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Abstract 

SUPEJ,lSYMMETRIC VERSIONS OF THE STANDARD MODEL 

by 

Andre Luiz Carvalho de Gouvea 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Hitoshi Murayama, Chair 

The Standard Model of particle physics is one of the most successful models in 

physics. With only a handful of parameters, it is capable of predicting/explaining 

the results of all high energy physics experiments, with astounding precision. The 

Standard Model, however, is by no means free of problems. 

The Standard Model, which is a quantum field theory, must be an effective 

description of some other, unknown, theory. This is known because of ultraviolet 

divergences, which have to be regularized and renormalized. Furthermore, because 

of the so-called hierarchy problem, there must be new, beyond the Standard Model, 

physics at or slightly below the Te V energy scale, which is within the reach of the 

next generation of accelerator experiments. 

Low-energy supersymmetry is one of the most popular solutions to the hier­

archy problem. It is, therefore, important to try and predict what experimental 
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signals one should look for if Nature is supersymmetric at the TeV scale. 

This dissertation addresses some of the possible manifestations of supersym­

metric versions of the Standard Model. Most of the issues will concern the so­

called Minimal Supersymmetric Standard Model (MSSM), where the Standard 

Model Lagrangian is supersymmetrized and the smallest allowed number of extra 

fields/parameters is added. The parameter space of the MSSM can already be 

constrained by current experiments. One particular method for constraining the 

gluino (supersymmetric partner of the gluon) mass will be studied, where one uses 

the existing LEP 4-jet data to rule out the existence of light gluinos. 

The minimal parameterizations of the MSSM (in particular of the supersym­

metry breaking parts of the MSSM) will be presented and criticized, and a different 

(less minimal) alternative will be suggested and an,alyzed. Some attention will be 

given to models with the gauge mediation of supersymmetry breaking, in partic­

ular the cosmology of such models will be studied. The J.L-problem in such models 

is also discussed in detail, and the Next-to-Minimal Supersymmetric Standard 

Model is presented and studied as a solution. 
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I 

Chapter 1 

Introduction 

The Standard Model (SM) of particle physics [1] is one of the most successful 

models in the entire history of physics. It contains only a handful of fundamental 

fields (quarks, leptons, gauge bosons, the Higgs boson) and free parameters (gauge 

and Yukawa couplings, Higgs self-coupling and Higgs mass-squared) and is capable 

of explaining all experimental particle physics results.* Some physical quantities, 

such as the anomalous magnetic moments of the muon and the electron [3] have 

been calculate and measured with unprecedented accuracy, and the agreement 

between theory and experiment is astounding. 

The SM is a quantum field theory (more specifically a gauge theory), and, as 

such, is plagued with ultraviolet divergences. These divergences can be properly 

regularized and renormalized away, such that, in the end, one has a finite and 

predictive theory. From a more fundamental point of view, one is led to describe 

the SM as a "low" energy effective theory of some, yet unknown, more fundamental 

theory. From this perspective, the need for regularizing/renormalizing the SM 

is simply an indication that the SM is not appropriate for describing physical 

processes which involve energy scales higher than some unknown cut-off. It is 

*Recently there has been evidence of physics beyond the SM in the neutrino sector (2]. The 

new experimental data can be explained, however, if one adds neutrino masses to the SM. 
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important to remember that the dependence of physical quantities on the cut-off 

energy scale is removed by allowing the physical parameters (masses and coupling 

constants) to vary as a function of the probed energy scale (running parameters), 

via a renormalization group analisis (1]. 

If this modern understanding of the SM is correct, beyond the SM physics 

should be detected already at the multi-hundred GeV level. This is due to the "hi­

erarchy problem", which is closely related to the presence of fundamental scalars 

in the SM, and is briefly discussed in the next paragraphs. 

Quantum field theory is supposed to be valid up to the Planck Scale (Mp1 ~ 

(GN/nc)- 112 ~ 1019 GeV), where gravitational effects become comparable to the 

SM gauge interactions and quantum field theory is necessarily inapplicable. In 

order to determine the range of validity for the Standard Model, however, one 

must be more careful. 

In the presence of fundamental scalars, which is the case of the Standard Model 

Higgs field, one must worry about the following issue: the scalar Higgs potential 

is 

(1.1) 

where both m5 and >.0 are bare parameters, which are to be be renormalized. 

Quantum corrections to m5 are quadratically divergent, and, after renormalization, 

the effective Higgs mass-squared parameter is m; ~ m6 + A2
, where A is the 

scale where the SM ceases to be an appropriate description for physics (cut-off). 

Numerically, electroweak symmetry breaking requires m; "' -(100)2 (GeV) 2
. If 
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A rv Mpt, an incredible amount of fine tuning (1 part in 1034
) is required in order 

to explain electroweak symmetry breaking. It is clear that a "natural" order of 

magnitude value for the Higgs mass-squared parameter is A2
. This is the hierarchy 

problem. It is a clash between the fact that quantum field theory should be a good 

language for describing physics up to the Planck Scale (A ~ Mp1) and the fact 

that the Higgs mass-squared parameter, which should "naturally" be of order A 2 , 

is forced, in order explain electroweak symmetry, to be 34 orders of magnitude 

smaller. Any satisfactory solution to this problems predicts that there is new 

physics at the several hundred Ge V energy scale. . 

There are different types of solution to the hierar~hy problem. Some imply 

that there are no fundamental scalars, and that the Higgs boson is in reality a 

composite field, made up of some (extra) fundamental fermions [4]. Another, very 

recent, solution (5] implies that quantum field theory actually breaks down at 

the TeV scale, where gravity becomes strong. In order to be phenomenologically 

viable, this solution requires that there are more, compactified, dimensions, in 

which the gravitional field propagates. 

The other type of solution implies that there is some symmetry reason which 

forbids scalar m~s-squared parameters from being renormalized by A 2 • This is 

exactly what happens in the case of fermion masses. Chiral symmetry prevents 

massless fermions from acquiring a mass due to quantum effects and furthermore 

guarantees that fermion masses are only logarithmically reilormalized, as m f = 

m1,0 (1 + log(A/J.L)), where m 1,0 is the bare fermion mass, J.L is the renormalization 
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scale and A is the cut-off. Supersymmetry (SUSY) is a symmetry which transforms 

scalars into fermions (and vice-versa) [6], and therefore, because fermion masses 

only receive logarithmic corrections, so do the scalar mass-squared parameters. 

Presently, despite a lot of experimental effort, there is no evidence for physics 

beyond the SM. There are many manifestations for :riew physics, and they fall 

into three "general" categories: (i) precision measurements, or measu~ements of 

very suppreseed quantities, such as anomalous magnetic moments, very rare decay 

processes (such asK ~ 1rvD), CP-violation, etc; (ii) violation of global (accidental 

within the SM) symmetries, such as baryon number (proton decay), lepton number 

(J.L ~ e1), etc; (iii) direct detection of new "fundamental" degrees of freedom (in 

the case of SUSY, supersymmetric partners of the SM fields). 

Given the situation of experimental particle physics today, unbiased/non­

motivated searches for new physics are impractical, if not impossible, and phe­

nomenological models are fundamental. This dissertation discusses low energy 

SUSY as the solution to the hierarchy problem, in particular how supersymmetric 

versions of the SM are modeled and constrained. 

This thesis is organized as follows: in Chap. 2 The minimal supersymmetric 

standard model (MSSM) is briefly introduced and discussed. In particular its 

parameter space will be introduced and its particle spectrum spelled out. Present 

experimental constraints on the MSSM are briefly discussed and one procedure for 

excluding light gluinos, which are particularly elusive, with LEP data is proposed 

and discussed. In Chap. 3 the need for properly parameterizing of the MSSM, 
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in particular its SUSY breaking sector, is addressed, and a brief review of the 

"standard" paraterizations is provided. These are analyzed and criticized, and 

an improved parameterization is proposed and discussed. In Chap. 4 the gauge 

mediation of SUSY breaking is addressed in some detail, and, in particular, the 

cosmology of such models is studied. In Chap. 5 the "problem of the J.L-parameter" 

is carefully introduced and studied in models with the gauge mediation of SUSY 

breaking. The Next-to-Minimal Supersymmetric SM is presented and studied as 

a possible solution. Chap. 6 contains a summary of the results obtained and some 

conclusions. 
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Chapter 2 

The Minimal Supersymmetric Standard Model 

In this chapter, the Minimal Supersymmetric Standard Model (MSSM) is in­

troduced. In the first section, its particle content at low energies (below the 

electroweak symmetry breaking scale) is described. In the second section, a brief 

discussion of what is known about the parameter space of the MSSM follows, and 

the third section discusses one particular way of searching for light gluinos. 

2.1 The MSSM 

The Minimal Supersymmetric Standard Model (MSSM) is the smallest (as far 

as the number of fundamental fields is concerned) extension of the Standard Model 

of particle physics (SM) which is supersymmetric. It contains all the SM fermion 

and gauge boson fields, plus their supersymmetric partners, the "sfermions," which 

are scalar fields, and the "gauginos," which are fermions. It also contains two scalar 

Higgs doublets, plus their fermionic superpartners, the "higgsinos" [7). 

The SM Lagrangian consists of the most general renormalizable Lagrangian 

which is invariant under a specific gauge group, with matter fields which transform 

under certain representations of this gauge group. 

The SM gauge group is the direct product of three simple compact groups, 
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SU(3)c, the color gauge group, which mediates strong interactions, SU(2)L, and 

U(l)y, which are responsible for mediating the electroweak interactions. The 

subscripts L and Y stand for "left-handed" and "weak hypercharge" respectively. 

The electroweak part of the SM gauge group is spontaneously broken by a scalar 

field (the Higgs field) condensate, yielding the electromagnetic gauge interactions 

(U(l)em) and the weak interactions, which are mediated by massive w±, Z 0 vector 

bosons. 

The SM fermions can be described in terms of left-handed chiral fermions 

and their anti-particles. Explicitly they are, according to their gauge quantum 

numbers: 

Qi = ( ~) L' ( ~) L' ( ~) L' (2.1.1) 

li = (~e)L, ( ~ )L, ( ~ )L, (2.1.2) 

Ui= (uc)L, (cc)L, (tc)L, (2.1.3) 

di = (dc)L, (sc)L, (bc)L, (2.1.4) 

ei = (ec)L, (p,c)L, (rc)L· (2.1.5) 

The superscript c stands for charge conjugate. u1 = ( uc)L is therefore a left-

handed anti-up-quark. It is an SU(2)L singlet. Its anti-particle is the right-

handed up-quark. This representation will prove to be particularly useful when 

one describes the MSSM Lagrangian. 

Before writing the MSSM Lagrangian, it is useful to describe chiral and vector 
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superfields (see [6]). Matter particles and their supersymmetric partners can be 

nicely accommodated into chiral superfields, which can be written in terms of 

component fields as 

<I>(y) = <fJ(y) + ../2e'l/J(y) + e2 F(y), (2.1.6) 

yJ.L = xJ.L + i(}oJ.LiJ, where xJ.L (JL = 0, 1, 2, 3) are the space-time coordinates, and 

(}a, Ba (a, a= 1, 2, spinorial indices) are the fermionic coordinates. <Pis the scalar 

component of the superfield, 'ljJ is the left-handed chiral fermion component and 

F is an auxiliary complex scalar field. 

Gauge bosons and their fermionic components fit into a so-called vector super-

field, which, in the Wess-Zumino gauge (6], can be written in terms of component 

fields as 

(2.1.7) 

AJ.L is the vector (gauge) field, Aa is a left-handed chiral fermion field (gaugino) 

and D is an auxiliary real scalar field. In the case of nonabelian gauge groups, 

it is understood that V = VaTa, where Ta are group generators. Furthermore, 

the field strength of a given gauge field is part of a chiral superfield Wa, where 

a= 1, 2 is a spinorial index, which is given by 

(2.1.8) 

Where D, D are the derivatives with respect to the fermionic directions, and V is 

a vector superfield. 
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In the case of an abelian gauge group, and in the Wess-Zumino gauge, 

(2.1.9) 

Where FI-LII = ()1-L A 11 
- 011 Al-L is the field strength tensor for the abelian gauge field 

The most general renormalizable Lagrangian for the MSSM can be written 

explicitly, with the help of the superfield notation briefly described above and the 

algebra of the fermionic coordinates, Ba and Oex. [6]. The only inputs are the gauge 

group and the matter content. 

LMSSM = Linatter + Ly M + Lsoft· (2.1.10) 

Each one of the components of LMSSM will be described in detail below. 

The "matter" content of the Lagrangian is contained in .Cmatten given by 

Lmatter J d4() ( Qf e-2V(Q)Qi + u! e-2V(u)ui + d! e-2V(d)'di + L! e-2V(L) Li 

+e! e-2V(e)ei + H! e-2V(H,.) Hu + Hj'e-2V(Hd) Hd) 

(2.1.11) 

where i = 1, 2, 3 is a family index, Qi are the quark doublet chiral superfields, 

which transform like (3, 2, +1/6) under the SU(3)c x SU(2)L x U(1)y gauge group, 

ui are the up-type quark chiral superfields, which transform like (3, 1, -2/3), di 

are the down-type quark chiral superfields, which transform like (3, 1, +1/3), Li 

are the lepton doublet chiral superfields, which transform like (1, 2, -1/2), ei are 
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the charged lepton chiral superfields, which transform like (1, 1, +1), Hu is the up-

type Higgs doublet chiral superfield, which transforms like (1, 2, + 1/2), and Hd is 

the down-type Higgs doublet chiral superfield, which transforms like (1, 2, -1/2). 

V(<I>) is short hand notation for v:?r: + VlwT~ + VBq4>. Vis the vector superfield 

containing the SU(3)c, SU(2)L, or U(1)y gauge bosons. T4> are the generators of 

the group in the representation which acts on <I>, q4> is the weak hypercharge of <I>, 

a = 1 ... 8 colors and l = 1, 2, 3. 

The superpotential W is given by 

(2.1.12) 

where the .A's are the Yukawa couplings which yield the fermion masses, J-L is a 

dimensionful parameter (with dimension of mass). The interactions described in 

the second line of Eq.(2.1.12) have no SM analog, and are a big source of concern. 

In particular, a non-zero ~l implies violation of lepton number, ~q violation of 

baryon number and 5:. d violation of both.* Constraints, mainly from flavor chang-

ing neutral current processes and proton decay, on some of these baryon/lepton 

number violating couplings are particularly severe [8]. Fig. 2.1 depicts one of the 

contributions to proton decay due to the ).d and ).q interactions. 

One can get rid of the "tilde" couplings in Eq.(2.1.12) by imposing a global 

symmetry, namely R-parity, on the Lagrangian. R-parity is a gobal symmetry 

*Note that the {L;HuL; can be made to vanish by appropriately gauge rotating the Li and 

Hu superfields. 
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Pion 
Proton 

...., 
s 

Figure 2.1: One of the many proton decay diagrams which arise in tlie MSSM in 

the absence of R-parity. 

which does not commute with supersymmetry (SUSY), and therefore particles 

and their supersymmetric partners have different charges. If one chooses charges 

such that the "normal" SM fields (quarks, gauge bosons, Higgs scalars) have charge 

+1 and all other fields have charge -1, the second line in Eq.(2.1.12) is forbidden. 

An interesting consequence of R-parity is that superpartners can only be pair 

produced, and that the lightest superpartner is absolutely stable. This feature 

plays a fundamental role in cosmology and in collider searches for SUSY. 

It is important t<_? remember that, in the SM, all the renormalizable interactions 

allowed by the gauge symmetries are present. All global symmetries, such as lepton 

and baryon number, are accidental, and do not have to be imposed a priori. In 

' 

the MSSM, on the other hand, it seems· that imposing R-parity is necessary for 

rendering it phenomenologically viable. 
J . 

The Young-Mills part of the Lagrangian, .CyM, contains the kinetic energy and 

self interaction terms for the gauge bosons and their superpartners. 

I 2 1 awa 1 wawi 1 aw h 
LYM = d () 16gj wa a+ 16g2 i a+ 16gt2 w a+ .c., (2.1.13) 

where W~, a = 1 ... 8 are the SU(3)c chiral superfield field strengths, W~, i = 
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1 ... 3 are the SU(2)L chiral superfield field strengths and Wa is the U(1)y field 

strength chiral superfield. g's are the appropriate gauge coupling constants. Note 

that the gauge fields and their SUSY partners are not canonically normalized. 

This can be done by redefining V-+ gV. 

In order for the MSSM to be phenomenologically viable, it is necessary to 

break SUSY at some high scale. The main reason for this is that SUSY im-

plies that fermions and their superpartnes have the same mass, and, e. g., a light 

(m =511 keY) scalar electron is experimentally ruled out. SUSY breaking can be 

parameterized at low energies by a set of explicitly SUSY breaking terms. It is im-

portant, however, that the explicit SUSY breaking parameters do not reintroduce 

quadratic divergences in the theory. Terms which fall in this category are referred 

to as "soft." The soft SUSY breaking part of the Lagrangian, Csoft, is given by 

1 ( -2 -2 M b2) 2 IH 12 2 I 12 -Csoft - 2 M9g +Mww + ;; . +mHd d +mH.,. Hu 

+m2_iiQ-tQ-. + m~ii LtL. + m~iiutu. + m2..iiJJJ. + m~iiete. 
Q 'J L '1 u '1 d '1 e '' 

(2.1.14) 

where g are the gluino fields, w are the W-ino fields, and b is the B-ino field. In 

order to solve the gauge hierarchy problem, SUSY breaking parameters must be 

of 0(1) TeV or less. 

It is important to check if electroweak symmetry breaking can occur within the 

MSSM. This is, of course, required in order to make the model phenomenologically 

viable. 
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The tree-level Higgs potential of the MSSM is given by 

2 ~ 

+g2 (HtiJH + HtaH )2 + L(IH 12 -IH 12)2 8 d d u u 8 d u' (2.1.15) 

where 

(2.1.16) 

(2.1.17) 

In the MSSM, one can show that the vacuum can always be gauge rotated to the 

following configuration 

(2.1.18) 

It is assumed that no other scalar fields, such as squarks and sleptons, acquire 

non-zero vacuum expectation values. This has to be checked in order to guarantee 

that the color gauge group is unbroken and baryon/lepton number is conserved. 

The two expectation values need to satisfy v~ + v~ = v2 = (174 GeV) 2 in order 

to reproduce the observed Mz, and it is conventional to parameterize them by 

vd = v cos /3, Vu = v sin {3. The minimization condition of the potential can be 

rewritten in the following form: 

- 2 
Mz 

2 

m2 - m2 tan2 f3 
2 + Hd Hu 

-J.L tan2 f3- 1 (2.1.19) 

(2J.L2 + m~d + m~J sin 2/3. (2.1.20) 

It is important to note that j.i,2 is positive definite because J.L is a parameter in the 

superpotential. It turns out that mV (sin 2/3) must also be positive in order to 
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avoid a runaway behavior in the Higgs potential. Electroweak symmetry breaking 

occurs, therefore, if Eqs. (2.1.19) and (2.1.20) can be simultaneously satisfied. 

Eqs. (2.1.19) and (2.1.20) are more readily satisfied if -m1" is positive at 

the electroweak symmetry breaking scale. Interestingly enough, it seems that the 

MSSM has a tendency to favor -m1 .. > 0 at the weak scale, even if +m1 .. > 0 

at a higher energy scale. Note also that, in the absence of SUSY breaking terms, 

electroweak symmetry is not be broken. It is, therefore, part of the common lore 

that the MSSM plus SUSY breaking leads "naturally" to electroweak symmetry 

breaking, and that SUSY breaking "triggers" electroweak symmetry breaking. 

This issue will be further analyzed and this lore criticized in future chapters. 

After electroweak symmetry breaking, one can identify the remaining propa.:. 

gating degrees of freedom and their masses [7]. They are: 

(1) the usual SM fermions, the quarks and the leptons, which acquire masses 

through interactions with the Higgs boson fields, contained in the superpotential 

(Eq. (2.1.12)). Note that in order for all fermions to become massive, both Higgs 

doublets must acquire non-zero vacuum expectation values. This is one of the 

reasons why there are two Higgs doublets in the MSSM. Another reason is to cancel 

the gauge anomalies introduced by the fermionic partner of one Higgs boson. 

(2) squarks and sleptons, the scalar partners of "ordinary" matter. These 

are usually denoted by the corresponding SM fermion symbol with a tilde (e.g. 

ftL is the supersymmetric partner of the left-handed muon, the "smuon"). Note 

that they already have SUSY breaking mass-squared parameters, and they acquire 
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"left-right" t masses after electroweak symmetry breaking. 

(3) the gluino (usually referred to as g), the supersymmetric partner of the 

gluon, which has a SUSY breaking mass M 9 (see Eq.(2.1.14)). Note that the 

gluino is a Majorana SU(3)c octet fermion. 

(4) the supersymmetric partners of the electroweak gauge bosons (usually re-

ferred to as W-inos, w1,2,3 and B-ino b) and the Higgs bosons (Higgsinos, flu,d), 

which acquire mixing mass terms after electroweak symmetry breaking. The mass 

matrices can be diagonalized and the final propagating degrees of freedom are two 

"charginos," 5([2 , which are Dirac fermions, and four Majorana neutral fermions, , 

the "neutralinos," 5<.~,2 ,3 ,4 • The interactions of the charginos and neutralinos de-

pend heavily on the mixing parameters. 

(5) the Higgs scalars, which are the analog of the Higgs boson in the SM. 

Because there aretwo Higgs scalar fields which acquire vacuum expectation values, 

there are five real degrees of freedom left after electroweak symmetry breaking 

(three are "eaten" by the weak vector bosons). They are: two real scalars, the 

"light" Higgs scalar, h0 and the "heavy" Higgs scalar, H 0 , one pseudo-scalar, A0 

and one charged scalar, H±. It is easy to compute, at tree level, the mass of the 

light Higgs boson 

(2.1.21) 

tit is clear that scalar fields do not have a "handedness" degree of freedom. It is, however, 

common to refer to right/left-handed sfermions in the sense that they are partners ofparticular 

right/left-handed chiral fermions. 
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where Mi is the Z 0 vector boson mass-squared and M1 = 2mV(sin 2/3) (see 

Eq. (2.1.20)) is the pseudo-scalar Higgs mass-squared. One can therefore verify 

that, at tree level, m~o :::::; Mi. Since the light Higgs boson is in general very 

similar to the SM Higgs boson, the MSSM would be almost completely ruled out 

by SM Higgs boson searches [3). Quantum corrections, however, have a tendency 

to push the light Higgs boson mass ·up, and the constraint above is somewhat 

alleviated. Still, the light Higgs boson mass is relatively light, and, in the MSSM, 

cannot exceed mho ;S 130 GeV [9). Note that this constraint seems to agree with 

the present day electroweak precision data analysis [10), which currently indicates 

the existence of a light Higgs boson. 

2.2 What is known about the MSSM 

In this section, a very brief description of what is known about the MSSM, in 

particular its parameters such as scalar masses and mixing angles, is given. A few 

constraints from rare/forbidden processes will be mentioned, along with a few of 

the most popular search strategies at accelerator facilities. 
~;. ,., 

The MSSM, briefly introduced in the previous section, has a huge number of 

parameters. In particular, one can easily note that the soft SUSY breaking part of 

the Lagrangian (Eq.( 2.1.14)) alone contains over 100 complex parameters! Most 

of these are severely constraint by rare or forbidden processes (11). 

Some of the flavor non-diagonal components of the soft scalar mass-squared pa-

rameters lead to unacceptable flavor changing neutral currents. A non-zero ( m~) 12 
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Figure 2.2: One of the SUSY contributions to !-£- ---t e-,. The cross repre-

sents the insertion of the (mD 12 off-diagonal slepton mass-squared parameter (see 

Eq. (2.1.14) ). 

can lead to a large J-t ---t er (muon and electron number violation) branching ratio. 

Fig. 2.2 illustrates one of the dominant contributions, while other contributions 

come from virtual sneutrinos and neutralinos running in the loop. The cross in-

dicates the insertion of the flavor changing parameter (m~) 12 ejl,. 1-£ ---t er is a 

particularly powerful way of seaching for flavor changing interactions, given that 

theoretical predictions are particularly clean and are not plagued by strong inter-

action long-distance effects. See [12, 13] for details and numerical constraints on 

SUSY breaking parameters. 
/ 

Another big constraint to the MSSM parameter space comes from K 0 +-+ K 0 

mixing and CP violation. Fig. 2.3 depicts one of the many SUSY contributions 
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Figure 2.3: One of the SUSY contributions to K 0 f-7 K0 mixing. ij represents 

any of the squarks. Here, the flavor-changing effects have been rotated to the gijq' 

couplings. 

to K 0 f-7 K0 mixing. Note that, unlike in Fig. 2.2, in Fig. 2.3 the flavor changing 

interactions have been "rotated" to the quark-squark-gluino vertex. This hap-

pens because the unitary.rotation that diagonalizes the quark mass matrix is not 

necessarily equal to the one that diagonalizes the squark mass matrix, due to 

the SUSY breaking parameters in Eq.(2.1.14). This is similar to what happens in 

weak interactions, where the unitary rotation that diagonalizes the up-type masses 

is different from the one that diagonalizes down-type masses. The end result is 

flavor changing neutral currents mediated by weak effects [1]. For a quantitative 

description of constraints on the MSSM parameter space due to flavor changing 

neutral currents and Cp-violation in the kaon system, see for example [13]. 

Direct searches for supersymmetric particles are also underway, mostly at the 

LEP (Large Electron-Positron) collider at CERN and the Tevatron collider at Fer-

milab. Future experiments, such as the LHC (Large Hadron Collider) at CERN 

and a possible NLC (Next Linear Collider), whose future location is still unknown, 
/ 
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will spent a large fraction of their resources looking for low-energy SUSY. No sign 

of superparners has been discovered to the present date, and what the experi-

ments have been able to do is set upper bounds on parameters, such as couplings 

and masses, of the MSSM. This, in general, tends to be very much model depen-

dent, in particular because the MSSM has too many parameters. Setting model 

independent bounds on sparticle masses, for example, is very tricky. 

A few of the SUSY search strategies for hadron and lepton machines will be 

briefly presented below. For thorough reviews, see, for example, [14, 15, 16]. For 

a complete listing of all bounds on superpartner masses and couplings, see [3] . . 
In most of the SUSY collider searches, R-parity is assumed. There are two very 

important consequences, which have already been briefly mentioned: (i) superpart-

ners can only be produced in pairs at collider facilities and (ii) a superpartner has 

to decay to another superpartner plus any number of ordinary matter particles. In 

particular, this implies that the lightest superpartner (LSP) must be stable. Even 

if a small amount of R-parity violation is allowed, it is usually true that the LSP 

is long-lived enough that it does not decay inside high energy physics detectors. 

The effects of a stable LSP on collider experiments depend on whether or not the 

LSP is chargedi A neutral LSP will leave the detector without interacting, and 

yields a large missing energy signature. An electrically charged LSP will can be 

detected via dE/ dx measurements as a heavy stable charged object. It is inter-

esting to note that cosmological considerations prefer a neutral LSP, in particular 

the lightest neutralino, xS. 
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At lepton colliders (14, 16], the hope is to produce a pair of superpartners, such 

as e+e-, x1 +x1-, Ve +ve-, etc, and directly look for their decay products. Note 

that the decay products of each particular superpartner depend on the values of 

the MSSM parameters. Standard signs for SUSY at lepton colliders include many 

energetic leptons and large missing energy. As an example, assume the following 

production and decay processes: 

- -o + 
f-tR -+ Xi + !-£ ' 

where x~ is the LSP. The signal to look for is two energetic muons, plus a large 

amount of missing energy. The largest physics background one would have to 

worry about is w+w- production, followed by the decay w± -+ !-£± + v/L(v~.~,). 

Another model independent constraint comes from the precise measurement of the 

Z 0 boson decay width at LEP [3]. This is a particularly robust bound because it 

consists of an inclusive process, i.e., the result does not depend on the identification 

and reconstruction of particular final states. For example, all ii masses are bound 

to be larger than ~ 43 Ge V because of this measurement. This is similar to the 

bound on the number of light neutrino species [17]. 

At hadron colliders (14, 15], it is expected that mostly strongly interacting 

particles, squarks and gluinos, will be produced. Furthermore, it is often thought 

that squarks and gluinos are heavier than other superpartners, which only interact 

via electroweak interactions. The reason for this prejudice will be discussed in the 
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next chapter. It is therefore assumed that gluinos and squarks will generate long 

decay chains. Typical SUSY signatures are multi-jet events with large amounts of 

missing energy or multi-leptons plus jets plus missing energy. The main physics 

backgrounds come from the production of massive vector bosons which further 

decay into neutrinos, which carry away the missing energy. As an example, assume 

p+p ---t g+g, 

g-+ q + q, 

ii -+ xt + q' and ii -+ x~ + q 

xt -+ x~ + q + {, 

where x~ is the LSP. The final state for the decay chain outline above is 6 jets 

plus missing energy. 

Another sigature of SUSY at hadron machines is 3 charged leptons plus missing 

energy (18]. This comes from the production of a virtual W-boson, which decays 

into xt + xg. This is likely to happen if xt (xg) has a large W-ino (Z-ino) 

component. It is further assumed that xt --+ l + v, + x~ and xg -+ l + [ + x~. 

In some of the most popular parameterizations of the MSSM (see next chapter) 

this a realistic possibility~ Its biggest advantage is the fact that it is very clean, 

and almost background free. The only physics background consists of w± + Z 0 

production, with both W and Z decaying leptonically. It is, however, easy to 

remove this background by imposing that the invariant mass of each lepton pair 

is different from the Z-boson mass. 
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In summary, there are already several constraints on the MSSM parameter 

space, some of them very strong. On the other hand, the MSSM has too many 

parameters, and it is hard to constrain those parameters in a model independent· 

way. Finally, it is worthwhile to mention that, if some sign of new physics is 

discovered in the next generation of collider, it is still very challenging to determine 

if SUSY ha.S been discovered or not. Furthermore, even if it is established that 

low-energy SUSY has been detected, determining the MSSM parameters is still 

very challenging (see [19] for a study of how SUSY parameters might be measured 

at the LHC). 

2.3 Excluding Light Gluinos from Z Decays 

Supersymmetry is one of the primary targets of extensive searches at various 

collider experiments, most importantly at the CERN e+e- collider, LEP, and the 

Fermilab pfi collider, Tevatron [14, 15]. Negative searches at these and previous 

colliders have already put significant constraints on the parameter space of low-

.. energy supersymmetry, as briefly describedearlier. However, a light gluino below 

the few Ge V mass range has surprisingly weak experimental constraints as em­

phasized recently by various authors [20, 21, 22] (see, however, an opposing view 

[23]). It is an extremely important task to verify or exclude a gluino in this light 

window experimentally. While the Tevatron Run II is expected to extend the 

reach of heavy gluinos up to a few hundred GeV, little effort is devoted to defini­

tively exclude or verify the light gluino window. On the other hand, a careful 
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reexamination of the existent data may reveal an overlooked constraint on a light 

gluino; this is the motivation to study the existent data in detail. 

In this section the published data on Z decays into four jets [24, 25, 26, 27, 

28, 29] is reanalyzed, and it is found that they already exclude a gluino lighter 

than 1.5 Ge V / c2 at more than 90% confidence level. It is assumed that the gluino 

does not decay inside the detector. Since the published results use only 1991 and 

1992 data, it is conceivable that the currently available data, if analyzed properly, 

could put a much more significant constraint on a light gluino. 

First, the existent constraints on a light gluino are briefly reviewed (see [21, 30] 

for more details). The negative searches at beam dump experiments have excluded 

a light gluino which decays inside the detector into photino, which in turn interacts 

with the neutrino detector. However, a gluino tends to leave the detector without 

decaying if the squark mass is above a few hundred GeV fe [31, 32]. Even if 

the gluino decays, the photino interacts very weakly in this case and cannot be 

detected. If the gluino does not decay, it forms bound states such as gluinoball gg, 

glueballino gg or baryon-like states, especially udsg [33]. Other states are likely to 

decay into these neutral bound states, and searches for exotic charged hadrons may 

not apply unless a charged gluino bound state decays only weakly. On the other 

hand, the mass region above 1.5 GeV /c2 and below 4 GeV /c2 is excluded from 

quarkonium decay Y ---t /'f/g, where 'T/g is the pseudo-scalar gluinoball, independent 

of the gluino lifetime (34, 21]. Whether the bound extends to lower masses is 

controversial because of the applicability of perturbative QCD calculations (34]. 
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The mass range above 4 Ge VI c2 is expected to give a shorter lifetime and is 

excluded by a negative search for events with missing energy at UAl [35]. The 

authors of [36] claim that the limit from UAl extends down to 3 GeV lc2
. In any 

case, the least constrained region is the mass range below 1.5 Ge VI c2 , where the 

gluino is relatively stable so that it does not decay inside detectors. This is the 

window of interest in this section. 

It is important to emphasize that the best method to exclude the gluino mass 

range below 1.5 Ge VI c2 is to use inclusive processes rather than searching for 

specific bound states with certain decay modes. The latter search would heav­

ily depend on assumptions such as the mass spectrum of various gluino bound 

states and their decay modes and decay lifetimes. One would have to design ex­

periments and put constraints with all possible theoretical assumptions on gluino 

bound states in order to exclude the light gluino definitively. On the other hand, 

the constraints would be much less sensitive to theoretical assumptions if they 

were based on inclusive processes where perturbative QCD is applicable. There . 

are several possibilities pointed out in the literature along this line. The most po~ 

ular one is to study the effect of light gluinos in the running of the QCD coupling 

constant as. It was even pointed out that the values of as from higher energy 

measurements tend to be higher than those extrapolated from lower energies us­

ing QCD with the ordinary quark flavors, and that the data actually prefer the 

existence of a light gluino to compensate the slight discrepancy [20, 37, 38]. How­

ever, this issue remains controversial [39, 40, 41]. Even though the discrepancy 
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between low-energy and high-energy measurements is diminishing [42], still the 

data are not precise enough to exclude or verify a light gluino definitively. The 

second one is its effect _on the Altarelli-Parisi evolution of the nucleon structure 

functions (43, 44]. Unfortunately the effect is too small to be tested using the 

present experimental data. It might be that the more recent HERA data could 

improve the situation, but making a definite statement on the existence of a light 

gluino appears to be difficult. The third one is to study the angular correlations 

in the so-called "3+1" jet events at HERA [45]. However, the effect of the light 

gluino was found to be negligible. The final one, which is employed in this section, 

is the study of four jet correlations in e+ e- collisions [46, 41, 4 7]. Previous studies 

did not find significant constraints, but given the size of the current LEP data, 

this seems to be the most promising direction. 

The only data used in this section are studies of QCD color factors [27, 28, 

29). The experimental groups at LEP have performed impressive analyses of the 

hadronic Z decays into four jets, extracting QCD color factors CA/CF and TpfCFt 

from jet angular distributions, to confirm SU(3) as the QCD gauge group and five 

light quark flavors. The angular distributions of qijqij final state differ from those 

of qijgg, where q refers to a generic quark and g to a gluon. Three angles are 

commonly used in four-jet analyses: the Bengtsson-Zerwas (BZ) angle XBZ [48], 

tThe QCD color factors are defined by CF 1 = La rara and TFt5ab = Tr(TaTb) for the 

fundamental representation, and CAt5ab = Tr(TaTb) for the adjoint representation. ra (a = 

1, ... , 8) are group generators in each representations. 
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the modified Nachtmann-Reiter (NR) angle B'NR [49], and the opening angle of 

the7 two less energetic jets a 34 • If there exists a light gluino g, the final state 

qijgg also contributes to the Z decays into four jets. The angular distributions of 

qqgg would be identical to those of qijqij. Therefore, a possible light gluino would 

change the extracted TpfCp but not CA/Cp. Apart from the mass effects, TpfCF 

should increase by a factor of (5 + 3)/5, because the gluino is a color-octet and 

counts effectively as three additional massless quarks. Note that these analyses do 

not use the overall rate of four-jet events since it is sensitive to the choice of a 8 in 

the absence of next-to-leading order (NLO) calculations. So far the experimental 

analysis which used the highest statistics is the one by OPAL [29], which also 

briefly discussed constraints on a light gluino. They found that the light gluino is 

barely outside the 68% confidence level contour and decided the data did not put 

a significant constraint. 

However, most of the previous analyses are not carefully designed to study 

the effect of a light gluino because of the following reason. When one discusses a 

possible light gluino, QCD with the color group SU(3) should be assumed. Given 

overwhelming experimental evidences of QCD, it is not wise to, for instance, vary 

the number of colors Nc = 3 when one studies the effect of a particle (light gluino) 

added to QCD. Therefore, the QCD color factor CA/CF is fixed to be that of the 

SU(3) group, 9/4. Second, it is already known that there are five quark flavors u, 

d, s, c and b, which appear in Z hadronic decays. When one puts constraints on 

an additional contribution from a light gluino, one should not vary the number 
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of flavors below 5, or equivalently, TpfCF below 3/8. The only LEP paper which 

analyzed data in a way close to this spirit, and put an upper bound on possible 

additional qijqij-type final states, is the one from OPAL [25]; but it used very 

limited statistics. All more recent papers [27, 28, 29] varied both CA/CF and 

TpfCF without constraints. By reanalyzing data with these constraints a much 

more significant bound on a light gluino than reported can be placed. Actually, 

fixing the group to be SU(3) (CA/CF = 9/4) has the greatest impact on the 

confidence level, while restricting TpfCF ~ 3/8 has a much smaller effect (actually 

it makes the significance worse). Furthermore the finite mass of the bottom quark 

is included in the analysis, which slightly improves the significance. Overall, a 

massless gluino is excluded already better than at 90% confidence level by the 

OPAL 1991 and 1992 data only [29]. 

The reported contour on the CA/Cp, TpfCF plane is shown in Fig. 2.4. 

CA/CF = 9/4 is fixed because of the philosophy of the present study, stated 

above. Since one-dimensional x2 distributions have much higher confidence lev­

els than two-dimensional ones, this change improves the significance of the data 

drastically. From their x2 contours, x2 is minimized with fixed CA/CF = 9/4, and 

~X2 is defined relative to the X2 at the minimum (TF/CF = 0.36). The confidence 

levels are calculated using a one-dimensional x2 distribution with ~x2 defined 

in this manner. This is a conservative choice because ~x2 < x2
. One obtains 

TpfCF = 0.36 ± 0.15 with fixed CA/CF. If one had used this central value and 

the standard deviation, a massless gluino would be excluded at 95% confidence 
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level. However, one also needs to impose another constraint, TF/CF ~ 3/8, which 

can be easily taken into account. The standard method is to use the Gaussian 

distribution only in the physical region, and scale the normalization of the distri­

bution so that the total probability in the physical region becomes unity. Since 

the central value is very close to the theoretical value of the QCD, this effectively 

increases the probability of allowing light gluinos by a factor of two; numerically 

the confidence level is 88%. 

Finally, the effect of the finite mass of the bottom quark and gluinos on the 

extracted T F / C F are studied. The authors of [50] studied the effect of the finite 

mass of quarks on the four-jet rates. They also looked at the angular distributions 

and reported there were little changes. Even though itis true that the distributions 

do not change drastically, they gradually become similar to those of qijgg fil}al state 

as one increases the mass of the quark, and hence the extracted Tp/CF from the fit 

to the distributions has a relatively large effect due to the finite mass of the bottom 

quark. The papers (27, 28] do not take this effect into account at all. The OPAL 

experiment [29] used parton level event generators by the authors of [50] and [47] 

to study the effect. They have found a surprisingly large effect: the bottom quark 

contribution to TpfCF was about one half of a massless quark at Ycut = 0.03. 

Their estimate was confirmed in a detailed parton-level calculation based on the 

done in [51], neglecting the interference between primary and secondary quarks. 

This approximation is known to be better than a few percent. On the other hand, 

this approximation has the clear advantage of enabling us to distinguish primary 
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Figure 2.4: Extracted QCD color factors from the OPAL analysis [29]. The shown 

x2 values correspond to 39.3%, 68% and 95% confidence levels with two degrees 

of freedom. The constraint CA/CF = 9/4 is imposed (vertical solid line) and one 

is limited to the unshaded region (TF/CF ;2: 3/8) in order to put constraints on 

a possible light gluino contribution to the four-jet events from Z decays. See the 

text for more details. 
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and secondary quarks unambiguously. The numerical code used in this section 

employs helicity amplitude techniques using the HELAS package [52], which made 

it straight-forward to incorporate finite masses in the four-jet distributions. 

The finite mass affects the extracted TFICF in two ways. First, the rate 

of producing secondary massive quarks ·is suppressed compared to the massless 

case as shown with the solid line in Fig. 2.5. For instance, there is about 20% 

suppression with mq = 5 GeV lc2 and Ycut = 0.03. This result is consistent with 

[50]. The mass of the primary quark has little effect on the rate: only a 6% 

suppression ~or mq = 5 Ge VI c2
. That the distributions in BZ and NR angles 

with a massive primary quark are indistinguishable from the massless case was 

also checked. These observations are consistent with naive expectations, because 

the primary quarks are much more energetic than the secondary ones a~d hence 

the mass effect is suppressed by m2 I E2• Therefore the finite mass of primary 

quarks is neglected hereafter. Second, the NR and BZ angle distributions gradually 

approach those of the qijgg final state as one increases the mass of the secondary 

quarks. We are not aware of detailed analyses of these distributions with massive 

quarks in the literature. The distributions are shown in Fig. 2.6 normalized so 

that the total area below the curve is unity, in order for the effect on the rate and 

that on the distribution to be clearly separated. The distributions are fit as linear 

combinations of qijgg and massless qijqij distributions to determine the effective 

T~ICF, in order to mimic the experimental analyses. The fit is surprisingly good; 

this was checked for quark masses between 0 and 5 Ge VI c2 . Combined with the 
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reduction in the rate, the net effect of the finite mass of secondary quarks is shown 

in Fig. 2.5. With mb = 5 GeV /c2 for secondary bottom quarks, the overall rate 

of qijbb final state is reduced to 82.5%, while the fit to angular distributions gives 

a TF/CF reduced to 76.4% (BZ) or 85.5% (NR) compared to that of a massless 

quark flavor (3/8), on top of the reduction in the rate. In total, secondary bottom 

quarks contribute to TF/CF as 3/8*0.630 or 3/8*0.705, which is not a negligible 

suppression. The extracted TF/CF from the data is an average of TF/CF from 

five flavors. The reported TF/CF in [29] includes a correction to compensate the 

apparent suppression due to the finite bottom quark mass. Such a correction in 

turn effectively enhances the additional contribution from gluinos by a factor of 

5/(4 + 0.630) or 5/(4 + 0.705). Note that this slight enhancement effect does not 

change significantly even when one varies mb from 4 to 5 GeV jc2, as can be seen 

in Fig. 2.5. 

The actual OPAL analysis [29] fits the data in the three dimensional space 

spanned by BZ, NR and a 34 angles after bin-by-bin systematic corrections from 

Monte Carlo simulations. Such an analysis is beyond the scope of this dissertation. 

The total effect of the finite mass is assumed to be somewhere between the effects 

on BZ or NR angles since a 34 is not as effective in extracting TF/Cp. As it is 

clear from Fig. 2.6, fits to distributions of massive quarks give apparent additional 

contributions to qijgg and hence CA/Cp. They are completely negligible, however, 

compared to the size of the true qijgg which is about one order of magnitude 

larger than the sum of all qijqij final states, and hence such contributions will be 
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neglected hereafter. 

Given the above considerations, the exclusion confidence levels on a light gluino 

for varying gluino masses is presented in Fig. 2.7. For both curves, mb = 5 GeV /c2 

was used together with the effective Tp/CF extracted from the fits to BZ and NR 

angles. The finite mass effect of the gluino is treated in the same manner. First 

of all, it is clear that the finite mass effect whic~ was studied depends little on the 

choice of BZ or NR angles, and hence we believe it mimics the true experimental 
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Figure 2.6: The distributions in BZ and NR angles of the qijqij final state where 

the secondary quark has a mass of 5 Ge VI c2 • They can be fit extremely well as 

a linear combination of massless qijqij and· qijgg distributions. Yct£t = 0.03 and 

y's = mzc2 was assumed. 

fits (which use BZ, NR and a 34 angles simultaneously in a three-dimensional fit 

with 295 bins) quite well. Second, the confidence level is extremely flat up to 

2 Ge VI c2. This implies that one does not need to worry about complication due 

to non-perturbative dynamics in defining the gluino mass.§ The lower bound of 

§There are several possible definitions of gluino mass which may appear in experimental 

constraints: the mass of glueballino m(R0 ), the constituent mass mconst(!i), the MS current 

mass m9(m9), the on-shell (pole) mass mpote(!i), and one half the mass of the pseudo-scalar 

gluinoball m(?Jg)/2. The various definitions are not expected to differ much from each other if 

m9 ~ 2 GeV fc 2 . One may worry about this ambiguity for smaller gluino masses, but the result 
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Two curves are shown depending on the method of estimating the finite mass 

effects. In either case, a light gluino of mass below 1.5 Ge VI c2 is excluded at more 

than 90% confidence level. 

~ 1.5 Ge VI~ at 90% confidence level is already in the perturbative region. It is 

quite likely that the gluino mass relevant to this analysis is a running mass defined 

at the scale Q2 
rv Ycv.tm1. It is then straight-forward to convert the bound to the 

on-shell gluino mass: the lower bound of m9(0.03m1) = 1.5 GeV 12 in the MS 

scheme· corresponds to mpole(9) = 2.8 GeV lc2
• 

It is important to comment that the clever jet reconstruction method used 

presented here is insensitive to it since the confidence level in Fig. 2. 7 is extremely flat up to 
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in the OPAL analysis [29] is particularly suited for the study of light gluinos in 

four-jet events. They did not scale the measured jet energies by an overall ratio 

Evis/mz, as done traditionally in similar analy~es, but instead used the angular 

information of the jets to calculate the energy of each jet using energy and momen-

tum conservation. This method avoids uncertainties in the gluino fragmentation. 

Since it is not well understood how a gluino fragments, one should use a similar 

method to avoid dependence on assumptions about the gluino fragmentation in 

future studies. 

Unfortunately, the present analysis is limited to leading-order (LO) calcula-

tions. It is a natural question whether NLO corrections may change the present 

conclusions. First of all, one expects that the corrections to the angular vari-

abies used in the analysis are presumably not large. The NLO corrections are 

important when a variable involves as, such as 3- and 4-jet rates, thrust, etc. 

The variables used in the present analysis are not proportional to powers of a 8 ; 

and hence scale-independent at the LO approximations. This is analogous to the 

case of the forward-backward asymmetry which is an (integrated) angular variable 

.,. 

and is as independent at the LO. It does receive an NLO correction of c(a8 j1r), 

where c""' 0.89 in the case of a massless quark [53]. In the case at hand, one also 
1 

expects a correction to the angular distributions of the order of as(f.1)/7r, where 

112 
""' Ycutm~ is probably an educated guess. Then a typical size of the NLO cor-

rection is about 5%. However, a correction of this order of magnitude may still 

be of concern because of the following reason. The qqgg final state is roughly an 
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order of magnitude larger than the qijqij final state. Therefore, a 5% correction 

to qijgg may result in a 50% correction to qijqij final state, to be compared with a 

possible 60% contribution from the gluino. 

One may argue, however, that such a higher order correction is not likely to 

change the conclusion reached in this section. First of all, the helicity structure 

and the color flow in the qijgg final state and qijqij final state are quite different. If 

a correction to the qijgg final state changes the conclusion, the following must be 

happening: the correction term to the qijgg exactly mimics an additional contri­

bution to the qijqij final state in the angular distributions with a negative sign such 

as to mask the contribution from .the qijgg final state: This does not seem to be 

likely because they have different structures in the helicities and colors. Moreover, 

the data do not indicate that the NLO correction is large. OPAL data [29] are 

fit very well by the LO Monte Carlo on three-dimensional histograms of 295 bins 

with x2 /d.o.f = 290/292. This excellent agreement between the matrix element 

calculation and the data found in [29] supports the smallness of the NLO correc­

tions empirically. However, the calculations of NLO corrections are necessary to 

justify it. "l For future studies, it is also desirable to compare different Monte Carlo 

programs, while only JETSET was usedin recent experimental papers (27, 28, 29). 

Finally, it is worth emphasizing that the result in this section is based on 

,It is encouraging that partial NLO calculations were done after the completion of this work 

[54]. A preliminary study shows that the correction from leading terms in 1/N; expansion is 

small [55]. 
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the 1991 and 1992 OPAL data with 1.1M hadronic Z's [29]. The statistical and 

systematic uncertainties are comparable in their paper. Given the current size of 

the LEP data, which is more than an order of magnitude larger, the statistical 

uncertainty should reduce substantially once all of the data has been analyzed. 

This change alone could drastically improve the sensitivity to the light gluino in 

four-jet events. On the other hand, it is not obvious how systematic uncertainties 

can be further reduced. The largest systematic uncertainty originates in the bin­

by-bin acceptance corrections which needed to be done before performing a fit in 

BZ, NR, and the opening angle space. It is not clear how this uncertainty can 

be reduced if one employs the same method. Perhaps choosing larger values of 

Ycu.t reduces the uncertainty while reducing the statistics at the same time. There 

could be an optimal choice of Ycut for this particular purpose. Some of the other 

large systematic uncertainties are specific to the OPAL experiment and could be 

reduced by averaging results from all four experiments. In any case, there is no 

doubt that a better result from the currently available data set can be expected. 

In summary, the published OPAL1991 and 1992 data on the QCD color factors 

[29] was reanalyzed in order to constrain pqssible additional contributions to four­

jet events in Z decays due to qijgg final states. The main difference from the 

original OPAL study is to fix CA/CF = 9/4 as required by QCD. TF/CF ~ 

3/8 is further imposed, and the finite mass effects of both the bottom quark 

and the gluino are carefully included. One finds that a light gluino with a 'mass 

below 1.5 Ge V / c2 is excluded at better than 90% confidence level. The result is 

37 



insensitive to assumptions about what bound state it forms, the definition of its 

mass, and the gluino fragmentation provided that it does not decay inside the 

detectors. The currently available data set should be much more sensitive to a 

possible additional contribution from the light gluino.ll It is also argued that the 

NLO corrections are unlikely to modify the conClusion; still, this assertion needs to 

be justified by explicit calculations in the future. As a by-product of this analysis, 

the effect of finite bottom quark mass on BZ and NR distributions was discussed 

in detail, which turn out to be not negligible when extracting QCD color factors 

at current precisions. 

II A paper by ALEPH [56] came out after the completion of this work, which claims to exclude 

a light gluino below 6.3 GeV by combining the four-jet angular variables with the two-jet rate. 

This type of analysis may be more sensitive to the NLO corrections. 
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Chapter 3 

Parameterizing the MSSM 

In this chapter, the "standard" parameterizations of the MSSM will be de-

scribed. Furthermore, it will be shown that the phenomenology arising from these 

parameterizations is far too constrained, and a less constrained parameterization 

will be proposed. Some phenomenological implications of the proposed parame-

terization will be discussed. 

3.1 Introduction 

Supersymmetry (SUSY) is regarded as one of the most promising extensions 

of the Standard Model. A supersymmetric version of the Standard Model will 

be the subject of exhaustive searches in this and the next generation of collider 

experiments. 

The Lagrangian of the minimal supersymmetric extension of the Standard 

Model, the so-called "Minimal Supersymmetric Standard Model" (MSSM), con-

sists of a BUSY-preserving piece and a SUSY-breaking piece [57], as described in 

the previous chapter. The BUSY-preserving piece contains all of the Standard 

Model gauge and Yukawa couplings plus the so-called J..t-term, once R-parity is 

. 
imposed to prevent baryon/lepton number violation. In this chapter, an exact or 
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approximate R-parity is assumed, which implies that the lightest supersymmetric 

particle (LSP) does not decay inside detectors. 

The SUSY-breaking Lagrangian will, ultimately, be determined by the physics 

of supersymmetry breaking and flavor but at the moment the best approach is to 

simply parameterize it with a general set of explicitly SUSY-breaking parameters. 

A general explicit soft SUSY-breaking Lagrangian 

(3.1.1) 

where F = Q, L, u, d, e and i, j = 1, 2, 3 for each generation, contains more than 

100 new parameters and makes the study of the MSSM parameter space imprac-

tical. Furthermore, a random choice of SUSY-breaking parameters is most likely 

ruled out, because of flavor changing effects and CP-violation. In light of this 

situation, simplifying assumptions are not only welcome but necessary. 

3.2 The Standard Parameterizations 

In this section, the two most common parameterizations of the SUSY breaking 

sector of the MSSM will be described. They solve the experimental constraints 

mentioned above by imposing that most of the MSSM parameters vanish, and 

that there is a large degeneracy in the scalar mass-squared parameters. Both are 

inspired by SUSY breaking mechanisms, even though in the "hidden sector" or 
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"minimal supergravity" models a very special form (which is, in general, hard to 

justify) for the high energy Lagrangian is required in order to yield the required 

scalar mass-squared degeneracy. 

The "minimal supergravity" or "hidden sector" framework is the most com-

monly used set of assumptions imposed on the MSSM. In these models, SUSY is 

broken in a hidden sector and SUSY breaking effects are transmitted to the elec-

troweak sector via nonrenormalizable operators, which are supressed by inverse 

powers of the Planck mass. Because it has nothing to do with supergravity itself, 

this framework will be referred to as the "Very Minimal Supersymmetric Standard 

Model" (VMSSM), to avoid confusion. It assumes a universal scalar mass-squared, 

gaugino mass, and trilinear coupling: 

m 2 -m2 -m2 
Hu -:- Hd- 0' 

Ma = M112 for all a, 

A1 = A0>..1 for all J, (3.2.1) 

where >..J are the ordinary Yukawa couplings, at the grand unified (GUT) scale. 

The VMSSM is, therefore, parameterized by five real parameters: m5, M 112 , A0 , 

J.L, and B (58]. 

More recently a lot of work has been done on models with the gamge mediation 

of SUSY breaking (GMSB) [59]. In these models, SUSY is broken in a secluded 

sector, and the effects of SUSY breaking are mediated to the electroweak sector 
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via gauge interaction loop effects. More will be said about these models in future 

chapters. For now, the only relevant information one needs to extract from these 

models is that the MSSM soft SUSY breaking parameters are predicted to be, at 

the messenger scale M, 

A1 = 0 for all j, (3.2.2) 

where aa = g~/41r and ga are the gauge coupling constants in the SU(5) normal-

ization. Yp is the hypercharge of the F = Q, u, J, L, e, Hu, Hd scalars, C2p = 3/4 

for weak SU(2) doublets (zero for singlets) and C3p = 4/3 for color triplets (zero 

for color singlets). Again, just five real parameters are introduced: F/M, M, N, p,, 

and B. Note that Eq. (3.2.2) guarantees that squarks of different families are de-

generate at the messenger scale and therefore FCNC effects are safely suppressed. 

The fact that FCNC are naturally suppressed is one of the main motivations for 

models with the GMSB [59]. 

It is important to note that the particle spectra of models with the GMSB are 

similar to those of the VMSSM* and, therefore, the remainder of this chapter will 

concentrate on.the VMSSM and possible modifications to it. 

*The major difference from the VMSSM is that the gravitino (G) is most likely the LSP. This 

can lead, e.g., to photonic signatures from the decay x? -t ,c. 
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3.3 Consequences of the Minimal Parameterization 

The issue which is important to address is how restrictive the VMSSM is to 

collider phenomenology. It is important to be able to explore diverse particle 

spectra while still satisfying all experimental bounds and keeping the number of 

parameters small, and the fact that the VMSSM has only a handful of param­

eters (instead of over 100) is of some concern. In this section the issue of how 

experimental constraits restrict the VMSSM will be addressed. 

Only constraints from particle physics will be considered throughout the chap­

ter. In our opinion, it is not wise to impose any cosmological constraints on the 

parameter space for the experimental analysis of collider data. Even though cos­

mology does provide many useful constraints on parameters of particle physics, 

cosmology at temperatures between the electroweak scale and nucleosynthesis may 

be much more complex than usually assumed. For instance, most models of SUSY 

breaking create cosmological problems, which can be avoided only by invoking in­

flation at temperatures below the electroweak scale [60). Such a drastic change 

removes the constraints that the LSP must be neutral and should not overdose the 

Universe. Very small R-parity violating couplings can also evade the cosmological 

constraints without any consequences to collider phenomenology [61). In light of 

this discussion, the parameter space should be explored without much theoretical 

prejudice. 

First, the VMSSM parameter space and spectrum will be briefly reviewed. 
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The soft SUSY-breaking parameters at the weak scale are found by solving the 

renormalization group (RG) equations [62], which are quoted in Appendix F. In 

Table 3.1 the results of numerically running the 1-loop RG equations from the 

GUT scale down to 500 GeV as a function of m5, M 1; 2 , and A0 , for tan ,B = 10 

are quoted as an example. The parameters f-1 and B run "by themselves", and one 

can, therefore, specify their input values at the weak scale. 

It is necessary to check that the electroweak symmetry has been broken and 

that M~ = 91 GeV. This is done by choosing J-12 such that 

(3.3.1) 

where tan ,B is the ratio of Higgs boson vacuum expectation values, vu/vd. This 

is, of course, a tree-level result, which is known to receive corrections of order a 
I 

few percent [63] at one-loop. In order to keep the presentation simple, however, 

only use the tree-level results will be used. Another condition which must be 

satisfied involves the B-term. Once tan ,B is specified, the B-parameter is uniquely 

determined and is related to the pseudoscalar Higgs mass squared, 

(3.3.2) 

To prevent a runaway behavior in the Higgs scalar potential m~ must be positive. 

After imposing Eqs. (3.3.1,3.3.2), the VMSSM contains only four extra real free 

parameters: m5, M1; 2 , A0 , tan ,B, plus a discrete choice, sign(J-L). 

Table 3.1 indicates the structure of the particle spectrum: colored sparticles 

are heavier than sparticles that only transform under SU(2)L x U(1)v which in 
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Table 3.1: SUSY-breaking parameters at a scale of 500 GeV from the 1-loop RG 

equations with the VMSSM boundary conditions at Mcur = 1.86 x 1016 GeV, 

for (A) the first/second generation sfermions and (B) the rest with tan j3 = 10. 

The masses of first/second generation fermions have been neglected, and ht(mt) = 

165/ ( 17 4 sin /3) was used. The table is to be read as follows: each soft parameter 

is a linear combination of the input parameters, with the coefficients given in the 

and Ad = A0 + 3.41Ml/2· 

(A) m2 
0 (MI/2)2 Dy Ao M112 

m2-
Q 

1 5.62 1/6 Au 1 3.44 

m~ 
L 

1 0.50 -1/2 Ad 1 3.41 

m~ u 1 5.21 -2/3 Ae 1 0.67 

m~ 1 5.17 1/3 - - -D 

m2- 1 0.15 1 - - -E 

(B) m2 
0 (M1;2)2 (Ao)2 M1;2Ao Dy Ao M112 

m~ 
Qa 

0.63 4.70 ~0.04 -0.14 1/6 At 0.28 2.04 

m~ 
La 

0.99 0.50 -0.00 -0.00 -1/2 A-b 0.85 3.12 

m~ t 0.28 3.45 -0.07 -0.26 -2/3 Ar 0.98 0.64 

m? 
b 

0.97 5.09 -0.01 -0.03 1/3 M1 0 0.43 

m~ 
T 0.98 0.14 -0.01 -0.00 1 M2 0 0.83 

2 
mHd 0.95 0.38 -0.01 -0.04 -1/2 M3 0 2.61 

m2 Hu -0.08 -2.15 -0.10 -0.39 1/2 - - -
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turn are heavier than those that only transform under U(1)y. Furthermore /12 can 

be numerically evaluated with the help of Eq. (3.3.1), 

(3.3.3) 

for tan ,8 = 10. From gluino searches, M1; 2 ;::: 77 GeV (for M3 ;::: 200 GeV), and 

therefore 112 
;::: 2.14Mi. It is then safe to say that the lightest neutralino is an 

almost pure B-ino of mass m-x? ~ M 1 [64]. 

There are two LSP candidates: the right-handed scalar tau (fR) and the lightest 

neutralino (x~). It is easy to see that x~ is always the LSP unless m5 ;S (0.04Mf12 -

1890) (GeV) 2
, for tan,B = 10. In theories with the GMSB one can actually have 

a TR LSP for a larger portion of the parameter space if the number of messengers 

(N) is large enough [59]. 

3.4 A Less Constrained Parameterization 

In this section a "Less Minimal Supersymmetric Standard Model" (LMSSM) 

is proposed, which adds only one extra parameter to the VMSSM: the Fayet-

Iliopoulos D-term for the U(l)y gauge group, Dy. Unlike the VMSSM, this 

framework will prove to be general enough to allow the following additional phe-

nomenological possibilities: a stable charged slepton, a higgsino-like neutralino, 

or a sneutrino as the LSP. Different particle spectra result in very different decay 

patterns, lifetimes and branching ratios which lead to different signals for SUSY 
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searches, as will be discussed later. 

A Fayet-Iliopoulos D-term for the U(l)y gauge group is indeed generated in 

many interesting theoretical scenarios. A kinetic mixing between U(l)y and a 

different U(l) can induce aD-term once the other U(l) develops aD-component 

vacuum expectation value [65]. The other U(l) can be a part of the gauge group 

responsible for dynamical SUSY breaking, or an anomalous U(l) in superstring 

theory whose anomaly is canceled by the Green-Schwarz mechanism. In models 

with the GMSB it can also be the messenger U(l) [66]. The goal of this section 

is, however, to study the effect of the parameter Dy on phenomenology, therefore, 

its origin will not be discuused any further. 

In the LMSSM the Fayet-Iliopoulos D-term (Dy) changes the mass squared 

parameters of all the scalars to m~ = m~ v + YpDy at some energy scale, where 
' 

the subscript V stands for VMSSM and Yp is the hypercharge of the scalar F. 

Note that YpDy is flavor-blind and, therefore, the flavor-changing constraints are 

safely avoided. 

. There is one very important simplification which is peculiar to the parameter 

Dy. Dy runs by itself and hence it does not matter at what energy scale the scalar 

mass-squared parameters are modified. Therefore, it is convenient to calculate 

m~,v at 'the weak scale from the inputs m5, M 1; 2 , and A0 (see Table 3.1) and add 

the weak-scale value of YpDy. 

Similarly to the VMSSM, electroweak symmetry breaking imposes constraints 
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on the parameter space. One way to satisfy Eq. (3.3.1) is to choose Dy such that 

m~d.v- m~u.v tan2 {3 _ Dy 
tan2 {3- 1 ~ 2 cos 2{3 · 

(3.4.1) 

Note that the form of Eq. (3.3.2) is unchanged. The free parameters are, therefore, 

(3.4.2) 

Unlike in the VMSSM, f.1- is a free parameter in the LMSSM. It does not, for 

example, have to be larger than M 2 or even M 1 . This will change phenomenology 

drastically. Note that exactly the same strategy can be followed to add Dy as an 

extra parameter to models with the GMSB. Again, it is important to note that 

the one-loop effective potential changes the value of Dy extracted from Eq. (3.4.1) 

and, therefore, the plots presented in Figs. 3.1 and 3.2 will be somewhat distorted.t 

However, none of the qualitative features of the parameterization are lost. 

Varying Dy (or J.l-) affects different parameters in different ways. For negative 

Dy, ei, di, and Q i ( i is a generation index) become lighter (the effect on m J and m ~ 

is, however, small because of their hypercharges), while other sfermions become 

heavier. In this case the absolute value of theM-term is larger than in the VMSSM 

·(see Eq. (3.4.1)). If Dy is large enough compared to M 1; 2 , TR becomes the LSP. 

Note that, unlike in the VMSSM, this happens for a large range of values of m6. 

Fig. 3.1 depicts the nature of the LSP in the (J.l-, M 1; 2 ) plane for fixed values of 

twe have numerically verified that the extracted value of Dy changes only by 10-20% when 

the full one-loop effective Higgs potential is taken into account. For a complete discussion of 

one-loop effects in the VMSSM spectrum see, e.g., [63]. 
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Figure 3.1: Parameter space analysis indicating the nature of the LSP. The solid 

line indicates the points allowed by the VMSSM and the dashed line represents 

points where the gaugino content of 5(~ is 50%. A0 = 0, m5 = 5002 (GeV) 2 

and tan{3 = 10. The bounds mA > 65 GeV, m;; > 43 GeV, mf > 67 GeV (if 

mf < mxy), and mxt > 65 GeV were imposed. 

m5 and tan{3. For smaller (larger) values ofm5 or larger (smaller) values oftan{3, 

the size of the physically allowed region decreases (increases), but the qualitative 

features of the figure remain the same (with the exception of large tan {3 ,<: 30, see 

below). See Fig. 3.2. 

For positive Dy, Li and ui become lighter, while all other sfermion masses 

increase. In this case the absolute value of J-l is smaller than in the VMSSM. The 

consequences of this are many (see Fig. 3.1). i/7 can become the LSP. If J-l is small 

enough, xS can be the LSP but with a large higgsino content. The mass splitting 
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Figure 3.2: Same as Fig. 3.1, for A0 = 0, m~ = 7002 (GeV) 2 and tan(J = 2. 

between t's is enhanced with respect to the VMSSM. Finally, if tan (3 ;::::, 30 and 

J-l is large, the left-handed 7 can become the LSP due to left-right mixing in the 

mass squared matrix. 

We would like to draw attention to the existence of different particle spectra 

for different regions in the parameter space rather than the size of those regions 

(see Fig. 3.1). Like the VMSSM, the LMSSM should be considered as a parame-

terization and not a model, and the fact that diverse spectra can occur is what is 

of interest. 

3.5 Some Phenomenological Consequences 

In this section, interesting aspects of the phenomenology of the spectra outlined 

above are discussed semi-quantitatively. 
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If i is the LSP, heavy stable charged particles become a good signature for 

SUSY searches. An analysis of this situation was done in the context of models 

with the GMSB where the iR is the LSP (67]. Heavy stable charged particles 

might be found by looking for an excess of hits in the muon chambers, or tracks 

with anomalously large dE I dx in the tracking chambers. 

If the LSP is a higgsino-like neutralino, the phenomenology is very different 

from the VMSSM case, where the LSP is an almost pure B-ino (68]. In this case 

there are four fermions relatively close in mass: x~, xg and xt, which are all 

higgsino-like. In this situation experimental searches are much harder. Chargino 

searches become more difficult because the mass splitting between xt and x~ 

becomes very small ( mx.t - mx.? ~ m~ I M 1; 2 in the limit of M2 ~ f..L, mw), and 

xt will decay into missing transverse energy (.!JT) plus low energy leptons or jets 

(Ez,; ~ 6 GeV if M 1; 2 = 600 GeV). Experimental searches for chargino signals at 

l . 
the Tevatron usually require that El > 15 GeV (58].t 

At hadron machines the amount of !JT is reduced because of the small coupling 

between first and second generation squarks and x~·±. The main decay mode of 

a squark is ij --+ qxg 4 ·~r q'x~, and the heavier chargino/neutralinos, whfch are 
' 

gaugino-like, further decay via, e.g., X~--+ x~H±. The decay chains are therefore 
\ . 

much longer and the amount of IJT should decrease. It is interesting to note that 

there might be a significant increase in the number of top quark, b-jet, and T 

tlf the splitting between xt and xY is small enough, i.e. ~m ;S 1 GeV, the chargino will 

decay with a displaced vertex. This, however, requires that M1; 2 .2: 6 TeV. 
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events because of the production of heavy Higgs boson states (H0•±, A0
), which 

have large branching ratios into third generation fermions. 

The clean tri-lepton signature at hadron machines will decrease by an order of 

magnitude mainly because of the smaller leptonic branching ratio for xg and xt. 
Note that this effect is not restricted to the pure higgsino-like neutralino limit, 

but also applies to a mixed x~ [58). 

If the LSP is Vr, the decay modes of the heavier particles change dramatically. 

There are different possibilities, depending on ml and m-x:~. 

If ml < m-x~ the main decay mode for sleptons is l -7 i/j j or l -7 vl'v1,. 

Charginos, on the other hand, decay i~to two particles, namely x± -+ vl or-+ iv. 

The pair production of two sleptons at an e+e- machine will yield, for instance, 

ljj$, which is the typical chargino pair production signal in the VMSSM. The 

production of a chargino-pair will yield acoplanar leptons plus $, which is the 

typical slepton signal at e+e- machines in the VMSSM. The two leptons, however, 

do not have to be of the same flavor. There are, of course, ways of distinguishing a 

slepton signature in the VMSSM from the chargino signal ~n this scenario because 

the cross sections and angular distributions are quite different. 

Another important feature is the visible decay x~ -7 il. This makes the produc­

tion qij-+ x~x~ a feasible SUSY signature. Furthermore squarks decay dominantly 

as ij -7 qx~ because iii are much lighter than Qi or ct and hence the squarks pro­

duced are dominantly iii· This can lead to a rather impressive four leptons plus 

jets plus !Jr signature at hadron machines. The total fraction of 4l events is only 
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about 0.5% because typically BR(x? --t lt) c::: 1/3 and BR(l --t ii1['v1,) c::: 20% for 

/ l, l' = e or fl-, but they have much lower backgrounds (58]. 

In the case ml > mx? both the xt and the [ decay into two on-shell particles 

(l --t x?l). The x?, though unstable, is still invisible, because its only allowed decay 

mode is x? --t vii. This. scenario has, therefore, four "virtual LSPs" (3 ii and the 

x?). In this case the amount of ltr in hadron machines is virtually unchanged with 

respect to the VMSSM (69]. Note that the clean tri-lepton signature is enhanced 

(given that xg --t z[ is allowed with reasonable branching ratio) because both the 

xt and the f always decay into one charged lepton. 

Finally, there is another type of signature, which has no VMSSM analog, if the 

sneutrino is the LSP and tan /3 ,<: 4: visible sneutrino decays, ii1 --t z-T+vr . In this 

case the first and second generation sneutrinos are heavier than Vr enough to decay 

visibly. The other allowed sneutrino decays are ii1 --t vliirilr and ii1 --t v1v;vr. For 

tan/3 = 10, m~ = 5002 (GeV)2
, mvT' = 75 GeV and M 1 = 185 GeV, D.m ~ 15 GeV, 

and the visible branching ratio is approximately 7%. In this scenario, there is a 

very striking signature for ii1iii (l = fl-, e) production in e+e- machines if one of 

the sneutrinos decays visibly and the other invisibly. One expects to see l±TT plus 

ltr for 2 x (.07 x .93) = 13% of all ii1iiz* produced, for the parameters mentioned 

earlier. It is important to note that, for larger tan(/3), .6.m can be significantly 

larger, and therefore both the T and the l are easily visible at LEP (for tan f3 ~ 16, 

D.m c::: 35 GeV). The main backgrounds for this signal are e+e- --t w+w- and 

rr --t T+T-. However, simple kinematic cuts should efficiently suppress these 
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events, because their kinematics are quite different from the signal's. A systematic 

study of the appropriate cuts is beyond the scope of this chapter. There is also 

the possibility that i/1 decays with a displaced vertex, if tlm is small enough. In 

this case, however, the visible branching ratio is significantly smaller because of 

the phase space reduction due to the tau mass. 

3.6 Summary 

In summary, the standard parameterizations of the MSSM, as far as collider 

. ph~nomenology is concerned, were described. It was shown that the so-called 

"Minimal Supergravity Inspired" Supersymmetric Standard Model is too restric­

tive as far as collider phenomenology is concerned. The addition of only one extra 

parameter to the VMSSM, the Fayet-Iliopoulos D-term for U(l)y, was proposed 

and it was shown that it is capable of yielding a much more diverse phenomenology 

while still satisfying all experimental constraints. 

While the VMSSM almost always yields a B-ino-like LSP, the LMSSM also 

allows ii, for Higgsino-like X.~ LSP. It was verified that for each one of these cases 

there are important phenomenological consequences, including new signatures for 

SUSY and the disappearance of other "standard" signatures. Even though the 

LMSSM is not advocted as the model of SUSY breaking, it is important to em­

phasize that it is a much less restrictive, and yet workable, parameterization of 

the SUSY breaking sector. 
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Chapter 4 

Cosmology of Models with Gauge Mediated 

SUSY Breaking 

4.1 Introduction 

The promise of low-energy supersymmetry (SUSY) is to stabilize the hierarchy 

between the weak scale and a higher scale of new physics, e.g. the Planck scale 

(see, e.g., [70]). SUSY, however, has to be spontaneously broken because we do 

not see degenerate pairs of particles and their superpartners. Moreover, there are 

stringent phenomenological constraints on the spectrum of superparticles such as 

the degeneracy among squarks or sleptons at the percent level (see, e.g., [71]). 

Therefore, constructing viable mechanisms of SUSY breaking has been regarded 

as one of the most important issues in SUSY model building. 

Recently, the idea of generating SUSY-breaking masses via gauge interactions 

has attracted interests (Low-Energy Gauge Mediation, or LEGM) [72, 73, 74]. In 

this scheme, the SUSY breaking effects appear in the supersymmetric Standard 

Model in the following manner. There is a sector which breaks SUSY dynamically 

at around a 107 GeV scale, and it generates SUSY breaking effects in the so­

called messenger sector at around 105 GeV, which further induce SUSY breaking 
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masses of order 103 GeV in the supersymmetric Standard Model via ordinary gauge 

interactions. This mechanism guarantees the required degeneracy among squarks, 

sleptons at a high degree, and also generates the masses for scalars and gauginos 

at comparable magnitudes as desired phenomenologically. There have been active 

studies on the phenomenology of such models [75, 76]. On the other hand, there 

has been little discussion on cosmological consequences of this mechanism, except 

issues concerning stable particles in the messenger sector [77]. Since the scheme 

completely differs from the conventional hidden sector scenario· at high energies, 

early cosmology is expected to differ substantially as well. 

There are (at least) two ingredients in the LEGM models which may lead to a 

cosmology different from the hidden sector case. The first is a very small gravitino 

mass. Since SUSY is broken at around 107 GeV, compared to around 1010 GeV 

in the hidden sector scenario, the gravitino mass is much lighter: m3; 2 rv 100 ke V 

compared to 100 GeV. The second is that the SUSY breaking effects "shut off'' at 

high energies.* In particular, the flat directions in the supersymmetric Standard 

Model have very different potentials at large field amplitudes. 

In this chapter, the implications of the LEGM. models to cosmology are stud­

ied. In Sec. 4.2, the cosmological constraints on light gravitinos mainly based on 

the analysis by Moroi, Murayama and Yamaguchi [79], is firts discussed. Then, in 

Sec. 4.3, particular attention is paid to the estimate of the gravitino mass in the 

LEGM models, and it is argued that it is highly unlikely to be lighter than 2h2keV 

• A similar effect was discussed in [78] in the context of the sliding singlet mechanism. 
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as required by cosmology. This point implies that there must be a substantial en­

tropy production, which casts a concern on the baryon asymmetry. Therefore, the 

attention will be turned to a possible mechanism of baryogenesis at a relatively 

low temperature, using the idea of Affleck and Dine [80]. The important point 

in the LEG M models is that the SUSY breaking effects due to the messenger in­

teraction "shut off" at high energies. Therefore, in Sec. 4.4, a 2-loop calculation 

to determine the shape of the potential for the flat direction was performed. In 

Sec. 4.5, the possible value of the baryon-to~entropy ratio which can be induced 

by the Affieck-Dine baryogenesis is estimated. For a sufficiently large amplitude 

of the flat direction, the potential is dominated by the supergravity contribution 

rather than the LEGM contribution, and one will see that the Affieck-Dine baryo­

genesis works well enough to explain the present value of the baryon asymmetry. 

Furthermore, in Sec. 4.6, it is pointed out that the string moduli, if present within 

·the LEGM models, cause a serious problem because they are stable and their co­

. herent oscillations grossly overdose the Universe. However, a possible solution to 

the problem is also shown. Since the Affieck-Dine baryogenesis is so efficient, the 

· baryon asymmetry can survive the enormous entropy production required to dilute 

the moduli fields, possibly by thermal inflation [81]. Finally, Sec. 4.7, contains a 

summary and some conclusions. 

4.2 Cosmology of a Light Gravitino 

In this section, a brief review of the cosmology with a light stable gravitino [79] 
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is given.* If a stable gravitino is thermalized in the early Universe, and if it is not 

diluted by some mechanism (such as a late inflaljon and/or a substantial entropy 

production), its mass density may exceed the closure limit: n3; 2 < 1. Since the 

number density of the gravitino is fixed once the gravitinos are thermalized, the 

above argument sets an upper bound on the gravitino mass (82]: 

m3; 2 ;S 2h2ke V without dilution, (4.2.1) 

where h is the Hubble constant in units of 100km/secjMpc. In· other words, 

if the gravitino mass is heavier than 2h2 keV, some mechanism is necessary to. 

dilute the gravitino in order not to overdose the Universe. Since the gravitinos 

are produced more at a higher temperature, one can obtain an upper bound on 

the maximal temperature, Tmax' from which the ordinary radiation dominated 

Universe starts. For example, in the inflationary Universe, Tmax corresponds to 

the so-called reheating temperature TRH which is typically higher than TRH .<: 108 

GeV, if there is no significant entropy production after reheating. If Tmax turns 

out to be less than 108 GeV or so, we judge that one needs a substantial entropy 

production below TRH. It is worthwhile to recall that the recent measurements 

prefer h "'0.7 and hence the upper bound is about 1 keV. 

The crucial point about the light gravitino is that the interaction of the (lon­

gitudinal component of) gravitino becomes stronger as the gravitino mass gets 

lighter. This is because the longitudinal component of the gravitino behaves like 

the goldstino, whose interaction is proportional to (F)- 1 
rv (m3; 2 M*)-l, where 

*In this chapter, the absolute conservation of R-parity is assumed. 
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M* = 2.4 x 1018 GeV is the reduced Planck scale. For the light gravitino, the 

interaction of the longitudinal component of the gravitino ( rv the goldstino) 'lj;. to 

the chiral multiplet ( ¢, x) and to the gauge multiplet (AJ." A) is given by [83] 

(4.2.2) 

where m4>, mx, and m.>.. represent the masses of¢, x, and A.t As indicated in Eq. 

(4.2.2), the interaction of 'lj; becomes stronger as the gravitino mass gets smaller. 

In the thermal bath, two types of the processes may contribute to overproduce 

the gravitino: one is the decay of the sparticle X into its superpartner X and the 

gravitino, X ---+ 'lj; +X, and the other is the scattering processes, x + y -4 'lj; + z, 

where x, y, z are relevant (s)particles. The decay process is significant especially 

for the case m3; 2 ;S lOOkeV. The partial decay width of a sparticle X into the 

gravitino is estimated as 

- 1 m 5
-

f(X---+ '1/J +X) rv 48 2 ~2' 
7r m3/2 * 

(4.2.3) 

with mg being the mass of X, and it becomes large as the gravitino mass gets 

small. This decay process produces gravitinos as n3; 2+3Hn3; 2 = f(X---+ '1/J+X)ng 

where H is the expansion rate of the Universe at the given time. t Here and below, 

tHere, t/J represents the spin ! field, though the gravitino has spin £. In the high energy 

' limit, t/J is related to the longitudinal (helicity ± 1/2) component of the gravitino, t/Ji;z, as 

t/Ji;2 "'..j2f3fY't/J/m3; 2 . 

fl£ the gravitino number density is large, there is also a damping term because of the detailed 

balance, (r.h.s.) = r(X .--+ t/J + X)n x (1- n3 ; 2 /n;j 2 ), where n;j2 is the thermal equilibrium value 

of n 3; 2 • 
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n 3; 2 is the number density of gravitinos in the Universe at a given time. If the 

gravitino mass is in the range 2h2keV ;S m3; 2 ;S lOOkeV, the decay rate becomes 

so large that the decay process overproduces the gravitino once the sparticles are 

thermalized (79]. Thus, if the gravitino mass is in this range, Tmax should be 

lower than about mx ,..._, 100 GeV - 1 TeV depending on the mass spectrurp. of 

superparticles, or the Universe is overdosed.§ 

If the gravitino mass is heavier than O(lOOkeV), the decay process becomes 

unimportant and the most important production mechanisms of gravitinos are 

scattering processes. In this case, the Boltzmann equation for the number density 

of the gravitino, n312 , is given by 

( 4.2.4) 

where H is the expansion rate of the Universe, Etot is the thermally averaged 

total cross section, and nrad = (((3)/7r2)T3
• At high energies the first term in 

1 

Eq. (4.2.2) becomes more significant than the second one, and hence Etot is as 

large as O(gim~3/m~12 M;). After a detailed calculation, one obtains [79] 

2 2 .. g3mG3 
Etot ,....., 5.9 2 M 2 , 

m3/2 * 
(4.2.5) 

where g3 and mG3 are the gauge coupling constant and the gaugino mass for 

SU(3)c· Solving Eq. (4.2.4), and taking account of the effect of the dilution factor, 

§A similar argument can be applied to the decay process of the particles in the messenger 

sector or the SUSY breaking sector. In that case, the decay rate becomes much larger since the 

parent particle is much heavier. Thus, if the particles in those sectors are thermalized, the lower 

bound on the gravitino mass becomes more stringent than"' lOOkeV. 
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g*(Tmax)/g*(T) (where g*(T) is the number of the relativistic degrees of freedom 

in the thermal bath with temperature T), the number density of the gravitino is 

given by 

Using g*(T ;S 1MeV) "'3.9, and g*(Tmax) "'200, one obtains 

n = m3/2n3/2 "' 1 X h-2 ( m3/2 ) -l ( ffiG3 ) 
2 

( Tmax ) 3/2 Pc 100keV 1 TeV 10TeV ' 
(4.2.7) 

and the condition 0 3;2 ::::; 1 sets an upper bound on Tmax· In summary, the upper 

bound on T max is given by (79) 

. { 100GeV - 1TeV 
Tmax ;S 

10Te V X h2 ( 1:0~e~) ( ~{,) -
2 

2h2keV ;S m3;2 ;S lOOkeV 
. ( 4.2.8) 

m3;2 :<:, lOOkeV 

The above constraints are summarized in the Fig. 4.1. As one can see, the 

upper bound on T max is much lower than the usual reheating temperature after 

ordinary inflation, TRH :<:, 108 . To reduce the number density of the gravitino, 

therefore, a large entropy production is required. 

4.3 Light Gravitino in the LEGM Models 

The cosmological constraints on a light stable gravitino was discussed in the 

. previous section, and it was shown that one needs to dilute gravitinos produced 

in the early Universe somehow if m3; 2 ~ 2h2 keV. In this section the gravitino 
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Figure 4.1: The upper bound on Tmax a.s a function of the gravitino mass from the 

requirement that the relic stable gravitinos do not overdose the Universe. The 

Hubble parameter is taken to be H0 = 100 Mpc/km/sec. There is no constraint 

below m3; 2 = 2 keV, which is represented by the vertical line. For smaller H0 , 

the constraints become more stringent. The upper bound on T max shifts towards 

smaller Tmax a.s (H0 ) 2 . The vertical line moves towards smaller m3; 2 also a.s (H0 )
2

. 

Note that the current data prefer H0 ""70 Mpcjkm/sec. 
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mass in the LEG M models is estimated carefully and found unlikely to be below 

2h2 keV. 

In the scheme of the LEG M models, there are three sectors: the dynamical 

SUSY breaking (DSB) sector which originally breaks SUSY, the ordinary sector 

which consists of the particles in the minimal SUSY standard model (MSSM), 

and the messenger sector which mediates the SUSY breaking from the DSB sector 

into the ordinary sector. The scales for these sectors have a large hierarchy, since 

they are related by loop factors: Ansa ~ Amess ~ Msusy, where Ansa, Amess and 

Msusy represent the scales for the dynamical SUSY breaking sector, messenger 

sector, and the ordinary sector (rv electroweak scale), respectively. 
\. 

In the LEGM models a gauge interaction, which becomes strong at the scale 

Ansa, induces a non-perturbative superpotential. Due to non-perturbative ef-

fects, F-components of chiral multiplets in the SUSY breaking sector acquire non-

vanishing VEVs, (F0) rv A5sa' and SUSY is dynamically broken. Assuming a 

vanishing cosmological constant, the gravitino mass in this model is given by 

(Fo) A5sa 
m3;2 = r;; rv -M-*-. 

v3M* 
(4.3.1) 

In the next stage, the SUSY breaking is fed down to the messenger sector by 

integrating out the U(l)mess interaction. The messenger sector contains a gauge 

singlet S, whose A- and F-component Fs acquire VEVs after minimizing the 

potential.* The scale of these VEV s are related to the original SUSY breaking 

scales Ansa as (S) rv (Fs) 1
/
2 

rv O(g~essAosa/l67r2 ). The ratio of (Fs) to (S) 

• One actually needs a substantially more complicated messenger sector than the original ones 
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determines the masses of the sparticles in the ordinary sector. By counting the 

loop factors, one obtains 

A _ (Fs) 9~ess V M 
mess = (S) = Kmess 167f2 ffiJ/2 *' (4.3.2) 

where Kmess is supposed to be of 0(1) (74], and 9mess is the gauge coupling constant 

for the U(l)mess gauge interaction. In the messenger sector, there are also 5 + 5 

representation of SU(5), i.e. SU(2)L doublets (Land L) and SU(3)c triplets (Q 

and Q). These have the superpotential 

(4.3.3) 

Once Sand Fs acquire VEVs, the scalar components of Land L (Q and Q) have 

a mass matrix of the form 

(4.3.4) 

while the fermionic components have mass >..(S). Therefore, SUSY is broken in 

the mass spectrum of vector-like 5 + 5 messenger fields. By integrating out the 

messenger fields, the soft SUSY breaking parameters are induced in the ordinary 

sector. With N5 pairs of vector-like 5 + 5 multiplet, the gaugino masses, mc1, 

mc2, and mc3 are given by 

( 4.3.5) 

[72, 73, 74] in order to avoid a run-away global minimum [84, 85]. Such details are, however, 

beyond the scope of this chapter. 
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where c3 = c2 = 1, and c1 = ~ in our convention. On the other hand, the masses 

for the sfermions m i (] = uR, dR, QL, lL, and eR) are given by (86] 

(4.3.6) 

Here, C1 = ~Y2 with Y being the usual hypercharge, and Ci = ~ and ~ if j is in 

the fundamental. representation of SU(3)c and SU(2)L, and Ci = 0 for the gauge 

singlets. 

Combining the above relations with the experimental bounds on the sparticle 

masses, one can obtain a lower bound on Amess, and hence the gravitino mass. 

A lighter state gives us a more stringent constraint. For most parameters, the 

lightest among the sfermions is the right handed selectron, whose mass meR is 

given byt 

(4.3.7) 

For tan {3 close to 1, the right-handed selectron mass gives us a stringent bound 

on the messenger scale. Even if one adopts a conservative constraint of meR ~ 

tin fact, the selectron mass receives a correction from renormalization effects. However, the 

correction is less than 10%, and the following arguments are almost unchanged even if one 

includes such effects. 
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45Gev,t one obtains 

> 4 1 Amess rv 2 X 10 GeV X IT\T" 
vNs 

( 4.3.8) 

If tan /3 is large, the D-term contribution enhances the right handed selectron 

mass, and meR can be larger than the experimental limit with smaller value of 

Amess· In that case, however, the sneutrino mass mvL 

(4.3.9) 

receives a negative contribution from the D-term, and Amess is still constrained to 

be larger than rv 2 X 104Ge v. Therefore, the bound ( 4.3.8) holds for all values of 

tan /3. 

In order to translate the above constraint ( 4.3.8) into a lower bound on the 

gravitino mass, one needs information about the gauge coupling constant of the 

U(l)mess; larger 9mess (at the messenger scale) gives us a less stringent constraint 

on the gravitino mass. However, if 9mess is too large at the messenger scale, it 

blows up below the Planck scale or even below the GUT scale.§ By using the 

1-loop renormalization group equation, the U(l)mess gauge coupling constant at 

tLEP-II has placed stronger limits on the me, but as a function of the neutralino mass. The 

mass difference between me and the lightest neutralino"" B is not large in the LEGM models, 

and the constraint weakens substantially in this situation. The model-independent LEP bound 

is used because of this reason. 

§There is the logical possibility of employing an asymptotically free non-abelian gauge group 

as the messenger group, and assume that its scale parameter is very close to Anss. This would, 

however, require an exponential fine-tuning of parameters. 
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the messenger scale is constrained by 

(4.3.10) 

where Acut is the cutoff scale where the perturbative picture may break down, and 

bmess = .EA Q~ess,A is the sum of the squared charge of the messengers. Typically, 

bmess ,....., 10. (For the model proposed in [73), bmess = ;\ and for a model given in 

(74], bmess = 14.) Assuming bmess = 10 and Acut ,....., MauT, 9mess at the messenger 

scale is constrained to be smaller than ,....., 0.5, and 

> 70k V Kmess 9mess ffieR -2 ( )-2 ( )2 
m312 

rv e x Ns 0.5 45Ge V (4.3.11) 

In the minimal model, N 5 = 1, and if the perturbative unification of the gauge 

coupling constants in the MSSM is assumed, N5 ~ 4 [75]. Therefore, in any case, 

the lower bound above is about one or two order of magnitude larger than the 

cosmological upper bound (4.2.1). Notice that the lower bound on the gravitino 

mass increases as the experimental lower bound on the sparticle masses increases. 'l 

Based on the above estimations, the canonical set of the parameters is defined 

for the following analysis: 

m3;2 = lOOkeV, (4.3.12) 

'l A collorary tc;> this analysis is that it is unlikely to see the decay of a sparticle into the 

gravitino inside a collider detector. This casts some doubts on the naturalness of ll'Y'Y signature 

at CDF in the LEGM models. A possible way out is to employ the vector-like model (87] and 

couple a singlet field directly to the messenger fields in the superpotential (88]. This model, 

however, probably suffers from a tunneling to a color- and charge-breaking supersymmetric 

minimum if all coupling constants are 0(1) (85]. 
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(Fs) 112 = (S) = Amess· 

(4.3.13) 

( 4.3.14) 

Note that it is easy to raise the gravitino mass; one only has to assume a smaller 

value for the gauge coupling constant for the U(1)mess· In the following analysis, 

the above set of parameters is basically assumed, and a discussion of how the 

results change as the parameters vary is included. 

The above estimations are based on perturbative calculations, and one may 

worry that a strong coupling in the dynamical sector may allow one to lower 

the gravitino mass. Such a scenario seems unlikely, however. To see this, it 

is convenient to define the "vacuum polarizations" from the DSB sector for the 

,U(1)mess gauge multiplet: 

F.T. (OIT(A~'Av)I0)1pr = iq2IIA(q2)g~'v' 

F.T. (OIT(.X.X)I0)1p 1 ~ ( -i){f1II>.(q2
) + L:(q2

)}, 

F.T. (OIT(DD)I0)1p 1 = iiiv(q2
), 

(4.3.15) 

(4.3.16) 

(4.3.17) 

where F. T. stands for the four-dimensional Fourier Transform to the momentum 

space, and 1PI for one-particle irreducible diagrams. At tree level, ITA = II>. =. 

IIv = L: = 0. These quantities receive radiative corrections of O(g~ess/167r2 ) if 

the perturbative calculation is reliable. The messenger scale in the LEGM model 

is induced by integrating out the SUSY breaking sector and the U(l)mess gauge 

multiplet. By using ITA, Ih and Ilv, ·the SUSY breaking scalar mass in the 
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messenger sector ( rv the messenger scale) is given by 

(4.3.18) 

If one is limited to the physics of the DSB sector, there is no pole in the II functions 

at q2 = 0 which, i~ present, implies the Higgs mechanism for the U(l)mess gauge 

group. The only singularities in II functions are, therefore, branch cuts which 

appear above certain threshold q2 
;:::, Af>sB which is the only scale in the problem. 

Then the integrations in Eq. (4.3.18) can be Wick rotated and one obtains 

( 4.3.19) 

Now it is clear that the integration is purely Euclidean, and hence all II functions 

are far off-shell. Thus, the perturbative result is essentially reliable even when the 

DSB sector is strongly coupled. It is also useful to recall that similar calculations 

of vacuum polarization amplitudes in QCD tend to agree with lowest order pertur-

bative results for the running of the fine-structure constant, or the scaled-up QCD 

estimate of the electroweak S-parameter.ll It is therefore concluded that there is 

no significant enhancement of the resulting m~ess• and hence the estimates of the 

II Note that the S-parameter is defined by the vacuum polarization amplitudes at q2 = 0, and 

hence more sensitive to the non-perturbative effects than Eq. (4.3.19), which smears them over 

a wide range of q2 . Still, a perturbative estimate of S differs from the scaled-up QCD only by 

a factor of two. One may also estimate the S-parameter by assuming that it is dominated by 

the p and a 1 poles. Then the result is obtained by the tree-level process. Even so, the coupling 

of the resonances to the current operator has a factor of 1/41f and the counting of 1/41f factors 

remains the same in as the perturbative one-loop result. 
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messenger scale and the resulting gravitino mass ( 4.3.11) can be trusted. 

The constraint ( 4.3.11) sets severe bounds on cosmology. In particular, some 

mechanism to generate a dilution factor of rv (m3; 2 /2h2keV) at a relatively 

low temperature below the upper bound on the maximum temperature given in 

Eq. (4.2.8) and in Fig. 4.1 is needed, if the gravitino mass is larger than 2h2keV. 

Furthermore, even if one adopts such a large entropy production at a low tem­

perature, baryogenesis may still be a problem. The Affieck-Dine mechanism (80] 

for baryogenesis is one of the possibilities to generate baryons at a relatively low 

temperature.** 

However, in the LEGM models, the behavior of the flat direction at large 

amplitude is quite different from the usual supergravity case. Thus, even if one 

assumes the Affieck-Dine mechanism, it is a non-trivial question whether there 

can be enough baryon number density. In the following sections, this possibility is 

pursued, and as a result, it will be shown that the Affieck-Dine mechanism works 

sufficiently well, enough to explain the present value of the baryon-to-entropy 

ratio. 

**Electroweak baryogenesis may be another possibility to generate baryon asymmetry at rel~ 

atively low temperatures. However, the resulting baryon-to-photon ratio depends on the details 

of the complicated dynamics of the phase transition. Furthermore, the generated baryon asym­

metry would not be large, if any, and would probably not survive a huge entropy production to 

dilute the string moduli fields as discussed in Sec. 4.6. 
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4.4 Flat Directions in the LEG M Models 

As discussed in the previous sections, the constraint from the gravitino cos­

mology is quite severe in models with the LEGM. Therefore, it is preferable to 

look for baryogenesis scenarios which do not require high temperatures. 

The discussion will focus on the Affi.eck-Dine baryogenesis in the LEGM models 

in this chapter. There is one crucial difference from hidden sector models: the 

potential along the MSSM flat directions is not simply parabolic. Therefore the 

form of the potential is discussed first in this section, and its implication to the 

Affieck-Dine baryogenesis are discussed in the next section. 

In hidden sector models, where the SUSY breaking effect is mediated by 

Planck-scale operators, the soft SUSY breaking parameters are actually "hard", 

in the sense that they renormalize as usual mass terms between the Planck-scale 

and the weak scale. On the other hand, the SUSY breaking scalar mass terms are 

suppressed beyond the messenger scale in the LEGM models. 

This is analogous to the situation in the QCD. The current masses of the quarks 

renormalize according to the ordinary perturbation theory. They are "hard" 

masses. However the constituent quark masses are suppressed by a power of 

the energy: "soft". This is because the constituent quark masses are dynamically 

generated by the spontaneous chiral symmetry breaking, which is characterized 

by the order parameter (qq). The constituent quark mass has to be proportional 

to this order parameter. At high momentum transfer, a dimensional analysis then 
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indicates that the effective constituent mass behaves as mconst(Q2
) rv (qq)/Q2

. 

The same argument applies to the soft SUSY breaking masses from the LEGM. 

SUSY is broken by an F-component of a chiral superfield, (Fs) =/=- 0. The soft 

SUSY breaking scalar mass is necessarily proportional to the order parameter of 

SUSY breaking, i.e., m 2 ex (Fs)t(F8 ). A dimensional analysis indicates that it is 

suppressed at high momentum transfers, m2 (Q2 )""' (Fs)t(Fs)/Q2
. Therefore, the 

SUSY breaking parameters "shut off" at high energies. 

The potential of a MSSM flat direction is given simply by V = m2 1¢>1 2
, where 

m2 is a soft SUSY breaking mass. A renormalization group improvement yields 

V = m2 (1¢>1 2) 1¢>1 2 . In the hidden sector case, m2 (1¢>1 2
) has only a logarithmic 

dependence on 1¢>1 2 and hence can be taken approximately constant unless it crosses 

zero at some energy scale. For most cosmological applications, this is a sufficiently 

good description. In the LEGM models, however, the effective mass m2 (1¢>1 2
) 

exhibits a power dependence on 1¢>1 2 which cannot be neglected. One expects 

that m2 (1¢>1 2) behaves as (Fs) t (Fs) /1¢>1 2 for large 1¢>1, and hence the potential 

behaves approximately like a constant for 1¢>1 > (S), which is the mass scale of the 

messengers. 

An explicit two-loop calculation of the effective potential V( ¢>) was performed, 

and its details are presented in Appendix A. Here only the result is quoted. As 

expected, the potential behaves parabolically around the origin, while it becomes 

approximately constant for large 1¢>1; actually it keeps growing slowly as (ln 1¢>1 2
)

2
. 
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The potential of a MSSM fiat direction behaves as 

(4.4.1) 

for small 1¢1 « (S), and 

(4.4.2) 

with 

(4.4.3) 

for large 1¢1 » (S). Here, g generically refers to standard model gauge coupling 

constants.* 

For extremely large 1¢1, however, the contribution from supergravity be-

comes important. Supergravity generates a contribution to the scalar potentials 

"'m~;2 1¢1 2 for any 1</>l.t To determine the relative importance of the LEGM and 

supergravity contributions, one should compare their derivatives V', because this 

is) the quantity which appears in the equation of motion. The derivative of the 

*One may wonder why Eqs. (4.4.2) and (4.4.3) have only two powers of gauge coupling 

constants despite the two-loop-ness of the effective potential. This is the result of an explicit 

calculation, and it can also be explained in a simple way. When the field value is large, the 

standard model gauge multiplets acquire large masses of order g¢. The effective potential is 

generated by the exchange of heavy gauge multiplets, and hence it is suppressed by 1/IY¢12
. 

This cancels two powers in gauge coupling constants. 

tThis is true for the minimal supergravity and its variants. This contribution, however, is not 

there in no-scale supergravity, or in general, in supergravity with Heisenberg symmetry (89, 90). 

In such a case, </>eq must be taken at M. in the rest of the discussions. 
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potential from the LEG M is 

(4.4.4) 

which is to be compared with the supergravity contribution 8Vj8¢> = m~12 ¢>*. The 

supergravity contribution is more important above a threshold value c/Jeq which is 

given by 

( 4.4.5) 

The motion of the flat direction is determined by the effective potential given in 

this section and the canonical kinetic term, and there is no need to include the 

wave function renormalization factor at this order in perturbation theory. See 

Appendix B for details. 

4.5 Affieck-Dine Baryogenesis in the LEGM Models 

The goal of this section is to estimate the size of the baryon-to-entropy ratio 

from Affi.eck-Dine baryogenesis in the LEGM models. Because of the multiple 

scales in the problem, the discussion becomes somewhat complicated. The basic 

conclusion is that the Affi.eck-Dine baryogenesis works as efficiently as in the 

hidden sector case, but in a much more non-trivial manner. Finally the possible 

dilution of gravitinos via the decay of the Affieck-Dine flat direction is discussed, 

and it is determined that the gravitinos can be diluted below the closure limit if 
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the initial amplitude of the flat direction is sufficiently large. 

4.5.1 Generalities 

In Affieck-Dine baryogenesis (80], one assumes that a MSSM flat direction 

has a large amplitude at the end of the primordial inflation. The mechanism to 

achieve a large amplitude varies: a negative curvature from a non-minimal Kahler 

potential (91], or no-scale supergravity (90]. In any case, it tends to be equal to or 

. larger than the expansion rate of the Universe during inflation Hinf "' 1011 GeV 

- 1013 Ge V depending on inflationary scenarios. It will be phenomenologically 

parameterized just as the initial amplitude ¢0 . 

A typical assumption is that there is a baryon-number violating Kahler poten-

tial term K "' l* q*ucdc / M?, where M. is the reduced Planck scale.* The SUSY 

breaking effects from the LEGM generates a term in the potentialt 

*It could also well be th~ GUT-scale MauT· However, in this chapter, this form of the 

baryon number violating operator is assumed for simplicity. The extension to the case with 

K "' l*q*ucdc fMauT is trivial, and one can easily estimate the resulting baryon-to-entropy 

ratio. 

tThis has not been calculated explicitly. This form is expected based on the analogy to 

the calculation of the effective potential in the previous section. The only difference is that 

the previous one arises from the kinetic term ¢>* ¢> in the Kahler potential rather than from a 

non-renormalizable term l*q*ucdc / M'! here. 
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2 2 . 

Vo (l 1¢1 ) 1 l-* -*-cd-c h 
= 1¢12 n (5)2 M'! q u + .c., (4.5.1) 

while the supergravity effect induces an operator in the scalar potential 

(4.5.2) 

The LEGM operator is dominant if lci>ol ;S cPeq, while the supergravity one dom-

inates if lci>ol ;:: cPeq· Therefore, the two cases are discussed separately below. 

In either case, the size of the baryon-number violating operator is much smaller 

than in the hidden sector case (Appendix E). It turns out, however, that the 

baryogenesis proceeds efficiently with these operators. 

Below, the fields are generically referred to as ¢, without distinction among 

various species. The baryon number in the scalar sector is given by 

(4.5.3) 

while the baryon number violating operator is written as 

/1'\ [ 2 Vo (1· 1¢1
2 

) 
2]1 (.A.4 .A.*4) 

v "" . m3/2 + 1¢12 n (8)2 M't '+' + '+' • (4.5.4) 

4.5.2 I<Pol :<: </Jeq 

For sufficiently large l¢0 I ( lci>o I ;:: cPeq), the supergravity contribution is initially 

important, and the field begins to roll down the potential when the expansion 

rate of the Universe H is comparable to H"' m3; 2 . First, the primordial baryon 

number asymmetry will be estimated for lci>ol ;:: cPeq· 
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A rough estimation of the baryon asymmetry, which is generated just after 

the start of the oscillation of the ¢ field can be done only by using simple order 

of magnitude arguments. With the above baryon number violating operator, the 

time evolution of the baryon number is given by 

. . 3H . (80"' 80 "'*) nB + nB = z 8¢ '+' - 84>* '+' . (4.5.5) 

When the field begins to roll down the potential, its initial motion is slow, and 

one can neglect the n8 term in the equation (see Appendix D). Then the resulting 

baryon number can be estimated by [92] 

(4.5.6) 

Using the a~proximate order of magnitude of the operator and H rv m 3; 2 , one 

obtains 

(4.5.7) 

It depends on the imaginary part of the initial amplitude. The entropy of the 

radiation at this stage is given by s rv g*T3 while the energy density Prad "" g*T4 
rv 

m~12M;. By putting them together, one can estimate the baryon-to-entropy ratio, 

nB rv -1/4 Im(¢6) rv 4 1010 (14>ol)4 ( m3/2 )-1/2 . 40 
g* 1/2 7/2 x x M lOOk V sm o, 

s m3/2M* * e 
(4.5.8) 

where the initial amplitude is parameterized as ¢0 = l4>oleiBo. As one can see, a 

large baryon asymmetry can be generated, if the initial amplitude of ¢ is not too 

small. Therefore, a large enough baryon number can remain in this scenario, even 

if there is a substantial entropy production after the Affieck-Dine baryogenesis. 
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Note that one obtains exactly the same expression in the hidden sector models, 

but with a different m3; 2 . 

The present baryon-to-entropy ratio is also given by the above formula, if 

there is no significant entropy production. However, in a realistic situation, there 

can be entropy production. In particular, the decay of the Affieck-Dine field ¢ 

may produce a large amount of entropy. Furthermore, for m 3; 2 ;::: 2h2 keY, a 

non-negligible entropy production is needed to dilute the primordial gravitino. If 

there is an entropy production after the Affieck-Dine baryogenesis, the primordial 

baryon number density is also diluted. In the following, how an entropy production 

affects the results is discussed .. 

The entropy production due to the decay of the flat direction can be esti-

mated. As discussed in the previous section, ¢ starts to oscillate when T = T0 "' 

g-;114 Jm3; 2 M., if lc/Jol ;::: ¢eq· During 1¢1 ;::: c/Jeq, the potential for¢ is dominated 

by the supergravity contribution, and hence 

(4.5.9) 

Thus, the temperature at 1¢1 "'c/Jeq, which is denoted Teq, is estimated as 

( 
¢ ) 2/3 

Teq "' To I ;:I · (4.5.10) 

For 1¢1 :S c/Jeq, the potential for the flat direction is dominated by the LEGM 

piece, and the evolution for ¢ does not obey the relation (4.5.9). By using the 

virial theorem, the evolution of the flat direction can be estimated, and is given 
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I 

by 

I<PIR3 = const. ( (S) ;S I <PI ;S <Peq)· (4.5.11) 

(See Appendix C.) By using the above relations, one obtains the dilution factor 

due to the decay of the fiat direction. 

Now an important question is at what field amplitude¢> decays into radiation. 

When the motion is dominated by a parabolic term, the time dependence of the 

oscillation is known (just a harmonic oscillator), and one can calculate the rate 

of particle production in such a background. The result is known to be the same 

as the single particle decay rate, if the amplitude is not too large compared to 

the oscillation frequency. Once the amplitude becomes comparable to (S), the 

potential is almost parabolic, and one finds that the coherent oscillation decays 

into radiation rapidly. On the other hand, a corresponding calculation is difficult 

when the potential is dominated by the logarithmic term. In the analysis, the 

decay amplitude, ¢>dec is regarded, as a free parameter, and the ¢>dec-dependence 

of the results is discussed. t 

The temperature of the background radiation at the decay time of the fiat 

fFor a canonical parameter, <Pctec "' 105 GeV is considered for estimating dilution factors. 

Since <P decays at <P "' (S) "' 3 x 104 GeV at latest, this choice gives the minimum estimate of 

the baryon asymmetry. If <P decays earlier, the dilution factor is less and the baryon asymmetry 

is larger. The dilution factor is likely to be overestimated with this choice. This point will be 

addressed later, during the discussion of a possible dilution of gravitinos from the decay of the 

flat direction. 
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direction, Tdec, is given by 

T rv T ( </Jdec) 1/3 rv T, ( </Jdec) 1/3 ( </Jeq ) 2/3 
dec eq </Jeq 0 </Jeq I </Jo I ( 4.5.12) 

On the contrary, the energy density of the flat direction is 

Pflat "' Vo. (4.5.13) 

Then, if Pflat ~ Prad, the dilution fa~tor from the decay is given by 

D rv (Pflat) 
314 

( VQ ) 
314 

Prad rv g* TJec 

~ 6 x 10' (~.1) 2 (lO~~:v) -1 (1:~:v) -1/2 ( 3 x ~~~.v )4.5.14) 
Note that D"' 1 if Pflat ;S Prad, or in terms of the initial amplitude, <Po ;S 1014 GeV. 

Combining the above dilution factor with the estimation of the primordial 

baryon number density given in Eq. (4.5.8), one obtains the present baryon num-

ber asymmetry. In order to make a pessimistic estimate of the resulting baryon . . 

asymmetry, it is assumed that the flat direction decays only when its amplitude is 

as small as (S). This assumption maximizes the entropy production, and hence, 

gives the minimum value for the baryon asymmetry. If it decays earlier, then the 

entropy production is less and hence the baryon asymmetry is larger. With this 
.;. ..... 

caveat in mind, one can make an estimate of the resulting baryon-to-entropy ratio, 

and in the case with entropy production (D > 1), the resulting baryon-to-entropy 

ratio is given by 

n-1 -1/4 Im(</J~) 
rv g* 1/2M7/2 

m3/2 * 

rv 70 X (~)
2 

( </Jdec ) 
M* 105 GeV ( 

v;1/4 ) 
3 x 1~3 GeV . sin 40o. (4.5.15) 
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Note that the result is independent of the gravitino mass. It is intriguing that the 

final result is more or less the same as in the hidden sector case Eq. (E.9). 

4.5.3 l¢ol ;S cPeq 

Next, the case of l4>ol ;S <Aeq is discussed.§ In this case, the potential for the 

fiat direction is dominated by the LEGM-piece, and the fiat direction starts to 

move when H rv }IV'(4>o)l/l4>ol rv jVo(ln l4>oi 2/(S)2)/I4>ol· The temperature at 

this stage, T0 , is estimated as 

2 -1/2 vo 'f'O Tr1/2 ( jA. 12) 1/2 
To rv g* M* l4>ol ln (S)2. (4.5.16) 

Then, by using Eq.(4.5.6), one can estimate the resulting baryon number density, 

and hence the baryon-to-entropy ratio. Note that the baryon-number-violating 

operator CJ is different from the previous case. 
) 

Following exactly the same steps as in the previous case, one finds 

(4.5.17) 

when the fiat direction starts to move. Therefore, the baryon-to-entropy ratio is 

§As noted before, the no-scale supergravity does not generate a potential term proportional 

to m~12 and hence the evolution of the flat direction is always dominated by the LEGM piece. 

Then the formulae presented in this subsection must be used even for a larger I<Pol....., M •. Such 

a large !<Pol is indeed expected in the no-scale case because the flat directions remain flat even 

during the inflation [90]. 
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given by 

rv -1/4 ~0 1 0 · 4(} na lA.. 1
912 

( I<P 1
2

)
314 

s g* Va1/4 M!/2 n (S)2 sm O· 

( 
I<PI )9/2( v/1

4 )-1 
rv 6 X 10-14 X 1012 ~eV 3 X 1~3 GeV sin 4()o ( 4.5.18) 

which is typically too small. It is useful to note that the above formula is larger 

by a factor of the logarithm than the corresponding formula Eq. ( 4.5.8) for the 

case <Po ~ </Jeq when <Po = </Jeq is substituted. Of course such a discontinuity cannot 

exist. It simply means that there is a transition region at <Po "" </Jeq where there is 

a slight rise in n8 / s when <Po rv </Jeq is crossed from above. 

The dilution factor can be estimated also along the lines of the previous case. 

One has 

(
<P ) 1/3 

Tdec rv To ;: , (4.5.19) 

and hence (if Pfiat > Prad), 

D rv (Pfiat) 3/4 ( Vo ) 3/4 I</Jol5/2 

Prad rv g.TJec "'M~12</Jdec(lni</Joi 2/(S)2) 3/4 

( 
I<P I ) 5/2 ( <P ) -'-1 

rv 2 X 10-4 1Ql2 ~eV, 105 ~eV (4.5.20) 

(More correctly, the dilution factor is D = ((Pflat + Prad)/ Prad)314 and cannot be 

less than unity.) Therefore, the dilution factor is much less important than in the 

prevwus case. 

4.5.4 Numerical Analysis 

A more detailed behavior of the baryon-to-entropy ratio can be studied by a 
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numerical calculation. Here, in order to better see the behavior of the results, 

the resulting baryon-to-entropy ratio for a particular set of parameters: Vo = 

(3 x 103GeV) 4
, (S) = 3 x 104 GeV, ¢dec = 105 GeV, and sin 480 = 1 is shown. The 

results for other set~ of parameters can be easily estimated by using Eqs. ( 4.5.8) 

and (4.5.15). First, the equation of motion for the fiat direction, 

.. . av 
¢+3H¢+ o¢* = 0, (4 .. 5.21) 

is solved, with the potential'l 

The calculation starts at a temperature much higher than T0 (T = 10T0 ), and 

follow the evolution of the fiat direction as well as the temperature of the thermal 

bath. With the initial value ¢0 -:- 0.2M*ei7r/S, the initial motion is shown in 

Fig. 4.2. As one can see, ¢ starts an elliptical motion due to the baryon-number 

violating term in the potential. This means that a non-vanishing baryon number 

is generated once ¢ starts to oscillate. The generated baryon number was indeed 

found to be consistent with the estimates in the previous subsections within a 

factor of a few. 

With the motion of the fiat direction, one can calculate the baryon number 

by using Eq.(4.5.3), and hence the baryon··'to-entropy ratio. After several cycles 

'~~'The potential given in Eq.( 4.5.22) is unbounded-below for ¢ 2: M., and higher-dimension 

operators are supposed to stabilize it. However, it is only necessary to consider initial amplitudes 

less than "" M. in the present analysis, and hence the postulated potential is a good enough 

approximation. 
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Figure 4.2: The initial motion of the flat direction with the potential given in Eq. 

(4.5.22). Here, m312 = 100 keV, and ¢0 = 0.2M*ei1r/B was taken. 
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of oscillation, the baryon-to-entropy ratio becomes almost constant. Then, the 

evolution of¢ and T can be easily traced by using Eqs.(4.5.9) and (4.5.11) with 

RT = const. Finally, the dilution factor, D = ((Prad + P¢)/Prad)314, at the decay 

time of ¢ is calculated, and the primordial baryon-to-entropy ratio is multiplied 

by D-1 to obtain the resulting baryon asymmetry. 

Fig. 4.3 shows the lc/Jol dependence of the present baryon-to-entropy ratio, n8 js. 

From the figure, one can see that the results based on the order of magnitude es­

. timations provide good approximations. For a sufficiently large ¢0 such that the 

entropy production is significant, the resultant baryon-to-entropy ratio is indepen­

dent of the gravitino mass, and is proportional to l¢0 12 • It was also checked that 

the approximate formula (4.5.15) reproduces the behavior for the large lc/Jol region. 

For a smaller value of lc/Jol ,$ 1014 GeV, the entropy production fro~ the decay 

becomes negligible. The result then is proportional to l¢0 1
4 (Eq. (4.5.8)). For an 

even smaller lc/Jol ,$ c/Jeq rv 7 x 1011 GeV x (100 keY /m3t2), the behavior goes over 

to l¢01912 (Eq. (4.5.18)). As noted in the paragraph below Eq. (4.5.18), there is a 

transition region from rv 10¢eq to c/Jeq, where the curves fall less steeply because a 

logarithmic enhancement factor comes in. In any case, the baryon-to-entropy can 

clearly be sufficiently large in this scenario, as required by the standard big-bang 

nucleosynthesis n8 fs"' 10-10 , if the initial amplitude is larger than 1013- 14 GeV. 

A more precise estimate of the baryon asymmetry requires the specification of 

the fiat direction, the relevant operator, and the size of the initial amplitude. The 

usual caveat concerning the B- L invariance applies: If one employs an operator 
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Figure 4.3: The resulting baryon-to-entropy ratio as a function of the initial ampli-

tude ¢0• The parameters are taken to be V0 = (3 x 103GeV)4
, Oo = 1r /8, </Jdec = 105 

GeV, and m3; 2 = 1 keV (dotted line), m3; 2 = 100 keV (solid line), and m3; 2 = 10 

MeV (dashed line). 
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which preserves B - L symmetry like that generated by SU(5) grand unified 

models, it may be wiped out again by the electroweak sphaleron effect [94]. One 

needs to either preserve the B and L asymmetries using a Bose condensate [93], 

or by generating a B - L asymmetry [95, 96]. In view of the discussions of the 

next section, we find that the protection of B via a Bose condensate is a likely 

scenario. 

4.5.5 Diluting Gravitinos 

In the LEGM models, the mass of the gravitino is about 100 keV, and its mass 

density exceeds the closure limit ifTmax is larger than (1- 10) TeV, as discussed in 

Sec. 4.2. Since the reheating after the primordial inflation raises the temperature 

typically above TRH ;:::, 108 GeV or so, it is assumed that the gravitinos were 

once thermalized, which is of course the worse case scenario. It will be discussed 

whether the decay of the fiat direction can generate a large enough entropy to 

dilute gravitinos below the closure limit. 

Before discussing the implication of the entropy production to the gravitino, it 

is useful to estimate the freeze-out temperature of the gravitino, Trreeze, which is 

the temperature at which the expansion rate of the Universe becomes comprable 

to the production rate of the gravitino: H(Trreeze) rv :Etotnrad(Trreeze). By using the 

gravitino production cross section given in Eq. (4.2.5), one obtains 

( 
m3/2 )

2 
( mG3 )-

2 

Trreeze rv 200TeV X lOOkeV 1 TeV ( 4.5.23) 
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Below Trreeze, the expansion rate of the Universe becomes larger than the pro-

duction rate of the gravitino, and hence the gravitino cannot be thermalized. 

Therefore, an entropy production at T ;S Trreeze dilutes gravitinos produced before 

the entropy production. On the contrary, even if the entropy is produced when 

T ~ Trreeze, the gravitino is thermalized again, and its number density is deter-

mined by the thermal distributions. If the energy density of the flat direction 

dominates the energy density of the Universe, decay of the flat direction¢ reheats 

the Universe. The reheating temperature is estimated as TR rv (Vo) 114 
rv 1 - 10 

TeV. Comparing this reheating temperature to Eq. (4.5.23), one can see that the 

gravitino cannot be thermalized after the decay of ¢. In other words, graviti-

nos produced before the decay of ¢ are diluted with a dilution factor given in 

Eq. (4.5.14), if the decay of¢ produces the entropy. 

If the gravitino mass is larger than rv 1 keY, a substantial entropy production 

is needed; otherwise, the Universe is overdosed by the mass density of the grav-

itino. By assuming that the gravitino is thermalized, one can estimate the number 

density of the gravitino as 

3 g.(T) 
n3/2 (T) = -

2 
(7: ) nrad (T). 

9* freeze 
( 4.5.24) 

D > 50 h -2 ( m3/2 ) 
rv X 100keV . (4.5.25) 

Comparing the above constraint with Eq. (4.5.14), one can see that the decay 

of the flat direction can produce enough entropy to dilute the gravitinos away. 
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For example, for </>dec "-' 105 GeV and m3;2 "-' 100 keY, the dilution factor is 

large enough, if I<Pol ;:::, 1014- 15 GeV. Even with such a large dilution, the present 

baryon-to-entropy ratio can be sufficiently large (see Eq. (4.5.15)). 

If the flat direction decays at an amplitude larger than rv 105 Ge V, the dilution 

factor given in Eq. (4.5.14) becomes smaller, and the entropy production due to 

the decay of </> may not be enough to decrease the gravitino density. In addition, 

for m3; 2 .:S 100 keY, the reheating temperature TR "-' Vo-1
/

4 
"-' 1- 10 TeV may be 

higher than the freeze-out temperature of the gravitino. In these cases, one has 

to assume an extra source of the entropy production of O(m3; 2/2h2keV) after the 

reheating. Even in this case, the estimation of the primordial baryon-to-entropy 

ratio (4.5.8) is still valid, and the final baryon asymmetry can be as large as the one 

estimated by Eq. (4.5.15) and an additional dilution factor Eq. (4.5.25) required 

to dilute the gravitinos. Therefore, Affieck-Dine baryogenesis can generate a big 

enough baryon asymmetry to explain the present value of the baryon-to-entropy 

ratio. 

In fact, one can crudely estimate the decay amplitude </>dec even when it is in 

the region of the logarithmic potential, if its motion is circular rather than elliptic. 

The change from the original Affieck-Dine estimate of the decay rate Eq. (E. 7) 

is that the rotation frequency of the </> field is given by (Vo ln(l</>1 2 
/ (S) 2

) )
1

/
2 /I <PI 

rather than m312 . Since the quantity of interest is a dilution factor, it is assumed 
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that the flat direction dominates the Universe, and the field decays when 

(4.5.26) 

and 

1
.+. I [(as)2VrM (1 lc/Jdecl2)1/2]1/5 
'!'dec rv 7r o * n (S) 2 

( 
Vr ·) 1/5 

rv 8 X 105 GeV X (3 X 1030 GeV)4 (4.5.27) 

Therefore, the decay amplitude does not change much from the value assumed 

before. On the other hand, the case with an elliptic orbit is more difficult to deal 

with. We are not aware of any study on the decay rate of¢ for an arbitrary elliptic 

motion even for the parabolic potential. The other limit of almost linear motion 

is discussed in the literature and tends to give a larger decay rate, and hence a 

larger cPdec [97]. However, we believe the motion of the ¢field in the case of our 

interest here, namely for lc/Jol ~ 1014- 15 GeV to dilute gravitinos, to be quite far 

from a linear one, and cPdec is not likely to be much larger than our estimate. One 

concludes that ¢dec is not much larger than the minimum possible value 105 GeV, 

which is used in most of the present discussions. 

4.6 Cosmology of String Moduli 

It is pointed out in this section that the moduli fields in the string theory, if 

they acquire masses in the LEG M models, are stable and drastically overdose the 

Universe. 
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According to a general analysis (98], string moduli acquire masses comparable 

to the gravitino mass m3;2. Their initial amplitude is likely to be of the order of the 

string or Planck scale because it is the only scale in the problem. The cosmological 

problem of the moduli fields is discussed extensively in the literature in the context 

of hidden sector models (for the original chapter, see (99]). There, the moduli fields 

acquire masses of the order of 1 Te V, and decay after nucleosynthesis, thereby 

spoiling the success of the nucleosynthesis theory. Even if one pushes the mass 

to 10 TeV so that the moduli fields decay before nucleosynthesis, the enormous 

production of entropy with a dilution factor of order M*/m3;2 rv 1014 wipes out 

all pre-existing baryon asymmetry. This problem may be solved by adopting the 

Affieck-Dine baryogenesis [100], or by the thermal inflation [81] (see Appendix E 

for more discussions). 

In the LEGM models, the situation is completely different.* The string moduli 

are stable within the cosmological time scale, and are still oscillating around their 

potential minima. A dimensional analysis gives the decay rate of a moduli field 

to be r rv m~;2/87rM; N (3 X 1018 years)-1, for m3/2 rv 100 keV. Therefore there 

is a problem concerning its energy density. 

The estimation of the moduli energy density is straight-forward. When a 

moduli field begins to oscillate, the expansion rate is H rv m3;2. The entropy at 

*It was argued that the problem does not exist [101] if SUSY is broken dynamically, which is 

true for scalar fields which directly participate in the dynamical SUSY breaking. However, the 

string moduli fields were not considered in this discussion. 
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this stage is given by s rv g!14 (m3; 2M*)312
. Assuming the initial amplitude to be 

of order M*, the ratio of the moduli energy density to the entropy is given by 

. 1/2 
Pmoduli rv -1/4( M )1/2 rv 1.3 X 106 G v ( m3/2 ) 

s g* m 3; 2 * e 100 keV (4.6.1) 

Since both the energy density of the moduli and the entropy are diluted by the ex-

pansion with the same rate R-3 , the ratio remains constant until now unless there 

is entropy production. On the other· hand, the total energy density is bounded 

from above by the critical density Pc, 

Pmoduli < ~ = 3.6 X 10-9h2 GeV. (4.6.2) 
S - Snow . 

where Snow is the present value of the entropy density. The predicted ratio 

Eq. (4.6.1) is in gross conflict with the constraint Eq. (4.6.2). 

It is not clear how such an enormous energy density can be diluted. First of 

all, the necessary dilution factor is at least 1015. Furthermore, one needs such 

an entropy production at a very late. stage of the Universe, with H ~ m3; 2 , 

One needs to create a baryon asymmetry either after such an enormous entropy 

production at a very late stage, or large enough to survive the enormous entropy 

production. 

Actually, the Affieck-Dine mechanism may create a large enough baryon asym-

metry to survive the enormous entropy production which dilutes the string moduli 

below the critical density as will be shown below. 

A quantity which remains constant over an entropy production is the ratio of 
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the baryon number and the moduli energy density, because both of them scale 

as R-3 . In the previous section, it was estimated that the initial baryon number 

density is ns rv m3/2Im¢U M;' at the time when the flat direction begins to 

oscillate, i.e., H rv m3;2. In fact, this is the same time as when the moduli fields 

begin to oscillate, and the energy density of the moduli is Pmoduli rv m~12 M;. 

Therefore, their ratio is determined at this stage: 

Pmoduli (r Mf) rv m3/2 m .A,4 • 
ns 'f'O 

(4.6.3) 

or equivalently, 

nB Pmoduli -1 (1¢ol)
4 

. 4() 
- rv X m3/2 M sm 0· 
s s * 

(4.6.4) 

Combining the above equation with the constraint (4.6.2), one finds 

ns < Pc -1 (l<l>ol) 4
. ()· -5h2( m3/2 )-

1 (l<l>ol) 4
. () 7"' Snow X m3/2 M* sm4 o "'4 X 10 100 keV M* sm4 0· 

(4.6.5) 

As one can see, if lc/Jol.<: 1017 GeV, the baryon-to-entropy ratio may be larger than 

"' 10-10 even if one assumes a large entropy production to dilute the moduli field. 

The important question is whether one can have a brief period of inflation at 

such a late stage of Universe to dilute string moduli in the LEGM models. The 

inflationary expansion rate Hinf must be less than Hinf ;S m3/2 rv 100 ke V, i.e. 

the energy density of the inflation Pinf ;S (m3;2M*) 2 rv (10 7 GeV) 2. Moreover, 

the e-folding should not exceed 20 or so in order to keep the primordial density 

fluctuation generated by a "standard" inflation with Hinf "' 1011-1013 Ge V [103]. 
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On the other hand, an e-folding of N ;::: 5 is sufficient to dilute the string moduli 

by 10-15 . A thermal inflation [81] may offer a natural solution to these questions. 

Fortunately, it seems to be unnecessary to introduce new energy scales into the 

model in the framework of the thermal inflation. Suppose a positive mass squared 

of m 2 
rv ( 100 Ge V) 2 is generated for a scalar field X due to higher order loops at the 

energy scale of AosB rv 107 GeV. The renormalization group running of the mass 

squared may drive it negative at a scale slightly below AosB· If the scalar field is a 

fiat direction of both F- and D-terms in the potential, it develops a minimum at 

v ,$ AosB· This is an ideal potential for a thermal inflation. The scalar field may 

initially be stuck at the origin because of the thermal effects, giving a cosmological 

constant. As the radiation gets red-shifted, the thermal effects turn off and the 

field rolls down the potential to its true minimum x = v. The e-folding in this 

case is roughly N ~ ~ ln(v/m) r:v ~ ln(AosB/m) rv 5 (81] which is exactly what is 

needed to dilute the string moduli below the critical density. 

It may be interesting to compare this result with the case of the hidden sector 

SUSY breaking scenario with the Polonyi field or with the string moduli. (Here­

after, they will be called generically as "Polonyi fields". See Appendix E for the 

estimation of baryon asymmetry in this case.) Note that Eq. (4.6.4) is valid. 

Thus, the question is the constraint on the energy density of the Polonyi field, Pz. 

In this case, the Polonyi field decays much faster than the LEGM case since its 
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mass is larger, and a typical lifetime for the Polonyi field is given by 

( Nchm~/2)-
1 

103 (m3/2)
3 

7 rv --- rv sec X --
z 47r M'; 1TeV ' 

(4.6.6) 

where Nch rv 0(10) is the number of the decay channel. Thus, it does not con-

tribute to the mass density of the present Universe, and the constraint ( 4.6.2) 

cannot be applied. However, it may affect the great success of the standard big-

bang nucleosynthesis (BBN) scenario. 

The mass density of the Polonyi field speeds up the expansion rate of the 

Universe when the neutron decouples from t}:le thermal bath (i.e., T rv 1MeV), 

which may result in an over production of 4 He. Furthermore, the radiative decay 

of the Polonyi field induces cascade photons which cause the photofission process 

and change the primordial abundances of the light nuclei. The constraint on the 

primordial density of the Polonyi field strongly depends on its lifetime Tz [102]. If 

Tz .:5 104 sec, nucleosynthesis requires Pz/ s .:5 10-5 GeV. For a Polonyi field with 

a longer lifetime, the constraint becomes more stringent. For a Polonyi field with 

Tz .:5 10<4- 5) sec, which is the case for the Polonyi mass typically larger than a 

few TeV, its mass density is constrained as Pzfs .:5 w-7 GeV. These constraints 

on Pz/ s are compared to the estimate of the baryon-to-entropy ratio (E.14) which 

holds irrespective of the presence of a substantial dilution of Polonyi field by, e.g., 

a late inflation, 

nB Pz -1 (1¢~1) 4 
. 4() 

- rv - X m3/2 M . sm 0· 
s s * l 

Thus, for this range of the Polonyi mass, the resulting baryon-to-entropy ratio 
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may still be as large as 10-10 if lci>ol rv M*, and hence the Affieck-Dine scenario 

may provide us a reasonable value for the baryon-to-entropy ratio. However, if 

the Polonyi field has a longer lifetime, as for a sub-Te V Polonyi mass as usually 

expected, the constraint on Pz becomes even more stringent. In particular, for the 

case with Tz ~ 107 sec, which typically corresponds to mz .:S 100 GeV, Pz/ s .:S 

10-13 GeV. In this case, the result is too small to be identified as the present 

baryon asymmetry of the Universe. 

4. 7 Conclusion· 

The cosmology of the LEG M models was studied. First, the lower bound 

on the gravitino mass was estimated, and it was shown that the bound conflicts 

with the cosmological constraint if the primordial gravitino is not diluted. This 

fact indicates a huge entropy production at a relatively low temperature, and the 

conventional scenario of baryogenesis may not work well. 

In this case, the Affi.eck-Dine baryogenesis is one interesting possibility. The 

size of the baryon number violating operators is much smaller than in the hidden 

sector models. However the flat direction begins to move at a much later stage 

which in turn increases the baryon number. The dilution factor due to the decay 

of flat direction also has a complicated dependence on parameters. After putting 

all the effects together, it was found that the Affi.eck-Dine baryogenesis works 

efficiently for an initial amplitude of the flat direction, lci>ol ~ 1013 GeV. It was 

also discussed that the decay of the MSSM flat direction may provide enough 
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entropy to dilute the primordial gravitino for a relatively large initial amplitude 

of the flat direction, J¢0 1 ~ 1014-
15 GeV. Ther.efore, the gravitino problem in the 

LEGM models may be solved if one assumes such a large initial amplitude. 

The cosmological implication of the moduli fields in string theory was also 

discussed. Their masses are of the order of the gravitino mass, and their lifetime 

is much larger than the present age of the Universe in the LEGM models. The 

mass density of the moduli field may overdose the Universe. To dilute the moduli 

fields, a very late inflation is needed. It was shown that the baryon asymmetry 

generated by Affieck-Dine baryogenesis can be large enough to survive such a late 

inflation for J¢0 1 ~ 1017 GeV, even if one assumes a huge entropy production to 

dilute the primordial moduli field below the critical density. 
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Chapter 5 

The 11-Problem and the Next-to-Minimal SSM 

5.1 Introduction 

The primary motivation for supersymmetry (SUSY) is to stabilize the small­

ness of the electroweak scale against radiative corrections [106, 107, 108], which 

can be as large as the Planck scale if the Higgs bosons are truly elementary. Once 

the electroweak scale is set in the tree-level Lagrangian, it only receives logarith­

mic radiative corrections, and hence its order of magnitude is not changed. More­

over, the electroweak symmetry remains unbroken in the Minimal Supersymmetric 

Standard Model (MSSM) in the absence of explicit SUSY-breaking parameters. 

Therefore, one can view the electroweak symmetry breaking as being triggered 

by the soft SUSY breaking. Indeed, the soft SUSY-breaking mass-squared of the 

Higgs boson can be driven negative due to the top quark loop [109] while all the 

otherscalar bosons still have positive mass-squared. In this sense, there is nothing 

special about the Higgs boson. It is just one of many scalar bosons, which happens 

to acquire a negative mass-squared due to the top quark loop. This idea eliminates 

one of the least appealing features of the Standard Model. However, there are at 

least two open questions. First, SUSY by itself does not explain why the elec­

troweak scale is small to begin with. Therefore, SUSY makes the smallness of the 
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electroweak scale "technically natural," but not truly natural. Second, the MSSM 

contains one dimensionful parameter (the JL-parameter), allowed by SUSY, in the 

superpotetial. The natural values of JL are either the Planck mass (the only natu-

ral dimensionful parameter available) or zero, but recent experimental constraints 

imposed by LEP2 imply that a nonzero JL ~50 GeV is required [110]. 

SUSY, fortunately, can potentially explain the smallness of the electroweak 

scale if it is broken dynamically [107]. The perturbative non-renormalization 

theorem forbids the generation of a mass scale in the superpotential if it is ab-

sent at the tree-level. However, non-perturbative effects can violate the non-

renormalization theorem, and a mass scale can be generated by dimensional trans-

mutation: ASUSY "' MP!ancke-8
1l"

2
/g

2
lbol, if an asymptotically free gauge theory is 

responsible for $USY breaking. There has been major progress in building models 

of dynamical SUSY breaking [111, 112, 113, 114, 115, 116, 117], which became pos-

sible with the detailed understanding of the non-perturbative dynamics of SUSY 

gauge theories [118]. Furthermore, the so-called gauge mediation of SUSY break-

ing (GMSB) [108, 119] can generate soft SUSY-breaking parameters in the SUSY 

Standard Model in a phenomenologically desired form. Therefore, there is hope 

of understanding the smallness of the electroweak scale in a truly natural manner. 
1 

However, the other question remains largely unanswered: how can the dim en-

sionful parameters in the superpotential naturally be of the order of the SUSY-

breaking parameters? There have been extensive discussions on this subject in the 

literature, which are briefly summarized in Sec. 5.2. Unfortunately, many of the 
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proposed mechanisms rely on either small parameters, accidental cancellations, or 

the absence of interactions allowed by symmetries. The current situation is found 

to be rather unsatisfactory. 

A natural direction to follow is to start with a superpotential which does not 

contain a dimensionful parameter and hope that the electroweak scale is generated 

sol~ly due to the soft SUSY-breaking parameters. The simplest model which can 

potentially work along this line is the Next-to-Minimal Supersymmetric Standard 

Model (NMSSM) [120], which replaces the J.L-parameter by the vacuum expectation 

value of an electroweak singlet superfield. This possibility is revisited with detailed 

quantitative studies in this chapter. Unfortunately, the conclusion reached here 

is negative. The NMSSM by itself does not produce a phenomenologically viable 

eh~ctroweak symmetry breaking even if one varies the messenger scale. The major 

experimental constraints include Higgs boson and slepton searches. Certain simple 

modifications can evade phenomenological constraints, but require a cancellation 

am.ong parameters accurate to a few percent. All of these points are presented 

quantitatively in this chapter, and we hope that the results prompt further in­

vestigations in understanding the origin of the J.L-parameter in models with the 

GMSB. 

The chapter is organized as follows. In the next section, the situation of the 

J..L-problem in models with the GMSB is reviewed, and various proposals to explain 

the origin of the J.L-parameter are discussed. None of them, however, are found 

to be entirely satisfactory. Even if one accepts one of the proposed models, it is 
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still necessary to check whether the generated J.L-parameter is phenomenologically 

allowed. This question is addressed in Sec. 5.3, and it is determined that the 

currently available experimental lower bounds on superparticle masses already 
' 

require a cancellation of order 10% between the J.L-parameter and soft SUSY-

breaking parameters to reproduce the observed Mz. Then, the quantitative results 

of electroweak symmetry breaking in the NMSSM with the GMSB are presented 

in Sec. 5.4, and it is found that there is no phenomenologically viable parameter 

set even if one varies the messenger scale from 105 to 1016 GeV. Various simple 

modifications of the NMSSM are studied in Sec. 5.5, and it is shown that they 

either do not break electroweak symmetry in a phenomenologically viable manner 

or require a cancellation among parameters of order 1%. Sec. 5.6 contains the 

conclusions. 

5.2 The J.t-problem in the GMSB 

In this section, the J.L-problem in the MSSM is reviewed, and various attempts 

to solve it in the context of the GMSB are presented. 

The parameter J.l is the only dimensionful quantity present in the superpotential 

of the MSSM 

(5.2.1) 

Here, Qi, Li, ui, di, ei are the matter chiral superfields with the obvious nota-

tion, and Hu, Hd the Higgs doublets. Note that J.L is part of the supersymmetric 

101 



Lagrangian, and hence its origin is, naively, unrelated to the origin of the soft 

SUSY-breaking terms 

(5.2.2) 

Phenomenology, on the other hand, dictates that the values of both -IL and the soft 

SUSY-breaking masses should be around the weak scale (100 GeV), if SUSY is to 

be responsible for stabilizing the Higgs mass. Therefore, the important question 

is how the mechanism of SUSY breaking can induce a fL-parameter naturally, at 

the same order of magnitude as the other soft SUSY-breaking parameters in the 

Lagrangian. 

One popular scenario of SUSY breaking is the so-called "hidden sector" SUSY 

breaking in supergravity (SUGRA) [121]. In hidden sector models, SUSY is broken 

in the hidden sector by some mechanism, such as the Polonyi model [122], gaugino 

condensation [123], or the O'Rafeartaigh model [124], and the effects of SUSY 

breaking are. mediated to the fields in the·MSSM only by interactions suppressed 

by the Planck scale. It therefore requires SUSY breaking at a scale A"' 1010 GeV 

if the soft SUSY-breaking masses are generated as A2 /MPtanck· This class of models 

is able to generate the appropriate soft SUSY-breaking masses and fL-parameter 

given that the ~-L-term is forbidden in the supersymmetric limit by appropriate 

symmetries, and arises due to SUSY breaking (see, for example, the Giudice-
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Masiero mechanism [125]). Hidden sector models have, on the other hand, to face 

serious bounds imposed by flavor-changing neutral currents (FCNC) [126]. Low­

energy constraints such as the smallness of K 0-K0 mixing require the matrices 

m~i,. m~ij to have eigenvalues degenerate to a few percent, or their eigenvectors 

to be strongly "aligned" with the eigenvectors of the Yukawa matrices >..t (the 

same is true for AY). Within the SUGRA framework alone, there is no natural 

mechanism to guarantee the degeneracy or the alignment [127]. In this case, flavor 

symmetries are probably necessary to ensure either degeneracy [128] or alignment 

[127] and suppress FCNC, and some of the models presented are also capable 

of generating the j.L-term through flavor symmetry breaking [129, 130]. There is 

also the possibility that string theory generates degenerate squark masses if, for 

instance, the dilaton field provides the dominant contribution to the soft SUSY­

breaking masses [131]. 

The gauge mediation of supersymmetry breaking is an alternative mechanism 

which can naturally ensure the degeneracy of squarks masses and therefore sup­

press the dangerous FCNC effects. SUSY is somehow broken (hopefully dynam­

ically via dimensional transmutation to generate a large hierarchy), and SUSY­

breaking effects are mediated to the fields in the supersymmetric Standard Model 

by the Standard Model gauge interactions. Mediating SUSY breaking via gauge 

interactions is not a novel idea [108, 119]. It allows for SUSY breaking at a 

lower scale (when compared to SUGRA inspired models) and, because all SUSY­

breaking effects are transmitted by flavor blind interactions (the Standard Model 
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gauge interactions), squarks of different families have the same mass. This scheme 

has attracted a lot of interest after the pioneering works by the authors of refer­

ences [111, 112, 113], which showed that one can successfully mediate the SUSY­

breaking effects via gauge interactions with the help of a so-called "messenger 

sector." Their scheme can easily incorporate dynamical SUSY breaking and can 

explain the origin of the large hierarchy between the Planck (string, grand unified 

(GUT)) scale and the weak scale. 

The GMSB itself, however, has nothing to say about the J.L-parameter unless 

one introduces extra fields which couple to the particle content of the MSSM. The 

J.L-problem in the GMSB is the primary interest of this chapter. Many solutions 

to the J.L-problem have been suggested by different authors and all of them require 

the introduction of new fields and/or interactions. Some of these solutions will be 

reviewed shortly. 

In the original models [111, 112, 113], SUSY is broken dynamically in a so-called 

SUSY-breaking sector and the breaking effects are transmitted to the supersym­

metric Standard Model via a messenger sector. The energy scale of the messenger 

sector is given by A~ 104-105 GeV. There are, however, models which do not have 

a separate messenger sector so that the sector which breaks SUSY dynamically is 

directly coupled to the Standard Model gauge group [115, 116, 117]. In this case, 

the effective messenger scale tends to be much higher. For the purposes of this 

chapter, it is enough to employ a simple version of the messenger sector, as in the 

original models, and take the messenger scale A as a free parameter. 
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The messenger sector can be described by the superpotential 

(5.2.3) 

where S is a singlet superfield, <I>± are charged under a U(1) associated with the 

SUSY-breaking sector and are singlets under the Standard Model SU(3) x SU(2) x 

U(1) gauge group. The superfield q (ij) transforms as a (3(3), 1, ±1/3) under the 

Standard Model, while l (l) transforms as (1, 2, =t=1/2). 

It is assumed that the scalar components of <I>± acquire negative SUSY-

breaking masses-squared due to its interaction with the SUSY-breaking sec-

·tor (usually accomplished by the so-called "messenger U(1)" gauge interaction 

[112, 113]), and the potential associated with the scalar component of S reads 

neglecting terms containing l or q. It is easy to see that the scalar and the F 

components of S acquire vacuum expectation values (VEVs) (S) and (Fs) and 

therefore q and l acquire supersymmetric masses proportional to (S) and SUSY-

breaking masses-squared proportional to (Fs).* This effect feeds down to the 

MSSM through loop corrections. Gauginos acquire Majorana masses at one loop, 

while sfermions acquire SUSY-breaking masses-squared at two loops. The calcu-

lation of these soft SUSY-breaking parameters was done long ago (see [108, 119]) 

*There is a run-away direction q = ij, l = [in this potential [132]. This problem can be avoided 

by introducing more S fields to the messenger sector. Such details are, however, irrelevant for 

the rest of this discussion. 
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and its result is well known. At the messenger scale: 

Cl'i 
M·= -nB 

t 47r ' 

m}, = 2nB' (~Y;' (;~)' +C2, (;;)' +C" (;;)'). 

(5.2.5) 

(5.2.6) 

Here and below, all Cl'i = glf47r are in the SU(5) normalization, B = (Fs) / (S) in 

the messenger sector discussed above, and n determines the number of messenger 

sector superfields responsible for mediating SUSY breaking. In the example de-

scribed above, which will be referred to as the model with the minimal GMSB, 

n = 1. Y is the hypercharge of the particle, C2 = 3/4 for weak SU(2) dou-

blets (zero for singlets) and c3 = 4/3 for color triplets (zero for color singlets) .. 

Eq. (5.2.6) guarantees that squarks of different families are degenerate at themes-

senger scale and therefore FCNC effects are safely suppressed. It is interesting to 

note that, for small n, gaugino masses and sfermion masses are comparable. For 

very large n, on the other hand, sfermion masses can be significantly smaller than 

gaugino masses (by a factor yin). 

In the mechanism described above, trilinear couplings are not generated at the 

same order (in loop expansion) at the messenger scale. This is not the case in 

general, and some models can generate trilinear couplings with values comparable 

to the other soft SUSY-breaking parameters even at the messenger scale [116]. For 

most of the discussions in this chapter, 

(5.2.7) 

will be considered, unless otherwise noted. 
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The GMSB does not generate a f.L-term because of the non-renormalization 

theorem. Therefore f.L is an input of the model, and, because it has dimensions of 

mass, its only nonzero natural value is MPtanck (Mstring, Maur). This is clearly 

not allowed phenomenologically. The f.L-term must, therefore, be forbidden at the 

Planck scale (by, say, a Z3 symmetry) and generated dynamically. Below, various 

attempts to generate the f..l-term in the context of the GMSB are reviewed. The 

following list is not meant to be exhaustive and the descriptions of the various 

attempts are by no means complete. The review below only intends to show 

that many attempts have been made while none of them appears to be entirely 

satisfactory. 

The simplest solution would be to introduce a term in the superpotential [112] 

(5.2.8) 

where Sis the singlet superfield in Eq. (5.2.3). In such a scenario f.L = k(S) and 

m~ = k(F8 ). m~ is the SUSY-breaking Higgs mixing mass-squared in Eq. (5.2.2). 

Phenomenology imposes that both f.L and ;:;;J, are of the order of the weak 

scale, unless one is willing to accept a drastic cancellation among parameters to 

reproduce the observed Mz. Therefore, 

and 

(k(S) )2 
rv k(Fs) rv (100 GeV) 2

, 

(Fs) rv k(S) rv 100 GeV 
(S) 

2 '(Fs) 
m3 = f..l (S) . 
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(5.2.10) 

(5.2.11) 



This situation is already excluded experimentally. Eq. (5.2.5) states that the 

gluino mass is given by (a3 /47r)(Fs)/(S), and ifEq. (5.2.10) is satisfied one would 

arrive at M 9 ~ 1 GeV, which is unacceptable. The same is true for all the other 

soft SUSY-breaking masses. This is a general consequence of Eq. (5.2.11). It 

implies that ;;;J » J-l if all experimental bounds on the SUSY spectrum are to 

be satisfied, while SU(2) x U(1) breaking requires Eq. (5.2.9). Some authors refer 

to this puzzle as the J-t-problem in the GMSB [133]. 

Another simple solution that does not require the introduction of any extra 

superfields into the theory couples the Higgs superfields to the q superfields present 

in Eq. (5.2.3) [133]. In the minimal messenger sector [112, 113], one may have, 

instead of q and l, a complete 5 + 5 multiplet of SU(5) to preserve the gauge 
" 

coupling unification. One can also use a 10 -f- 10 for this purpose, and generate 

gaugino masses and scalar masses-squared with n = '3. In this case, one can couple 

the components Q in 10 that have the same quantum numbers as left-handed 

quark doublets and the components u that have the same quantum numbers as 

right-handed up quarks (or their corresponding components in. IO) to the Higgs 

doublets. Explicitly, W ::::> >. 1Hi:Ju+>.2Hv.Qu. This will induce, in the Lagrangian, 

a one-loop term proportional to 

(5.2.12) 

The F vacuu~ expectation value of S will generate J-l ~ ;~;~ <[:/ and m~ ~ 

;~;~ (<[i/) 2
. Again one runs into Eq. (5.2.11) and must hunt for other solutions. 
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All of the models described above couple the MSSM Higgs superfields to those 

in the messenger sector. Not only did one encounter the problem of Eq. (5.2.11), 

but some of the coupling constants introduced had to be made fairly small because 

of the magnitude of (S) and (Fs). Another class of solutions tries to get around 

this issue by introducing another singlet superfield, whose vacuum expectation 

value would generate the JL-term. 

One motivation for such models is to utilize the extra singlet to solve the 

doublet-triplet Higgs splitting in SU(5) grand unified theories via a sliding sin-

glet mechanism [134]. This mechanism is known to be unstable against radiative 

corrections if the soft SUSY-breaking parameters are generated at a scale higher 

than the GUT scale, but can be stable for the low-energy GMSB [135]. Ciafaloni 

and Pomarol [136] claim that such a solution would generate a viable JL-term. We 

believe, however, that the conditions that they impose on the soft SUSY-breaking 

parameters can never be satisfied in the context of the GMSB, where all soft 

SUSY-breaking mass~s are tightly related. This will be discussed in Sec. 5.5. 

The simplest model with the addition of an extra singlet one can imagine, 

referred to as the NMSSM [120], involves substituting the JL-term in the MSSM 

superpotential by 

(5.2.13) 

The minimization of the scalar potential for Hd, Hu and N at the weak scale 

should produce VEVs vd and Vu for both Higgs bosons, thus breaking SU(2) x 

U(l), and x for the singlet. JL would be equal to AX. The m5 term would arise 
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due to renormalization group (RG) running of the A-term >.A>.HdHuN from the 

messenger scale to the weak scale. m~ would be equal to >.A>.x. 

Dine and Nelson [111] claim that this model does not work for the low-energy 

GMSB. A detailed analysis was not presented in their papper, and the problem 

will be explained in Sec. 5.4. They suggest the introduction of an extra light pair 

of q' + q' and l' + l! as a means to produce a viable spectrum. They did not, 

however, publish a quantitative analysis of the model, and say nothing about its 

naturalness. Agashe and Graesser [137] study this scenario and show that there 

is indeed a solution, but it is fine-tuned. They present a possibility to ease the 

fine-tuning by employing many lepton-like messengers while keeping the number 

of quark-like messengers small. In Sees. 5.4 and 5.5, the case for both the high-

and low-energy G MSB is analyzed in great detail. 

There are ways of giving N a VEV which are not related to electroweak sym-

metry breaking. In Ref. [112] two mechanisms are introduced, neither of them 

very appealing, where theN VEV is generated at the messenger scale. Namely, 

or 

1 2 W :::> --ksN S 
2 

(5.2.14) 

(5.2.15) 

in addition to the NMSSM. S, q and l are the messenger sector superfields present 

in Eq. (5.2.3). 
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In the case of Eq. (5.2.14), a potential 

(5.2.16) 

is generated for N in the presence of (S) and (Fs) VEVs. If one assumes ks to 

be small, N develops a VEV x = Jks~fs), and J-L = ~Jks(Fs) assuming all other 

couplings to be of order one. It is easy to see, a posteriori, that ks must indeed 

be small if one is to generate a phenomenologically viable J-L. Unfortunately this 

case requires that the soft SUSY-breaking masses-squared rv (ai/4n) 2 ((Fs)/(S)) 2 

and J-L2 
rv ks(Fs) are accidentally of the same order of m~gnitude.t 

The superpotential coupling Eq. (5.2.15) would lead to a potential 

(5.2.17) 

The linear terms in N arise via tadpole one-loop diagrams involving q's and l's. 

This would lead to x3 = ~ 3i1T2 ~q~;))
2 + (l ++ q). Again kq and k1 would have to 

be small. This solution still faces the problem of explaining why a term NS2 is 

not present in the superpotential. · Note that the presence of such a term would 

lead to an unacceptably large VEV for N. One may argue, however, that this 

is "technically natural" because the absence of a term in the superpotential is 

preserved by radiative corrections. An even more serious problem is the need to 

t Although ks has to be small, its smallness is natural in the sense of 't Hooft. It can be 

interpreted as being generated due to the breaking of some global symmetry, such as N -+ 

e21ri/3 Nand H 1,2 -+ e27ri/3 H 1,2 , whileS is invariant. This type of symmetry would also explain 

the suppression of a term N S 2 in the superpotential, which would be of order (ks )2
. 
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suppress the kinetic mixing J d4()StN + h.c. to ensure FN « Fs; an unacceptably 

large m~ = >..F N would be generated otherwise. An order unity kinetic mixing 

can be induced via radiative corrections between the ultraviolet cutoff, say the 

Planck scale, and the messenger scale, and the bare parameter has to be chosen 

very carefully so that the unwanted mixing term can be canceled at the messenger 

scale. This kinetic mixing can be forbidden if there are two sets of messenger 

fields and if the field N couples off-diagonally, e.g., W = Nq1ij2 etc [138). Then 

the tadpole term mentioned above is also forbidden, but a negative mass squared 

for the N field can be generated instead. This would lead to the NMSSM in 

a successful ~anner; again the parameters must be carefully chosen as in the 

NMSSM with extra light quark pairs (see Sec. 5.5). 

Another solution ~ith 'extra singlets, which points an interesting way around 

Eq. (5.2.11), was suggested by Dvali, Giudice and Pomarol [133). Their idea is to 

generate the J.L-term via the following one-loop effective term in the Lagrangian: 

(5.2.18) 

where Da is the supersymmetric covariant derivative. This works because D 2 

cancels ()2 in S, while leaving 02 in st. Then the integral over d02 can be done 

and the J.L-term is generated, while m~ is not. The m~ term would arise at higher 

loops, or via some other mechanism. 

An explicit realization of this mechanism [133] is the following. Suppose a sin-

glet field N acquires a linear term M 2 N in the superpotential due to its coupling to 
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the messenger sector. Then the superpotential W = N(Y2 + HuHd- M 2 ) leads to 

a minimum with (Y) = M, N = 0. However, by further coupling N to the messen­

ger superfields, i.e. N qij etc, a one-loop diagram of messenger fields generates the 

operator 16~2 f d4BNSt(StS)I(StS), which contains V rv 16~2 N(F8 ) 2 I(S). Note 

that this is the same linear potential generated in the case of Eq. (5.2.15). This 

tadpole term induces a VEV for N of order (N) rv 16~2 (F8 ) 2 I (S) I (Y) 2 which is of 

the order of the weak scale if (Y) 2 = M 2 
rv (Fs). TheY field plays a crucial role: 

it slides to cancel the F-component VEV of N before the tadpole is added and, 

after SUSY is broken, its VEV is shifted and leads to (FN) = m~ rv J-£2 , as required 

by phenomenology. Note that the J..L-parameter obtained here can be understood 

as a consequence of the effective Lagrangian Eq. ( 5. 2.18), which is generated upon 

integrating out Nand Y before substituting the effect of the VEVs of S. 

The necessary linear term (M2 N) in the superpotential for N can be easily 

generated by the kinetic mixing between N and S or also by other mechanisms, 

as pointed out in reference [139]. One apparent drawback of this realization is 

that one needs a set of new fields whose interactions are arranged in a rather 

special way. Furthermore one would expect the presence of a term proportional 

to SHuHd in the superpotential. This happens because both S and N couple to 

the messengers, that is, W :::> Sqij + N qij, and have, therefore, the same quantum 

numbers. It has already been argued that a coupling SHuHd has to vanish (see 

Eq. (5.2.8)). Finally it is worthwhile to point out that this model also suffers from 

the cancellation problem present in the MSSM (see Sec. 5.3). 
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Dine, Nelson, Nir and Shirman [113] suggest yet another way of generating a fJ,-

term with the introduction of an extra singlet. It was inspired by flavor symmetry 

models in [129], and resembles a modified version of the NMSSM + Eq. (5.2.14): 

(5.2.19) 

where Mp1 is the Planck mass. When m = 2, n = 1 and p = 2, it is easy to check 

that fJ- "' An /[FJ. The other couplings are assumed to be of order 1. It is also 

easy to see that one would require a very small, carefully chosen coupling An in 

order to guarantee Jl rv 100 GeV. It is worth noting that this mechanism does not 

generate an m~ term. 

At last it is interesting to mention another interesting possibility, pointed 

out by Yanagida [140] and Nilles and Polonsky (141]. Their models utilize the 

accidental equality (AnsB/M.) 113 
"' (a/4n-)2, where AnsB "' 107 GeV is the 

scale of dynamical SUSY breaking (DSB) in models with the low-energy GMSB 

and M. = MpdVBif the reduced Planck mass. By introducing a new SUSY-

preserving sector with strong gauge dynamics, Yanagida's model generates a 

VEV for the superpotential which cancels the cosmological constant from the 

DSB sector. The constant superpotential in turn generates a Jl-term of order 

AnsB(AnsB/M.)1f'3 "' (a/47r) 2AnsB"' 1 TeV. The phenomenology of this model is 

the same as the previous one (see Eq. (5.2.19)). The model by Nilles and Polon-

sky makes use of the Planck-scale suppressed Kahler potential, f d4
() N ( z* z) / M*, 

where z is a chiral superfield in the DSB sector with an F-component VEV. This 
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operator may be present at the tree-level, but may also be generated by grav­

itational effects. It generates a tadpole for the singlet N: V = (A'bss/M*)N. 

Together with the ~ N 3 superpotential of the NMSSM, it generates a VEV for N 

of order (N) "' (A'ts8 /M*)) 113
. Even though these models generate the correct 

jl-term of order the weak scale in the models with the low-energy GMSB, this 

would not work for the high-energy GMSB. 

None of the mechanisms outlined above are entirely satisfactory. Most of them 

require a very specific choice of parameters and the introduction of extra matter 

at or slightly above the weak scale.· Furthermore, most of them have not been 

studied quantitatively (see, however, Ref. [142]), and there is no guarantee that 

they indeed generate the correct electroweak symmetry breaking pattern and an 

experimentally viable spectrum. And last, but not least, there is no study of how 

natural such a solution is, given that a viable pattern of electroweak symmetry 

breaking can be generated. 

It is, therefore, part of goal of this chapter to study the simplest of the models 

mentioned above in detail. Before that, it is important to review the status of 

electroweak symmetry breaking in the MSSM, where the jl-term is introduced "by 

hand." It will be pointed out that, in the case of the GMSB, the current lower 

bounds on superparticle masses already require an order 10% cancellation between 

the J.L-parameter and the soft SUSY-breaking parameters. 
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5.3 The J.L-parameter in the MSSM 

Various proposals to generate the J.L-parameter in models with the GMSB were 

reviewed. This section contains a review of how electroweak symmetry break-

ing occurs in the MSSM, assuming that the J.L-parameter and m~ are somehow 

generated. In particular, there is a need for an order 10% cancellation between J.L-

parameter and soft SUSY-breaking parameters in models with the GMSB given the 

current experimental lower bounds on superparticle masses. Note that the case 

of the NMSSM is different because the J.L-parameter is generated together with 

electroweak symmetry breaking and hence the two problems cannot be clearly 

separated. This will be discussed in the next two sections. 

The tree-level Higgs potential in the MSSM is given by 

I I 

v mi1Hdl2 + m~IHul2 - m~(HdHu + c.c.) + 
2 ~ 

+92 (HtiJH + HfiJH )2 + L(IH 12 -IH 12)2 8 d d u u 8 d u' (5.3.1) 

where the mass parameters involve both the supersymmetric J.L-term and the soft 

SUSY-breaking terms, 

(5.3.2) 

(5.3.3) 

In the MSSM, one can show that the vacuum can always be gauge rotated to the 

following configuration 

(5.3.4) 
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The two expectation values need to satisfy v~ + v~ = v2 = (174 GeV) 2 in order 

to reproduce the observed Mz, and it is conventional to parametrize them by 

vd = v cos /3, Vu = v sin {3. The minimization condition of the potential can be 

rewritten in the following form: 

m2 - m2 tan2 /3 _/12 + Hd Hu 

tan2 f3- 1 ' 
(5.3.5) 

(2f.12 + m~d + m~J sin 2/3. (5.3.6) 

It has been claimed that electroweak symmetry breaking is natural in the 

MSSM because m'ku is easily driven negative due to the presence the top Yukawa 

coupling in its RG evolution. In models with the minimal GMSB such as the 

original ones in [112, 113], the boundary condition for the supersymmetry breaking 

parameters are given by Eqs. (5.2.5, 5.2.6, 5.2.7). A simple one-loop approximation 

is valid in the case of the low-energy GMSB because of the small logarithm between 

the messenger scale A and the electroweak scale, and one finds 

(5.3.7) 

which is always negative. 

The need for a cancellation between the f.l-parameter and soft SUSY-breaking 

masses can be seen as follows. Experimental constraints bound the superparticle 

masses from below, which hence set a lower limit for the ratio B = (Fs)/(S). 

Therefore one finds that lm'ku I is bounded from below. On the other hand, in 

order for the observed M~ to be reproduced, the f.l-parameter is constrained by 

Eq. (5.3.5). For a moderately large tan (3 ~ 2, m'kd can be completely neglected 
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and one finds 

(5.3.8) 

This equation requires a cancellation between p,2 and (negative) mku to reproduce 

M1/2 rv (70 GeV) 2 correctly. The degree of cancellation is given by (M1/2)/p,2.t 

To determine the lower limit on lmkJ, a number of experimental constraints 

are considered (144]. One is that the gluino must be heavier than 190 GeV, which 

becomes stronger if the squarks have comparable masses. The second is that the 

right-handed selectron must be heavier than 80 GeV.§ For large tan/3, the right-

handed stau may become rather light; it is then required that m:;- > 55 GeV if 

it decays into tau and a neutralino or gravitino, and m:;- > 73 Ge V if it does 

not decay inside the detector. The lightest chargino was also considered to be 

heavier than 63 GeV. The most recent lower bound on the chargino mass [110) is 

mx+ ~ 67 GeV, which leaves the analysis virtually unchanged. 

The case of the minimal low-energy G MSB with small tan f3 is discussed first, 

to make the argument clear. Here A rv 105 (}eV is considered. The gluino mass 

fThe degree of cancellation is ·defined as follows: it is a percentage quantity that mea-

sures how much a given input parameter (in this case JL2 ) is free to vary before a given out-

put parameter (in this case M~) changes significantly. Explicitly, the degree of cancellation 

is (d(log M~)/d(logJL2 ))- 1 . This definition corresponds to the inverse of the Barbieri-Giudice 

function [143]. 

§This bound depends on the mass of the neutralino into which the selectron decays. However, 

since JL turns out to be large, it is a posteriori justified to assume that the lightest neutralino is 

almost pure bino. Then the GMSB predicts the relation between selectron and the bino masses, 

and hence one has a fairly reliable lower bound. 
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constraint requires 

B > 23 TeV. (5.3.9) 

This bound itself is independent from the messenger scale. However, the gluino 

mass bound depends on the mass of the squarks, and it strengthens if the squark 

masses are comparable to the gluino mass. For the minimal low-energy GMSB, 

squarks are significantly heavier than the gluino and the bound above can be used. 

A more stringent constraint is derived from the requirement that the right-handed 

sleptons are heavier than 80 GeV. Including the one-loop renormalization group 

evolution and the D-term, one finds 

2.89 x w-6 B 2 
- o.232M; cos 2/3. (5.3.10) 

Therefore one finds 

B > 39 TeV (5.3.11) 

for the most conservative case cos 2/3 = -1. With this lower bound one finds 

(5.3.12) 

Using the one-loop running of mt-u, one obtains 

m'tu (Mz) < -(260 GeV? (5.3.13) 

and as a result of the minimization condition, 

11 > 250 GeV. (5.3.14) 
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Figure 5.1: Lower bounds on p, in models with the GMSB subject to the constraint 

Mz = 91 GeV and to the lower bounds on superparticle masses (see text), (a) as 

a function of the messenger scale, for tan f3 = 2, 10, and 30, and (b) as a function 

of tan f3 for a fixed messenger scale of 108 GeV. 

This requires a cancellation of 7% in order to obtain the correct Mi. Even though 

this level of cancellation is not of immediate concern, this analysis shows the need 

for a certain amount of cancellation which will become worse as experimental lower 

bounds on superparticle masses improve. 

As it is clear from the argument above, the actual lower bound on fJ depends 

on the messenger scale and tan f3. This issue was studied numerically using the 

experimental bounds quoted above and the lowest possible value of fJ as a function 

of the messenger scale found. In Fig. 5.1 (a) the bounds for three values of tan f3 
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are plotted. The lower bound on f-L comes from one of the various experimental 

constraints. For instance, the tan {3 = 2 case is dominated by the lower bound on 

me_R up to a messenger scale of 1012 GeV, after which the gluino mass bound is more 

important:! The case of tan {3 = 10 has a similar behavior. The situation is more 

complex and interesting for tan{J = 30. For a messenger scale of up to 1010 GeV, 

the stau is the lightest supersymmetric particle (except for the gravitino). It 

decays inside the detector to tau and gravitino for the lowest messenger scale, 

but leaves the detector without decaying for higher messenger scales. This stable 

stau provides the strongest constraint. From messenger scales above "' 1012 GeV 

the·stau decays inside the detector to tau and neutralino. This bound dominates 

up to "' 1016 GeV, when the gluino bound dominates. The chargino bound is 

comparable to that of the gluino for the GUT scale (Maur = 1.86 x 1016 GeV). 

Fig. 5.1 (b) depicts the minimum value of f-L as a function of tan {3 for a fixed 

messenger scale (A= 108 GeV). The tan{J dependence can be easily understood 

as follows. Starting from low tan {3, increasing tan {3 decreases the top Yukawa 

coupling, and hence mt receives a less negative contribution from the top-stop 

loop. Therefore a lower value of 1-L is allowed: This part is dominated by the 

en bound. However beyond tan {3 "' 20, the bottom and tau Yukawa coupling 

become important. In fact, the scalar tau mass is pushed down both because 

of the loop effect and left-right mixing, and the experimental lower bound on B 

4JOnly the case of one messenger (n=l) was analyzed. For larger n the gluino bound becomes 

less important and the slepton bounds dominate up to the GUT scale. 
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becomes stronger. Beyond tan /3 "" 30, the stau does not decay inside the detector 

for this choice of the messenger scale and the constraint is even more stringent. 

This in turn leads to a more negative m~u and hence a larger J..L. 

Combining both the messenger scale dependence and tan f3 dependence, one I 
concludes that the most conservative current limit is 

Jl > 160 GeV. (5.3.15) 

The required cancellation between J..L2 and soft SUSY-breaking parameters in order 

to reproduce the observed Mz is M~/2J.L2 = 16%. Note that this level of cancel-

lation is the absolute minimum, and a more accurate cancellation is required for 

most of the parameter space. 

In the case of minimal supergravity models, where all scalars have the universal 

SUSY-breaking mass-squared m5, all gauginos have mass M1;2 and all A-terms 

are given by A1 = A0 >..1 for f = u, d, l, at the GUT scale, the situation appears 

to be better. The renormalization group equations can be solved numerically for 

each choice of tan /3. As an example, for tan f3 = 2 

(5.3.16) 

-0.32m~ - 2.49M~;2 - 0.05A~ - 0.20M1; 2A0 , (5.3.17) 

m~ e (5.3.18) 

By requiring me > 80 Ge V and M 1; 2 > 60 Ge V (this is a rough bound inferred 

from the gluino bound M9 ;:::: 190 GeV), one finds 11 > 82 GeV. This basically does 

not require any cancellation, since M~/2112 = 65%. 
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The situation can be somewhat ameliorated in the MSSM if there is a Fayet­

Illioupoulos D-term for the U(1)y gauge group. Such aD-term is known to arise 

in many ways, such as kinetic mixing of the U(1)y and U(1)mess gauge fields 

[145]. The running of all the parameters remains the same except that one adds 

another contribution from the Dy at the weak scale (see Chap. 3). If the sign is 

appropriate, it increases m~ --+ m~ + Dy and m~u --+ m~u + ~Dy (less negative) 

while decreasing m~d --+ m~d - ~Dy. All of these help push the parameters 

relevant for electroweak symmetry breaking in the right direction. Larger m~ 

reduces the lower bound on (Fs) / (S), and a less negative m~u is also welcome. 

Therefore the sensitivity to f.l (required cancellation between f.l and soft SUSY­

breaking parameters) in the MSSM can be improved in the presence of a Dy with 

the appropriate sign. 

It will be shown in the next two sections that the situation in the NMSSM 

is much worse. There is no phenomenologically viable solution to electroweak 

symmetry breaking. One can modify the model to generate a large negative mass­

squared for the singlet field and then find a viable solution. This solution also 

requires a cancellation among parameters which has the same origin as the can­

cellation present in the MSSM. It will also be shown that the addition of the 

Fayet-Illiopoulos D-term does not improve the situation within the NMSSM. 

5.4 The NMSSM with the GMSB 

In this section the feasibility of implementing the GMSB in the framework of 
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the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is studied. The 

presentation begins by introducing the NMSSM: its particle content, superpoten­

tial, and soft SUSY-breaking terms. The major steps in the analysis are briefly 

reviewed: the boundary conditions for the breaking terms, the RG evolution, and 

the minimization of the weak-scale one-loop effective potential. Then, the results 

of a numerical scan of a large portion of the model's parameter space are described. 

It is found that it is impossible to evade the present-day experimental constraints. 

This argument is further strengthened by providing a semi-analytical explanation 

for the inevitability of this conclusion. 

5.4.1 The NMSSM 

The NMSSM represents an attempt to solve the J..t-problem of the MSSM in 

the simplest and most direct way: the spectrum of the MSSM is augmented by a 

gauge singlet superfield N, which couples to HdHu and plays the role of the J.L-term 

once it develops a nonzero vacuum expectation value [120]. The original J..t-term is 

banned from the theory so that there are no dimensionful parameters left in the 

su perpotential. 

The VEV of the scalar component of N is determined by minimizing the scalar 

potential with respect to Hd, Hu, and N simultaneously. It is natural to expect 

the VEV s to be of the same order of magnitude for all three fields, thus generating 

an effective J..t-parameter of order the weak scale, as required by phenomenology. 

The complex scalar N introduces two additional degrees of freedom to the Higgs 
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sector. Therefore, the particle spectrum of the NMSSM contains three CP-even 

Higgs scalars, two CP-odd Higgs scalars, and one charg~d Higgs scalar. Immedi-

ately, there is a ·problem: one of the pseudoscalar Higgs bosons is massless. This 

happens because the superpotential W = >..N HdHu has a Peccei-Quinn symmetry 

N -+ N eio:, HdHu -+ HdHue-io:. This symmetry is spontaneously broken by the 

VEVs of the fields, making one of the pseudoscalars massless. 

The standard solution to this problem is to introduce a term cubic inN, which 

explicitly breaks the symmetry mentioned above. This term is allowed by the 

gauge symmetries of the model and does not contain a dimensionful coupling 

constant, so it is generically expected to be present in the superpotential. One, 

however, still has to worry about a light pseudoscalar Higgs boson. As will be 

shown shortly, its mass can also be small because of the presence of a different 

(approximate) U ( 1) symmetry. 

Overall, the only change made to the MSSM superpotential is the following: 

(5.4.1) 

while the corresponding change to the soft SUSY-breaking part of the potential 

is: 

One can determine the VEVs of the Higgs fields Hd, Hu., and N by minimizing 

the scalar potential, which at the tree-level consists of the F-terms, D-terms, and 
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soft SUSY-breaking terms: 

vtree 
Higgs 

I 

p,HdHu- kN212 + A2 INI2 (1Hdl 2 + IHul2
), 

922 
(HtaH + HtaH )2 + 

912 (IH 12 - IH 12 )
2 

8 d d u u 8 d u' 

Vsoft m~d1Hdl 2 + m~JHul2 + m~INI2 - (.XA;.HdHuN + h.c.)-

- ( ~AkN3 + h.c.) . (5.4.3) 

An important fact to notice is that both Vp and Vv remain unchanged when 

Hd, Hu, and N are all rotated by the same phase. In fact, only the soft SUSY-

breaking A-terms are not invariant under this transformation. This can be po-

tentially dangerous, because, in general, the A-terms are considered to be zero at 

the messenger scale, and their sizes at the weak scale are determined by the RG 

evolution. If the generated values of A;. and Ak are not large enough, the scalar 

potential has an approximate U ( 1) symmetry. This symmetry is spontaneously 

broken by the vacuum expectation values of the Higgs fields, and, as before, one 

has to worry about a light pseudoscalar Higgs boson. 

The VEVs of the neutral components of the Higgs fields are denoted by vd and 

Vu, as in Sec. 5.3, and the VEV of the singlet field by x: 

(N) =X. (5.4.4) 

As a function of these VEV s, the potential has the form 

v:tree 
neutral = i>.vdvu- kx2i2 + ...\2 lxl2 (!vdl 2 + lvul2

) + m1-)vdi2 + m1-Jvul2 + mJvlxl2
-

k 3 gi + g'2 
2 2 2 

-(...\A>.VdVuX +h.c.)- ( 3Akx + h.c.) + 
8 

(ivdi -ivui ) . (5.4.5) 
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It is well known that some of the Higgs boson masses receive significant con-

tributions from radiative corrections. In the numerical analysis this is accounted 

for by employing the one-loop effective potential 

V i-loop( ) _ vtree ( ) 1 STrM4 ( ) (l M
2
(vi) 3) 

neutral Vi - neutral Vi, J1, + 647r2 Vi og jJ,2 - 2 · (5.4.6) 

In this expression M 2 (vi) is a field-dependent scalar mass-squared matrix, and J1, 

is the MS renormalization scale. As indicated explicitly, the values of the various 

parameters entering vtree depend on the choice of this scale. To the leading 

order this dependence is canceled when the second term on the right hand side 

of Eq. (5.4.6) is. included, and the result of minimizing vi-loop is less sensitive to 

the choice of the scale where one stops running the RG equations. (Canceling out 

this dependence completely would require calculating radiative corrections to all 

orders.) 

The matrix M 2 depends on the field VEVs vi through the Yukawa couplings of 

the Higgs fields to various other particles. What plays a crucial role here is not the 

absolute values of the masses, but rather the rate of their change as one changes 

vi. Therefore, the most important contribution comes from the field-dependent 

masses of the top quark and squarks, which have the largest Yukawa coupling. 

Denoting their mass eigenvalues by mt, mf
1 

and mt
2 

respectively, the contribution 

to vl-toop from radiative corrections due to these states is 
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(5.4. 7) 

5.4.2 Numerical Analysis 

In models with the GMSB the values of the soft SUSY-breaking terms are spec-

ified at the messenger scale by Eqs. (5.2.5), (5.2.6) and (5.2.7). Their values at the 

weak scale can be determined by solving the RG equations given in Appendix F. 

The model has five input parameters: ht, A, k, B, and n. (Note that the only 

dimensionful input parameter is B, and its magnitude will determine the overall 

' scale of the VEVs and the soft SUSY-breaking masses.) There are, however, two 

constrains which must be satisfied at the weak scale: v - v' v'J + v~ = 17 4 Ge V and 

htvu = 165 ± 5 GeV.II A common approach is to use the minimization conditions 

and RG equations to solve for the inputs, given a phenomenologically allowed 

set of weak-scale outputs. In the case of a high messenger scale, however, no 

easily invertible solution for the RG equations is available. Instead, the problem 

is tackled numerically. After running down the RG equations and minimizing the 

Higgs potential once, this procedure is iterated, each time adjusting the value of the 

parameter B to fix the overall scale of the VEVs and masses, while simultaneously 

II Notice that this number is not equal to the top quark pole mass, the experimentally measured 

quantity, because of QCD corrections. The relationship between the two is given, at 1-loop, by 

- - (1 + 4 ~) ffipole - m .. 3 " . 
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changing the dimensionless couplings to correctly reproduce the top quark mass. 

This iteration process, in fact, converges fairly quickly. 

Using the procedure above, a numerical scan of a large portion of the param­

eter space is performed. The low-energy particle spectrum is studied for various 

messenger scales A, numbers of messengers n, and values of the couplings >. and k. 

It is interesting to note that it is very easy togenerate non-zero VEVs for Hd, Hu, 

and N, even when m~ is a small positive number. This is because the terms 

i>.vdvu- kx2
1
2 and AA>.vdvux, when >.vdvu and k are of the same sign, both "p:ush" 

the VEV of the real component of the singlet away from the origin. Unfortunately, 

one finds that, for any choice of values of the input parameters, there are always 

particles with unacceptably small masses. To illustrate the situation, Table 5.1 

presents numerical results for several representative points in different "corners" 

of the parameter space. The first two points represent the typical situation for 

the case of the low-energy GMSB, the next two are representative of the case of 

the high-energy GMSB, and the last one explores the extreme case of A= 1015 

GeV. Points 1 and 3 have relatively large values of k, while points 2 and 4 have 

k ~ 1. Notice that in the table a similar limiting case for>. was not considered. 

This is not a coincidence. It turns out that, for >. ;S 0.2, the dominant term in 

the potential is Vv, and tan ,B is forced to values very close to one. In this case, 

in order to correctly reproduce the top quark mass, one is forced to choose ht at 

the weak scale such that ht hits the Landau pole below the GUT scale. Only 

the cases where the couplings in the superpotential remain perturbative up to the 
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GUT scale were considered. However, no such assumption is made in the analysis 

in the next subsection. 

It can be seen that, in all the cases presented in Table 5.1, there are particles 

with unacceptably small masses. The result for the low-energy GMSB is not new 

and has been known for several years [111]. On the other hand, the situation with 

a high messenger scale had not been quantitatively studied in the literature to 

date. One expected feature that is indeed seen in points 3 and 5 is the increase of 

the _PSeudoscalar Higgs boson mass with A. This happens because the magnitude 

of A.\, generated by running the RG equations, increases with the messenger scale, 

and it is A.\ that breaks the U(1) symmetry of the potential, as discussed before. 

Another result that could have been anticipated is the smallness of the mass of the 

light pseudoscalar Higgs when k « 1 (points 2 and 4). This is due to the Peccei­

Quinn symmetry, which is restored in this limit. What is surprising is that raising 

the messenger scale by 10 orders of magnitude does not bring any other significant 

changes to the particle spectrum. The masses of the gluino, right-handed selectron, 

and scalar Higgs boson still remain small. 

5.4.3 Analytical Considerations 

This subsection contains a rather simple semi-analytical argument which ex­

plains why there can be no phenomenologically acceptable solution to the NMSSM 

with the GMSB. It is shown that if one assumes that such a solution exists, one ar­

rives at a contradiction. Some of the features of the numerical solutions presented 
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Table 5.1: The numerically determined NMSSM parameters for five sample points 

in the parameter space. Here mhi and mAi refer to the eigenvalues of the scalar 

and pseudoscalar Higgs mass matrices respectively, and me denotes the mass of 

the right-handed selectron. The values of.\, k, and ht are given at the weak scale. 

All the other quantities have been defined earlier in the text. 

Input Parameters 
point A (GeV) .\ k B (TeV) n ht 

1 5 X 104 0.25 0.1 6.4 1 1.12 
2 105 0.28 3 X 10 -4 3.6 3 1.08 
3 1012 0.32 0.3 0.99 10 1.07 
4 1012 0.25 3 X 10-4 6.0 1 1.11 
5 1015 0.28 0.3 6.9 1 1.07 

Soft SUSY-breaking Parameters at the Weak Scale 
point mk .. (GeVZ) mk, (GeV2) m~ (GeV2) A>. (GeV) Ak (GeV) 

1 -2.4 X 103 5.3 X 10~ 4.6 -1.5 -4.0 x 10-3 

2 -2.8 X 103 5.7 X 10:.! 6.8 -2.6 -6.2 X 10 -;:s 

3 -3.1 X 103 4.8 X 102 29 -11.4 -0.15 
4 -2.5 X 103 6.8 X 10~ 12 -8.0 -0.11 
5 -2.9 X 103 1.0 X 103 -8.1 -9.4 -6.0 x 10-3 

Field VEVs Particle Masses 
point tan/3 x (GeV) M 3 (GeV) me (GeV) mhi (GeV) mAi (GeV) 

1 1.59 -3.7 61 32 85, 39, 35 51, 1.8 
2 1.84 -3.7 103 35 87, 48, 38 48, 0.2 
3 1.97 -40 94 36 87, 53, 28 76, 25 
4 1.63 -14 57 34 85, 43, 37 44, 0.5 
5 1.88 -49 66 40 88, 50, 27 71, 24 
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in the previous subsection are also explained. 

Suppose that for some· point in the parameter space an acceptable solution 

exists. The problem to be addressed is the smallness of the selectron, gluino, and 

Higgs masses. For simplicity the analysis is based on the right-handed selectron 

mass constraint. The magnitude of me· is directly proportional to the size of the 

B-parameter. In our numerical procedure the value of B is chosen in such a way 

that v = 174 GeV. A typical value of B obtained in this way yields a very small 

selectron mass (me rv 35 GeV), gluino mass (M3 ;S 100 GeV), and soft SUSY-

breaking masses for the Higgs bosons (mh-,. rv -3000 GeV2
, mh-d rv 500 GeV2). 

It is, therefore, obvious that the only chance of obtaining an acceptable value 

for the selectron mass is to raise B, by a factor of three or more, and try to arrange 

the other parameters in such a way that JvJ. + v~ remains 174 GeV. Since B feeds 

into all soft SUSY-breaking masses, their absolute values will also increase. For 

example, imposing me > 80 GeV forces mh-,. < -(215 GeV)2 for a messenger 

scale of 1016 GeV. For different messenger scales the bound becomes even more 

stringent, as shown in Fig 5.2(a). 

To determine the consequences of raising the soft SUSY-breaking masses, the 

Higgs potential (Eq. (5.4.5)) will be analyzed. The extremization conditions at 

tree level are 

!=lvtree 
U neu.tral 

0Vd 
2(>.vdVu- kx2 )Avu + 2A2x2 vd + 2m~dvd- 2A.xAVuX + 

9'
2 + 9i 2 2 + 

4 
2vd(vd- vu), (5.4.8) 
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log(NGeV) log(NGeV) 

Figure 5.2: (a) Lower'bounds on lmkJ 112 and lmkdl112 as a function of themes-

senger scale A from the selectron mass constraint me > 80 Ge V. Here n = 1, 

· .. 
ht = 1.07, k = 0.3 and >. = 0.29 at the weak scale. These bounds do not change 

for different values of k or>.. The other plots show typical values of (b) A.x, (c) 

Ak, and (d) m~, for the same choice of parameters that yielded (a). The values 

of these parameters do not change significantly for different values of k or >.. 
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~vtree 
u neutral 

OVu 
2(-Xvdvu- kx2 )>.vd + 2-X2x2vu + 2m1u Vu - 2A>,AVdX + 

g'2 + g~ 2 2 + 
4 

2vu(vu- vd), (5.4.9) 

2(-Xvdvu- kx2
)( -2kx) + 2x.X2 (v~ + v~) + 2m~x­

~vtree 
u neutral 

ox 
-2A>.AVdVu - 2kAkx2

. (5.4.10) 

The first two equations (Eqs. (5.4.8) and (5.4.9)) closely resemble the corre-

sponding ones in the MSSM case. In fact, the only difference in the NMSSM is 

the presence of the first term on the right-hand side of Eq. (5.4.8) and Eq. (5.4.9). 

This term originates from ~~~1 2 = j>.vdvu- kx2 j2 and is, therefore, absent in the 

MSSM. Dividing Eq. (5.4.8) by. Vu, Eq. (5.4.9) by vd, and subtracting the two 

expressions, this term can be canceled. As a result, one obtains 

(5.4.11) 

Note that this equation is identical to Eq. (5.3.5) with p, = >.x. To obtain the 

NMSSM analog of Eq. (5.3.6) one divides Eq. (5.4.8) by vd, Eq. (5.4.9) by Vu and 

add the two. Solving for A.x>.x (A.x>.x = m~) one finds: 

(5.4.12) 

Eqs. (5.3.6) and (5.4.12) differ only by the contribution from I~~ 12 . 

Eq. (5.4.11) states that the value of the effective J.L-parameter generated in this 

model is subject to a rather stringent bound: >.2x2 > -m'k - M1/2, which, if 
. u 

one imposes m'ku < -(212 GeV) 2 , translates into >.x > 200 GeV. Notice that the 
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origin of this bound is the same as of the bound on the size of the J.L-parameter 

derived in Sec. 5.3, since the condition given by Eq. (5.4.11) is the same in both 

cases. In the present case, however, the bound is stronger because tan ,B is no 

longer a free parameter but is determined by minimizing the Higgs potential. 

So far only the first two extremization conditions were looked at. The attention 

is now turned to Eq. (5.4.10). Solving for x2 in Eq. (5.4.11), one can rewrite 

Eq. (5.4.10) as 

k2 (m1£d-m1£tan
2

(3 Mi) 2 2 2 sin2(3 
2),2 tan2 (3:_ 1 -2 =>.v(ksin2(3->.)-mN+A>.>.v~+kAkx· 

(5.4.13) 

While it was shown that phenomenology requires the expression in parenthesis on 
/ 

the left-hand side to be larger than (200 Ge V) 2 , the terms on the right-hand side 

are all much smaller, because m~, A>., and Ak are zero at the messenger scale 

and the effects of the }\G running are relatively small (see Fig. 5.2). This means 

that the above equation can never be satisfied unless k ~ >.. 

An immediate consequence of the k -+ 0 limit is that the mass of the lightest 

pseudoscalar Higgs goes to zero, as it becomes a Nambu-Goldstone boson. (It is 

for this reason that k was introduced in the first place.) Furthermore in the limit 

of large J.l and small k the determinant of the scalar Higgs mass-squared matrix be-

comes negative, which means that the extremum point given by Eqs. (5.4.8-5.4.10) 

ceases to be a minimum. To show this it is necessary to first derive a relationship 

between k and sin 2(3. Such a relationship can be derived from Eq. (5.4.11) and 

Eq. (5.4.12). Neglecting M'i, A>.>.x, and >.2v2 in comparison to m1£d and m1£,, one 
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finds that 

sin2(3='.5_ .
1 

2 (1+r 1+(r2 -1)(~)
2

). 
A 1 + r2 (~) "' 

(5.4.14) 

Here r _ -(m'iid + m'iiJ/(m'iid- m1J.** Fork~ A, Eq. (5.4.14) reduces to 

(5.4.15) 

Equipped with the last result, one can consider the determinant of the scalar 

Higgs mass-squared matrix. The full expression for it is given in Eq. G.1; here 

only the leading terms need to be identified. One is interested in the case J-L > AV, 

and, as was argued before, the soft trilinear couplings A.x and Ak can be neglected. 

For this reason, the dominant terms will be the ones containing the highest power 

2 2 4 
d 2 v J.L ( 4 3-2 k3 (4a)-2 k2'3 · ( a)) et Mscalar ~ >.3 sin{2,8) -4k>. + k g + . cos 1-' g + 8 "' sm 21-' . {5.4.16) 

That these are indeed the largest terms was checked numerically. 

Taking into account the fact that k and sin 2(3 are proportional to each other 

for small k, one can easily see that, in the limit k --+ 0, the first term dominates 

and the determinant is negative. tt 

This completes the argument, and one is now able to state that there can be no 

phenomenologically viable solution in the context of the NMSSM. One could have 

**In deriving Eq. (5.4.14) it was necessary to assume that sin2,8 > kj).. This translates into 

two requirements: r > 0 and k/ >.. < 1. One concludes that for large soft SUSY-breaking Higgs 

masses-squared it is necessary to have >.. > k. 

ttBecause sin2,8 ex: kj>.. there is no ambiguity with sign redefinitions of>.. or kin Eq. (5.4.16). 
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also based the argument on the gluino mass bound. The experimental constraint 

M3 > 190 GeV translates into the requirement m~u < -(212 GeV) 2 (assuming 

n = 1), and the rest of the argument follows unchanged. Notice, however, that 

the bound on m~u weakens if the number of messenger fields is taken to be very 

large. 

Now the issue of interpreting the numerical results of the previous subsection 

is addressed. It is important to understand, for instance, why the values of the_ 

singlet VEV x in Table 5.1 are always smaller than the VEVs of the Higgs doublets 

and, furthermore, why x is only several Ge V for a low messenger scale. 

The answer comes from considering the extremization condition for x: 

(5.4.17) 

where the terms m'jy and kAkx were omitted (lm'jyl ~ A2v2 for all the points in the 

table). For most of the parameter space the cubic term in x can also be neglected, 

giving 

(5.4.18) 

Thus the smallness of x is related to the fact that Ax is small. The above approx-

imation holds as long as 

(5.4.19) 

which is not satisfied only for point 5 in Table 5.1. For point 5 the value of x can 
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be approximated by 

"' (A 2 A sin 2,6) 
113 

X- .>.V 4k2 (5.4.20) 

Again x < v and therefore AX« 175 GeV. 

Knowing that x is small in this model one can derive another interesting rela-

tion. Neglecting all the terms containing x in Eq. (5.4.12), one obtains: 

(5.4.21) 

This explains why the values of the soft SUSY-breaking masses for the Higgs 

bosons are so similar for very different values of the messenger scale. 

Finally, one can say a few words about the scalar Higgs boson masses. In the 

limit of small x (and hence small J.l), the dominant term in the determinant of the 

scalar Higgs mass-squared matrix (see Appendix G) is 

(5.4.22) 

Taking into account the fact that, for small x, J.1 = AX 1v A>. (see Eq. (5.4.18)), 

the equation above gives: 

(5.4.23) 

This explains why changes in the messenger scale have almost no effect on the 

product of the scalar Higgs boson masses (see Table 5.1), as long as A is unchanged. 

For sin(2,6) "' 0.8- 0.9, which is what one typically finds in this case, Eq. (5.4.23) 

gives a "geometrical average" value of the scalar Higgs boson mass of only about 
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50 GeV. This means that, as long as x is small, the model necessarily yields 

phenomenologically unacceptable Higgs boson masses. 

5.5 Possible Modifications to the NMSSM 

In this section the expressions derived in Sec. 5.4 are reexamined and one 

attempts to modify the NMSSM to make it phenomenologically viable. Several 

possibilities are studied and the problems that arise are identified and discussed. 

Overall, none of the possibilities are found to be entirely satisfactory. 

5.5.1 Extra Vector-like Quarks 

One wants to modify the NMSSM in a way that allows one to avoid the con­

clusions of Sec. 5.4. Recall that the crucial step in the analysis there was the 

observation that Eq. (5.4.13) could not be satisfied: the left-hand side was always 

greater than the right-hand side. To obtain a consistent solution one has to some­

how make both sides equal. One possibility is to make m~ of the same order of 

magnitude (and sign) as mku. That could be accomplished by coupling the singlet 

to some new fields and arranging the parameters in such a way that the SUSY­

breaking mass-squared of the singlet is driven sufficiently negative. This idea was 

first proposed by Dine and Nelson in Ref. [111], who introduced new color-triplet 

fields q' and q' and coupled them to N. The corresponding superpotential is 
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According to Eq. (5.2.6), the scalar components of q' and ij' acquire large SUSY­

breaking masses, which can drive m~ sufficiently negative. 

Agashe and Graesser in Ref. [137] did a quantitative study of this scenario 

for the case of the low-energy GMSB. They showed that it is indeed possible to 

generate a large negative m~, in the range -(150 GeV) 2 to -(200 GeV) 2 , and 

further demonstrated that, with m~ of this magnitude, one can choose the input 

parameters in such a way that v = 17 4 Ge V and all experimental constraints are 

evaded. They also pointed out that in this scenario the input parameters need to 

be fine-tuned in order to reproduce the above value of v. In what follows, a set of 

input parameters that yields an acceptable particle spectrum is given, and then 

one proceeds to analyze the sensitivity of the Higgs boson VEVs to the NMSSM 

coupling constants. The origin of this sensitivity is described and also extend the . 

analysis to the case of the. high-energy GMSB. 

As an example of an allowed solution, consider the case of the low-energy 

GMSB with B = 50 TeV, n = 1, and A = 100 TeV. For m'j., = -(190 GeV)2 , 

to correctly reproduce Mz and mt one takes ht=0.99, k = -0.045 and A=O.ll 

at the weak scale. It is found that tan .B equals -2.9 for this point. Because 

the magnitude of the product Bn is now quite large, the masses of the gluino 

and dght-handed selectron are safe: M3 = 477 GeV, me =93 GeV. The vacuum 

expectation value of the singlet is also large, x=2.97 TeV, which, as was argued 

earlier, is required by Eq. (5.4.11). The eigenvalues ofthescalar Higgs mass matrix 

are 404, 270, and 90 Ge V, and those of the pseudoscalar Higgs mass matrix are 
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400 and 6.7 GeV. The last number appears alarmingly small at first sight but, as 

shown in Ref. [137], has not been excluded. The reason is that the corresponding 

eigenstate a is almost a pure singlet: 

Ia) = 0.0311Hd) - O.OlliHu) - 0.999IN) (5.5.2) 

The quantitative criterion given in Ref. [137], based on the constraint from the 

Y ---+ ar decay, is 

sin 2/3 tan f3 < 0.43, 

V (250 xGeV) 2 + sin2 2/3 
(5.5.3) 

and for the parameter set above the left-hand side equals 0.15. 

In this scheme it is, therefore, possible to find a point in the parameter space 

which leads to a phenomenologically viable solution. Unfortunately, as was al-

ready mentioned, this solution is very sensitive to the choice of the superpotential 

coupling constants A and k. In the remainder of this subsection, this issue is 

discussed in detail. 

The values of the parameters for the set just described had to be chosen in 

such a way that the top quark and Z-boson masses were fixed at their known 

experimental values. It is interesting to investigate what values of Mz would be 

predicted for a generic choice of the parameters. Fig. 5.3 depicts the magnitude 

of the quantity v = JvJ + v~ as a function of A and k. The figure shows that 

small changes in both A and k lead to large changes in v. This is very similar to 

the situation in the MSSM which was considered in Sec. 5.3. There it was shown 

that the value of the J.t-parameter had to be chosen very carefully in order to yield 
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Figure 5.3: The value of v = Jv~ + v~ as a function of..\ and k. The inputs are 

n = 1, m't = -(190 GeV) 2
, B =50 TeV, A= 100 TeV, ht = 0.99. 
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Figure 5.4: The dependence of v on the value of..\ for the high- and low-energy 

GMSB. The other input parameters are the same as in Fig. 5.3. 
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the correct value of v. In the present case, the points in the parameter space that 

correspond to values of v around 17 4 Ge V lie in a very thin band on the ,\ - k 

plane. Also notice that, for this range of,\ and k, the slope is the steepest. (See 

Appendix H for comments on this point.) 

It is possible to perform the same type of analysis for a higher messenger scale. 

The same problem is found in that case as well. Fig. 5.4 depicts the dependence 

of v on ,\ for fixed values of k. For comparison, the curve for A = 1012 GeV is 

plotted next to the curve for A = 100 TeV. From the slopes of these curves one 

can determine the degree of sensitivity with respect to A, using the definition in 

Sec. 5.3. The degree of sensitivity, given by d(logv)/d(log -\), is 2% for the low­

energy curve and 1% for the high-energy curve. The numerical results presented 

here agree with those in Ref. [137] for the low-energy GMSB, if the same inputs 

parameters are used. 

In order to understand this behavior, one should once again turn to the ex­

tremization conditions Eqs. (5.4.8-5.4.10). First, some qualitative observations 

are presented. Recall that phenomenology requires lxl to be rather large (of the 

order Jlm1£J/-X ~ 1 TeV), while v has to remain "small" (v = 174 GeV) to cor­

rectly reproduce Mz. As a result, the terms containing high powers of x and the 

terms containing mr (i = Hd, Hu., N) dominate, while the terms with Vu. and Vd 

are not fixed, and have to absorb the residual difference between the dominant 

terms. Therefore, small percentile changes in the dominant terms can result in 

large percentile changes in the Higgs boson VEVs. This is to be contrasted with 
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the situation in the previous section, where A2 v 2 was tied to the value of the sum 

m~d + m~u (see Eq. (5.4.21)). 

Next, the main source of this sensitivity is identified. First consider the de-

pendence of v on A for fixed B, k, and ht. One can use Eq. (5.4.11) to solve for 

v2 and then isolate the largest contribution to av 1 a A. 

av2 
= _i_ [-2Ax2- 2A2x ax+ a (m~d- m~u tan

2 {J) atan{J 
aA g2 aA atan{J tan2 {3- 1 aA 

1 am~d tan2 
{3 am1Id l 

+ tan2 {3 -1 aA - tan2 {3 - 1 ~ · 
(5.5.4) 

Using the data that led to Fig. 5.3, one may numerically evaluate the derivative 

around the point A = 0.11, k = -0.045. The following are the results of evalu-

ating each of the terms on the right-hand side, respectively: -1.4 x 107, -2.4 x 

106 , -3.9 x 106 , -1.2 x 103 , 1.9 x 101 ( Ge V2). The largest term is the first one, the 

next two terms combined provide a 45% correction, and the derivatives of the soft 

SUSY-breaking masses can be completely neglected. In Appendix I it is shown 

how these numbers can be understood by studying the minimization conditions. 

The fact that the dominant contribution to av I a A comes from the first term 

in Eq. (5.5.4) has a very important implication. It means that the problems of 

cancellation in the NMSSM and the MSSM are not merely similar, but have exactly 

the same origin. Indeed, Eq. (5.4.11) is the same as Eq. (5.3.5), and, because in 

the NMSSM v depends on A mainly through the combination Ax, which plays the 

role of the f.L-term, the two models require roughly the same degree of cancellation. 

The degree of cancellation quoted in Sec. 5.3 for the MSSM is most conservatively 
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16%, but this is so because one can choose tan /3 freely in the MSSM. On the other 

hand, tan /3 is determined by minimizing the potential for the NMSSM and cannot 

be chosen arbitrarily to ease the cancellation. For the value of tan /3 obtained in the 

NMSSM, the degree of cancellation is actually comparable (order a few percent) in 

the MSSM. The small difference between the two models is due to the dependence 

of x and tan /3 on A. 

The A dependence of the Higgs boson VEV has been discussed, and now the 

k dependence :is studied. Fig. 5.3 shows that the points that yield v = 17 4 Ge V 

form an almost straight line on the A- k plane. It can be shown (see I) that in 

order to keep v constant one has to change k and A according to D.k/k = b.A/ A. 

The sensitivity of v to k is, thus, related to the sensitivity of v to A, which, in 

turn, originates from the need to carefully choose the J..L-parameter in the MSSM 

as discussed in Sec. 5.3. 

To summarize, it was shown that this model requires a very particular choice 

of parameters to yield the correct Z-boson mass. Furthermore, it was explained 

that the sensitivity of the Z-boson mass to the NMSSM couplings has the same 

origin as the sensitivity of the Z-boson mass to the value of the J..L-parameter in the· 

MSSM. It is worthwhile to emphasize that the problem is present for both high 

and low messenger scales, simply because the bound on the J..L-parameter does not 

weaken as one raises the messenger scale. 
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5. 5. 2 Hyp ercharge D-term 

This subsection investigates what happens if the D-term contributions de-

scribed at the end of Sec. 5.3 are included. First, the case of the NMSSM with no 

extra particles added is considered. One should try to determine if, by introducing 

the D-terms, it is possible to make v smaller. If that happened, v could be rescaled 

back by increasing B, and tl:!at would raise all masses in the model, as desired. It 

turns out that this is not the case. Upon adding the D-terms both tan ,13 and (x) 

change, but v~ + v~, curiously enough, remains virtually constant. This happens 

because, in the limitx2 << v2 , v2 is constrained by Eq. (5.4.21), and the change 

The next question to ask is whether the D-terms can decrease the degree of 

cancellation for the case with q' and if added. The answer is again negative and 

the reason can be seen from Eq. (5.4.12). Recall that the degree of cancellation is 

controlled by the magnitude of x2 • As long as A.xAX and A2vdvu can be neglected 

compared to m~d + m~u, Eq. (5.4.12) yields 

2 rv (m~d + m~J 
X -- k ' 

2A(A- sin2.B) 
(5.5.5) 

and the relevant quantity is again m~d + m~u. 

5.5.3 Large Trilinear Couplings 

At last, the scenario proposed by Ciafaloni and Pomarol [136] is considered. 

They consider a modified version of the NMSSM, where k = 0, A « 1 and the value 
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of A>. is large at the messenger scale. Their model also contains, in the potential 

at the weak-scale, a linear term in N which is generated by tadpole diagrams and 

solves the problem of a light pseudoscalar. They find that the requirement of the 

positivity of the determinant of the scalar Higgs boson mass-squared matrix is 

very restrictive. Part of their analysis is repeated in order to determine if their 

choice of parameters could indeed lead to a phenomenologically viable electroweak 

symmetry breaking spectrum. Note that, as far as the following is concerned, their 

model is identical to the NMSSM. 

The full expression for the determinant can be found in Eq. G.l. In the limit 

of k -+ 0 and ,\ -+ 0 

2 "' A~v2 
Mi..\

2 
sin

2
( 4,8) [ y

2 (A~ ) Y
3 l 

det Mscalar- 4(1 + y)3 1 + y- cos2(2,8) M1 + 1 - cos2(2,8) ' 

(5.5.6) 

where a variable y = rPm~/(2M'fv) is introduced to conform to the notation used 

in Ref. (136]. From the extremization conditions for the potential, Eqs. (5.4.8-

5.4.10), one can show that Ji =A>. sin(2,8)/(2(1 + y)). There are two intervals of 

y over which the determinant is greater than~ zero. Orie interval is where both the 

expression in the brackets and the denominator are positive. It is given approxi-

mately by the following bound on lyl: 

( 
A2) -1/2 

I y I < cos 2,8 1 + M1 (5.5.7) 

The other interval, not mentioned in [136], is approximately (- ( ~ + 1), -1), 

where both the denominator and the bracketed expression are negative. 
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The first interval, for A}. > Mz, corresponds to rather small values of m'Jv and 

fJ, ~ ~A;. sin(2,8). (5.5.8) 

Using this equation together with Eq. (5.4.12), one can derive the following result: 

(5.5.9} 

The above equation is impossible to satisfy in models with the GMSB, because the 

combination ( m~u + m~d) is always negative at the weak scale for the messenger-

scale boundary conditions given by Eqs. (5.2.5) and (5.2.6). To satisfy Eq. (5.5.9), 

a drastic modification of the boundary conditions would be required. 

Now, the second possibility is analyzed. It requires a relatively large negative 

value of the singlet soft SUSY-breaking mass-squared: m'Jv < -2/('[/) x M~ = 

- (132 Ge V)2 • This value is impossible to generate unless, as before, one introduces 

fields q' and i/ and couples them toN. Even with the introduction of these fields, 

if k = 0, A~ 1, the extremization conditions cannot be simultaneously satisfied. 

This can be seen in the following way. Fork= 0 Eq. (5.4.13) takes on the form 

A;.Av2 sin(2,B) 
x = m'Jv + A2v2 ' (5.5.10) 

which implies x ---+ 0 as A ---+ 0. This is incompatible with Eq. (5.4.11), which 

requires that x ---+ oo as A -+ 0. 

5.6 Conclusion 
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The issue of electroweak symmetry breaking in models with the gauge media-

tion of supersymmetry breaking (GMSB) was studied. First, a review of various 

proposals in the literature to generate the J..t-parameter of the MSSM with the 

same order of magnitude as the soft SUSY-breaking parameters such as squark, 

slepton, and gaugino masses was presented. It was determined that most of them 

require small parameters which are accidentally of the same magnitude as the loop 

factors, cancellation of the kinetic mixing terms at the level of 10-4, omission of in-

teractions allowed by symmetries, or many new degrees of freedom not motivated 

otherwise. 

Even if on~ could generate the J..t-parameter with the same order of magnitude 

as the soft SUSY-breaking parameters, it has to have particular values to reproduce 

Mz = 91 Ge V. This question was studied numerically and the following was found. 

The current experimental lower bounds on superparticle masses limit the overall 

scale of SUSY breaking from below, which in turn limits mk .. < 0 from above 

(i.e., lmkul from below). To reproduce Mz, J..t2 needs to cancel {too-negative) mk .. 

and is hence bounded from below. Therefore, there is some cancellation required 

between j..t2 and mk . Even with the most conservative set of parameters, it was 
" . 

determined that a cancellation of 16% is necessary. The situation is worse for most 

of the parameter space. This situation was contrasted to the minimal supergravity 

scenario, where the current experimental lower bounds on superparticle masses do 

not require a significant cancellation among parameters. 

The simplest mechanism to generate the J..t-parameter would be the NMSSM, 
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the minimal extension of the MSSM without dimensionful parameters in the su-

perpotential. The NMSSM is known not to work with the low-energy GMSB, 

but there was hope that it might work with higher messenger scales. It was 

shown that this is unfortunately not the case. The current bounds on the super-

particles masses are already strong enough to exclude the model completely. A 

semi-analytic discussion to clarify why the NMSSM fails was presented. 

Various possible modifications to the NMSSM were also discussed, in partie-

ular whether they could lead to a viable electroweak symmetry breaking. The 

introduction of extra vector-like quarks coupled to the NMSSM singlet produces 

a large negative mass-squared for the singlet, and leads to a viable electroweak . 
symmetry breaking. One needs to adjust the parameters to a few percent, which 

is comparable to the MSSM case for the same tan f3 range. A Fayet-Illiopoulos 

D-term for U(l)y does not improve the situation. 

The overall prospect of electroweak symmetry breaking with the GMSB re-

mains unclear. It is hoped that the detailed investigation presented here prompts 

further studies on this issue. 
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Chapter 6 

Conclusions 

In this dissertation, aspects of supersymmetric versions of the Standard Model 

of particle physics were studied. First, low energy supersymmetry (SUSY) was 

presented as one of the possible solutions to the gauge hierarchy problem. 

In Chap. 2, the Minimal Supersymmetry Standard Model was introduced, 

including its many parameters and degrees of freedom. If SUSY is to stabilize the 

Higgs mass, it is necessary that a number of new "super-particles" be relatively 

light (M rv 100 GeV), and therefore accessible to the next generation of collider 

experiments. It was pointed out that already a significant portion of the MSSM 

parameter space is constrained, mainly due to the study of rare and forbidden 

processes and direct superparticle searches. It was also mentioned that SUSY 

searches are in general very model dependent. 

The published OPAL 1991 and 1992 data on the QCD color factors (29] was 

reanalyzed in order to constrain possible additional contributions to four-jet events 

in Z decays due to qijgg final states. It was determined that a light gluino with 

a mass below 1.5 GeV /c2 is excluded at better than 90% confidence level. The 

result is insensitive to assumptions about what bound state it forms, the definition 

of its mass, and the gluino fragmentation provided that it does not decay inside 

151 



the detectors. It is worthwhile to note that the currently available data set should 

be much more sensitive to a possible additional contribution from the light gluino. 

As a by-product of the analysis, the effect of finite bottom quark mass on BZ and 

NR distributions was discussed in detail, which turned out to be not negligible 

when extracting QCD color factors at current precisions. 

In Chap. 3, the standard parameterizations of the MSSM soft SUSY breaking 

Lagrangian were described. These "simplifying" assumptions are necessary in or­

der to render the MSSM phenomenologically viable and in order to allow one to 

make predictions of SUSY signals at colliders. One should, of course, try to avoid 

oversimplifying assumptions, which may disregard important phenomenological 

signatures for low energy SUSY. It was shown that the so-called "Minimal Super­

gravity Inspired" Supersymmetric Standard Model (VMSSM) is too restrictive as 

far as collider phenomenology is concerned. The addition of only one extra param­

eter to the VMSSM, the Fayet~Iliopoulos D-term for U(l)y, was proposed (this is 

referred to as the LSSM), and it was shown that it is capable of yielding a much 

more diverse phenomenology while still satisfying all experimental constraints. 

While the VMSSM almost always yields a B-ino-like x~ LSP, the LMSSM a~so 

allows v, for Higgsino-like x~ LSP. It was verified that for each one of these cases 

there are important phenomenological consequences, including new signatures for 

SUSY and the disappearance of other "standard" signatures. 

In Chap. 4, the cosmology of models with the low-energy gauge mediation 

of SUSY breaking was studied. Initially, the lower bound on the gravitino mass 
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was estimated, and it was shown that the bound conflicts with the cosmological 

constraint if the primordial gravitino is not diluted. This fact indicates a huge 

entropy production at a relatively low temperature, and the conventional baryo­

genesis scenario may not work well. 

The Affieck-Dine baryogenesis was studied as an alternative and it was found 

that it works efficiently for an initial amplitude of the MSSM flat direction, 

l</>ol ~ 1013 GeV. It was also discussed that the decay of the flat direction may 

provide enough entropy to dilute the primordial gravitino for a relatively large 

initial amplitude ofthe flat direction, l</>ol ~ 1014- 15 GeV. Therefore, the gravitino 

problem in model with the low-energy gauge mediation of SUSY breaking seems 

to be resolved if one assumes such a large initial amplitude. 

The cosmological implication of the moduli fields in string theory was also 

discussed. Their masses are of the order of the gravitino mass, and their lifetime 

is much larger than the present age of the Universe in models with the low-energy 

gauge mediation of SUSY breaking. The mass density of the moduli field may 

overdose the Universe. To dilute the moduli fields, a very late inflation is needed. 

It was shown that the baryon asymmetry generated by Affieck-Dine baryogenesis 

can be large enough to survive such a late inflation for l</>ol ~ 1017 GeV, even if 

one assumes a huge entropy production to dilute the primordial moduli field below 

the critical density. 

In Chap. 5, The issue of electroweak symmetry breaking in models with the 

gauge mediation of supersymmetry breaking (GMSB) was studied. First, a review 

153 



of various proposals in the literature to generate the J.L-parameter of the MSSM 

with the same order of magnitude as the soft SUSY-breaking parameters such as 

squark, slepton, and gaugino mas~es was presented. It was determined that most 

of these proposals require small parameters which are accidentally of the same 

magnitude as the loop factors, cancellation of the kinetic mixing terms at the 

10-4 level, omission of interactions allowed by symmetries, or many new degrees 

of freedom not motivated otherwise. 

Even if one could generate the J.L-parameter with the same order of magnitude 

as the soft SUSY-breaking parameters, it has to have particular values to reproduce 

Mz = 91 GeV. It was found that a cancellation between J.L2 and (a too negative, due 

to experimental constraints on superparticle masses) mk .. is required. Even with 

the most conservative set of parameters, it was determined that a cancellation 

of 16% is necessary. The situation is worse for most of the parameter space. 

This situation is to be contrasted to the minimal supergravity scenario, where 

the current experimental lower bounds on superparticle masses do not require a 

significant cancellation among parameters. 

The sl.mplest mechanism to generate the J.L-parameter would be the NMSSM, 

the minimal extension of the MSSM without dimensionful parameters in the su­

perpotential. The NMSSM is known not to work with the low-energy G MSB, but 

there was hope that it might work with higher messenger scales. It was shown 

that this is not the case. The current bounds on the superparticles masses are 

already strong enough to exclude the model completely. 
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Various possible modifications to the NMSSM were also discussed, in partic­

ular whether they could lead to a viable electroweak symmetry breaking. The 

introduction of extra vector-like quarks coupled to the NMSSM singlet produces 

a large negative mass-squared for the singlet, and leads to a viable electroweak 

symmetry breaking. One needs to adjust the parameters to a few percent, which 

is comparable to the MSSM case for the same tan f3 range. A Fayet-Illiopoulos 

D-term for U(l)y does not improve the situation. The overall prospect of elec­

troweak symmetry breaking with the GMSB remains unclear, and more work is 

required. 

In conclusion, SUSY is one of the most appealini solutions to the hierarchy 

problem. In order to test the hypothesis that Nature indeed is supersymmetric, 

phenomenological models of the low energy manifestations of SUSY are required. 

Such models have been developed over the past 20 years, and a great deal was/is 

being learned. Most important, independent of details of spectific models, it is 

clear to the community that the next generation of collider experiments will either 

find evidence for low energy SUSY or exclude it all together in the next 10 years. 
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Appendix A 

- Computing the Effective Potential 

The effective potential for the flat direction ¢ can be computed by the following 

usual procedure. One lets it have an expectation value, and calculates the vacuum 

energy in the presence of ¢ background. The vacuum energy is identically zero if 

one does not pick the effect of SUSY breaking. The lowest order contribution is 

from two-loop diagrams, where the standard model gauge multiplets couple to the 

vector-like messenger fields whose mass spectrum breaks SUSY. The gauge mul­

tiplets acquire masses because of the ¢ background and hence the result depends 

on¢. 

The mass spectrum of the messenger sector is M for fermions, and M~ = M 2 ± 

M B for scalars. One vector-like multiplet with unit U(l) charge is assumed, and 

the contribution from a U(l) gauge multiplet exchange is calculated. This U(l) 

gauge group is the toy-model version of the standard model gauge groups. The flat 

direction ¢, ¢ also has ±1 charge under U(l), with D-flatness condition ¢ = ¢. 

The result can be easily generalized to arbitrary gauge groups and messenger 

multiplets. The U(1) gauge coupling constant is referred to as g. The U(l) gauge 

multiplet acquires a mass m = 2gl¢1. The task is to calculate the vacuum energy 

as a function of M, B, g and m. 
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Figure A.l: Feynman diagrams which contribute to the vacuum energy in the 

background of the flat direction ¢ = (/;. The vertices are due to the D-term 
- 1 

potential. The scalar field with mass m = 2g(¢) is the scalar component of the 

massive gauge multiplet in the .presence of the background ¢. The scalar fields 

with masses M+ and M_ are the messenger scalars. 

Figure A.2: A Feynman diagram with the gaugino of mass m, the messenger 

fermion of mass M, and the messenger scalars of mass M±. 
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Figure A.3: Feynman diagrams with vacuum polarization due to (C1) messenger 

scalar loops, (C2) "seagull" diagram with messenger scalars, and (C3) messenger 

fermions. 

The Feynman diagrams are shown in Figs. A.1-A.3. In all the calculations the 

amplitudes are expanded in terms of M B I M 2 and only the leading non-trivial 

terms of O(M B)2 are kept. M B I M2 < 1 is required in oreder to avoid a color- or 

charge-breaking vacuum, and this expansion is known to be a good approximation 

for the SUSY breaking mass squared for the flat direction unless M B is very close 

to M 2 [105]. 

Start with diagrams (A1) and (A2) in Fig. A.1, 

(A1) 

(A2) (A.2) 

Since the sum of all diagrams vanishes in the supersymmetric limit M B --+ 0, 

the corresponding amplitude in the supersymmetric limit is subtracted from each 

diagram. The diagrams (Al) and (A2) yield, after the subtraction: 
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[ {k' + x(l- x)p2 - ~2 + (1- 2x)MB)' - (M B-> o)]. 
(A.3) 

Here and hereafter, the subscript s refers to the subtraction of amplitudes in the 

supersymmetric limit. 

The integrand is expanded in powers of MB / M 2• The linear terms in MB 

vanish upon the x integration, and one is left with the following expression, to 

O((MB) 2 ) in the integrand, 

. 21al J d4
p J d4k p

2 (4- 1)(1- 2x)2 (MB)2 zg dx -- -- ---7'-::---'--:-'-------:---'::--'----::-:--:-
o (21r) 4 (21r) 4 p2 - m2 (k2 + x(1- x)p2 - M2)4 

+0(B4
). (A.4) 

The same strategy as above is followed to compute the contribution from the 

diagram (B) in Fig. A.2 containing the messenger fermions, 

(A.5) 

Finally the diagrams (C1), (C2), (C3) with the gauge boson loop in Fig. A.3. 

The vacuum polarization diagrams of messenger fields is first calculated. Note 

that the contribution of messenger fermions (C3) is the same as the one in the 
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supersymmetric limit, and hence cancels after the subtraction. The scalar loop 

gives 

(A.6) 

and the "seagull" diagram gives 

( _ 2 JW J d4
k [ 1 ( 2 2) ( 2 2)] C2)s - -2g g (21r)4 k2 _ M~ + M+ -+ M_ - 2 M+ -+ M . (A.7) 

Their sum is 

(Cl)s + (C2)s 2( J!V 2 J£ v) J d4
k [ 1 d . 6(1 - 2z)2(M B)2 

g -g p + p p . (21r) 4 lo z (k2 + z(l- z)p2 - M2 ) 4 

+0(B4
). (A.8) 

Now including the gauge boson loop, the total contribution of the vacuum polar-

ization diagrams is 

Adding all diagrams, one obtains -iVeu(m2
) 

After a Wick rotation in the k and p spaces, the d4 k integration can be carried 

out trivially. Note also that the denominator is symmetric under the interchange 
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of x H (1 - x). Therefore, the x integration is symmetrized by substituting the 

polynomial in the numerator P(x) = (1 - 2x)2 
- 2x3 by HP(x) + P(1 - x)) = 

-x(1 - x), yielding 

2 -g2(MB)2 {1 {oo 2 2 [ x(l- x)p2 l 
Veu(m ) = 1287r4 lo dx lo p d(p ) (p2 + m2)(x(l- x)p2 + M2)2 . (A.ll) 

The p2 integral is logarithmically divergent. Fortunately, the divergent piece is 

m 2 independent, and hence is the renormalization of the cosmological constant. 

Veu(O) is subtracted from the above expression and redefined as Veff· The final 

integral is convergent for any m2 E [0, oo): 

(A.l2) 

The p integration can be computed using the following tricks. First, change the 

integration variable to q2 = x(1 - x)p2
• Then the q2 integration can be done in 

the standard way, and one obtains 

V: ( 2) _ g2(MB) 2 [1 d [1/z2 - x(1- x) + x(l- x) ln[x(1- x)z2]] 
eff z - 1287!"4 lo x (1/ z2 - x(1 - x))2 • (A.l3) 

Here and below, z2 = m 2 / M 2 is used. 

The x integration can be further performed using dilogarithms. Using the roots 

of the denominator a- (1- J1- 4jz2 ) /2 and 1- a, 

Ve a = g2(MB)2 rl dx [(x- a)(x- 1 +a)+ x(1- x) In (:~i=:D l· 
u( ) 12871"4 lo (x :...- a) 2(x- 1 + a)2 

(A.14) 

After the final integral is carried out one is left with an expression for the effective 

potential as a function of a: 

g2 (MB.)2 { ln(a(1- a)) 1- 2a(1- a) 
Veu(a) = ( )2 + ( )3 x 647r4 1 - 2a 1 - 2a 
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Figure A.4: A plot of the effective potential Eq. (A.15) for z = 2gJ¢J/M < 30, in 

the unit of g2 (MB) 2 /(1287r4). ·The solid line is the exact result, and the dotted 

line shows the asymptotic form Eq. (A.16) valid for large z. 

The form of the effective potential is shown in Fig. A.4 as a function of z as a 

solid line. 

The expression is manifestly real for z2 ~ 4. In the limit z ~ oo, a ~ 1/ z2 

and the potential behaves as 

(A.16) 

This asymptotic form of the effective potential is also shown in Fig. A.4 as a dotted 

line. 

In the case z2 < 4, a is complex, a = 1/2 + iV 4/ z2 - 1. The effective potential 
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can be made manifestly real, using the following dilog relations: 

Li2(a) + ~ ln2(a) 

Li2 (1 -a)+~ ln2 (1 -a) 

-Li2 (l)- i1rln(a) + ~
2

- ((2), (A.17) 

-Li2 (-
1
-) + i1r ln(1- a)+ 7r

2 
- ((2~A.18) 

1-a 2 

One finds 

V. (z2 < 4) = g2(MB)2 {-ln (z\) + (1- fr) x 
eff 647r4 z~ - 1 c~ -1) ~ 

X [-ln (:,) (Harctan ( -/rl) + i (Li, m- Li, c ~ J)]} · 
(A.19) 

Note that Li2(z) - Li2(z*) is pure imaginary. In the above form, it is simple to 

take the limit z2 -+ 0, and one obtains 

The approximate form Eq. (A.20) truncated at O(z2 ) is shown in Fig. A.'5 as a 

dotted line together with the exact form Eq. (A.15) (or equivalently, Eq. (A.19)) 

as a solid line. From the last expression (A.21) with a= g2/47r, one can read off 

the mass of the flat direction. For messengers in 5 + 5* representation, the final 

result is multiplied by a group theory factor yaybtr(TaTb) = ~C1 where the trace 

is taken over the messenger fields and C 1 is the second order Casimir for the flat 

direction. One obtains m~ = 2C1 (~f C't:f, which agrees with that in Ref. [74] 
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Figure A.5: A plot of the effective potential Eq. (A.15) (or equivalently, Eq. (A.19)) 

for the small field amplitude, z = 2gi¢1/M < 1, in the unit of g2 (MB) 2 /(1287r.4). 

The solid line is the exact result, and the dotted line shows the approximate form 

Eq. (A.20) valid for small z. 
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Appendix B 

Effective Potential and Wave-function 

Renormalization 

When one computes an effective potential, one can determine the location of 

the minimum. It is well-known that one also needs to evaluate the wave-function 

renormalization Z(¢)(8¢) 2 in order to discuss the time evolution of the scalar field 

in general. Fortunately, such a calculation is not necessary in the case of interest. 

First, recall the simple fact that the effective potential in the case at hand comes 

at 2-loop order: V "' (a/47r)2 • Since it is a flat direction in the supersymmetric 

limit, this is the only term in the potential. The equation of motion in the flat 

space is 

.. Z' ( <P) • 2 1 I 

¢ + Z(¢) (¢) + Z(¢) V (¢) = 0. (B.l) 

Here the friction term 3H ¢ is dropped, but the es~ence of the following discussions 

does not depend on such simplifying assumptions. 

Because V' is of order (a/47r)2
, the motion is suppressed by a power in the 

coupling constant. Note that Z'(¢) is at most order (a/47r). By factoring out the 

coupling constant factors, 

v (B.2) 
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z 1 + (4:) ((¢), 

one finds 

.. ( a ) (' (<P) · 2 1 ( a ) 
2 

, 
cP + 4n Z(¢)(¢) + Z(¢) 4n v (¢) = O. 

It is convenient to rescale the time variable t by 

and one finds 

a r= -t, 
47r 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

rt is clear that the leading terms in the equation of motion are given by 82¢1 Eh2 + 

v' ( cjJ) = 0, and all dependences on the wave function renormalization occur only 

at higher orders in perturbation theory. Therefore, the calculation of the effective 

potential is enough for the case considered here, and Z(¢) is not needed. 
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Appendix C 

Time Evolution of the Flat Direction 

The evolution of the flat direction cp is interesting in the LEGM models. Once 

the amplitude is dominated by the gauge-mediated piece, the potential is approxi-

mately proportional to (ln 1¢1 2) 2 , and the dilution of the coherent oscillation occurs 

much slower than in the parabolic potential case. In this Appendix, the evolution 

· of the flat direction is investigated by using the virial theorem. 

The virial theorem states that, 

( av av *) 
2(K) = a¢ c/J + acfJ* c/J , (C.1) 

where K =¢*¢is the kinetic energy. In the case of interest, V,....., Vo(ln 1¢1 2 I (8) 2 ) 2 

with (8) ,....., 3 x 104 Ge V, and 

(C.2) 

For ln 1¢1 2 I (8) 2 » 1, the energy density of the field is potential dominated. 

The field equation is 

.. . av 
¢ + 3Hc/J + acfJ* = o. (C.3) 

Multiplying it by¢* and using the energy density£= K + V, 

(C.4) 
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Since the energy density is dominated by the potential term, one can write down 

the approximate evolution equation of the amplitude 1¢1, 

and hence 

l¢(t)IR(t) 3 "'constant 

This formula is valid when ln 1¢1 2
/ (8)2 >> 1. 
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Appendix D 

Estimation of the Primordial Baryon Asymmetry 

In this Appendix, Linde's formula, Eq. ( 4.5.6) is justified in the case of interest. 

In fact, the validity of the formula depends on the nature of the operator 0 and 

the time evolution of the flat direction </J. The reason why the formula is valid is 

clarified in the cases of interest. Start from the equation of motion for the baryon 

number density, Eq. ( 4.5.5), 

. 3H . (ao"' ao "'*) n B + n B = Z f}</J 'f' - f}</J* 'f' • (D.l) 

It is useful to rewrite the equation in terms of baryon-to-entropy ratio Y8 = n8 J s, 

to find 

~ = ~. (ao"' _ ao "'*) 8 s z o<P 'f' o<P* 'f' ' 
(D.2) 

where the relation sR3 = constant is assumed. Assuming a vanishing initial value 

YB(to) = 0, one obtains 

(D.3) 

A crucial question is whether the t integral is dominated by t rv t0 or t I'V oo. 

In the following analysis, the Universe is assumed to be radiation dominated 

when the field begins to roll down the potential, R ex t 112 . Another assump-

tion is that the baryon-number violating operator 0 can be treated as a small 
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perturbation to the evolution of the field ¢. 

In the case ¢0 ,2: c/>eq, or in the general hidden sector case, 0 ex: ¢4 . The 

evolution of ¢> is essentially determined by m~12¢2 by assumption and hence ¢> ex: 

R-312 ex: t-314 . On the other hand, s ex: R-3 ex: c 312. The integrand in Eq: (D.3) 

therefore behaves as c 312 and hence it is dominated by t rv t 0 . By putting them 

together, 

Ys(oo) 

(D.4) 

which essentially justifies Eq. ( 4.5.6). 

In the other case of interest, ¢0 ;S c/>eq, both the behavior of the operator and 

time-evolution are completely different as discussed in detail in Sec. 4.5. One has 

0 ex ¢2 , while ¢> ex R-3 ex t-312 . Then the integrand behaves as t-312 , which is 

unexpectedly the same as in the previous case. By putting them together, one 

obtains 

Ys(oo) 

(D.5) 

which again essentially justifies Eq. ( 4.5;6). 

As it is clear from above the derivations, Eq. (4.5.6) is not necessarily valid 

if the integral is dominated at t "' oo rather than t rv t0 . We have not seen an 

explicit discussion on this point in the literature. 
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Appendix E 

Affi.eck-Dine Baryogenesis in Hidden Sector 

Scenarios 

In this appendix, the Affieck-Dine baryogenesis based on the scenario with 

SUSY breaking in the hidden sector is discussed. In this case, the gravitino mass 

is much larger than in the LEG M case, and all the scalar fields also have SUSY 

breaking masses of the order of the gravitino mass.* In particular, the potential 

for the flat direction is always given by the supergravity contribution, which is 

essentially parabolic with a curvature of the order of the gravitino mass, 

(E.1) 

with m3; 2 rv 1 TeV. Due to this fact, the evolution of the flat direction is much 

simpler than in the LEGM case. 

Even if the gravitino mass is about 1 TeV, Eq.(4.5.6) is still valid since the 

baryon number is generated when ¢ starts to oscillate. With the baryon number 

violating operator (4:5.4), one obtains 

(E.2) 

*In this Appendix, all the soft SUSY breaking masses for the scalar fields are denoted by 

m 3 ; 2 for simplicity. 
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and hence 

(E.3) 

If there is no entropy production after this stage, the above formula yields the 

resulting baryon-to-entropy ratio. 

If there is entropy production, the primordial baryori number is diluted. The 

primary source of the entropy is the decay of the flat direction. Here, the potential 

for the flat direction is always parabolic, and c/> starts to oscillate when T = T0 "' 

g-; 114 Jm3; 2 M*, as discussed in Sec. 4.5. Then, by using the relation lc/>I 2T-3 = 

constant, the background temperature at the cf> decay is given by 

(E.4) 

where cPdec is the amplitude of the fiat direction when it decays. Furthermore, the 

reheating temperature due to the decay of¢, Ta, is given by 

(E.5) 

Then, the dilution factor is given by 

(E.6) 

Usually,¢ decays when the expansion rate of the Universe, H, becomes comparable 

to the decay rate of¢, Ct>· In Ref.[80], Ct> is estimated as 

(E.7) 

172 



and hence H rv I:'¢ results in 

(E.8) 

Combining the above results, one obtains 

nB "' (O:'s) 1/3 .( M* ) 1/6 (~) 2 sin 4Bo 
s 1r m3/2 M* 

= 120 x (I <Pol) 
2 

(~) 113 
( m312 

) -
1
/
6 

sin 4Bo. (E.9) 
M* 0.1 1 TeV 

Another potential source of entropy is the Polonyi field related to SUSY break-

ing, or the moduli fields in the string theory, which also have masses of order 

m3; 2 • The critical difference between the flat direction and the Polonyi field z is 

the formula of their decay width; since the Polonyi field couples to particles in the 

observable sector only through interactions suppressed by the gravitational scale, 

its decay width r z is much smaller than the width of¢. As discussed in Sec. 4.6, 

rz is estimated as 

(E.lO) 

Even with this decay rate, one can apply an argument similar to the case of the 

entropy production due to ¢> decay; Eqs.(E.2) and (E.3) are still valid, and one 

also obtains equations similar to Eqs.(E.4) - (E.6) where </>'s are replace by z's. 

The remainder is to evaluate the amplitude of z at its decay time, Zdec' by using 

the relevant formula for rz· By solving the equatio~ H"' fz with H"' m 3; 2 z/M*, 

one obtains 

(E.ll) 
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Then, assuming the initial amplitude of z to be z0 rv M*, the dilution factor is 

given by D rv M*/m3; 2 , and hence 

ns rv n-lm3/2Im(¢~) rv (m3/2)1/2 (11>ol4) . 4(} 

M 2 M M4 sm O· 
s * * * 

(E.12) 

Thus, the baryon-to-entropy ratio may be larger than rv 10-10 even after the decay 

of the Polonyi field. 

However the reheating temperature after the decay of z is likely to be too low. 

By using Eq. (E.10), the reheating temperature is estimated as 

-1/4 m3/2 
( )

3/2 
Ta rv g* JrZM* rv 1MeV X 10TeV (E.13) 

Thus, if the gravitino mass is heavier than about 10 TeV, the Polonyi field may 

decay before the big-bang nucleosynthesis (BBN), and the scenario which gives 

Eq.(E.l2) may be viable.t However, for a favorable range of the gravitino mass 

(m3; 2 ;S lTeV), the reheating temperature is less than 100 keV which is lower than 

the temperature where the big-bang nucleosynthesis (BBN) starts. This means 

that the decay of z significantly affects the results of the standard BBN scenario. 

In this case, some mechanism to red~ce the energy density of the Polonyi field is 

needed. A thermal inflation [81] is an interesting candidate for it. The baryon-to-

entropy ratio in this case is discussed in Sec. 4.6. By using the fact that the ratio 

tin fact, even if m 3; 2 ,2: lOTeV, there may still be a problem since the lightest superparticle 

produced by the decay of the Polonyi field may overdose the Universe [100, 104]. To solve this 

difficulty, one may have to accept a much larger gravitino mass, or a scenario in which the 

lightest superparticle in the MSSM sector is unstable. 
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of ns to Pz is constant in time, one obtains 

ns Pz -1 I<Pol . 
( )

4 

--;- rv -;- X m3/2 M* sm 4Bo. (E.14) 

Thus, once the ratio Pz/ s after the late inflation is fixed, the baryon-to-entropy 

ratio can be estimated. 
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Appendix F 

The Renormalization Group Equations of the 

(N)MSSM 

In this appendix, all of the RG equations for the NMSSM (and the MSSM) are 

presented, at 1-loop (146]. These are the equations used, in Sec. 5.4, to determine 

the coupling constants and SUSY-breaking parameters of the NMSSM at the weak 

scale, given their values at the messenger scale. 

167r2 !9' 

2d 
167r dt92 

2d 
167r dt93 

2d 
167r dt ht 

2d 
167r dt hb 

2d 
167r dt hr 

167r2 :t). 
167r

2 :t k 

( -3)9g, 

2 2 2 13 12 2 16 2) 
(6ht + hb +). - g9 - 392 - 393 ht, 

2 2 2 2 7 12 2 16 2) 
(6hb + ht + hT +A - gg - 3g2 - 3g3 hb, 

(4h; + 3h~ + >.2 - 3912
- 3g~)h71 

(F.1) 

(F.2) 

(F.3) 

(F.4) 

(F.5) 

(F.6) 

(F.7) 

(F.8) 

In the above equations 9' is the U(1)y gauge coupling; explicitly 9' = ej cos ew. 92 

and 93 are, respectively, the weak and strong coupling constants. One defines 91 to 

be the hypercharge coupling constant in the GUT normalization, i.e. 91 - /f9' 
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and a 1 = ia'. Gauge couplings at the messenger scale are defined in such a way 

that they match their experimental values at the Z-mass. Only the effect of third 

generation Yukawa couplings, namely, ht, hb and h7 , were considered. In the case 

of the MSSM, k =.X- 0. 

6h~(l + 6a3)At + 2h~6a3Ab + 2-X2 A-' 

( 13 /2 3 2 8 2 ) 
4 

18
g M1 + 2,g2M2 + "3g3 M3 , (F.9) 

6h~(l + 6a3)Ab + 2h~6a3At + 2h;6a3AT +2-X2 A-' 

( 712 32 82) 
4 

18
g M1 + 2g2M2 + "3g3 M 3 , (F.lO) 

2h;(l + 36a3)A7 + 6h~Ab + 2.X2 A-' 

(F.ll) 

(F.l2) 

(F.13) 

Ai are the soft SUSY-breaking trilinear couplings, given in Sees. 5.2 and 5.4. Note 

that only third generation trilinear couplings, namely Atht = A~3 , Abhb = A~3 , 

A7 h7 = At3 are considered. Mi (i=1,2,3) are the soft SUSY-breaking gaugino 

masses and they evolve, at one loop, identically to ai. Explicitly 

gr(Q) 
-2-, 

gx 
(F.l4) 

where gx is the value of all gi at the GUT scale, while M1 is the common gaugino 
2 
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mass at the GUT scale. In the case of the MSSM, Ak = A.x = 0. 

1 3 4 1 8(-g'2 M2 +_92M2+ _92M2)+ -g'2c 
36 1 4 2 2 3 3 3 3 <,' 

4ba3hz(m~3 + m't .. + m¥ +A;) 

8(ig'2 M2 + i 92 M2) _ i 912c 9 1 3 3 3 3 .,, 

4ba3h~(m~3 + m'td + mg +A~) 

8(~gl2 M2 + i 92 M2) + ~g'2c 9 1 3 3 3 3 . .,, 

2ba3h;(ml
3 
+ m'td + m~ +A;) 

+ 2.X2 (m'td + m't,. + m~ +AD 

( 1 12 2 3 2 2) 12 
8 4g Ml + 4g2M2 - g ~~ 

(F.15) 

(F.16) 

(F.17) 

(F.18) 

(F.19) 

(F.20) 

6h2 (m2
- + m2 + m~ + A2

) + 2.X2 (m2 + m2 + m2 + A2
) t Q3 Hu t t Hd H,. N .>. 

1 3 
8(4g12 M~ + 4g~MJ) + g12~, (F.21) 

4)._2(m'td + m't .. + m~ +AD+ 4k2 (3m~ +A%). (F.22) 

~ is the hypercharge-weighted sum of all soft SUSY-breaking masses-squared 

(F.23) 
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where i runs over all scalar particles. With the boundary conditions in 

Eqs. (5.2.5,5.2.6), ~ = 0 and remains zero throughout the RG evolution. All soft 

SUSY-breaking mass-squared terms were taken to be diagonal. Again, only the 

running of third generation soft SUSY-breaking masses-squared were considered. 

m'jy is defined in Sec. 5.4. Again, in the case of the MSSM, m'jy 0. 

The J.1- and B M m~ parameters of the MSSM obbey 

d 
161!'2dtf.J, 

167!'2 ~B 
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Appendix G 

Scalar Higgs Mass-Squared Matrix 

In this appendix, the 3 x 3 scalar Higgs mass-squared matrix of the NMSSM 

is explicitly shown. 

(4>.2 - g2)v1v2- 21-L (A.x + ¥) 
g-2v2 + (A.x + !!1!:.) ~ 
. 2 ). t12 

-2A_xAVl - 4kjJ.Vl + 4A/-LV2 

(G.l) 

where vi for i = 1, 2, 3 corresponds, respectively, to vd, Vu and x. All other 

parameters were defined in previous sections. 

The determinant of the matrix above can be evaluated explicitly, and its full 

expression is given bellow. Various limits of this determinant are considered in 

the body of the chapter. 

det M~calar = 
2 

v (-6A v4 >.9 - 32A3 >.5 J.L2
- 64A v2 >.7 J.L2

- 32A A k>.4 J.L3 - 160A2 k>.4J.L3-32>.3J.Lsin(2.8) >. >. >. k >. >. 

128kv2 >. 6 J.L3 
- 32Ak k2 >. 3 J.L4 

- 128A>.k2 >. 3 J.L4 
- 256A>.>. 5 J.L4 

- 256k>. 4J.L5 + 8A>. v4 >. 9 cos( 4.8) + 

128kv2 >. 6 J.L3 cos( 4.8) + 321k k2 >. 3 J.L4 cos( 4.8) + 128A.x k2 
..\ 

3 J.L4 cos( 4.8) - 2A.x v4 
..\ 

9 cos( 8.8) + 
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64A>.k2 >..,} cos(4,B)g2 + 64k3 J.L5 cos(4{3)g2 + A>.v4 >.. 7 cos(8,B)g2 + 48A~v2 >..7 J.Lsin(2,B) + 

24Akkv2 >.. 6 J.L2 sin(2,B) + 120A>.kv2 >.. 6 J.L2 sin(2,B) + 256A~>..5 J.L3 sin(2,B) + 96v2 >.. 7 J.L3 sin(2,B) + 

768A>.kA4 J.L4 sin(2,B) +512k2 >..3 J.L5 sin(2,B) -12A~v2 >..5 J.L§2 sin(2,B) -12Akkv2 >..4 J.L2g2 sin(2,B)-

60A>.kv2 >.. 4 J.L2 g2 sin(2{3) - 16k2v2 >.. 3 J.L3 g2 sin(2,B) - 48v2 >.. 5 J.L3 g2 sin(2{3) - 16A ~ v2 >.. 7 J.L sin( 6{3) -

8Akkv2 >..6 J.L 2 sin(6,B)- 40A>,kv2 >..6 J.L 2 sin(6,B)- 32v2 >..7 J.L3 sin(6{3) + 4A~v2 >..5 J.Lg2 sin(6,B) + 

4Akkv2 >..4 J.L2 §2 sin(6,B) + 4A>.kv2 >..4 J.L2 §2 sin(6,B) - 16k2v2 >..3 J.L3g2 sin(6,B) + 

(G.2) 

All parameters were defined previously. Recall that f-£ = Xx. 

I 
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Appendix H 

Comments on Naturalness 

The NMSSM with extra vector-like quarks was studied in Sec. 5.5.1 and it 

was argued that the model requires a delicate cancellation among independent 

parameters. In this appendix, further comments on the naturalness of this model 

are made. 

From Fig. 5.4, one can easily note that not only does the experimentally allowed 

value of v lie on a steep region of the parameter space, which requires a degree of 

cancellation of order 1%, but it lies on the steepest region of the parameter space. 

One may, therefore, try to address the following question: if all parameters 

are kept fixed (and this choice of parameters yields an experimentally allowed 

spectrum) except one (e.g. >.), what is the likelihood of obtaining a certain value 

of v upon a random choice of the free parameter? In other words, what is the 

probability P( v) dv of finding the value of .J v~ + VJ between v and v + dv given a 

random choice of A? This line of reasoning is related to the definition of fine- tuning 

introduced by Anderson and Castano [147]. It is easy to note that 

(dv)-l 
P(v) ex dA (H.1) 

This "probability density" is plotted in Fig. H.l. Note that A is restricted to lie 

on a range where the same "qualitative" physics is obtained, that is, electroweak 
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Figure H.1: The probability densities of finding specific values of v in the NMSSM 

with extra vector-like quarks upon random choices of >.. All other parameters 

are the same as in Fig. 5.4. The probability densities are normalized so that 

P(v = 174 GeV) = 1. 

symmetry is broken and tan(,B) > 1. The plot has been normalized in such a way 

that P(v = 174 GeV) = 1. 

It is interesting to note that, in some sense, the probability of living in our 

universe is smaller, if this model is to be taken seriously, than the probability of 

living in a universe where v ~ 600 GeV by a factor of three. One can turn this 

picture around and say that the NMSSM, with the above choice of parameters, 

"prefers" (or predicts) v ~ 600 GeV. 

This does not happen in the MSSM. The analog of Fig. 5.4 would be Eq. (5.3.5), 
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which is a straight line ( M'i = M'i (J-L2
)) if all parameters except J-L2 are kept fixed. 

In the language introduced above, the MSSM does not "prefer" (or predict) any 

particular value of M'i, that is, the "probability density" of M'i upon random 

choices of J-L 2 is flat. 
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Appendix I 

The Dependence of the Higgs VEV s on the 

couplings of the modified NMSSM 

In Subsec. 5.5.1 it was shown that the values of the Higgs boson VEVs were 

extremely sensitive to small variations of the superpotential couplings >. and k. 

These variations were evaluated numerically after Eq. (5.5.4) for one particular 

set of >. and k. In this appendix, this issue is studied analytically and it is shown 

that one can estimate the effects of small variations .6.>. and .6..k on v, tan {3, and 

X •. 

The following three equations, derived in Sec. 5.4, are used: 

g2v2 
->.2x2 + f' (1.1) -- -

4 

2k2
x 2 

"""" -m'J.., + >.(k sin 2/3- >.)v2 , (1.2) 

sin 2/3 k [ -mku J (1.3) """" 2- 2 2 ' A mHd- mHu 

where 

(I.4) 

and the A-terms in Eq. (1.2) were dropped. Notice that, because the term on the 

left-hand side of Eq. (1.1) is much smaller then each of the terms on the right-hand 
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For the purpose of the following estimates only the largest terms in the vari-

ations will be kept. According to the numbers presented after Eq. (5.5.4), for a 

small variation of A. the largest variation on the right-hand side of Eq. (I.l) is 

2A.x2 .0-A.. One can therefore write 

(1.5) 

This approximation will be justified a posteriori. Also, in the following analysis 

the dependence of the soft-breaking masses-squared on A. and k will be completely 

neglected. This dependence is very weak, as seen in the numbers presented after 

Eq. (5.5.4). 

A small change in A. results in a large change in v. Hence, to determine the 

corresponding change in x, one can use Eq. (1.2) and only consider the variation 

of v2 , which is approximately given by Eq. (1.5). One finds 

· . 2A.x2.0.A. 
4k2x.0.x ~ A.(ksin2,8- A.).0.(v2

) ~ A.(ksm2,8- A.)(-4 _
2 

) , (1.6) 
g 

so that 

(I. 7) 

For the poinf considered in the text (A. = 0.11, k = -.045, tan /3 = -2.9) one 

finds (.0-x)jx ~ 0.2(.0-A.)/ A.. 

Under a small change .0-k, again using Eqs. (I.2,I.5), 

(1.8) 
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Solving for b.xjx. 

(I.9) 

Numerically, (b.x)jx ~ -1.2(/::,.k)/k. 

Next, the effect of!::,.). on f is considered. The problem comes down to esti-

mating b.(cos2.8)- 1 , which can be done with the aid of Eq. (I.3): 

_ 1 sin2,8 . sin2,8 ( k -m1£,. ) 
b.(cos2.8) =- 32.Bt:.(sm2,B)~- 32.8-2, 2 2 2 .C:.>.. 

~ ~ Am~-m~ 
(I.lO) 

Thus, 

b.f k ( -m1ru) sin 2{3 /::,.). 
f ~ -~ >.2x2 cos3 2{3 >. · (I.ll) 

Plugging in the numerical values of the parameters, one finds that the right-hand 

side of Eq. (I.ll) equals -0.5.C:.>./ >.. Thus, a 1% change in >. results in a 0.5% 

change in the value of f. Since >.2x 2 changes by 2% in this case, the contribution 

of f to the variation of v is approximately one fourth of that of >.2x2
, consistent 

with the numbers given in Subsec. 5.5.1. 

The above argument can be repeated to find the effect of b.k on f. Notice that 

sin 2{3 depends on the ratio k/ >. (Eq. (1.3)), and hence changing k by + 1% has the 

same effect on f as changing >. by -1%. 

Finally, it is shown that the condition for v to remain constant is /::,.k / k 

t:.>.j >.. It has already been argued that sin 2{3, and therefore f, stays unchanged 

in this case and now it is shown that the same is true for >. 2 x 2
• Under >. ----t >. + b.>. 
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under k ---+ k + 6.k it changes by 2)..2x2 (6.xjx) = 2)..2x2 (-1.2)(6.k/k). These 

va.riations can be made to cancel by imposing 6.k/ k = 6.)../ >.. 
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