellation problem present in the MSSM (see Sec. 5.3).
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Dine, Nelson, Nir and Shirman [113] suggest yet another way of generating a -
term with the introduction of an extra singlet. It was inspired by flavor symmetry
models in [129], and resembles a modified version of the NMSSM + Eq. (5.2.14):

n+1 Nm+3 N2+p

HiH, + Ap———+ A

W D A — —-S - (5.2.19)
Mp, Mg " Mp, )

- where Mp is the Planck mass. When m =2, n =1 and p = 2, it is easy to check
that u ~ /\n\/(FT). The other couplings are assumed to be of order 1. It is also -
easy to see that one would require a very small, carefully chosen coupling An in
order to guarantee p ~ 100 GeV. Iﬁ is worth noting that this mechanism does not
generate an m? term.

At last it is interesting to mention another interesting possibility, pointed
out by Yanagida [140] and Nilles and Polonsky [141]. Their models utilize the -
accidental equality (Apsp/M,)/® ~ v(a/47r)2, where Apsg ~ 107 GeV is the
scale of dynamical SUSY breaking (DSB) in models with the loW-énergy GMSB
and M, =M pi/ V87 the reduced Planck mass. By introducing a new SUSY-
preserving sector with strong gauge dynamics, Yanagida’s model generates a
VEV for the superpotentflal whiéh cancels the cosmological constant from the
DSB sector. The constant superpotential in turn generates a p-term of order
Apss(Apsp/M.)/? ~ (a/4m)*Apsp ~ 1 TeV. The phenomen.ology of this model is
the same as the previous one (see Eq. (5.2.1>9)). The model by Nilles and Polon-
sky makes use of the Planck-scale suppressed Kahler potential, [ d*dN(z*2)/M,,

~where z is a chiral superfield in the DSB sector with an F-component VEV. This
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operator may be present at the tree—le\}el, but may also be generated by grav-
itational effects. It generates a tadpole for the singlet N: V= (Atgg/M.)N.
Together with the §N 3 superpotential of the NMSSM, it generates a VEV for N
of order (N) ~ (Alss/M,))'/®. Even though these models generate the correct
p-term of order the weak scale in the models ‘With the low-energy GMSB, this
would not work for the high-energy GMSB.

None of the mechanbisms outlined above are entirely satisfactory. Most of them

require a very spéciﬁc choice of parameters and the introduction of extra matter
" at or slightly above the weak scale. Fufthermore, most of them havé not been
studied quémtitatively (see, howevef, Ref. [142]), and there is no guarantee that
they indeed generate the correct electroweak symmetry breaking pattern and an
experimentally viablg spectrum. And last, but not least, there is no study of how
natural such a solution is, given that a viable pattern of elect;roweak Asymm-etry
breaking can be genefated.

It is, therefofe, part of goal of this chapter to study the simplest of the models
mentioned above in detail. Before that, it is imporfant to review the status of
electroweak symmetry breaking in the MSSM, where the' p-term is introduced “by
hand.” It will be pointed out. that, in the case of the GMSB, the current lower

bounds on superparticle masses already require an order 10% cancellaﬁon between.

the u-parameter and the soft SUSY-breaking parameters.
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5.3 The p-parameter in the MSSM

Various proposals to generate the u-parameter in models with the GMSB were
reviewed. This section contains a review of how electroweak symmetry break-
ing occurs in the MSSM, assuming that the y-parameter and m? are somehow
generated. In particular, there is a need for an order 10% cancellation between u-
parameter and soft SUSY-breaking p'arameters in models with the GMSB given the
| current experimental lower bounds on superparticle masses. Note that the case
of the NMSSM is different because the p-parameter is generated together_ with
electroweak symmetry breaking and hence the two problems cannot be clearly
separated. This will be discussed in the next two sections.

The tree-level Higgs potential in the MSSM is given by
V = miHy*+mi|H,|* - mi(HuH, +c.c) +
% | 2, 9” 2
+ 2 (HIGHa + HIGH,) + S (| Hal” — | Huf*)?, (5.3.1)

where the mass parameters involve both the supersymmetric y-term and the soft

SUSY-breaking terfns,

mi = p’+mi, (5.3.2)

mi = pr+my. _ (5.3.3)

In the MSSM, one can show that the vacuum can always be gauge rotated to the

Hd=(’3’), ‘Hu:<£u). (5.3.4)

following configuration



The two expectation values need to satisfy v3 + v = v? = (174 GeV)? in order
to reproduce the observed My, and it is conventional to parametrize them by
vg = vcosf, v, = vsin . The minimization condition of the potential can be

rewritten in the following form:

M%Z o, my —mj tan?f
- = e+ tan? § — 1 , (5.3.5)
2mi = (2u*+mf, +mj,)sin2p. (5.3.6)

It has been claimed that electroweak symmetry breaking is natural in the
MSSM because m%,u is easily driven negative'due to the presence the top Yukawa
coupling in its RG evolution. In models with the minimal GMSB such as the
original ones in [112, 113], the boundary condition for the supersymmetry breaking
parameters are given by Egs. (5.2.5,5.2.6,5.2.7). A simple one-loop approxima.tion
is valid in the case of the low-energy GMSB because of the small logarithm between

the messenger scale A and the electroweak scale, and one finds

m_ (Mz) ~ m%, (Mz) - ~166711327;zt241c>g MA_Z (5.3.7)
which is always negative. |

.- The need fof a cancellation between the‘ p-parameter end soft SUSY-breaking
masses can be seen as follows. Experimental constraints bound the superparticle
masses from below, which henee set a lower limit for the ratio B = (Fs)/(S).
Therefore one finds that |m% | is bounded from .below. On the other hand, in
order for the observed M% to be reproduced, the pu-parameter is constrained by

Eq. (5.3.5). For a rrioderately large tan § 2 2, my, can be completely neglected
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and one finds

——22 ~ —p? —mYy . (5.3.8)

This equation requires a cancellation between 1% and (negative) m%,u to reproduce
MZ/2 ~ (70 GeV)? correctly. The degree of cancellation is given by (M2/2)/u?}

To determine the lower limit on |m};_ |, a number of experimental_ constraints
are considered [144]. One is that the gluino must‘ be heavier than 190 GeV, which
becomes stronger if the squarks have comparable masseé. The second is that the
right-handed selectron must be heavier than 80 GeV.§ For large tan 8, the right- _
handed stau may become rather light; it is then required that mT > 55 GeV if
it decays into tau and a neutralino or gravitino, and m; > 73 GeV if it does
ndt decay inside the detector. The lightest chargino was also considered to be
heévier than 63 GeV. The most recent lower bound on the chargino mass [110] is
m-x+ 2 67 GeV, which leaves the .analysis virtually unchanged.

The case of the minimal low-energy GMSB with small tan 3 is discussed first,

to make the argument clear. Here A ~ 10° GeV is considered. The gluino mass

tThe degree of cancellation is defined as follows: it is a percentage quantity that mea- -
sures how much a given input parameter (in this case u?) is free to vary before a given out-
put parameter (in this case M%) changes significantly. Explicitly, the degree of cancellation
is (d(log M%)/d(log 1x2))~1. This definition corresponds to the inverse of the Barbieri-Giudice

function [143).
$This bound depends on the mass of the neutralino into which the selectron decays. However,

since u turns out to be large, it is a posteriori justified to assume that the lightest neutralino is
almost pure bino. Then the GMSB predicts the relation between selectron and the bino masses,

and hence one has a fairly reliable lower bound.
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constraint requires

B > 23 TeV. (5.3.9)

This bound itself is independent from the messenger scale. However, the gluino
mass bound depends on the mass of the squarks, and it strengthens if the squari{
masses are comparable to the gluino mass. For the minimal léw-energy GMSB,
squarké are significantly heavier than the gluino and the bound above can be used.
A more stringent constraint is derived from the requirement that the right-handed
sleptons are heavier than 80 GeV. Including the one—loopvrenorr_nalization group

evolution and the D-term, one finds

3 (o1)? 2 [ (01 (Mpess) 2 ‘ -
m2 1 2 1 mess 2 9 2
-1 by B —|-_- —_— 7 1 M M
¢ %5 (47r) 11 (( o, (Mz) ) v 2(Mz) + M3 sin® Oy cos 23

= 2.89 x 107°B% — 0.232M2 cos 28. (5.3.10)

Therefore one finds

B>39TeV | (5.3.11)
for the most conservative case cos 23 = —1. With this lower bound one finds
4 [ as(Mimess)\” |
m? > 23 (%—) B? > (430 GeV)2. (5.3.12)

Using the one-loop running of m%_, one obtains
m¥_ (Mz) < —(260 GeV)? (5.3.13)
and as a result of the minimization condition,

p > 250 GeV. (5.3.14)
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Figure 5.1: Lower bounds on x in models with the GMSB subject to the constraint
Mz =91 GeV and to the lower bounds on superparticle masses (see text), (a) as
a function of the messenger scale, for tan § = 2, 10, and 30, and (b) as a function

of tan B3 for a fixed messenger scale of 108 GeV.

This reqﬁires a cancellation of 7% in order to obtain the correct M%. Even though
this level of cancellation is not of immediate concern, this analysis shows thé need
for a certain amount of cancellation which will become worse as expgrirﬁental lower
bounds on superparticle masses improve.

As it is clear from the argument above, the actual lower bound on 7 depends
on the messenger scale and tan 8. This issue was studied numerically using the
experimental boﬁnds quoted above and the lowest possible value of i as a function

of the messenger scale found. In Fig. 5.1(a) the bounds for three values of tan
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‘are plotted. The lower bound on y comes from one of the various experimental

constraints. For instance, the tan § = 2 case is dominated by the lower bound on

Mgz, Up t0 8 messenger scale of 10'2 GeV, after which the gluino mass bound is more

important.¥ The case of tan 8 = 10 has a similar behavior. The situation is more
complex and interesting for tan 8 = 30. For a messenger scale of up to 10'° GeV,
the stau is the lightest supersymmetric particle (excépt for the gravitino). It
decays inside the détector to tau and gravitino for the lowest messenger scale,
but leaves the detector without decaying for higher messenger scales. This stable
sfau provides the strongest constraint. From messenger scales above ~ 102 GeV
the stau decays inside the detéctor to tau and neutralino. This bound dominates
up to ~ 1016vGeV, when the gluino bound dominates. The chargino bound 1s
comparable to that of the gl@ino for the GUT scale (Mgyr .= 1.86 x 10'¢ GeV).
Fig. 5.1(b) depicts the minimum value of x as a function of tan 3 for a ﬁxe&
messenger scale (A = 10® GeV). The tan § dependence can be easily understood

as follows. Starting from low tan g3, increasing tan decreases the top Yukawa,

'coupling, ‘and hence m",’,u receives a less negative contribution from the top-stop

loop. Therefore a lower value of u is allowed: This part is dominated by the
ér bound. However beyond tanf§ ~ 20, the bottom and tau Yukawa coupling
become important. In fact, the scalar tau mass is pushed down both because

of the loop effect and left-right mixing, and the experimental lower bound on B

YOnly the case of one messenger (n=1) was énalyzed. For larger n the gluino bound becomes

less important and the slepton bounds dominate up to the GUT scale.
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becomes stronger. Beyond tan 8 ~ 30, the stau does not decay inside the detector
for this choice of the messenger scale and the constraint is even more stringent.
This in turn leads to a more negative m%; and hence a larger p.

Combining both the messenger scale dependence and tan 3 dependence, one

concludes that the most conservative current limit is
u> 160 GeV. (5.3.15)

The required _canceHation between p? and soft SUSY-breaking parameters in order
to reproduce the observed Mz is M%/2u? = 16%. Note that this level of cancel-
lation is the absolute minimum, and a more accurate cancellation is required for
most of the parameter space. |

In the case of minimal su.pergravity models, where all scalars have the universal
SUSY-breaking mass-squared mj, all gauginos have mass M;/, and all A-terms
are given byb.Ajej = Ao)\}j for f = u,d,l, at the GUT vscale, 'tile situation appears
to be better. The renormalization group e(iuations can be solved numerically for

each choice of tan 5. As an example, for tan ,H =2

my, = m§+0.50M7,, , (5.3.16)
my, = —0.32mj - 2.49M7); — 0.0543 — 0.20M > Ao, (5.3.17)
mi = mj+0.15M7,. (5.3.18)

By requiring m; > 80 GeV and M/, > 60 GeV (this is a rough bound inferred
from the gluino bound Mj; 2 190 GeV), one finds x> 82 GeV. This basically does
not require any cancellation, since M2/2u? = 65%.
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The situation can be somewhat ameliorated in the MSSM if there is a Fayet-
Illioupoulbs D-term for the U(1)y gauge group.' Such a D-term is known to arise
in many ways, such as kinetic mixing of the U(l)y and U(1)mess géuge fields
[145]. The running of all the parameters remaihs the same except that one adds
another contribution from the Dy at the weak scale (see>Chap. 3). If the sign is
appropriate, it increases .mg — m2 + Dy and m"},u = my, + %Dy (less negative)
while decreasing m?% L qud — %Dvy. All of these help push the parameters
relevant for electroweak symmetry breaking in the right direction. Larger m?
reduces the lower bound on (Fs)/(S), and a less negative m%, is also welcome.
Therefore the sensitivity to p (required cancellation between p and soft SUSY-
breaking parameters) in the MSSM can bé improved in the presence of a Dy with
the appropriate sign.

It will be shown in the next two sections that the situation in the NMSSM
is muéh worse. There is no phenomenologically viable solution to electroweak
symmetry breaking. Oné can modify the model to generate a large negative mass-
squared for'the singlet ﬁgld and then find a viable solution. This solution also
requires a cancellation among parameters which has the same origin as the can-
cellation present in the MSSM. It will also be shown that the addition of the

Fayet-Illiopoulos D-term does not improve the situation within the NMSSM.

5.4 The NMSSM with the GMSB

In this section the feasibility of implementing the GMSB in the framework of
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" the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is studied. The
presentation begins by introducing thé NMSSM: its particle content, superpoten-
tial, and soft SUSY-breaking terms. The major steps in the analysis are brieﬁy
reviewed: the boundary conditions for the breaking terms, the RG evolution, and
the minimization of the weak-scale one-loop effective potential. Then, the results
of a numerical scan of a large portion of the model’s pararﬁeter space are described.
It is found that it is impossible to evade the present-day experimental constraints.
This argument is further strengthened by providing a semi-analytical explanation

for the inevitability of this conclusion.

5.4.1 The NMSSM

The NMSSM represents an attempt to solve the p-problem of the MSSM in
the simplest and most direct Way:v the spectrum of the MSSM is augmented by a
gaﬁge singlet superfield N, which C(;uples to H;H, and plays the role of the u-term
once it develops a nonzero vacuum expectation value {120]. The original p—term is
banned from the theory so that there are no dimensionful parameters left in the
superpotential. o

The VEV of the scalar component of N is determined by minimizing the scalar
potential with respect to Hy, H,, and N sirhult_aneously. It is natural to expect
the VEVs to be of the same order of magnitude for all three fields, thus generating
an effective p-parameter of order the weak scale, as required by phenomenology.

The Complex scalar N introduces two additional degrees of freedom to the Higgs
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sector. Therefore, the particle spectrum of the NMSSM coﬁtains three CP—even
Higgs scalars, two CP-odd Higgs scalars, and one charged Higgs scalar.v Immedi-
ately, there is a problem: one of the pseudoscalar Higgs bosons is massless. This
happens because the superpotential W = AN HdHu has a Peccei-Quinn symmetry
N — Ne*, H H, — HdHué‘ia. This symmetry is spontaneously broken by the
VEVs of the fields, making one of the pseudoscalars massless.

The standard solution to this problem is to introduce a term cubic in N, which
explicitly 'breaks. the symmetry mentioned abéve. Thié térm is allowed by the
gauge symmetries of the model and does not éontain a dimensionful coupling
constant, so it is generically expected to be present in the superpotential. One,
however, still has to worry about a light pseudoscalar Higgs boson. As will be
shown shortly, its mass can also be small because of the presence of a different
(appvroximate) U(1) symmetry. |

Overéll, the only change made to the MSSM superpdtential is t_h.e following:

pHyH, — ANHyH, — §N3, . (5.4.1)

while the corresponding change to the soft SUSY-breaking part of the potential

is:
‘ . | |
~mi(HyHy + c.c) — —(AMANNH H, + gkAkN3 + h.c.) +m%|N|%. (5.4.2)

One can determine the VEVs of the Higgs fields Hy, H,, and N by minimizing

the scalar potential, which at the tree-level consists of the F-terms, D-terms, and
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soft SUSY-breaking terms:

Vi = Ve + Vb + Viop,
Ve = |AH H, — kN?? + X2|N|2(|Ha? + |H.)?),
92 ~ t =17 32 9° 2 22
Vp = ?(HdaHd_f—HuaHu) +§(|Hd| — |Hy,|%)?,
Ve = mi |Hal* + miy |Hu|* + my |N|* = (AAAHgH N + h.c.) —

_ (gAkm + h.c.) . (5.4.3)

An important fact to notice is that both Vy and Vp remain unchanged when
Hg, H,, and N are all rotated by the same phase. In fact, only the soft SUSY-
breaking A-terms are not invariant under this transformation. This éan be po-
tentially dangerous, because, in general, the A-terms are considered to be zero at
.the messenger scale, and their sizes at the weak scale are determined by the RG
evolution. If the genera.ted. values of Ay and A, are not large enough, the scalar
potential has an approximate U (1) symmetry. This symmetry is spontaneously
broken by the vacuum exi)ectation values of the Higgs fields, and, as before, one
has to worry about a light pseudoscalar Higgs boson.

The VEVs of the neutral components of the Higgs fields are denoted by v4 and

Uy, as in Sec. 5.3, and the VEV of the singlet field by z:
(N) =z. : (5.4.4)
As a function of these VEVs, the potential has the form

Vrfsziraz = {dgyy ~ k$2|2 + )‘2|xl2(|vdl2 + |'Uu|2) + m%{d|vd|2 + m%{ulvUF + m?v|$|2 -

~(Mrvavas +he) = (34xa” + hee) + 5’2—8-9—(|vd|2 ~ B2 (5.4.5)
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It is well known that some of the Higgs boson masses receive significant con-
tributions from radiative corrections. In the numerical analysis this is accounted

for by employing the one-loop effective potential

2
aneuion(:f( ) = Vrfgf;tral ('Uz) ) + 6—4—S’I‘I‘M4(U1) <10g Mﬂ(vz) - g) . (546)

In this expression MQ(vi) is a ﬁeld—dependent scalar mass-squared matrix, and u
is the MS renormalization scale. As indicated explicitly, the values of tﬁe various
parameters entering V¢ depend on the choice of th.is scale. To the leading
order this dependence is canceled when the second term on the right hand side
of Eq. (5.4.6) is included, and the result of minimizing Vl;’oof’ is less sensitive to
the choice of the scale where one stops runniﬁg the RG equations. (Canceling.out
this dependence completely would require calculating radiative corrections to all
orders..)

The matrix M? depends on the field VEVs v; through the Yukawa couplings of
the Higgs fields to various other particles. What plays a crucial role here is not the
absolute values of .the masses, but rather the rate of their change as one changes
v;. Therefore, the most important contribution comes from the field-dependent
masses of the top quark and squarks, which have the largest Yukawa coupling.
Denoting their mass eigenvalues by m;, m;, and mt-; respectively, the contributien

to V1-looP from radiative corrections due to these states is
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AV =

m7 (vi) 3 mi (v:) 3
[m‘}l (vs) (log ——t/:T— - 5) + m‘gz(vi) (log —t;;z—— - 5)

—2mi (v;) <log miw) _ §)] . (5.4.7)

3272

p? 2

5.4.2 Numerical Analysis

In models with the GMSB the values of the soft'SUSY-breéking terms are spec-
ified at the messenger scale by Egs. (5.2.5), (5.2.6) and (5.2.7). Theif values at the
weak scale can be detérmined by solving the RG equations given in Appendix F.

The model has five input parameters: hiy A, k, B, and n. (Note that the only
dimensionful input parameter is B, and its magnitude will determine the overall

| scale of the VEVs and the soft SU\SY-breaking masses.) There are, however, two -
constrains which must be satisfied at the weak scale: v = m =174 GeV and
he, =165+ 5 GeV.l A common app.roach is to use the minimization conditions
and RG equations to solve for the inputs, given a phenomenologically allowed
set of weak-scale outputs. In the case bf a high messengér scale, however, no
easily invertible solution for the RG equations is available. In‘stead, the problem
is tackled numerically. After running down the RG equations and minimizing the
Higgs potential once, this prbcedure is iterated, each time adjusting the V@Iue of the

parameter B to fix the overall scale of the VEVs and masses, while simultaneously

INotice that this number is not equal to the top quark pole mass, the experime_ntally measured
quantity, because of QCD corrections. The relationship between the two is given, at 1-loop, by

Mpote = (1 + %9‘7—(‘-)
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changing fhe difnensionless couplings to correctly 'reproduce the top quark mass.
This iteration process, in fact, converges fairly quickly.

Using the procedure above, a numerical scan of a large portion of the param-
eter. space is performed. The low-energy particle spectrum is studied for various
messenger scales A, numbers of messengers n, and values of the couplings A and k.
It is interesting to note that it is very easy to generate non-zero VEVs for Hy, H,,
and N, even when m% is a small positive number. This is because the terms
| Avqv, — kx?[? and A,\/\vdvu:p, when Avgv, and k are of the same sign, both “push” -
the VEV of the real éomponent of the singlet away from the brigin. Unfortunately,
one finds that, for any choice of values of the input parameters, there are always
particles with unacceptably small masses. To illustrate the situation, Table 5.1
presents numerical results for several representative .points in differeﬁt “corners”
of the parameter space. The first two points represent the typical situation for
the case of the low-energy GMSB, thé hext two are representative of the case of
the high-energy GMSB, and the last one explores the extreme case- of A = 10%°
GeV. Points 1 and 3 have relativély large values of k, while points 2 and 4 have
k <<_1. Notice that in the table a similar limiting case for A was not considered.
This is not a coincidence. It turns out that, for /\ S .0.2, the dominant term iﬁ
the potential is Vp, and tan g is fqrced to values very close to one. In this case,
in order to correctly reproduce the top quark mass, one is forced to choose h; at
the Weak scale such that h; hits the Landau pole below the GUT scale. Only

the cases where the couplings in the superpotential remain perturbative up to the
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GUT scale were considered. However, no such assumption is made in the analysis
in the next subsection.

It can be seen that, in all thevcas_es presented in Table 5.1, there are particles
with unacceptably small masses. The result for the low-energy GMSB is not new
and has been known lfor several years [111]. On the other hahd, the situation with
a high messenger scale had not been quantitatively studied in the literature to
. date. One expected feature that is indeed seen in points 3 and 5 is the increase of
the pseudoscalar Higgs boson mass with A. This happens because the magnitude
of A,, generated by running the RG equations, increaées with the messenger scale,
and it is A, that breaks thg U(1) symmetry of the potential, as discussed before.
Another result that could have been anticipated is the smallness of the méss of the
light pseudoscalar Higgs when k£ < 1 (points 2 and 4). This is due to the Peccei-
Quinn symmetfy, vwhich is festored in this limit. What is surprising is that raising
the messenger scale by 10 orders of magnitude does not bring any other significant
changes to thé particle spectrum. The massés of the gluino, right-handed selectron,

and scalar Higgs boson still remain small.

5.4.3 Analytical Considerations

This subsection contains a rather simple semi-analytical argument which ex-
plains why there can be no phenomenologically acceptable solution to the NMSSM
with the GMSB. It is shown that if one assumes that such a solution exists, one ar-

rives at a contradiction. Some of the features of the numerical solutions presented
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Table 5.1: The numeripally determined NMSSM parameters for five sample points
ih the parameter space. Here my, and my, refer to the eigenvalues of the scalar
and pseudoscalar Higgs mass matrices respectively, and m; denotes the mass of
the right-handed selectron. The vélues of A\, k, and h; are given at the weak scale.

All the other quantities have been defined earlier in the text.

Input Parameters
point | A (GeV) | A k B(TeV) | n | hy |
1 5x 10* | 0.25 0.1 6.4 1 {112
2 10° 0.28 [ 3 x10~* 3.6 3 |1.08
3 10  {0.32 0.3 099 |10]1.07
4 1012 [0.25 [3x 1074 6.0 1| 111
5 0% 0.28 0.3 6.9 1]1.07
Soft SUSY-breaking Parameters at the Weak Scale
point | m¥. (GeV?) | my, (GeV?) | m% (GeV?) | A, (GeV) | A4 (GeV)
1 —-24x10% | 53x10% 4.6 -1.5 —4.0 x 10~
2 —2.8 x 10° 5.7 x 10* 6.8 -2.6 -6.2 x 10~
3 -3.1x10° 4.8 x 10* 29 —114 —0.15
4 -2.5 x 10° 6.8 x 102 12 -8.0 -0.11
5 —29x10% | 1.0x10° -8.1 -94 | -6.0x10"
Field VEVs Particle Masses
point | tan B | z (GeV) | M3 (GeV) | m; (GeV) | my, (GeV) | my, (GeV)
1 1.59 -3.7 61 32 85, 39, 35 51, 1.8
2 1.84 -3.7 103 35 87, 48, 38 48, 0.2
-3 1.97 —-40 94 36 87, 53, 28 76, 25
4 1.63 -14 57 34 85, 43, 37 44, 0.5
5 1.88 —49 66 40 88, 50, 27 71, 24
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in the previous subsection are also explainéd.

Suppose that for some point in the parameter space an acceptable solution
exists. The problem to be addressed is the smallness of the selectron, gluino, and
| Higgs masses. For simplicity the analysis is based on the right-handed selectron
mass constraint. The magnitude of m; is diréctly prdportional to the size of the
B—parameter. In our numerical procedure the value of B is chosen in such a way
that v = 174 GeV. A typical value of B obtaingd in this way yields a very small
selectron mass (m; ~ 35 GeV), gluino mass (M; S 100 GeV), and soft SUSY-
breaking masses for the Higgs bosons (m}, ~ —3000 GeV?, m}; ~ 500 GeV?). |

It is, therefore, obvious that the only chance of obtaining an acceptable. value
for the selectron mass is to raise B, by a factor of three or more, and try to arrange
the other parameters in such a wéy that m remains 174 GeV. Since B feeds
into all soft SUSY-breaking masses, their absolute values will also increalse. For
example, imposing mg. > ‘80' GeV forces m%;, < —(215 GeV)? for a messenger
scale of 10'® GeV. For different messengef scales the bound bgcomes even more
stringent, as shown in Fig 5.2(a).

To determine the consequences of raising thé soft SUSY-breaking masses, the
Higgs potential (Eq. (5.4.5)) will be analyzed. The extremization conditions at

tree level are

8 tree

—-neutral - 9 (A\pguy — kz?) Ay + 2022204 + 2mE vy — 24\ A0,z +
8vd ‘
2 2
+g I g2 2Ud(v3 . vg), , (548)
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Figure 5.2: (a) Lower bounds on |m%, |'/? and |m%,|'/? as a function of the mes-
senger scale A from the ‘selectron mass constraint m; > 80 GeV. Here n = 1,
hy =1.07, k =0.3 and A =.0.29 at the weak scale. These bounds do not change
for different values of k or A\. The other plots show typical values of (b) Ay, (c)
Ay, and (d) m%,, for the same ichoice of parametefs thét yielded (a). The values

of these parameters do not change significantly for different values of k£ or .
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6vtree

_5e_utr% =" 2(\vgv, — kz?)hvg + 2X2z%, + 2mY v, — 245 \vgz +
Uy :
12 2 '
+ L1020, (02— ), (5.4.9)
6Vrf€5§ral 2 2¢,,2 2 2
B el 2(Avgu, — kz®)(—2kz) + 22X*(v; + v.) + 2myz —
—2A\Mvgvy — 2k Agz?, (5.4.10)

The ﬁrst two equations (Egs. (5.4.8) and (5.4.9)) closely resemble the corre-
sponding ones in the MSSM case. In fact, the only difference in the NMSSM is
the presence of the first term on the right-hand side of Eq. (5.4.8) and Eq. (5.4.9).
This term originates from |4%|? = [Avgv, — k2?|? and is, therefore, absent in the

MSSM. Dividing Eq. (5.4.8) by vy, Eq. (5.4.9) by v4, and subtracting the two

expressions, this term can be canceled. As a result, one obtains

MZ 1 1m?% — m?
2,2 _ _™Mz 2.2 2 y_ -!""Hy Hy
Mot = gt g M) - 5 s 28
- 2 m? —m? tan® :
- Mz | ™n, ™, ﬁ. . (5.4.11)

2 tan2 8 — 1
Note that this equation is identical to Eq. (5.3.5) with 4 = Az. To obtain the
NMSSM analog of Eq. (5.3.6) one divides Eq. (5.4.8) by v4, Eq. (5.4.9) by v, and

add the two. Solving for AxAz (AxAz = m2) one finds:

glé% + Awavy — kz?). (5.4.12)

Az = (myy, + my, + 22222)

Egs. (5.3.6) and (5.4.12) differ only by the contribution from {3
Eq. (5.4.11) states that the value of the effective y-parameter generated in this
model is subject to a rather stringent bound: X*z® > —m} — MZ/2, which, if

one imposes m%_ < —(212 GeV)?, translates into Az > 200 GeV. Notice that the
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origin of this bound is thé same as of the bound on the size of the u-parameter
derived in Sec. 5.3, since the condition given by Eq. (5.4.11) is the same in both
cases. In the present case, however, the bound is stronger because tan § is no
longer a free parameter bgt is determined by minimizing the Higgs potential.

So far only .the first two extremization conditions were looked at. The attention

is now turned to Eq. (5.4.10). Solving for z2 in Eq. (5.4.11), one can rewrite

Eq. (5.4.10) as
k? (my, —my, tan’ B M2 9 . , ,Sin 243
ZE( tan? f — 1 T 79 )—/\'v (k81n2'B_A)—mN+AAAU 5 + kA .
(5.4.13)

_While it was shown that phenoménology requires the expression.in parenthesis on
the left-hand side to be larger than (200 GeV)2, the terms ;n the right-hand side
are allx much smaller, because m%, A,, and A, are zero at the messenger scale
and the effects of the RG runﬁing are relatively small (see Fig. 5.2). This meaﬁs
that the above equation can never be satisfied unless k <A |

An imrhediate consequence of the k¥ — 0 limit is that the mass of the lightest
pseudoscalar Higgs goes to zero, as it becémes a Nambu-Goldstone boson. (It is
for this reason that k was introduced in the first place.) Furthermore in the limit
of large i and small & the determinant of the scalar Higgs mass-squared matri;{ be-
comes negative, which means that the extremum point given by Egs. (5.4.8-5.4.10)
ceases toi be a m.inim.um. To show this it is necessary to first derive a relationship
between k and sin28. Such a relationship can Be derived from Eq. (5.4.11) and
Eq. (5.4.12). Neglecting M%, AyAz, and A?v? in comparison to m¥, and m%, one
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finds that

in2g =~ L 1+ (r? 1)]“2 5.4.14
Slnﬁ—xw +7r re— X . ()

Here r = —(m%, + m3;,)/(m%, — m};,).** For k < A, Eq. (5.4.14) reduces to

P — |
sin 20 ~ 25 {%} . (5.4.15)

Equipped With the last result, one can consider the determinant of the scalar
Higgs mass-squared matrix. The full expression for it is given in Eq. G.1; here
only the leading terms need to be identified. One is interested in the case u > Av,
and, as was argued before, the soft trilinear couplings A, and Ax can be neglected.
For this reason, the dominant terms will be the ones cqntaining the highest power
of u:

22 /,L4

det Mgcalar = m

(—4kX* + K35 + k® cos(4B)g? + 8K*)*sin(26)) . (5.4.16)

That these are indeed the largest terms was checked numerically.

Taking into account the fact that k£ and sin 283 are proportional to each other
for srﬂall k, one can easily see that, in the limit k — 0, the first term dominates
And the determinant is negative. !

This completes the argument, and one is now able to state that there can be no

phenomenologically viable solution in the context of the NMSSM. One could have

**In deriving Eq. (5.4.14) it was necessary to assume that sin28 > k/A. This translates into
two requirements: r > 0 and k/A < 1. One concludes that for large soft SUSY-breaking Higgs

masses-squared it is necessary to have A > k.
ttBecause sin 243 « k/ X there is no ambiguity with sign redefinitions of A or k in Eq. (5.4.16).
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also based the afgurnent on the gluino mass bound. The experimental constraint
M; > 190 GéV translates into the requirement m%;, < —(212 GeV)? (assuming
n = 1), and the rest of the argument follows unchanged. Notice, however, that
the bound on m},_ weakens if the number of messenger fields is téken to be very
large.

- Now the issue of interpreting the numerical results of the previous subsection
is addressed. It is important to understaﬁd, for instance, :why the values of the
singlet VEV z in Table 5.1 are al\&ays smaller than the VEVs of thé Higgs doublets
And, furthermore, why z is only several GeV for a low messenger.scale.‘

The answer comes from considering the extremization condition for z:

’U2/\ sm(2ﬂ)A>‘

5 ~0, (5.4.17)

2k%z% + A (A — ksin(26)) vix —

where the terms m% and kAxz were omitted (|m%| < A?v? for all the points in the |
table). For most of the parameter space the cubic term in z can also be neglected,
giving

sin(20) - |
(= fon@)’ (5.4.18)

RN
~ 33

Thus the smallness of z is related to the fact that A, is small. The above approx-

imation holds as long as

' 3
ko
42 < )2 2,\_22(1—Xsm2ﬁ)
A k2 - sin?23 ’

(5.4.19)

which is not satisfied only for point 5 in Table 5.1. For point 5 the value of z can
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be approximated by

Asin28\?
~ 2
1:_<A,\v e ) . (5.4.20)

Again z < v and therefore Az < 175 GeV.

Knowing that z is small in this model one can derive another interesting rela-

tion. Neglecting all the terms containing z in Eq. (5.4.12), one obtains:
Mo? ~ —(mly, +mb,). (5.4.21)

This explains why the Vall\leS of the soft SUSY-breaking masses for the Higgs .
bosons are so similar for very different values of the messenger scale.

Finally, one can say a fe“" WOrdS about the scalar Higgs boson masses. In the
limit of small z (and hence small x), the dominant term in the determinant of the -

scalar Higgs mass-squared matrix (see Appendix G) is

- 3A ,\'06/\4g2

, 34,050 |
det M atar = 25 sin(2h) (5.4.22)

Taking into account the fact that, for small z, u = Az ~ A, (see Eq. (5.4.18)),

the equation above gives:

3v6)‘4g2

en(2B) (5.4.23)

2 2 2
mhl thmhs ~

This explains why changes in the messeﬁ'ger scale have almost no effect on the
product of the scalar Higgs boson masses (see Table 5.1), as long as A is unchanged.
For sin(28) ~ 0.8 — 0.9, which is _what one typically finds in this case, Eq (5.4.23)
gives a “geometrical average” value of the scalar Higgs boson mass of only about
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50 GeV. This means that, as long as z is small, the model necessarily yields

phenomenologically unacceptable Higgs boson masses.

5.5 Possible Modifications to the NMSSM

In this section the expressions derived in Sec. 5.4 are reexamined and one
attempts to modify the NMSSM to make it phenomenologically viable. Several
possibilities are studied and the problems that arise are identified and discussed.

Overall, none of the possibilities are found to be entirely satisfactory.

5.5.1 Extra Vector-like Quarks

One wants to modify the NMSSM in é way that allows one to avoid the con-
clusions of Sec. 5.4. Recall that the crucial step in the analysis there was the
observation that Eq. (5.4.13) could not be satisfied: the left-haﬁd side was always
- greater than the right-hand side. To obtain a consistent. solution one has to some-
how make both sides equal. One possibility is to make m%, of the same order of
magnitude (énd sign) as m"},u. That could be accomplished by coupling the singlet
to some new fields and arranging the.parameters in such a way that the SUSY-
breaking mass-sqﬁared of the singlet is driven sufficiently negative. This idea was
first proposed by Dine and Nelson in Réf. [111], who introduced new color-triplet

fields ¢’ and‘q" and coupled them to N. The corresponding superpotential is

1 ) .
W = h,QHu® + hyQHyd + he LHye® + ANHyH,, — 5/cN3 + A Ng'7 . (5.5.1)
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According to Eq. (5.2.6), the scalar components of ¢’ and ¢’ acquire large SUSY-
breaking masses, which can drive m?% sufficiently negative.

Agashe»and Graesser in Ref. [137] did a quantitative study of this scenario
for the case of the low-energy GMSB. They showed that it is indeed possible to
generate a large negative m%, in the range —(150 GeV)? to —(200 CeV)z, and
further demonstrated that, with m% of this magnitude, one can choose the input
parameters in such a way that v = 174 GeV and all experimental constraints are
evaded. They alsd pointed out that in this scenario the input parameters need to
be fine-tuned in order to reproduce the above value of v. In what follows, a set of
input parameters that yields an accep_table'particle spectrum is given, and then
one proceeds to analyze the sensitivity of the-Higgs boson VEVs to the NMSSM
coupling constants. The origin of this sensitivity is described and va.lso extend the -
analysis to the case of the high-energy GMSB.

As an example of an allowed solution, consider the case of the low-energy
GMSB with B = 50 TeV, n = 1, and A = 100 TeV. For m% = —(190 GeV)2,
to correctly reproduce Mz and m; one takes h;=0.99, k = —0.045 and A=0.11 '
at the weak scale. It is found that tan § equals —2.9 for this point. Because
the magnitude of the pfoduct Bn is now quite large, the masses of the gluino
and right-handed selectron are safe: Ms = 477 GeV, ms; =93 GeV. The vacuum
expectation value of the singlet is also large, £=2.97 TeV, which, as was argued
earlier, is required by Eq. (5.4.11). The eigenvalues of the scalar Higgs mass matrix

~are 404, 270, and 90 GeV, and those of the pseudoscalar Higgs mass matrix are
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400 and 6.7 GeV. The last number appears alarmingly small at first sight but, as
shown in Ref. [137], has not been excluded. The reason is that the corresponding

eigenstate a is almost a pure singlet:
|a) = 0.031|Hy) — 0.011]|H,) — 0.999|N) (5.5.2)

The quantitative criterion given in Ref. [137], based on the constraint from the
T — a7y decay, is

sin 20 tan 3
z .,
\_/(250zc;ev) + sin” 2§

and for the parameter set above the left-hand side equals 0.15.

< 0.43, (5.5.3)

In this scheme it is, therefore, possible to find a point in the paraméter spacé
which leads to a phenoxﬁenolégically viable solution. Unfortunately, as was al-
feady mentioned, this solution is very sensitive to the choice of the superpotential
coupling constants A and k. Iﬁ the remainder of this subsection, this issue is
discussed in detail. |

| The values of the parameters for th;a set just deécribed had to be chosen in
such a way that the top quark and Z-boson masses .vcrrere fixed at their known |
eiperimen’cal values. It is interesting to investigate what values of MZ would be
predicted for a generic choice of the parameters. Fig. 5.3 depicts the magnitude
of the quantity v = \/m as a function of A and k. The ﬁgure shows that
small changes in both A and k lead to large changes in v. This is very similar to
the situation in the MSSM which was considered in Sec. 5.3.- There it was shown
that the value of the y-parameter had to be chosen very carefully in 6rder to yield
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Figure 5.4: The dependence of v on the value of A for the high- and low-energy

GMSB. The other input parameters are the same as in Fig. 5.3.
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the correct value of v. In the present case, the points in the parameter space that
correspond to values of v around 174 GeV lie in a very thin band on the A — &
plane. Also notice that, for this range of A and k, the slope is the steef)est. (See
Appen.dix H for comments on this point.)

It is possible to perform the same type of analysis for a higher messénger scale.
The same problem is found in that case as well. Fig. 5.4 depicts the dependence
of v on A for fixed values of k. For comparison, the,curve for A = 10'2 GeV is
plotted next to the curvé for A = 100 TeV. From the slopes of these curves one
can determine the dégree of seﬁsitivity with respect to A, using the definition in
Sec. 5.3. The degree of sensitivity, given by d(logv)/d(log A), is 2% for the low-
energy curve and 1% for the high-energy curve. The numerical results presented
here agree with those in Ref. [137] for ;che low-energy GMSB, if the same inputs
parameters are used.

In order to understand this behavior, one should once again turn to the ex-
tremization conditions Eqs. (5.4.8-5.4.10). First, some qualitative observatibns
are presented. Recall that phenomenolog& requires |z| to be rather large (of the
order \/%_21{_.‘_‘ //\ Z 1 TeV), while v has to remain “small” (v’ = 174 GeV) to cor-
rectly reproduce Mz. As a result, the §érms containing high powers of z and the
terms containing m? (i = Hy, Hy, N) dominate, while the terms with v, and vq
are not fixed, and have to absorb the residual difference betwe.en the dominant
terms. Therefore, small percentile changes in the dominant terms can result in

large percentile changes in the Higgs boson VEVs. This is to be contrasted with
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the situation in the previous section, where A?v? was tied to the value of the sum
my, +my, (see Eq. (5.4.21)).

Next, the main sburce of this séhsitivity is identified. First consider the de-
pendence of v on X for fixed B, k, and h;. One can use Eq. (5.4.11) to sqlve for

v? and then isolate the largest contribution to dv/9A.

ov? 4 s oy OT 0 [my, —my, tan® B\ dtan B
N g —2AT '2”5X+atanﬁ< tan B — 1 A\
1 omiy, tan? 3 Omi,

+tan2ﬁ-‘1 EJN _tanZﬁ—l a\ J (56.5.4)

Using t;he data that led to Fig. 5.3, one may numerically evaluate the derivative
around the point A = 0.11, k = —0.045. The following are the results of evalu-
ating each of the terms on the right-hand side, respectively: —1.4 x 107, —2.4 x
10%, —3.9x 105, —1.2x 103, 1.9x 10" (GeV?). The largest term is the first one, the
next two terms combined provide‘ a 45% correction, and the derivatives of the soft
SUSY-breaking masses can be completely neglected. In Appendix I it is shc;wn
how these numbers can be understoéd by studying the minimization conditions.
The fact that the dominant contribution to dv/8\ comes from the first term
in Eq. (5.5.4) has a very important implication. It means that the problems of
cancellation in the NMSSM and the MSSM are not merely similar, but have ezactly
the same origin. Indeed, Eq. (5.4.11)‘ is the same as Eq. (5.3.5), and, because in
the NMSSM v depends on A mainly through the éombination Az, which plays the
role of the p-term, the two models require roughly the same degree of cancellation.

The degree of cancellation quoted in Sec. 5.3 for the MSSM is most conservatively
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16%, but this is so because one can choose tan  freely in the MSSM. (jn the other
| hand, tan § is determined by minimizing the potential for the NMSSM and cannot
be chosen arbitrarily to ease the cancellation. For the value of tan‘,B obtained in the
NMSSM, the degree of cancellation is actually comparable (order a féw percent) in
the MSSM. The small difference between the two models is due to ths dependence
of z and tan  on ’\7 |

The A dependence of the Higgs boson VEV has been discussed, and now the
k dependence -is studied. Fig. 5.3 shows that the points that yisld v. = 174 GeV
form an almost straight line on the A — k plane. It can be shown (see I) that in
order to keep v constant one has to changé k and A according ts Ak/k = AN/
The sensitivity of .v to k is, thus, related to the sensitivity of v to A, which, in
turn, orjginates from the need to carefully choose the p-parameter in the MSSM
as discussed in Sec. 5.3.

To summarize, it was shown that this model requires a very particular choice
of parameters to yield the correct Z-boson mass. Furthermore, is was expiained
that the se_nsitivity of the Z-boson mass to the NMSSM couplings has the same
origin as the sensitivity of the Z-boson mass to the value of the u-parameter in the
MSSM. It is worthwhile to emphasize that the problem is present for both high
and low messengef scales, simply‘because the bound on the p-parameter does not

weaken as one raises the messenger scale.
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5.5.2 Hypercharge D-term

This subsection investigates what happens if the D-term contributions de-
scribed at the end of Sec. 5.3 are included. First, the case of the NMSSM with no
extra particles added is considered. One should try to determine if, by introducing
the D-terms, it is possible to make v smaller. If that happened, v could be rescaled
back by increasing B, and that would raise all masses in the model, as desired. It
turns out that this is not the case. Upon adding the D-terms both tan 8 and (z)
change, but v3 + v2, curiously enough, remains virtually constant. This happens
because, in the limit z2 << v?, ‘vz is constrained by Eq. (5.4.21), and the change
my, = my, — 3Dy, m}, — m};, + ; Dy preserves the quantity m};, +m, .

The next question to ask is whether the D-terms can decrease the deg;ee Vof
cancellation for the case with ¢’ and ¢ added. The answer is again nega’give and
the reason can be seen from Eq. (5.4.12). Recall that the degree of cancellation is
controlled by the magnitude of z2. As long as AyAz and }\Zvdvu can be neglected

compared to m%;, +m}; , Eq. (5.4.12) yields

2 ~ _(m%Id +m%1u)

%~ : (5.5.5
22— E) )

and the relevaqt quantity is again my, +mi, .

5.5.3 Large Trilinear Couplings

At last, the scenario proposed by Ciafaloni and Pomarol [136] is considered.

They consider a modified version of the NMSSM, where £ = 0, A < 1 and the value
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of A, is large at the messenger scale. Their model also éontains, in the potential
at the weak-scale, a linear term in N whiéh 1s generated by tadpole diagrams and
éolves the problem of a light pseudoscalar. They find that the{requir'ement of the
positivity of the determinant of the scalar Higgs boson mass-squared matrix is
- very restrictive. Par’t of their analysis is repeated in order .to determine if their
choice of parameters could indeed lead to a phenomenologically viable electroweak
symmétry breaking spectrum. Note that, as far as the following is concerned, their
model is identical to the NMSSM.

The full expression for the determinant can be found in Eq G.1. In the limit

ofk—>0and A —0

A202M2)22sin2(4 : 2 A2 3
det M2, =~ AU M\ sin"(45) +y— g ’;+1 S A ,
4(1 + y)3 cos?(26) \ M% cos2(203)

‘ (5.5.6)
where a variable y = g®m3,/(2M3,) is introduced to conform to the notation used
in Ref. [136]. From the extremization conditions for the potential, Eqs. (5.4.8-
5.4.10), one can show that p = A,sin(28)/(2(1 + y)). There are two intervals of
y over which the determinant is greater than zero. Orie interval is where both the

expression in the brackets and the denominator are positive. It is given approxi-

mately by the following bound on |y|:

2\ —1/2
cos 20 (1 + ﬁ) )

5.7

lyl <

, o
The other interval, not mentioned in [136}, is approximately ("(1% + 1), —1),
where both the denominator and the bracketed expression are negative.
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The first interval, for Ay > M, corresponds to rather small values of m%, and
1 .
[ §A,\ sin(28) . (5.5.8)

Using this equation together with Eq. (5.4.12), one can derive the following result:

A§<1_smzmﬂ>g(mg,+m;). (5.5.9)

The above equation is impossible to satisfy in models with ‘the GMSB, because the
combination (m}, +m%,) is always negative at the weak scale for the messenger-
scale boundary conditions given by Egs. (5.2.5) and (5.2.6). To satisfy Eq. (5.5.9),
a drastic modification of the boundary conditions would be required.

Now, the second possibility is analyzed. It requires a relatively large negative
value of the singlet soft SUSY-breaking mass-squared: m% < —2/(§?) x M2, =
—(132 GeV)2. This value is impossible to generate unless, as béfdre, one introduces
fields ¢’ and ¢ and couples them to N. Even with the introduction of these fields,
if k=0, A< 1, the extremization conditions cannot be simultaneoﬁsly satisfied.

This can be seen in the following way. For k¥ = 0 Eq. (5.4.13) takes on the form

. A\ v?sin(20)

oy | (5.5.10)

which implies £ — 0 as A — 0. This is incompatible with Eq. (5.4.11), which

requires that x — oo as A — 0.

5.6 Conclusion
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The issue of electroweak symmetry breaking in models with the gauge media-
tion of supersymmetry breaking (GMSB) was studied. First, a review of various
proposals in the literature to generate the u-parameter of the MSSM with tile
sanie order of magnitude as the soft SUSY-breaking parameters such as squark,
slepton, and gaugino masses was presented. It was determined that most of them
require small parameters which are accidentally‘of the same magnitude as the loop
factors, cancellation of the kinetic mixing terms at the level of 10, omission of in-
teractions allowed by symmetries, or many new degrees of freedom not motivated
otherwise.

Even if one could generate the ,u-pararrieter with the same order of niagnitude
- as the soft SUSY-breaking parameters, it has to have particular values to reproduce
| Mz = 91 GeV. This question was studied numerically and the following was found.

The éurrent experimental lower bounds on superparticle masses Hmit the overall
scale of SUSY breaking from below, which in turn limits m}_ < 0 from above
(i-e., |m%, | from below). To reproduce Mz, u? needs to cancel (too-negative) m%,
and is he_nce bounded from below. Therefore, there is some cancellation required
between u? and m}, . Even with the most conser\;é,tive set of parameters, it was
determined that a cancellation of 16% is necessary. The situation is worse for most
of the parameter spaée. This situation was contrasted to fhe_minimal supergravity
scenario, where the cﬁrrent experimental lower bounds on "superparticle masses (io
not require a significant cancellation among parameters.

The simplest mechanism to generate the y-parameter would be the NMSSM,
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the minimal extension of the MSSM without dimensionful parameters in the su-
perpotential. The NMSSM is known not to work with the low-energy GMSB,
but there was hope that it might work with higher messenger scales. It was
shown that this is upfortunately not the case. The current bounds on the super-
particles masses are already strong enough to exclude the model completely. A
semi-analytic discussion to clarify why the NMSSM fails was presented.

Various possible modifications to the NMSSM were also discussed; in partic-
ulér whether they could lead to a viable electroweak symmétry breaking. The
introduction of exfra vector-like quarks coupled to the NMSSM singlet produces
a large négative mass-squared for the singlet, and leads to a viablfz electroweak
symmetry breaking. One needs to adjust the parameters to a few percent, which
is comparable to the MSSM case for the same tan 3 range. A Fayet-Illiopoulos
D-term for U(1)y does not improve the situation.

The overall proépect of electroweak symmetry breaking with the GMSB re-

mains unclear. It is hoped that the detailed investigation presented here prompts

further studies on this issue.
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Chapter 6

Conclusions

In this dissertation, aspects of supersymmetric versions vof the Standard Model '
‘of particle physics were studied. First, low energy supersymmetry (SUSY) was
presented as one of t'he'possible solutions to the gauge hierarchy problem.

In Chap. 2, the Minimal Supersymmetry Standard Model was introduce’d,
including its many parameters and degrees of freedom. If SUSY is to stabilize the
Higgs,'mass, if.is neeeesary that a number of new “super-particles” be relatively
light (M ~ 100 GeV), and therefore accessible to the next generation of eollider
experiments. It was pointed out that already a significant portion of the MSSM
parameter space is constrained, mainly due to the study of rare and f(.)rbiddenv
processes and direct superparticle searches. It wasvalso mentioned thaf SUSY
searches are in general very model dependent.

The published OPAL 1991 and 1992 data on the QCD celor factors [29] was
reanalyzed in order to constrain possible additiona_l contributions to four-jet events
in Z decays due to ¢qqgg final states. It was determined that a light gluino with
a mass below 1.5 GeV/c? is excluded at better than 90% confidence level. The
result is insensitive to assumptions about what bound state it forms, the definition

of its mass, and the gluino fragmentation provided that it does not decay inside
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the detectors. It is worthwhile to note that the currently available data set should
be much more sensitive to a possible additional contribution from the light gluino..
As a by-product of the analysis, the effect of finite bottom quark mass on BZ and
NR distributions was discussed in detail, which‘turned out to be not negligibie
when extracting QCD color factors at current precisions.

In Chao. 3, the standard parameterizations of the MSSM soft SUSY breaking
Lagrangian were described. These “simplifying” assumptions are necessary in or-
der to render the MSSM phenomenologically viable and in order to allow one to
make predictions of SUSY signals at colliders. One should, of courée, try to avoid
oversimplifying assumptions, which may disregard important phenomenological
signatures for low energy SUSY. It was shown thaﬁ the so-oalled “Minimal Super-
gravity Inspired” Suporsymmetric Standard Model (VMSSM) is too restrictive as
far as collider phenomenology is concerned. The addition of only one extra param-
eter to the VMSSM, the Fayet¥Iliopoulos D-term for U(1)y, was propoéed (this is
referred to as the LSSM), and.it was shown that it is capable of yielding a much
more diverse phenomenology while still satisfying all experimental constraints.

“While the VMSSM almost alwaysv yields a B-ino-like ¥ LSP, the LMSSM also
allows 7, 7 or Higgsino-like x9 LSP. It was verified that for each one of these cases
there are important phenomenological consequences, including new signatures for
SUSY and the disappearance of other “standard” signatures.

- In Chap. 4, the cosmology of models with the low-energy gauge mediation

of SUSY breaking was studied. Initially, the lower bound on the gravitino mass
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was estimated, and it was shown that the bound conflicts with the cosmological
constraint if the primordial gravitino is not diluted. This fact indicates a huge
en’tropy production at a relatively low temperature, and the conventional baryo-
genesis scenario may not work well.

The Affleck-Dine baryogenesis was studied as an alternative and it was fdund
that it works efficiently ~for. an initial amplitude of the MSSM flat ciirection,
|do| 2 1013 GeV. It was also (iiscussed that the decay éf the flat direction may
provide ehough entro‘py_ to dilute the primordial gravitino for a relativel).r largé
initial amplitude ;)f the flat d.irection, |#o| Z 101415 GeV. Therefore, the gravitino
problem in model with the low-energy gauge mediation of SUSY breaking seems
to be resolved if one assumes such. a large initial amplitude.

The cosmological implication of the moduii fields in string theory was also
discussed. Their masses are of the order of the gravitino mass, and their lifetime. :
is much larger than the present age of the Universe in models with the low-energy
gauge mediatiqn of SUSY breaking. The mass density of the moduli field may
overclose the Universe. To dilute the moduli fields, a very late inflation is needed.
It was shown that the baryon asymmetry generated by Affleck-Dine bax-'yogenesis
can be large enoﬁgh to survive such a late inflation for |go| 2 10'7 GeV, even if
one assumes a huge entropy production to dilute the primordial moduli field below
the critical density.

In Chap. 5, The issue of electroweak symmetry breaking in models with the

gauge mediation of supersymmetry breaking (GMSB) was studied. First, a review
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of various proposals in the literature to generate the u-paraméter of the MSSM
with the same order of magnitude as the soft SUSY-breaking parameters such as
squark, slgpton, and gaugino masses was presented. It was determined that most
of these proposals require small parameters which are accidentally of the sarﬁe
magnitude as the lobp factors, cancellation of the kinetic mixing terms at the
10~* level, omission _o}f interactions allowed by symmetries, or many new degrees
of freedom not motivated otherwise. | |

Even if one could generate the u—parameter with thé same order of magnitude
as the soft SUSY-breaking parameters, it has to have particular values to reproduce
Mz - 91 GeV. It was found that a cancellation between u? and (a too negative, due
to experimental constraints on superparticle masses) m%,u is required. Even with
the most conservative set of parameters, it. was determined that a cancellation
of 16% is necessary. The situation is worse for most of the parameter space.
This situation is to be contrasted to the minimal supergravity scenario, where
the current experimentall lower bounds on superparticle masses do not require a
significant cancellation among parameters.

The simplest mechanism to generate the y-parameter would be the NMSSM,
the minimal extension of the MSSM without dimensionful parameters in the su-
perpotential. ’fhe NMSSM is known nbt to work with the low-energy GMSB, but
there was hope that it might work with higher messenger scales. It was shown

that this is not the case. The current bounds on the superparticles masses are

already strong enough to exclude the model completely.
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Various possible modifications to the NMSSM were also discussed, in partic-
ular whether they could lead to a viable electroweak symmetry breaking. The
introduction of extra vector-like quarks co‘ﬁpled t6 the N MSSM singlet produces
a large negative mass-squared for the singlet, and leads to a viable electroweak
symmetry breaking. One needs to adjust the parameters to a few percent, which
is comparable to the MSSM case for the éame tan,B raﬁge. A Fayet-Illiopoulos
D-term for U (1)y does not improve the situation.. The overall prospect of elec-
troweak symmetry breaking with the GMSB remains unclear, and more work is
required.

In conclusion, SUSY is one of the most appealiné solutions tb the hierarchy
problem. In order to test the hypothesis that Nature indeéed is supersymmetric,
phehorﬁenological models of the low energy manifestations of SUSY are required.
Such models have been developed over the past 20 years, and a great deal was/is
being learned. Most important, independent of details of spectific models, it is
clear to the community that the next generation of collider experinients will either

find evidence for low energy SUSY or exclude it all together in the next 10 years.
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Appendix A

- Computing the Effective Potential

The effecti.ve potential for the flat direction ¢ can be computed by the following
usual procedure. One lets it have an expectation value, and caiculates the vacuum
energy in the presence of ¢ background. The vacuum energy is identically zero if
one does not pick the effect of SUSY breaking. The lowest order contfii;ution is
from two-loop diagrams, where the standard model gauge multiplets couple to the
vector-like messenger fields whose mass spectrum breaks SUSY. The gauge mul-
tiplets acquire masses because of the ¢ backgfound and hence the result depends
on ¢.

The mass spectrum of the messenger sector is M for fermions, and M, 2 =M+
M B for scalars. One vector-like multiplet with unit U(1) charge is assumed, aﬁ'd
the contribution from a U(1) gauge rhultiplet exchange is calcuiated. This U(1)
gauge group is the toy-model versio‘n of the standard model gauge groups. The flat
direétion ¢, ¢ also has £1 charge under U(‘l), with D-flatness condition ¢ = &.
The result can be easily generalized to arbitrary gauge groups and messenger
multiplefs. The U(1) gauge coupling constant is referred to as g. The U(1) gauge
multiplet acquires a mass m = 2g|¢|. The task is to calculate the vacuum energy

as a function of M, B, g and m.
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Figure A.1: Feynman diagrams which contribute to the vacuum energy inx the
background of the flat direction ¢ = é. The veftices are due to the D-term
potential. The scalar field with mass m = 2g(¢) is the scalar component‘ of the
maséive gauge multiplet in the presence of the background ¢. The scalar fields

with masses M, and M_ are the messenger scalars.

®

Figure A.2: A Feynman diagram with the gaugino of mass m, the messenger

fermion of mass M, and the messenger scalars of mass M.
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(C3)

Figure A.3: Feynman diagrams with vacuum polar_ization due to (Cl) méssenger
scalar loops, (C2) “seagull” diagram with messenger scalars, and (C3) messenger
fermions.

The Feynman diagrams are shown in Figs. A.1-A.3. In all the calculations the
amplitudes are expanded in_ terms of MB/M? and only the leading non-trivial
terms of O(M B)2 are kept. MB/M? < 1 is required in oreder to avoid a color- or
charge-breaking vacuum, and this expansion is vknown to be a good épproximation
for the SUSY breaking mass squared for the ﬁat. direction unless M B is very close
to M2 [105].

Start with diagrams (A1) and (A2) in Fig. A.1,

4 |
Ay = "’2’"2/ (27r)4 e (i |
(A2) = ig /( / dk [(kZ_Mz)l@z—Mz)]‘ )

Since the sum of all diagrams vanishes in the superstmetric limit MB — 0,
the corresponding amplitude in the supersymmetric limit is subtracted from each

diagram. The diagrams (A1) and (A2) yield, after the subtraction:

2

(A, +02), = i [ dw/ | G
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- 1
(k2 +z(1 — z)p* - M?2 + (1 — 22) MB)?

—(MB = 0)].

(A.3)

Here and hereafter, the subscript s refers to the subtraction of amplitudes in the
supersymmetric limit.

The integrand is expanded in powers of MB/M?. The linear terms in MB
vanish upon the z integration, and one is left with the following expression, to

- O((MB)?) in the integrand,

- dk P (4—1)(1 - 22)*(MB)
(A1), + = / dm/ (2m)4p? — m2 (k2 + z(1 — z)p% — M?)4
+0(BY). | (A.4)

The same strategy as above is followed to compute the contribution from the

~diagram (B) in Fig. A.2 containing the messenger fermions,

(B), = (\/—9) (27r) / (g:r];“ (p* - 7"21(2];(.192)“ M?)
| ((p + k)lz M2 + (M = M) =203 Mz))
= —4ig? / dz / ( (g:rk ) p2 Jiz_)zmz
= —4ig? / dx/ (2m (gjfk )4 p? fzm2 (k2 + zgwfg f)ixs— M2)*
+0(BY). (42)

Finally the diagrams (C1), (C2), (C3) with the gauge boson loop in Fig. A.3.
The vacuum polarization diagrams of messenger fields is first calculated. Note

that the contribution of messenger fermions (C3) is the same as the one in the
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supersymmetric limit, and hence cancels after the subtraction. The scalar loop

gives

(2K + p)”

1
[k2—MfL (k+p)?2 — M2

+ (M2 5 M?)—2(M2 - M2)] , (A.6)

and the “seagull” diagram gives

d*k
(2m)*

(C2), = —24°g" l T ! 2 + (M2 — M?) —2(M2 — Mz)] | (A.7)

Their sum is

(C1), +(C2), = g*(-¢"7p’ +p“p")/ (gwl;'i /oldz(kz'i(lza 2_z)z)§7]¥f3 )Mz)4

+O(B*). (A.8)

Now including the gauge boson loop, the total contribution of the vacuum polar-

ization diagrams is

4 4 1‘ 2 1_22
(©), = i9g?(MB)? [ LF ‘“;/Od P (1 - 22)

(2m)tJ (2m)4 zp2 —m? (k%2 + 2(1 — 2)p? — M2)¢
(A.9)

Adding all diagrams, one obtains —iV,g(m?) = (A), + (B), + (C), up to

O(MB)?,

d‘k  p? - (1-2z)? -223
/ 2m)4 p? — m? (k2+r(1—:v)p - M2t

(A.10)

Vg (m?) = —12g (MB)2/ da:/(

After a Wick rotation in the k and p spaces, the d*k integration can be carried

out trivially. Note also that the denominator is symmetric under the interchange
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of z ¢+ (1 — ). Therefore, the z integration is symmetrized by substituting the
polynomial in the numerator P(z) - (1 -2z)? —22° by 3(P(z) + P(1 — z)) =

—z(1 — z), yielding
2

_ —9*(MB)* 1 e z(1 —z)p |
Veﬂ-(m2) — W—/o d;z;/o p2d(p2) [(p2 " m2)($(1 — a;)p2 n M2)2 . (A.ll) ‘

The p? integral is logarithmically divergent. Fortunately, the divergent piece is
m? independent, and hence is the reﬂormalization of thevcosmoiogical constant.
Veg (0) is subtracted from the above expression and redefined as Veg. The final
integral is cc;nvergent for any m? € [0, 00):

_ P(MB)*m? 1 [ (1 — z)
Ve (m2) = _W_/O d:z:/o p*d(p?) [(p2 T m2)(z(1 — 7)p? + M?)2

] . (A12)

The p integration can be computed using the following tricks. First, change the

integration variable to ¢> = z(1 — z)p?. Then the ¢? integration can be done in

the standard way, and one obtains

*(MB)* 22 —z(l - 1 - z) Infe(1 — 5)2?
M | e | s

Veg (%) =
Here and below, 22 = m?/M? is used.
The z integration can be further performed using dilogarithms. Usihg the roots

of the denominator a = (1 —4/1—4/22) /2 and 1 — aq,

F(ME) [(x—a>(w—1+a)+x(1—w>ln(-2%€%%

Verla) = “ogma— (z—a)(z—1+a)

)] . (A14)

After the final integral is carried out one is left with an expression for the effective

potential as a function of a:

g*(MB)? {In(a(l —a))  1-2a(1l —a)
Vegla) = 64t { (1 —2a)? + (1 - 2a)®
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Figure A.4: A plot of the effective potential Eq. (A.15) for z = 2¢g|¢|/M < 30, in
the unit of g2(MB)?/(128x*). -The solid line is the exact result, and the dotted

line shows the asymptotic form Eq. (A.16) valid for large z.

% n?(a) — %1112(1 — a) — Lig(a) + Liy(1 — a)]} (A15)

The form of the effective potential is shown in Fig. A.4 as a function of z as a

solid line.
The expression is manifestly real for 22 > 4. In the limit 2 — o0, a =~ 1/2?

and the potential behaves as

2 2 . 2
Vg = % B In(2) ~ In(z%) + & + 0 (-21—2 In? ZZ)]
2 2 2] 412\ 2 .
g°(MB)* (. 4g°|¢|
198t In ) : (A.16)

This asymptotic form of the effective potential is also shown in Fig. A.4 as a dotted

line.

In the case 2? < 4, a is complex, a = 1/2+14/4/22 — 1. The effective potential
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can be made manifestly real, using the following dilog relations:

, : 1 2
Lis(a) + %m?(a) - —Lip (E) —inl()+ 5 -2, (A7)
_ 1., ' ) 1 . 72
Lis(1 - )+ s In*(1-a) = —Lip (1 = a) +imin(l - o) + = — (2JA.18)
One finds _
2 2 L 1—2
g#MBy | (%) (1-3)
Veﬁr(z <4) Py %—1+ i %X

- Note that Liy(z) — Liy(z*) is pure imaginary. In the above form, it is simple to

take the limit 22 — 0, and one obtains

2

Vg = ﬂB)_[_l( 2y + (fi_f) (zm(;2)+i—;2——z—%—z)+O(z31n(zz))]

64wt 8 4
(()_iuf)z (2 +0(2® ln(zz))> (A.20)
2,2 2 '
i (GG ) +otm
= () (MB) o+ o o (A21)

The approximate form Eq. (A.20) truncated at O(z?) is shown in Fig. A5 as a
dotted line together with the exact fofm Eq. (A.15) (or equivalently, Eq. (A.19))
as a solid line. From the last expression (A.21) with a = g?/4x, one can read off
the mass of the ﬂat direction. For messengers iﬁ 54 5* representatidn, the final
result is multlphed by a group theory factor T°T*tr(T°T?) = ;C; where the trace
is taken over the messenger fields and Cj is the second order Casimir for the flat
direction. One obtains m3 = 20} (ﬁy (%)2, which agrees with that in Ref. [74]
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Figure A.5: A plot of the effective potential Eq. (A.15) (or equivalently, Eq. (A.19))
for the small field amplitude, z = 2g|¢|/M < 1, in the unit of g2(MB)?/(1287*).
The solid line is the exact result, and the dotted line shows the approximate form

Eq. (A.20) valid for small z.
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Appendix B

Effectivé Potential and Wave-funétion

Renormalization

When one computes an effective potential, one can determine the location of

 the minimum. It is well-known that one also needs to evaluate the wave-function

renormalization Z (¢)(a¢)2 in order to discuss the time evolution of the scalar field
in general. Fortunately, such a calculation is not nécessary in the case of interest.

First, recall the simple fact that the effective potential in bthe case at hand comes
at 2-loop order: V ~ (a/4w)?. Since it is a flat direction in the supersymmetric

limit, this is the only term in the potential. The equation of motion in the flat

* space is

7)o,
2o D z<¢)

Here the friction term 3H¢ is drdpped, but the essence of the following discussions

= V'(#) =0. (B.1)

does not depend on such simplifying assumptions.
Because V' is of order (a/4m)?, the motion is suppressed by a power in the
coupling constant. Note that Z'(¢) is at most order («/47). By factoring out the

coupling constant factors,

Vo= (3)2v(¢) (B-2)



z = 1+ ()¢, (B3
one finds
b+ (%) CZ'EZ;((,;)z + ?(%) (%)QU'(@ =0, (B.4)

It is convenient to rescale the time variable ¢ by

7= %t, (B.5)
and one finds
¢ (o)) (08), 1

It is clear that the leading terms in the equation of motion are given by 8%¢/072 +
v'(¢) = 0, and all dependences on the wave function renormalization occur only
at higher orders in perturbation theory. Therefore, the calculation of the effective

potential is enough for the case considered here, and Z (@) is not needed.
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Appendix C

Time Evolution of the Flat Direction

The evolution of the flat direction ¢ is interesting in the LEGM rhodels. Once
the amplitude is dominated by the gaﬁge-mediated piece, the potential is approxi-
mately propbrtional to (In |¢]?)?, and the dilution of the coherent oscillation occurs
much slower than in the parabolic pofential case. In this Appendix, the evolution
" of the flat direction is.investigated by using the virial theorem.

The virial theorem states that,

ov., oV
2(K) ='<6¢¢+a¢*¢*>’ (C.1)

where K = ¢*$ is the kinetic energy. In the case of interest, V ~ Vy(In |¢|?/(S)?)?

with}(S) ~ 3 x 10* GeV, and

(K) = <m3_/<_§>_2v>. o (C.2)

For In |¢|2/(S)? > 1, the energy denéity of the field is potential dominated.

The field equation is |
av

5 — 0. | (C.3)

¢+3H¢+

Multiplying it by ¢* and using the ene_rgy density £ = K +V,

) . 2
0=£+6HK ~&E+6H—f«+——€. Cd
_ PIEE (C4)
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Since the energy density is dominated by the potential term, one can write down

the approximate evolution equation of the amplitude |¢|,

dl¢|
S8~ —3H]g), (3)
and hence
|#(t)| R(t)® ~ constant : (C.6)

This formula is valid when In |¢|2/(S)2 > 1.
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Appendix D

Estimation of the Primordial Baryon Asymmetry

In this Appendix, Linde’é formula, Eq. (4.5.6) is justified in the cé,se of interest.
In fact, the validity of the formula depends on the nature of the operator. O and
the time evolution of the flat direction ¢. The reason why the formula is valid is
clarified in the cases of interest. Start from the equation of motion for the baryon

number.density, Eq. (4.5.5),

(D.1)

00 . 00 ¢,) |

n3+3HnB <a¢¢—a¢*

It is useful to rewrite the equation in terms of baryon-to-entropy ratio Yz = ng/s,

to find

1 0 90 |

where the relation sR3 = constant is assumed. Assuming a vanishing initial value

Y5(to) = 0, one obtains

/ dt —1 (8(15 (69;9* d)*) : (D.3)

A crucial question is whether the ¢ integral is dominated by t ~ ¢y or t ~ oo. |
In the follbwing analysis, the Universe is éssurhed to be radiation dominated
when the field begins to roll down the potential, R o t/2. Another assump-

tion is that the baryon-number violating operator O can be treated as a small
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perturbaﬁion to the evolution of the field ¢.

"In the case qﬁo. 2 eq, Or in the general hidden sector case, O «x ¢*. The
evolution of ¢ is essentially determined by mj,,¢* by assumption and hence ¢
R73/2 & t=%4. On the other hand, s o« R™3 oc t73/2. The integrand in Eq. (D.3)
therefore behaﬂ(es as t=3/2 and hence it is dominated by ¢t ~ to. By putting them

together,

00 00 t=3/2
YB(OO) = to dt < ¢ a¢*¢ ) 3/2

0
: 8m Im 2m? Im
_ ltox 3/2 (¢6) _ “Ma/2 (d’o)’ (D.4)
2 S()]M,.‘2 50M3H0

which essentially justifies Eq. (4.5.6).

In thé other case of interest, ¢o S ¢eq, both the behavior of the operator and
time-evolution are completely different as discussed in detail ‘in Sec. 4.5. One has
O x ¢?, while ¢ R;3 o t;3/2. Then the .integrand behaves as t%/2, which is |
ﬁnexpectedly the same as in the previous case. By putting them together, one

obtains

. 00, _ 60 £-3/2

Yp(o0) = / dt ( 8¢*¢> =772
1 2 8Volm(¢o) 2Volm(¢3)

0 sol@o|?M2  soldo|>?M2H,’

(D.5)

which again essentially justifies Eq. (4.5.6).
As it is clear from above the derivations, Eq. (4.5.6) is not necessarily valid
if the integral is dominated at ¢t ~ oo rather than ¢ ~ t;. We have not seen an

explicit discussion on this point in the literature.
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Appendix E

Aflleck-Dine Baryogenesis in Hidden Sector

Scenarios

In this appendix, the Afﬂeck—D.ine baryogenesis based on the scenario with
SUSY breaking in the hidden sector is discussed. In this case., the gravitino mass
is much larger than in the LEGM case, and all the scalar ﬁelcis z;,lso have SUSY
breaking masses of the order of the gravitino mass.* In particular, the potentiai
for the flat dirgction is always given by the supergravity contribution, which is

essentially parabolic with a curvature of the order of the gravitino mass,
V(§) ~ m3pl¢l7, o (E.1)

with mg/, ~ 1 TeV. Due to this fact, the evolution of thé flat directioﬁ is much
simpler than in the LEGM case.

Even if the gravitino mass is about 1 TeV, Eq.(4.5.6) is still valid since the
baryon number is generated when ¢ starts to oscillate. With the baryon number

violating operator (4.5.4), one obtains

may2|dol*

' nB|HNm3/2 ~ M2 sin 490. : (E2)

*In this Appendix, all the soft SUSY breakivng masses for the scalar fields are denoted by

mg,, for simplicity.
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and hence

4
np -1/4 |¢0| .
= ~ gr Mt ———— sin 46,. (E.3)
S |Homg) m;gMz /2

If there is no entropy production after this stage, the above formula yields the
resulting baryon-to-entropy ratio.

If there is entropy production, the primordial baryon number is diluted. The
primary source of the entropy is the decay of the flat direction. Here, the potential
for the flat direction is always parabolic, and ¢ starts to oscillate when T' = Tj ~
gt 4\/W, as discussed in Seé. 4.5. Then, by using the relation |¢]*T3 =

constant, the background temperature at the ¢ decay is given by

‘ S 2/3
Tec ~ 9:1/4\_/m3/2M* ((ﬁ;—j) ) (E4)
where @ge. is the amplitude of the flat direction when it decays. Furthermore, the

reheating temperature due to the decay of ¢, Ty, is given by

T ~ 9:1/4\/m3/2¢dec- ' - (E5)

Then, the dilution factor is given by

R | o] ’ '

D~ =k~ . (E.6)
T~ S

Usually, ¢ decays when the expansion rate of the Universe, H, becomes comparable

to the decay rate of ¢, I's. In Ref.[80], Ty is estimated as

Qs 2 ”"3/2
~ =2 E.7
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and hence H ~ [’y results in
2/3 '
Pdec ~ (?) mgﬁM*m (E8)
Combining the above results, one obtains
np Ol 13 M, M8 |¢OI ? .~
— ~ (—) _— sin 46,
S T M3/ M.,

2 1/3 -1/6 '
— 120 x (@) (3—) (m3/2> sin 46, (E.9)

M.) \0.1 1 TeV

Another potential source of entropy is the Polonyi field related to SUSY break-
ing, or the moduli fields in the string theory, which also have masses of order
mz/2. The critical difference between the flat direction and the Polonyi field z is
the formula of their decay width; since the ‘Polonyi field couples to particles in the
observable sector only through interactions suppressed by the gravitational scale,
its decay §vidth ", is much smaller than the width of ¢. As discussed in Sec. 4.6,
I', is estimated as

Ney M3/

Lo~ g 22

(E.10)

Even with this decé,y rate, one can apply an argument similar to the case of the
entropy production due to ¢ decay; Eqs.(E.2) a;ld (E.3) are still valid, and one
also obtains equations similar to Eqs.(E.4) — (E.6) where ¢’s are replace by 2z’s.
The remainder is to evaluate the amplitude of z at its decay time, zgec, ‘by using
the relevant formula for I',. By solving the equation H ~ T', with H ~ mg 122/ M,

one obtains

. |
T2 (E.11)

Zdec ™
*
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Then, assuming the initial amplitude of z to be zg ~ M,, the dilution factor is

| given by D ~ M, /mg3/,, and hence

ng o _ymaplm(dy)  (map\Y2 (1l*)
? ~ D 1 ME ~ ( M. ) _]\Z:i- sm400. (E12)

Thus, the baryon-to-entropy ratio may be larger than ~ 107° even after the decay
of the Polonyi field.
Howeyer the reheatihg temperature after the decay of z is likely to be too low.

By using Eq. (E.10), the reheating temperature is estimated as

(E.13)

*

m3/2 )3/2
10TeV )

Tr ~ g7 /4T M, ~ IMeV x (

Thus, if the gravitino mass is heavier than about 10 TeV, the Polonyi field may
decay before the big-bang nucleosynthesis (BBN), .and the scenario which gives
Eq.(E.12) may be viable.! However, for a favorable range of the gravitino mass
(ma/2 S 1TeV), the reheating temperature is less than 100 keV which is lower than
the temperature where the big-bang nucleosynthesis (BBN) starts. This means
that the decay of z significantly affects the results of the standard BBN scenario.
In this case, some -mechanism to reduce the energy density of the Polonyi field is
needed. A therrﬁal inflation [81] is an interesting candidate for it. The baryon-to-

entropy ratio in this case is discussed in Sec. 4.6. By using the fact that the ratio

tIn fact, even if my /2 2 10TeV, there may still be a problem since the lightest superparticle
produced by the decay of the Polonyi field may overclose the Universe [100, 104]. To solve this
difficulty, one may have to accept a much larger gravitino mass, or a scenario in which the

lightest superparticle in the MSSM sector is unstable.
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of ng to p, is constant in time, one obtains

4
np Pz -1 I¢0I :
—~ = = 46,. E.14
=~ E xm3/2<M* sin 46, (E.14)

Thus, once the ratio p,/s after the late inflation is fixed, the baryon-to-entropy

ratio can be estimated.
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Appendix F

The Renormalization Group Equations of the

(N)MSSM

In this appendix, all of the RG equations for the NMSSM (and the MSSM) are
presented, at 1-loop [146]. These are the equations used, in Sec. 5.4, to determine
the coupling constants and SUSY-breaking parameters of the NMSSM at the weak

scale, given their values at the messenger scale.

: d
1 2> = 11 13 . . (F.1
6m°—g g°, (F.1)
dt 2 . '
i 3
1
161r2iht = (6h2 +h}+ 22— 13 9% — 3¢} - —69§)ht, (F.4)
, di 97 3
167 %hb = (6hp +hf +h7+ )= 9% — 3¢} - _gs)hb’ (F.5)
167 %h = (4h% +3h} + \? — 3¢” — 3g})h,, (F.6)
167 %,\ = (4X2 + 2k% + 3h2 + 3h2 + K2 — g — 3g2)), (F.7)
167 %k = 6(\2 + k). (F.8)

In the above equations ¢’ is the U(1)y gauge coupling; explicitly ¢’ = e/ cos 6w . g2
and g3 are, respectively, the weak and strong coupling constants. One defines g; to
be the hypercharge coupling constant in the GUT normalization, i.e. g, = %g’
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and a; = 3o/. Gauge couplings at the messenger scale are defined in such a way
that they match their experimental values at the Z-mass. Only the effect of third
generation Yukawa couplings, namely, h¢, hy and h., were considered. In the case

of the MSSM, k = A = 0.

"16w2%Aua = 6h2(1 + 8a3)A¢ + 2h2043 A5 + 202 A,
13 3 8 |
- 4(59’2M1 + §g§Mz + §9§M3), , (F.9)
d .
16%2%.4,10 = BhZ(1 4 0g3)Ap + 2h20a3As + 2h28,3A, + 2X2 A,
7, 3 8
— 4(1—8-gl2M1 + §g§M2 + gggMg), : (FlO)
| 167r2%Aea = 2h%(1 + 38,3)A, + 6h2A, + 2)2 4,
— 6(¢”M; + g;My), ' (F.11)
IGWZ%A,\ = 8)24, — 4k%Ay + 6h2A, + 6h2A, + 2h2A,
= 2(¢”My +3g3M), (F12)
167r2di‘t,4,c = 12(K2A — A24y). (F.13)

A; are the soft SUSY-breaking trilinear couplings, given in Secs. 5.2 and 5.4. Note
that only third generation trilinear couplings, namely Ah; = A3 Aphy = AP,

A h, = AP are considered. M; (:=1,2,3) are the soft SUSY-breaking galigino

masses and they evolve, at one loop, identically to «;. Explicitly

M(Q) _ 3@ | -(F.14)
M% g§< ’

where gy is the value of all g; at the GUT scale, while M% is the common gaugino
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mass at the GUT scale. In the case of the MSSM, A;

o d
167T EmQ

167r— 2

167*—m,

dtN

1
| 8(29'2M12

IA,\EO.

28,3h2(m% +m% +m?+ A + 2(5,13/112,(7112?3 +mi +mi + AZ)

Qs
i/z 2,3 2,2, 4 ” v :
8(= 9 M} + 93 M3 + 93M3)+ 3976 (F.15)
36 4 3
48,3h7 (m, +miy, +mi + A7)
4 4 4
8(59"M! + 395M3) — 397, (F.16)

45a3h2(m ‘+’de +mb +Ab)

1 12 312 4 2 2
859" My + 393M )+ 396 (F.17)
204302 (m%; +m}, +mZ + A?)

3
+ 9 Mz) - 97, (F.18)
4503h3(m2,:3 +ml, +mi + A2)
89 M} + 2¢"%¢, (F.19)
6h§(m2ésr+ myy, +mE + A}) + 2R2(m} + my, + mi + A2)

1 22012 3 22402 2 7
8(29 Mi + Z.‘]zMz) -9%, : (F.20)
6h7(m?, +my, +mi + A7) + 2X%(m}, +my, +my + A)

1 3
8(39"M; + 79:M3) + 97¢, | (F.21)

AN (ml, + my, +my + A3) + 4k*(3my + A). (F.22)

£ is the hypercharge-weighted sum of all soft SUSY-breaking masses-squared
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where ¢ runs ovef all scalar particles. =~ With the boundary condi’pions in
Egs. (5.2.5,5.2.6), £ = 0 and remains zero throughout the RG evolut'.ion. All soft
SUSY-breaking mass-squared terms were taken to be diagonal. Again, o'nl‘y the
running of third generation soft SUSY-breaking masses-squared were considered.
m?, is defined in Sec. 5.4. Again, in the case of the MSSM, m% = 0. |

The p and By = m2 parameters of the MSSM obbey

d - '
16724p = —2(3h2A, + 3h2A, + h2A, — g M, — 392M?).  (F.25)

dt
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Appendix G

Scalar Higgs Mass-Squared Matrix

In this appendix, the 3 x 3 scalar Higgs mass-squared matrix of the NMSSM

is explicitly shown.

) bl azvtree 1
M2 = - =-X
scalar 2 Bviavj 2 .
§20 + (Ax + 3) 22 (432 - g%)vivy — 20 (Ax+ 5)  wvr — 243002 — dkpv;
(4X? — g)vrvz — 2 (Ax + 52) g2+ (Ax+ %) 2u —2A\Av1 — 4kpvy + 4Apvy .
: 22 2
vy — 2A\Ave —dkpve 0 —2A) v — dkpvy + v —2"3\"’”‘ + 8’;4‘ + 2A"'\“ viva

(G.1)

where v; for i = 1,2,3 corresponds, respectively, to vy, v, and z. All other

parameters were defined in previous sections.
The determinant of the matrix above can be evaluated explicitly, and its full

expression is given bellow. Various limits of this determinant are considered in

the body of the chapter.

det Micalar =
v
32\3usin(20)

128502283 — 324, k203 ut — 128 A5K203pt — 256 AxA3pu? — 256kA*u® + 8A\v*)? cos(48) +

(—6A450%0° — 3243 X512 — 644302\ p? — 3245 ArKA s — 160A2kA 5 —

3243 X512 cos(48) + 64A\v2A\" u? cos(4) + 324k AxkX* B cos(48) + 160A2 kX 2 cos(4p) +
128kv% X6 11® cos(4) + 32Akk* A3 p* cos(48) + 1284, k* M3 cos(48) — 24,v*\° cos(88) +
3A VAT + 324,025 1252 — 16 A, AxkAZuF? + 64kv2 2 Pg? — 16 Akk?AutG? +
64ArkZ At G? + 64k3 15 5% — 44,01\ cos(48)g? — 324,025 2 cos(483)g? —

16 A AxkA? 1B cos(48)§? — 64kv X u® cos(46)g% — 16 Ak Ay’ cos(43)g? +
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_ 64-,4;1&@4 cos(40)g? + 64k®u® cos(48)g* + Axv* AT cos(88)g% + 48 A%2v2 N7 usin(28) +
24Akkv2/\6u2 sin(28) + 120A4,kv? A% ? sin(28) + 256 A3 A% 1® sin(28) + 9602\ 18 sin(28) +
768 AxkA 1t sin(26) + 512k X35 sin(26) — 1242022% ug? sin(28) — 12Ackv? X252 sin(28) —
60Axkv? X 1% g% sin(28) — 16k202 X3 2 3% sin(26) — 48v2A\% 12 g% sin(28) — 164202\ usin(6) —
8 Ak kv%\ﬁf sin(68) — 40AAka,_\6u2 sin(68) — 32v2\7u3 sin(68) + 44202\ ug? sin(68) +
4A k2N 232 sin(ﬁﬁ) + 4Axkv2 X 232 sin(68) — 16k%v2 X33 5% sin(63) +

16v% A5 1352 sin(6)) . (G.2)

All parameters were defined previously. Recall that p = Az.
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Appendix H

Comments on Naturalness

The NMSSM with extra vector-like quarks was studied in Sec. 5.5.1 and it
was argued that the model requires a delicate cancellation among independent
parameters. In this appendix, further comments on the naturalness of this model
are made.

From Fig. 5.4, one can easily note that not bnly does the experimentally allowed
value of v lieon a steep region of the parémgter space, which requires a degree of
cancellation of order 1%, but it lies on the steepest region of the parameter space.

One may, therefore, try to address the following question; if all parameters
are kept fixed (and -this choice of parameters yields an experimentally allowed
spectrum). excebt one (e.g. A), what is the likelihood of obtaining a certain value
of v upon a random choice of the free parameter? In other wbrds, what is'the
probability P(v) dv of finding the value of m between v and v +dv given a
random choice of A? This line of reasoning is related to the definition of fine-tuning

- introduced by Anderson and Castaifio [147]. It is easy to note that

P(v) (j-i) o - (H.1)

This “probability density” is plotted in Fig. H.1. Note that X is restricted to lie
on a range where the same “qualitative” physics is obtained, that is, electroweak
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Figure H.1: The probability densities of finding specific values of v in the NMSSM
with extra vector-like quarks upon random choices of A. All other parameters

. are the same as in vFig. 5.4. The probability densities are normalized so that

P(v =174 GeV) = 1.

symmetry is broken aﬁd tan(3) > 1. The plot has been normalized in such a way
that P(v = 174 GeV) = 1.

It is interesting to note that, in some sense, the probability of living in our
universe is slmaller, if this modelv is to be taken seriously, than the probability of
living in a universe where v ~ 600 GeV by a factor of three. One can turn this
picture around and say that the NMSSM, with the above choice of parameters,
“prefers” (or predicts) v ~ 600 GeV. |

This does not happen in the MSSM. The analog of Fig. 5.4 would be Eq. (5.3.5),
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which is a straight line (M3 = MZ(u?)) if all parameters except u? are kept fixed.
In the language introduced above, the MSSM does not “prefer” (or predict) any
particular value of M2, that is, the “probability density” of M2 upon random

choices of p? is flat.
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Appendix 1

The Dependence of the Higgs VEVs on the

couplings of the modified NMSSM

In Subsec. 5.5.1 it was shown that the values of the Higgs boson VEVs were
extremely sensitive to_ small variations of the superpotential couplings A and k.
These variations were evaluated numerically after Eq (5.5.4) for one particular
set of A anci k. In this appendix, this issue is studied analytically and it is shown

that one can estimate the effects of small variations AA and Ak on v, tan 3, and

The following three equations, derived in Sec. 5.4, are used:

-2 2 R
A I T | (L)
2k%z% ~ —m% + A(ksin28 — \)v?, (L2)

k[ -m%
i ~ 22— | ——— 1.3
sin 203 2/\ [m%d_m%{u] , (1.3)
where

1m%, —m? m%, —m% tan?p .‘ '
- _ = 2 2 = Hy H, — Hy H, : . 14
f= 2(de+mH“) 2 cos2f tan? 3 — 1 ’ (14)

and the A-terms in Eq. (1;2) were drbpped. Notice that, because the term on the
left-hand side of Eq. (I.1) is much smaller then each of the terms on the right-hand
side, f ~ A\2z2.
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For the purpose of the following estimates only the largest terms in the vari-
ations will be kept. According to the numbers presented after Eq. (5.5.4), for a
small variation of A the largest variation on the right-hand side of Eq. (I.1) is

2)r2A\. One can therefore write

2
A?) & —a 2T AN (L5)

g2

This approximation will be justified a posteriori. Also, in the fqllowing analysis
the dependence of the soft-breaking masses-squared on A and k will be completely
neglected. This dependence is very weak, as seen in the numbers presented after
Eq. (554)

‘A small change in A results in a large changé in v. Hence, to determine the
corresponding change in z, one can use Eq. (I.2) and only consider the variation

of v2, which is approximately given by Eq. (I.5). One finds

: ' , L 22z2AN
4k Az ~ M(ksin 26 — A)A(v?) ~ A(ksin 28 — \)(—4 7 ) (1.6) -
so that
‘ 9N3(L & _
gz 22 (ksm_2,3 /\)_A_é (L7)
z k2g? A
For the point’ considered in the text (A = 0.11, k = —.045, tan 8 = —2.9) one
finds (Az)/z =~ 0.2(AN)/ ). '
Under a small change Ak, again using Egs. (1.2,1.5),
202z A
A(kAkz? + K2zAz) ~ A(ksin 28 — A)(—4 ;2 . (1.8)
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Solving for Az/x.

(L.9)

Az Ak (_1 _ 2)%(ksin28 - A)>‘1

T Tk k2g?

Numerically, (Az)/z ~ —1.2(Ak)/k.
‘Next, the effect of AX on f is considered.- The problem comes down to esti-

mating A(cos28)~!, which can be done with the aid of Eq. (1.3):

_ sin28 . sin23 ko —-m¥

A(cos2B)™ ! = ——— A(sin28) ~ — (—2———“ AN (I.10)
cos? 28 | cos3 23 A2 m L, —mi,

Thus,

Af . _k(cmb,) sin2g A)
f 7 X A2%? cosB28 X

(L11)

Plugging in the numerical values of the parameters, one finds that the right-hand
side of Eq. (I.11) equalsr¥—0._5A)\//\. Thus, a 1% change in A results in a 0.5%
change in the value of f. Since 22 changes by 2% in this case, the contribution
of f to thevvariaticlm of v is approximately one fourth of that of A?z2, consistent
with the numbers given in S‘ubsec.} 5.5.1.

The above argument can be repeated to find the effect of Ak on f. Notice that
sin 23 depends on fhe ratio k/ /\ (Eq. (1.3)), and hence changing k by +1% has the
same effect on f as changihg A by —1%. | |

Finally, it is shown that the vcondition for v to remain constant is Ak/k =
AM/)X. Tt has already been argued that sin 23, and therefore f, stays unchvanged
in this case and now it is shown that the same is true for /‘\21:2. Under A — A+ A}\

the term A2z? changes by 2A2z2((AX/A) + (Az/z)) = 22%22%(1+0.2)(AN/N), while
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under £k — k + Ak it changes by 2/\23:2(A:c/x) = 2)222(-1.2)(Ak/k). These

variations can be made to cancel by imposing Ak/k = AX/A.
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