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Abstract 

Small Numbers in Supersymmetric Theories of 

Nature 

by 

Michael Lawrence Graesser 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Mahiko Suzuki, Co-Chair 

Dr. Ian Hinchliffe, Co-Chair 

The Standard Model of particle interactions is a successful theory for describ-

ing the interactions of quarks, leptons and gauge bosons at microscopic distance 

scales. Despite these successes, the theory contains many unsatisfactory features. 

The origin of particle masses is a central mystery that has eluded experimental 

elucidation. In the Standard Model the known particl0s obtain their mass from 

the condensate of the so-called Higgs particle. Quantum corrections to the Higgs 

' 
mass require an unnatural fine tuning in the Higgs mass of one part in w-32 to 

obtain the correct mass scale of electroweak physics. In addition, the origin of the 

vast hierarchy between the mass scales of the electroweak and quantum gravity 

physics is not explained in the current theory. 
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Supersymmetric extensions to the Standard Model are not plagued by this fine 

tuning issue and may therefore be relevant in Nature. In the minimal supersym­

metric Standard Model there is also a natural explanation for electroweak sym­

metry breaking. Supersymmetric Grand Unified Theories also correctly predict a 

parameter of the Standard Model. This provides non-trivial indirect evidence for 

these theories. 

The most general supersymmetric extension to the Standard Model however, 

is excluded by many physical processes, such as rare flavor changing processes, 

and the non-observation of the instability of the proton. These processes provide 

important information about the possible structure such a theory. In particular, 

certain parameters in this theory must be rather small. A physics explanation for 

why this is the case would be desirable. 

It is striking that the gauge couplings of the Standard Model unify if there is 

supersymmetry close to the weak scale. This sugg'3Sts that at high energies Nature 

is described by a supersymmetric Grand Unified Theory. But the mass scale of 

unification must be introduced into the theory since it does not coincide with the 

probable mass scale of strong quantum gravity. 

The subject of this dissertation is both the phenomenology and model-building 

opportunities that may lie behind the small numbers that appear in supersym­

metric extensions of the Standard Model. 

2 

.. 



To Mom and Dad 

lll 



Contents 

1 Introduction 1 

2 Non-renormalization Theorem for the Wilsonian Gauge Cou-

plings in Supersymmetric Theories 40 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

2.2 Simple Gauge Group ............... 44 

2.3 Extension to a semi-simple gauge group . . . . . . . . . . . . . . . 50 

3 R-Parity Violation 

3.1 

3.2 

Introduction ... 

Flavor Changing Neutral Current Processes 

54 

54 

57 

3.3 Top Quark Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

4 Signals of Supersymmetric Flavor Violation at the LHC 79 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

4.2 Slepton Production by Drell-Yan Process . . . . . . . . . . . . . . . 85 

4.3 

4.4 

Slepton Production in Cascade Decays 

Summary ............... . 

5 Finetuning in Low-Energy Gauge Mediation 

lV 

89 

. 115 

116 



5.1 Introduction . . . . 116 

5.2 Messenger Sector . 120 

5.3 Fine Tuning in the Minimal LEG M . 123 

5.4 A Toy Model to Reduce Fine Tuning . 129 

5.5 NMSSM ••••• 0 •••••• . 136 

5.6 Models Derived from a GUT . . 147 

5.7 One complete Model . 153 

5.8 Summary ...... . 159 

6 Non-decoupling of the First and Second Generation Scalars 163 

6.1 Introduction . . 164 

6.2 Overview. .. . 168 

6.3 Low Energy Supersymmetry Breaking . . 182 

6.4 High Scale Supersymmetry Breaking . 193 

6.5 Using Finetuning to Constrain 8 . . 212 

6.6 Summary ••••• 0 ••• 0 ••• . 216 

7 Dynamically Generating the Grand Unification Scale 221 

7.1 Introduction . . 221 

7.2 Overview ... . 224 

7.3 SU(6) x SU(6) . 231 

7.4 SU(10) x S0(10) . 240 

7.5 Summary ..... . 254 

v 



A Fine tuning Expressions 256 

B Two-loop calculation 263 

C Spectrum of SU(6) x SU(6)aur 269 

D Spectrum of SU(lO) x SO(lO)aur Model 272 

VI 



List of Figures 

1.1 Feynman diagrams contributing quadratic divergences to the Higgs 

mass. Solid, dotted and wavy lines represent propagating fermions, 

scalars and gauge bosons, respectively. . . . . . . . . . . . . . . . . . 6 

· 1.2 Cancellation in supersymmetric theories of quadratic divergences to the 

scalar masses. Solid and dotted ~ines represent propagating fermions 

and bosons respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

1.3 R-parity violating proton decay p-+ 1r0e+ . . . . . . . . . . . . . . . 17 

1.4 A supersymmetric contribution to J-l -+ e1. Here jl is a smuon, e is 

a selectron, and N° is a neutralino. The "cross'; indicates a jl -+ e 

transition. . . . . . . . . . . . . . . . . . . . . . . 

1.5 A supersymmetric contribution to K- K mixing. Here sis a strange 

squark, d is a down squark, and g is a gluino. The crosses indicate 

23 

s f-+ d transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

1.6 Scaling of gauge couplings in the Standard Model. The band cor- • 

responds to the 10" error (0.003) on a3 (Mz). The couplings'do not 

appear to unify. 

1. 7 Scaling of the gauge couplings in the Minimal Supersymmetric Stan­

dard Model. The band corresponds to the 10" error (0.003) on a3(Mz). 

. 34 

The couplings do appear to unify. . . . . . . . . . . . . . . . . . . . . 35 

Vll 



1.8 Superfield Feynman diagram from colored higgsino exchange leading 

to proton decay. The "cross" indicates that there is some mass mixing 

between the two colored higgsinos. . . . . . . . . . . . . . . . . . . . . 38 

3.1 Jh contributions to K 0-K0 mixing with one A~jk =/= 0. Arrows indicate 

flow of propagating left handed fields. . . . . . . . . 

3.2 Jh contribution to K+ ---+ 1r+vv with one .X~jk =I= 0. 

5.1 Contours of c(m1; J-L2) =(10, 15, 20, 25, 40, 60) for a MSSM with 

a messenger particle content of one (5 + 5). In figures (a) and (c) 

sgn(J-L) = -1 and in figures (b) and (d) sgn(J-L) = +1. The constraints 

considered are: (I) meR =75 GeV , (II) mx? + mxg = 160 GeV, (III) 

61 

64 

meR =85 GeV, and (IV) mx? + mxg = 180 GeV .............. 128 

5.2 Contours of c(m1; J-L2) =(1, 2, 3, 5, 7, 10) for a MSSM with a messenger 

particle content of three (l +f)'s and one (q + ij). In figures (a) and (c) 

sgn(J-L) = -1 and in figures (b) and (d) sgn(J-L) = +1. The constraints 

considered are: (I) meR =75 GeV , (II) mx? + mxg = 160 GeV, (III) 

meR=85 GeV, and (IV) mx? + mxg = 180 GeV .............. 133 

viii 



5.3 Contours of c( m~; >..H) for the NMSSM of Section 3.5 and a messenger 

particle content of three (l + l)'s and one (q + ij). In figures (a) and 

(b), c(m~; >..H)=(4, 5, 6, 10, 15) and >..H =0.1. In figures (c) and (d), 

c(m~; >..H) =(3, 4, 5, 10, 15, 20) and AH=0.5. The constraints consid­

ered are: (I) mh +ma = mz, (II) meR =75 GeV, (III) mx~ +mxg = 160 

GeV, (IV) mh = 92 GeV, (V) meR =85 GeV, and (VI) mx~ + mxg = 

180 GeV. For >..H =0.5, the limit mh > 70 GeV constrains tan,B < 5 

(independent of Amess) and is thus not shown ............... 142 

5.4 Contours of c(m~; >..H) =(50, 80, 100, 150, 200) for the NMSSM of 

Section 5 with >..H =0.1 and a messenger particle content of one (5+5). 

The constraints considered are: (I) mh + ma = mz, (II) meR =75 Ge V, 

(III) mx~ + mxg = 160 GeV, (IV) mh =92 GeV, (V) meR =85 GeV, 

and (VI) mx~ + mxg = 180 GeV. A central value of mt =175 GeV is 

assumed .................................... 148 

6.1 Limits for mj;,o/Ms from the requirement that the masses squared are 

positive at the weak scale, for low-energy supersymmetry breaking. 

The regions below the curves are excluded. For the case (2,0), the 

limits for the other squarks are very similar to that for Q and are 

therefore not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 

lX 



6.2 Limits for mic,o/ Ms from the requirement that the stop and slep-

ton mass squared are positive at the weak scale. The regions below 

the curves are excluded. Low-energy gauge-mediated supersymmetry 

breaking mass relations between the light sparticles and tan {3 =2.2 are 

assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 191 

6.3 Limits for mic 0 from the requirement that the stop and slepton mass 
' 

squared are positive at the weak scale while suppressing LlmK, for dif-

ferent values of (n5 , n10 ), and (6LL, 6RR)· The regions below the curves 

are excluded. Low-energy gauge-mediated supersymmetry breaking 

mass relations between the light scalars and tan {3 =2.2 are assumed. . 194 

6.4 Limits for mj;,o for different values of (n5 , n10 ) from the requirement 

that the mass squareds are positive at the weak scale, assuming a 

supersymmetry breaking scale of Maur- The regions below the lines 

are excluded. . . . . . . . . . . . . . . . . 197 

6.5 Limits for m0 / Ms from the requirement that the stop masses squared 

are positive at the weak scale, for tan {3 = 2.2, At,o = 0 and assuming 

universal scalar masses at Maur for the stop and Higgs scalars. The 

regions below the curves are excluded. . . . . . . . . . . . . . ·. . . . . 203 

X 



6.6 Limits for mi,o/Ms, mic,o/Ms, from the requirement that the stop 

masses squared are positive at the weak scale, for Msusv = Maur, 

tan ,6 = 2.2 and assuming that m'i£u,o = 0. The value of At,o is chosen 

to maximize the value of the stop soft masses at the weak scale. The 

regions below the curves are excluded. . ................. 204 

6.7 Limits for mi,o/Ms, mic,o/Ms, from the requirement that the stop 

masses squared are positive at the weak scale, for (n5 , n10 ) = (2, 2), 

Msusv = Maur, tan ,6 = 2.2, and different values of [1,/ M8 . The con­

tours end at that value of M3,0 /Ms that gives mHu,o/Ms = 0. The 

value of At,o is chosen to maximize the value of the stop soft masses at 

the weak scale. The regions below the lines are excluded. . . . . . . . . 205 

6.8 Limits for mi,o and ffi£c,0 , mec, and mt from the requirement that the 

masses squared are positive at the weak scale while suppressing !::J.mK. 

It was assumed that Msusv = Maur, tan ,6 = 2.2 and that m'i£u,o = 0. 

The value of At,o was chosen to maximize the value of the stop soft 

masses at the weak scale. The heavy scalars were decoupled at the 

minimum value allowed by !::J.mK. The regions belo'v the lines are 

excluded. . ................ 208 

Xl 



6.9 Limits for mi,o and mic,o from the requirement that the stop masses 

squared are positive at the weak scale while suppressing 6.mK. It was 

assumed that MsusY = Mcur, tan /3 = 2.2 and that m~ ... o = mfc,o· 

The value of At,o was chosen to maximize the value of the stop soft 

masses at the weak scale. The heavy scalars were decoupled at the 

minimum value allowed by 6.mK. The regions below the lines are 

excluded. . 209 

6.10 Limits for mi,o and mic,o from the requirement that the stop masses 

squared are positive at the weak scale while suppressing 6.mK, for 

(n5 , n10 ) = (2, 2), yuiL6nn = 0.04, and different values of f-l· The 

contours terminate at m~ ... o = 0. It was assumed that Msusy = Mcur 

and tan f3 = 2.2. The value of At,o was chosen to maximize the -value 

of the stop soft masses at the weak scale. The heavy scalars were 

decoupled at the minimum value allowed by 6.mK. The regions below 

the lines are excluded. . .......................... 210 

6.11 Limits for mi 0 , mic 0 from the requirement that the stop masses squared 
' ' 

o.re positive at the weak scale while suppressing 6.mK, for the cases 

(n5 ,- n 10 ) = (2, 0) and (0, 2). It was assumed that Msusy = Mcur, 

tan f3 = 2.2 and that m~u.o = 0. The value of At,o was chosen to 

maximize the value of the stop soft masses at the weak scale. The 

heavy scalars were decoupled at the minimum value allowed by 6.mK. 

The regions below the lines are excluded. . . . . . . . . . . . . . . . . . 211 

xii 



6.12 Maximum value for (6LL6RR) 112 that is consistent with 6.(m~, M 3,0 ) < 

100, 6.(m~, mr,o) < 100 and (6.mK )susY < (6.mK )exp· Two boundary 

conditions are considered: m~ 0 = 0 (top) and gauge-mediated rela-
"' 

tions (bottom). Two values for tan,B are considered. The value of At,o 

was chosen to maximize the value of the stop masses at the weak scale. 217 

6.13 Maximum value for 6LL, DRR that is consistent with 6.(m~, M 3,0 ) < 10, 

6_(m~, mf 0 ) < 10 and (6_~K )sUSY < (6_mK )exp· It was assumed that 
' 

m~ ... o = 0. Two values for tan,B are considered. The value of At,o was 

chosen to maximize the value of the stop masses at the weak scale. . . 218 

B.1 Mixed two-loop corrections to the scalar mass. Wavy lines, wavy lines 

with a straight line through them, solid lines, and dashed lines denote 

gauge boson, gaugino, fermion and scalar propagators, respectively. 

The double-line denotes the hypercharge D-term propagator ....... 265 

Xlll 



I 

List of Tables 

1.1 Quantum number charges of one generation of Standard Model par­

ticles with a right-handed neutrino, and two Higgs fields, under the 

Standard Model gauge group G = SU(3)c x SU(2)L x U(1)y. Here 

Q = (uL,dL), L = (vL,eL), H = (h+,h0), and H = (Jil,h-). The 

electric charge of a particle is Qem = Y + T3L, where here T3L is the 

value of the diagonal generato_r of SU(2)L acting on'¢, e.g. +1/2 for 

uL and -1/2 for dL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

1.2 An anomaly-free "fake" Standard Model. Here His the Higgs scalar, 

and all other fields are fermions. The physics of this model (for one 

generation) is qualitatively similar to that of the Standard Model. But 

to the author's ability this model cannot be unified into a Grand Unified 

Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

3.1 Constraints on 1,\~jkl from:(a) K+ --t n+vv (90%CL); (b) b --t sviJ 

(90%CL) [49]; (c) Ve mass (90%CL) [29]. These constraints were ob­

tained assuming C K M -like mixing in the charged -1/3 quark sector. 

All limits are for 100 GeV sparticle masses. 

XIV 

. 77 



3.2 Constraints on ~A~jkl from:(a) charged current universality (95%CL) 

[28]; (b) f(1r -+ eve)/f(1f -+ J-LVtJ.) (1a) [28]; (c) Af.8 (1a) [28]; (d) 

BR[r -+ 1rvr] (95%CL) [31]; (e) BR[D0 -+ K- J-L+viL]/ BR[D0 -+ 

K-e+ve] (95%CL) [31]; (f) atomic parity violation and eD asymmetry 

(1a) [28]; (g) vJL deep-inelastic scattering (95%CL) [28]; (h) partial Z0 

decay width (95%CL) [32]; (i) top quark decay (95%CL); (j) Ve mass 

(90%CL) [29]. All limits are for 100GeV sparticle masses ........ 78 

4.1 Mass spectrum in GeV at LHC Point [55, 56]. Here ij = u, d, c, 8, and 

z = e, Jt, :r ................................... 102 

4.2 The production cross-sections in fb for different SUSY particles at the 

LHC Point [55, 56]. Here all flavors QH = u, d, c, 8 and H = L, Rare 

summed over ............... · .................. 102 

4.3 Branching fractions (in percent) for sparticles at LHC Point [56]. Here 

- -
ij = u, d, c, 8, and l = e, {t, f. . ...................... 103 

5.1 Soft scalar masses in GeV for messenger particle content of three (l+l)'s 

and one q + ij and a scale Amess = 50 Te V. . . . . . . . . . . . . . . . . 135 

5.2 SU(5) X SU(5)' X z3 X z~ X z4 quantum numbers for the fields of the 

model discussed in section 7. The generators of z3 X z~ X z4 are labeled 

by (a, b, c). The three SM generations are labeled by the index i ..... 160 

XV 



5.3 SU(5) X SU(5)' X z3 X z~ X z4 quantum numbers for the fields of the 

model discussed in section 7. The generators of z3 X z~ X z4 are labeled 

by (a, b, c). The three SM generations are labeled by the index i ..... 161 

6.1 Minimum values for heavy scalar masses Ms obtained from the mea­

sured value of b..mK assuming Mi/ M'j, « 1. The limits labeled 'QCD 

incl.' include QCD corrections as discussed in the text. Those labeled 

as 'no QCD' do not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

6.2 Minimum values for heavy scalar masses Ms obtained from the mea­

sured value of b..mK assuming Ml,/ M'j, « 1. The limits labeled as 

'QCD incl.' include QCD corrections as discussed in the text. Those 

labeled as 'no QCD' do not. The limits for (n5 , n 10 ) = (0, 2) obtained 

by oiL t-+ O~R are similar and not shown .................. 176 

XVI 



Acknowledgements 

I would like to express my sincere gratitude to my advisors, Professor Mahiko 

Suzuki and Dr. Ian Hinchliffe, not only for their help in integrating me into 

this community of scientists, but also for their guidance on, and support of, my 

research interests. I especially appreciate the freedom they gave me in choosing 

research topics and the time they lent to the many beneficial discussions. I also 

thank a fellow student, Kaustubh Agashe, for many rewarding collaborations and 

discussions. 

I would also like to thank other members of the Theoretical Physics group, 

especially Professor Hitoshi Murayama, Professor Lawrence Hall, Nima Arkani­

Hamed, Chris Carone, Hsin-Chia Cheng, Csaba Csaki, Andre de Gouvea, Chis 

Kolda, Bogdan Morariu, Takeo Moroi and John Terning for useful discussions and 

the whole group for a pleasant and rewarding experience of being at LBNL. I 

appreciate the many values of a community dedicated to learning and striving for 

truth. I am grateful to Anne Takizawa, Laura Scott and Donna Sakima of the 

Physics department and Luanne Neumann, Barbara Gordon and Mary Kihanya 

at LBNL for help with administrative work. I also thank the Natural Sciences and 

Engineering Research Council of Canada for their support. 

I am grateful to my parents for their support ever since I was a child. 

And love to Priyanka Kumar for being just like that. 

XVll 



Chapter 1 

Introduction 

The Standard Model (SM) of particle physics interactions [1, 2] is an extremely 

successful theory of Nature. It qualitatively accounts for many phenomena, such as 

the meson and baryon mass spectrum, the small measured value for the kaon mass 

difference, "neutral" current interactions - neutrino-electron scattering, for exam­

ple- and the weakly interacting nature of quarks at large momentum transfer, to 

list a few. It also quantitatively agrees with all experimental measurements. The 

measured anomalous magnetic moment of the electron agrees with the SM pre­

diction to a few parts per billion, and the measured and theoretical values for the 

anomalous magnetic moment of the muon are consistent to one part per million. 

These experiments represent tremendous tests of quantum electrodynamics - the 

part of the SM describing electrons, muons and photons. The SM theory of quarks 

and gluons- quantum chromodynamics- has also been experimentally tested at 

SLAC during the 1970's, and at Fermilab in the 1980's. Further, many precise 

measurements of the SM "weak" interactions performed at the LEP and SLAC 

experiments in the late 1980's and early 1990's agree with the SM predictions to 

within their experimental uncertainties (a few percent). 

While the SM has many descriptive successes, there are many issues that re-

1 



main unexplained. The most outstanding issue is the origin of particle masses. 

The SM is described by the non-abelian gauge symmetry SU(3)c x SU(2)L x 

U(l)y. The representations ofthe SM particles under these gauge groups are given 

in Table 1.1. Of these gauge groups, only the U(l)em subgroup that corresponds 

to electromagnetism is observed to be a long-range force. The SU(3)c force (or 

quantum chromodynamics) is strong at large distances, so it confines quarks into 

baryons and mesons (e.g. protons, neutrons and pions). The remaining "weak" 

forces however, have an effective range of about 10-16 em. This is because the 

Z and W gauge bosons that mediate these "weak" forces are massive. On the 

other hand, the non-abelian gauge symmetry implies that all the gauge bosons 

should be massless like the photon. In addition, the leptons and quarks should be 

massless as well. 

The physical mechanism that generates these masses is not known. The parti­

cle masses are obtained by either introducing into the theory interactions - such 

as mass terms for the gauge bosons and fermions - that explicitly break the elec­

troweak symmetry, or by introducing some new interactions whose dynamics spon­

taneously break the electroweak gauge symmetry. In the former case the theory 

is non-renormalizable at the one-loop level, so that the Standard Model is only 

an effective theory. Further, the preservation of the unitarity of the theory im­

plies that WW interactions should become strong at high energies. In any case, 

phenomena in the form of new interactions and/ or particles should be discovered. 

In the second option there must exist some additional undiscovered dynamics 

2 



that is responsible for generating particle masses. There are additional unresolved 

issues beyond this central mystery. The SM contains six quarks, three charged and 

neutral neutrinos. The mass of these particles is an input into the theory - the SM 

does not predict these masses. Since the ratio of the ligh~est massive particle (the 

electron) to the heaviest particle (the top quark) is ~ w-6
' it is difficult to believe 

that this small number is part of a fundamental theory of Nature. An explanation 

for the hierarchies found in the other fermions masses, and the parameters of the 

Kobayashi-Maskawa matrix VKM [3], is also desired. 

· In the Standard Model electroweak symmetry breaking is achieved by. intra-

clueing a scalar field H wr~.1 Standard Model quantum numbers (1, 2, 1/2). The 

scalar potential for H is assumed to be 

(1.1) 

and is the most general potential that is also gauge invariant and renormalizable. 

Here ,\ > 0 so that the potential is bounded from below. The ground state of the 

vacuum is found by minimizing V. In this case the physics of the ground state 

depends on the sign of m2 . If m2 > 0 the minimum is at H = 0. This ground 

state is invariant under the full SM gauge transformations, so no symmetries are 

r 

broken at this vacuum. On the other hand, if m2 < 0 there is a local maximum at 

H = 0, and the local minimum occurs at a non-zero value for H. Using SU(2)L 

and U(1)y rotations, 

(1.2) 
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minimizes V with v2 = -4m2/>.. This vacuum is not left invariant by the action 

of the SU(2)L x U(l)y gauge transformations. Only the combination of SU(2)L x 

U(l)y generators Q = T3 +Y is left unbroken. Since this is none other than electric 

charge, this vacuum breaks SU(2)L x U(l)y ---+ U(l)em· The Higgs mechanism 

results in a mass of gv /2 ~so Ge V for the W gauge bosons, and J g2 + g'2v /2 ~90 . 

GeV for the Z gauge boson, where g and g' are the SU(2)L and U(l)y gauge 

couplings, respectively. Numerically v = 247 GeV is determined from the Fermi 

constant GF obtained from the muon lifetime. Since U(l)em is left unbroken the 

photon remains massless. So the symmetry breaking vacuum which corresponds 

to m 2 < 0 correctly describes Nature. 

This vacuum expectation value (vev) ofthe Higgs field can also be used to give 

masses to the quarks and leptons. The interaction 

(1.3) 

for example, where i, j are generation labels, is gauge invariant but results in 

masses for the up-quarks once the vev for H given by Eqn.(1.2) is inserted. In­

teractions of this type (so-called Yukawa interactions) can also be introduced to 

give masses to the down-quarks and leptons. 

So aside from the fact that the Higgs scalar particle has not been experimen­

tally observed this description of electroweak symmetry breaking is sound. This 

description however, is theoretically unsatisfactory since the most important step 

in the story, namely that the Higgs mass parameter m2 must be negative, is left 
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unexplained. An explanation for why m2 is negative, rather than positive, is de­

sired. There are even more distasteful features of this description once quantum 

corrections to the scalar potential V are considered. These are now described. 

In addition to the particle representations and their interactions, a short­

distance cut-off is also required. The physical interpretation for this cut-off is 

the following. The Standard Model is a good description of Nature at distances 

above at least 10-16 ern, or equivalently, at energies below 100 GeV. If the Standard 

Model were a fundamental theory of Nature, then it would be a good description 

at all energies. It is not expected for many reasons, however, that this is the 

case. Firstly, the Standard Model does not explain electroweak symmetry break­

ing with any satisfaction. It also contains quadratic divergences (discussed in the 

next paragraph) which are distasteful, and it would be incredibly surprising if 

they were present in a fundamental theory. It also doesn't explain why the mass 

scale of electroweak interactions - 100 Ge V to a Te V - is so much smaller than 

the probable mass scale of (strong) gravitational effects, the Planck scale which is 

roughly 1018 GeV. Further, the Compton wavelength and black hole event horizon 

for a point particle with a mass of 1018 GeV coincide, so in describing physical 

processes at Planck scale energies it is not possible to neglect either quantum 

or gravitational effects. Both are equally important. But the Standard Model 

does not include a quantum theory of gravity. For this reason it is expected that 

at these energies the Standard Model (or any quantum field theory description 

of Nature) will be replaced by a theory that includes a quantum description of 

5 



w w 

__ c!b_ -~---
H H, 

H 
,.. -

/ ' 
I \ 

I -;;--0---
H 

Figure 1.1: Feynman diagrams contributing quadratic divergences to the Higgs 

mass. Solid, dotted and wavy lines represent propagating fermions, scalars and 

gauge bosons, respectively. 

gravity. So the Standard Model is not a correct description of Nature at these 

high energies. Thus above some unknown energy scale A (or below some distance 

scale he/ A), the Standard Model is replaced by a better description of Nature. In 

this sense the Standard Model is only an effective theory of Nature, valid only for 

energies E < A. 

So in evaluating any physical processes it is physically sensible to restrict the 

energies of the. particles to be below A. Of interest for electroweak symmetry 

breaking are the quantum corrections to the Higgs potential V. The interactions 

of the Higgs scalar with the gauge bosons and with itself correct the expression 
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for V given in Eqn.(1.1). In particular, the corrections to the m2 parameter are 

given by the Feynman diagrams in Figure 1.1. As mentioned above, in evaluating 

these corrections an energy cut-off A must be introduced. These diagrams give a 

correction to m2 that is 

(1.4) 

Here m6 is the "bare" parameter for the Higgs mass (what was called m2 before), 

and C is a function of the gauge and Yukawa couplings of the theory and is not 

equal to zero in general. That fl.m2 ex: A 2 means that this theory contains a 

quadratic divergence. 

This is distasteful for the following reason. Recall that the gauge boson mass is 

mir <X v2 , and v2 <X -m2 in turn. So -m2 must be roughly (100GeV) 2 ,....., (TeV) 2 . 

I '· 

Since this is the left-hand side of Eqn.(1.4), m6 and the A2 term must combine to 

give the correct value for m2 . But if the Standard Model is a correct description 

of Nature up to Planckian energies, i.e. A~ 1018 GeV, then in order to obtain the 

correct order of magnitude for m2 , m6 and the A2 term in Eqn.(1.4) must cancel 

1 ' each other at one part in 1032 ! In other words, in the absence of this fine tuning 

. . 
of the parameters the "natural " value for m2 is A 2 . Why the electroweak scale 

of physics is so much smaller than the Planck scale, or any energy scale A of new 

physics, is known as the hierarchy problem. 

It is the presence of these quadratic divergences that suggest that the Standard 

Model will be replaced by a more complete theory which will also provide a better 

understanding of the origin of electroweak symmetry breaking. Since the resulting 
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m2 is of the right size if A ~TeV, new physics in the form of new particles and 

interactions should be discovered at energies in this range. 

Since supersymmetric gauge theories [5], quite remarkably, contain no quadratic 

divergences 1 [6], particle physics models based on supersymmetry are promising 

candidates for resolving the hierarchy problem. In this dissertation, the phe-

nomenology of supersymmetric theories is explored, with attention paid to phe-

nomenological problems with these models. These problems are of the "why 

are some numbers in these models so small" sort. This is in coherence with 

the philosophy that argues that the Standard Model is incomplete, e.g. why is 

Mw I MPL rv 10-16 so small? 

In supersymmetric field theories all the particles appear in irreducible repre-

· sentations of the supersymmetry algebra, referred to as supermultiplets. Since a 

supersymmetry generator has a spinorial index, and the members of a supermul-

tiplet are related to each other by supersymmetry transformations, the individual 

components of a multiplet will not have the same spin; For example, a chiral 

supermultiplet is 

. (1.5) 

and contains a complex scalar¢ (spin 0) and a two-component fermion '1/Jo: (spin 

1 Assuming TrQx = 0 if there is a U(l)x gauge group. 
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1/2). Similarly, a vector multiplet is 

V= ( ::) 
(1.6) 

and contains a massless vector boson Vll (spin 1) and a two-component fermion 

Xa· Note that in both cases the number of bosonic and fermionic physical degrees 

of freedom are equal. Further, the supersymmetry generators commute with the 

gauge symmetry generators, so that all the components of a supermultiplet have 

the same gauge group quantum numbers. Finally, a very important point for 

the cancellation of quadratic divergences is that the supersymmetry generators 

commute with the spacetime generators. This implies that all the components of 

a multiplet have the same energy, and in particular, that they all have the same 

rest mass. 

Since supersymmetry transformations interchange bosons and fermions, a su­

persymmetry transformation does not commute with a Lorentz group transforma­

tion. Nonetheless supersymmetry is also a spacetime symmetry since it enlargens 

the group of spacetime transformations. In fact, the largest possible symmetry of 

the S matrix 2 is the product of an internal global or gauge symmetry and a super­

symmetry [7]. So supersymmetric theories contain a larger spacetime symmetry 

than their non-supersymmetric counterparts. This fact suggests that supersym­

metry is in some way relevant to Nature. 

2The S matrix gives the quantum mechanical amplitude A for scattering an initial state into 

a final state. The probability for this process is then proportional to IAI 2 . 
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A heuristic explanation for why supersymmetric theories contain no quadratic 

divergences is the following. First suppose .that the bare mass for the scalar par­

ticle in a chiral multiplet is equal to zero. Then since all the components of a 

supermultiplet have the same mass, the fermion partner 'ljJ is also massless. But in 

this case the theory contains the chiral symmetry 'ljJ -+ ei/3'1/J for an arbitrary real 

number /3. This symmetry is sufficient to guarantee that in perturbation theory 

the fermion is exactly massless. But since by supersymmetry the scalar partner 

must also receive the same quantum corrections, it therefore remains massless. So 

there are no quadratic contributions to the mass parameter of the scalar particle. 

This is realized in the loop expansion by the can_cellation of the quadratic di­

vergences between different Feynman diagrams. In Figure 1.2(a), the scalar boson 

</>1 receives a quadratic divergence from its </>i ¢1 </>2</>2 interaction with other scalars 

¢2 (this notation also allows ¢2 = ¢I). There is also a quadratic divergence from 

its coupling to the fermion superpartner 'lj;2 of ¢2 . This contribution is shown in 

Figure 1.2(b) and is numerically exactly the opposite of the first contribution such 

that the sum of the two Feynman diagram cancels, and there are no quadratically 

divergent contributions to the mass of ¢ 1 . 

The argument for the cancellation of the quadratic divergences when the scalar· 

particle is massive is very similar. Supersymmetry implies that the fermion super­

partner has the same mass. But the total quantum correction to the fermion mass 

must be !:lm ex: m0 since in the limit that the bare fermion mass m0 -+ 0 the chiral 

symmetry forbids the generation of a mass in perturbation theory. But this cor-
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Figure 1.2: Cancellation in supersymmetric theories of quadratic divergences to 

the scalar masses. Solid and dotted lines represent propagating fermions and 

bosons respectively. 

rection must by supersymmetry be identical to the correction to the scalar mass. 

Thus even if the scalar particle is massive it receives no quadratic corrections to 

its mass. 
I ._ 

The absence of quadratic divergences can also be generalized to- include su-

persymmetric gauge theories. In this case, the quadratic divergence from the 

Feynman diagram with an internal gauge boson is canceled by the quadratic di-

vergence from the Feynman diagram with an internal superpartner of the gauge 

boson, the gaugino. So in supersymmetric theories there are no quadratic diver-

gences 3 . To re-cap, the basic reason for this is that supersymmetry relates the 

scalar particle to its fermion superpartner which does not receive any quadratic 

divergences. This relationship then protects the scalar particle from receiving any 

quadratic divergences as well. 

3 See the previous footnote for the one restriction. Curiously, this condition is also the same 

as requiring the cancellation of the gravitational-gravitational-U(l)o anomaly. 
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So a supersymmetrized version of the Standard Model does not contain any 

quadratic divergences and the hierarchy problem is at least stabilised. That is, once 

the huge disparate scales Mz and Mp1 are initially established, supersymmetry 

insures that quantum corrections do not push the vev of H (and hence the masses 

of all the Standard Model particles) up to the Planck scale. 

In fact, the Planck scale and the weak scale are probably not the only mass 

scales in Nature. For example, the scale of Grand Unification (see later), or the 

mass scale of some new flavor physics, probably exist and are most likely orders 

of magnitude larger than the weak scale. If scalar particles are in some way 

involved in the physics at these other mass scales (just as the Higgs particle might 

be involved in electroweak symmetry breaking), then in a non-supersymmetric 

theory quantum corrections would tend to bring all these different mass scales 

together. That is, the separation of mass scales could only be maintained at the 

expense of an unnatural amount of fine tuning among the bare parameters of the 

theory. 

In supersymmetric theories, in contrast, there are non-renormalization theo­

rems which imply that no fine tuning is required to maintain these different mass 

scales [6]. These geheralize the cancellation of the quadratic divergences discussed 

before. 9imilarly, non-perturbative non-renormalization theorems for the dimen­

sionless "Wilsonian" gauge-couplings and "superpotential" couplings exist and 

are presented in Chapter 2. So in a supersymmetric theory of Nature it is possible 

to envision a hierarchy of mass scales which are not destabilized by quantum cor-

12 
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rections. In these theories it is then sensible to address issues such as the physics 

occurring at, and the possible origins of, these different mass scales. 

So what does a supersymmetrized version of the Standard Model look like? The 

simplest solution is to promote each gauge and matter particle of the Standard 

Model to a complete supermultiplet. Thus the theory now includes some fermion 

superpartners (the gauginos) to the gauge bosons, and scalar superpartners to 

the quarks and leptons, referred to as squarks and sleptons, respectively. So a 

supersymmetric v~rsion of the Standard Model contains at least twice as many 

particles .. 

What about the Higgs particle H? An inspection of Table 1.1 indicates that the 

leptons L have the same quantum numbers as the Higgs scalar H*. This suggests 

the interesting possibility that the Higgs bosons could be the boson superpartners 

of the leptons. In this case the Higgs field would have a lepton number, since it 

would be in the same supermultiplet as the leptons. The breaking of electroweak 

symmetry would also break lepton number and this has some phenomenological 

difficulties, such as generating neutrino masses that are too large. A more serious 

problem though is that it turns out that such a theory (with 3 Higgs doublets) 

cannot generate masses for the up-type quarks. For this reason this possibility is 

not considered further in this dissertation. 

So instead the Higgs sector is made supersymmetric by introducing fermion 

superpartners, referred to as 'higgsinos', thus promoting H to a supermultiplet. 

The higgsinos contribute to the gauge anomalies since they carry charge, and 
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in fact the introduction of only one Higgs supermultiplet results in non-vanishing 

SU(2)L x SU(2)L x Y and Y3 gauge anomalies. These anomalies must be canceled 

to preserve the unitarity of the theory. So an additional Higgs multiplet, H, with 

the opposite hypercharge, is introduced to cancel the anomalies. Another difficulty 

with introducing only one Higgs supermultiplet is that supersymmetry prevents 

H from giving mass to the leptons and down-quarks. It is perhaps surprising that 

this is not the case for H. For these two reasons two Higgs doublets are included 

in the minimal supersymmetric extension to the Standard Mod.el (the MSSM). In 

this model then the mass for the up-quarks is obtained from the vev of H, and 

that of the leptons and down-quarks from the vev of H. The matter content of 

the MSSM is also given in Table 1.1, where now each field 'ljJ is interpreted as a 

supermultiplet. 

The previous arguments establishes the particle content of the MSSM. But 

what about the interactions between all these particles? These are obtained· by 

including all interactions that are renormalizable and consistent with supersym­

metry and all the gauge symmetries. 

The requirement that the theory is renormalizable is not necessary, and in fact 

is not expected. This is because the MSSM, just like the SM, is probably only an 

effective theory, rather than a fundamental theory of Nature. At energies above 

some unknown physical mass scale M, such as the Grand Unified mass scale, the 

mass scale of some new flavor physics, or the Planck scale, to suggest a few, the 

MSSM is replaced by a more fundamental theory. The effect of this high-energy 
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1/J SU(3)c SU(2)L U(1)y 1/J SU(3)c SU(2)L U(1)y 

Q 3 2 1/6 L 1 2 -1/2 

uc 3 1 -2/3 ec 1 1 1 

de 3 1 1/3 vc 1 1 0 

H 1 2 1/2 H 1 2 -1/2 

Table 1.1: Quantum number charges of one generation of Standard Model particles 

with a right-handed neutrino, and two Higgs fields, under the Standard Model 

gauge group G = SU(3)c x SU(2)L x U(1)y. Here Q = (uL, dL), L = (vL, eL), 

H = (h+, h0 ), and H = (!{1, h-). The electric charge of a particle is Qem = Y +T3L, 

where here T3L is the value of the diagonal generator of SU(2)L acting on 1/J, e.g. 

+1/2 for U£ and -1/2 ford£. 
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physics.at low-energies, i.e. E << M, is to either generate interactions suppressed 

by M, or to determine the parameters of the low-energy theory. These non­

renormalizable interactions are important if they violate some global symmetries of 

the low-"-energy theory such as baryon number. Otherwise, their effect on physical 

processes is smaller by ro':lghly E / M compared to the effect of the renormalizable 

interactions. So they are irrelevant and it is sufficient to study the renormalizable 

interactions of the low-energy theory. 

The most general supersymmetric Standard Model that is consistent with all 

the gauge symmetries has some phenomenological problems though. These prob­

lems involve the stability of the proton, and the mass spectrum of the superpart­

ners. These are discussed in turn. 

Recall that the Higgs supermultiplet H and the lepton supermultiplets Li 

have the same gauge quantum numbers. See Table 1.1. This was the origin of 

the rejected speculation that the Higgs bosons could be the superpartners of the 

leptons. In this context, though, this means that from any particle interaction 

that contains H, a new interaction consistent with all the gauge symmetries and 

renormalizablity is obtained by replacing H -+ Li· Since the bteractions with H 

conserve lepton number 4, the new interactions with the replacement must violate 

4 The lepton number L of a lepton and anti-lepton is defined to be +1 and -1 respectively. 

The lepton number for the quarks and Higgs particles is 0. Similarly, the baryon number B for 

quarks (anti-quarks) is defined to be +1/3 ( -1/3) .(so that for example, the proton has B = 1) 

and zero for all other particles. 
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Figure 1.3: R-parity violating proton decay p---+ 1r
0e+. 

lepton number. 

Further, baryon number violating interactions are also allowed. Trilinear inter-

actions of the form ucdcdc that contain two quarks and one squark are consistent 

with SU(3)c x SU(2)L x U(l)y invariance. These clearly violate baryon number 

since the interaction has B = -1. Consequently these interactions give rise to 

processes that change baryon number by one unit. 

So the most general supersymmetric extension of the Standard Model, consis-

tent with the principles outlined above, violates lepton and baryon number. On 

the other hand no lepton or baryon number violating processes, such as fL ---+ e"(, 

11 ---+ eee or n ---+ n oscillation, have been experimentally observed. Thus the 

reaction rates for these processes must be small if present. 

In fact, the presence of both the baryon violating and lepton violating interac-

tions is a disaster. Since both~baryon and lepton numbers are no longer conserved 

the proton is no longer stable. For example, the decay p ---+ 1r
0e+ is allowed. If 

the dimensionless B-violating couplings ).. 8 and £-violating couplings AL which 
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characterize the strength of these interactions are numerically close to one, the 

lifetime for the proton is 10- 13 - 10-15 seconds. The Feynman diagram for one 

possible decay mode is given in Figure 1.3. This lifetime is incompatible with the 

measured lower bound to the proton lifetime of about 1032 years. It can be made 

compatible only if the product of the B-violating couplings >..8 and £-violating 

couplings >..L are extremely tiny: >..8>..L < 10-25
• 

Why these couplings are so small is a puzzle, and suggests that either B or 

L is a good symmetry of the renormalizable interactions. These dangerous inter­

actions can be forbidden by imposing a discrete symmetry, called R-parity. It 

is implemented by requiring that the particle interactions are invariant under the 

discrete symmetry M ---+ - M for a matter supermultiplet, and Hi ---+ Hi for each 

Higgs supermulitplet. This symmetry allows the trilinear interactions of the form 

MiMjHk which give mass to the matter particles, but forbids interactions of the 

type MiMjMk. It is the latter interactions that make the proton unstable, for ex­

ample. An inspection of Figure 1.3 indicates that the troublesome vertices contain 

3 matter fields, which would be forbidden if this R-parity is a good symmetry. 

But since the proton decay requires both B number and L number violation, 

the phenomenological difficulties are not nearly as serious if only one of these 

numbers is conserved. Thus the imposition of R-parity is perhaps too strong, 

and maybe only B number or L number conservation is sufficient. What are the 

phenomenological constraints in this case? Since the Yukawa couplings exhibit a 

hierarchical structure there are good theoretical reasons to expect a hierarchical 
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structure for the L number violating interactions if they exist. In Chapter 3 of 

this dissertation rare processes such as K+ -+ rr+zi'O, as well as top quarks decays, 

are used to constrain these L number violating interactions. 

The next difficulty with a naive supersymmetric extension of, the Standard 

Model occurs with the mass spectrum of the superpartners. As mentioned before, 

the supersymmetry generators commute with the spacetime translation generators. 

This implies that all the components of a supermultiplet have the same mass. So 

for example, if supersymmetry were an exact symmetry of Nature, the superpart­

ner of the electron, the slepton, would have the same mass as the electron. This is 

incompatible with exper1:::nental observations, since no such selectrons have been 

detected. In fact, the current lower bound on the selectron mass from the LEP2 

experiment is about 80 GeV, which is 105 times heavier than the electron. 

These experimental facts imply that supersymmetry must be spontaneously or 

"softly" broken. Since the motivation for supersymmetry was to solve the hier­

archy problem, the spontaneous breaking of supersymmetry must not reintroduce 

quadratic divergences. Fortunately, the number of types of interactions that break 

suprrsymmetry, but do not introduce quadratic divergences is small [8]. Masses for 

the squarks, sleptons and gauginos may be added without introducing quadratic 

divergences. These so-called "soft masses" are arbitrary and unrelated to the 

masses of their superpartners. A very heuristic explanation for why no quadratic 

divergences are introduced when these soft masses are introduced is the following. 

First, since no quadratic divergences are present when the boson m and fermion 

19 



mF masses are equal, the one-loop quantum correction to the scalar mass for 

unequal masses is then 

(1. 7) 

Here Cis a function of the gauge and Yukawa couplings of the theory and logi\2, 

and ~m~ is the correction to the fermion mass. This is seen more clearly (at 

one-loop) by evaluating the Feynman diagrams in Figure 1.2. The diagram in 

Figure 1.2(a) depends on the scalar mass m, but not on the fermion mass mF, 

whereas the opposite is true for Figure 1.2(b ). This, together with the fact that 

~m2 = ~m~ in the supersymmetric limit m = mF, implies that the correction to 

~m2 when m =/= mF must be of the form as in Eqn.(1.7). 

So it is possible to give large enough masses to the superpartners of the Stan­

dard Model fields so as to avoid experimental detection, while simultaneously not 

introducing any quadratic divergences. 

The existence of these soft masses for the squarks and sleptons also provides 

a natural explanation for the origin of electroweak symmetry breaking. Recall 

that in the Standard Model this Higgs mass parameter mk must be negative in 

order for electroweak symmetry to be broken. This is introduced into the theory 

without any explanation. In the MSSM by contrast, a negative m2 for the Higgs 

mass parameter occurs quite naturally, and is made possible by the large top 

quark Yukawa coupling and for top squark masses heavier than about 100 GeV. 

This is because the quantum corrections of the top squarks to mk (as in Figure 
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1.2(a) with ¢2 =top squark) are always negative. On the other hand, the same 

quantum corrections result in a less negative correction to the squarks masses. 

The squarks also receive positive corrections from loops of gluinos, which do not 

contribute to ~m'ii. These tend to keep m2 > 0 for the squarks. A m2 < 0 for a 

squark mass would be bad since this would break SU(3)c, and result in a weakly 

interacting short range force (like SU(2)L) rather than the confining force that 

is observed. Further, the color quantum numbers would not be conserved. This, 

however, does not occur- only the Higgs mass parameter becomes negative and 

the squark and slepton m2s remain positive. Thus the perturbative dynamics of 

the MSSM with a mass spectrum between 100 Ge V and 1 Te V predicts that the 

electroweak symmetry should be broken, and that the color and electromagnetism 

symmetries should be unbroken. 

The introduction of completely arbitrary soft masses for the squarks and slep­

tons has some phenomenological problems though. In the Standard Model in­

dividual lepton number is conserved. There are no processes such as 11 --7 e1, 

T --7 e1, or 11 --7 eee which violate individual lepton number. This follows directly 

from the symmetry li --7 ei/3; li of the SM interactions, where here li is a lepton 

fermion. For generic soft masses in the MSSM this is not the case though. Since 

there are 3 generations of X =Q, uc, de, L and ec sparticles, there are in general 

five 3 x 3 arbitrary mass matrices m~, one for each of the fields listed above. 

To see that these generically break the flavor quantum numbers, first rotate the 

fermions and their superpartners by a common rotation so that the fermion mass 
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matrices are diagonalised. In this basis all the supergauge interactions conserve 

flavor. The matrices mi, however, will not in general be diagonal iri this basis. 

This means, for example, that separate rotations on e and it are not allowed if 

m~il =/= 0. Thus individual "smuon" and "selectron') numbers are not conserved. 

But since the sleptons have the same global symmetries as the leptons because 

they are in the same supermultiplet, individual electron and muon numbers are 

also not conserved. Thus the presence of this mass mixing between smuons and 

selectrons violates lepton number, and they result in many dangerous lepton vio-

lating processes. For example, the Feynman diagram resulting in the decay J-t --t e"( 

is given in Figure 1.4. Since the branching fraction BR(J-t --t e"() < 10-11 is very 

small, the mass mixing must be extremely small : 

m~p. ;:;_, 10_2 (100 GeV)
2 

m2 m 
(1.8) 

This m~p. is related to the mass difference tlm2 between the two slepton eigenstates 

and the mixing angle sin() that diagonalises them (in the mass basis where the 

leptons are diagonal): 

(1.9) 

A similar mass mixing between the strange and down squarks leads to large 

flavor changing process~s, and in particular contributes to tlmK, the mass differ-

ence of the neutral kaons. The Feynman diagram for a possible process is given in 

Figure 1.5. Since tlmK /mK ~ 10-14 is measured to be very small, in order to be 

consistent with this measurement the masses of the first two generations squarks 
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Figure 1.4: A supersymmetric contribution to Jl --+ e"j. Here it is a smuon, e is a 

selectron, and N° is a neutralino. The "cross" indicates a it--+ e transition. 

must be even more degenerate: 

tlm
2 

. < (500 GeV)
2 

m
2 

sm 0 cos 0 ,.._, few x 10-3 m (1.10) 

Thus two 500 Ge V squarks must be degenerate to within a few hundred MeV! The 

I CP-violating parameter E in the neutral kaon system provides an even stronger 

constraint: if tlm2 contains an order one phase the right-hand side of Eqn (1.10) 

is a factor of 10 smaller. 

Why these sleptons and squarks of different flavors must be so closely degen-

erate in mass, when there is no good reason to expect them to be, is referred to in 

the literature as the "supersymmetric flavor problem". There are several physics 

explanations for why the masses or mixing angles appearing in Eqn.(1.9) and in 

I Eqn.(l.10) are "naturally" small : 

1. The short-distance theory contains a flavor symmetry. In the limit of 

unbroken flavor symmetry the squarks and sleptons are degenerate in mass so that 

the flavor changing processes are completely suppressed [9]. This flavor symmetry 
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Figure 1.5: A supersymmetric contribution to K- K. mixing. Heres is a strange 

squark, d is a down squark, and g is a gluino. The crosses indicate s B d transi-

tions. 

also forbids any of the small Yukawa couplings. For example, in a U(2) theory 

[9, 10], the first and second generation particles form a 2; the soft scalar mass 

I interactions must respect this symmetry, so only a common mass m5 for s and 

d is allowed. The spontaneous breaking of the flavor symmetry is responsible for 

generating the small Yukawa couplings, and also leads to flavor changing processes 

as described above which are consistent with the measured values. Since the flavor 

symmetry is the same for a particle or its superparticle, the hierarchy appearing in 

VKM for the quar~s may also appear in the matrices for the squarks and sleptons. 

So a large mixing angle between e and jl is conceivable. In Chapter 4 the prospect 

for detecting the slepton mass mixing angles at the LHC is considered; 

2. The spontaneous breaking of supersymmetry is communicated to the MSSM 

by the SM gauge interactions at an energy scale below the mass scale responsible 

. for generating the fermion Yukawa interactions [11]. Since the gauge interactions 
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do not distinguish between flavors, each slepton flavor receives the same soft mass, 

and similarly the squark flavors are degenerate. So there are no dangerous flavor 

changing processes. In Chapter 5 this framework is investigated, and it is found 

that if the supersymmetry breaking sector is at low-energy, then this solution 

introduces a large amount of fine tuning of the Higgs mass parameters in order 

to obtain the correct Z mass. Some ideas for avoiding this difficulty are also 

presented; 

3. The first and second generation scalars are very heavy, 10 Te V or larger so 

that the flavor changing processes are sufficiently suppressed. In Chapter 6 this 

idea is investigated, and it is found that in order to avoid breaking color and charge, 

a fine tuning comparable to that which was required to solve the supersymmetric 

flavor problem is introduced into the Higgs mass parameters. Thus this solution 

solves one fine tuning problem but introduces another; 

4. The mixing angles are effectively zero. These so-called "alignment" models 

[12] are not considered in this dissertation. 

The next subject discussed here concerns the bizarre representation structure 

of the Standard Model. Recall that. the representations of the Standard Model par­

ticles under the Standard Model gauge group are given in Table 1.1. One striking 

feature of the representations is that they are so different from each other. Where 

do these hypercharge assignments come from, and why do the particles appear in 

those particular representations of SU(3)c x SU(2)L? Why even SU(3)c x SU(2)L? 

Why not SU(4) x 50(7)? Is there a hidden relationship connecting the elements 
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of this structure, or is it completely arbitrary? This is reminiscent of Mendeleev's 

Periodic Table of the Elements and the atomic theory that followed which provided 

a deeper "picture" of the organization of the elements. Perhaps a more unifying 

structure is also beneath the Standard Model. As these questions address the 

structure of the Standard Model, any progress must be found in physics beyond 

the Standard Model. 

To underscore the significance of any possible answers to these questions, a 

"fake" Standard Model is presented in Table 1.2. In this "fake" Standard Model, 

the "quarks" occur in the 6 representation of SU(3), rather than the 3. The 

gauge anomalies are canceled by having two "leptons" per gP.neration. Note that 

the SU(2) and hypercharge assignments of the "fake" SM particles are the same 

as in the SM. So the "fake" SM particles have the same electric charge as their SM 

counterparts. For one generation of fermions the low-energy physics of the "fake" 

SM is qualitatively similar to that of the SM: here SU(3)c probably confines, giving 

"protons" and "neutrons"; there are also electrons, muons and neutrinos. As in 

the SM, the Higgs field H can break electroweak symmetry down to U(l)em and 

give mass to all the particles. So this "fake" SM imitates many of the qualitative 

features of the SM, and the difference between the two is in the (important) details. 

Observers in a Universe with the "fake" SM may also wonder about any underlying 

unity to their world. 

In [13] Georgi and Glashow put forward the beautiful idea that the Stan­

dard Model is unified into the single simple gauge group SU(5). An aesthetic 

26 



¢ SU(3) SU(2) U(1)v ¢ SU(3) SU(2)' U(1)v 

Q 6 2 1/6 E1 1 1 1 

uc 6 1 -2/3 E2 1 1 1 

DC 6 1 1/3 H 1 2 1/2 

£1 1 2 -1/2 L2 1 2 -1/2 

Table 1.2: An anomaly-free "fake" Standard Model. Here H is the Higgs scalar, 

and ali other fields are fermions. The physics of this model (for one generation) 

is qualitatively similar to that of the Standard Model. But to the author's ability 

this model cannot be w::fied into a Grand Unified Theory. 

strength of this proposal is that one generation of fermions fill complete SU(5) 

representations without requiring any additional fermions. Just as remarkable, 

one generation of fermions, together with a right-handed neutrino (vc), which is 

independently hypothesized to generate small neutrino masses, together form a 

complete representation of 50(10), the spinorial representation 16. The economy 

of the fermion unification, and the elegance of the unification of the gauge groups 

into a single gauge group is in itself very compelling. 

It is next illustrated how these Grand Unified Theories [14] provide some insight 

into the origin of the particle content of the Standard Model. In particular, a 

key feature of these theories is that two unrelated particle groups of the Standard 

Model, the leptons and quarks, are united into a single representation of the Grand 

Unified Theory. In other words, the Grand Unified Theories do not distinguish 
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between leptons and quarks. 

To begin, add to the. Standard Model a right-handed neutrino, and introduce 

an extra U(1), call it U(1)B-L· The B- L charge of a quark (anti-quark) is 1/3 

(-1/3), and the negatively (positively) charged leptons have B- L charge -1 

( + 1). The B - L charge of the Higgs field is 0 in order for the Yukawa couplings 

to be U(1)B-L invariant. It is·now possible to embed 

SU(3)c X U(1)B-L E SU(4). (1.11) 

Here U(1)s-L is the third diagonal generator of SU(4). Under this embedding 

the fundamental of SU(4) decomposes as 

4--+ (3, 1/3) EB (1, -1). (1.12) 

This is just a q 8) l of the Standard Model! So ( :· ) ~ 4 and ( :~ ) ~ 4. 

Here a is the SU(3), index, and the doublets Q' = ( :: ) , L' = ( :: ) have 

been introduced. Note that Qc has the opposite baryon number to Q. Now what's 

happened to U(1)y? In fact, Y is a linear combination of the B -Lin SU(4) and a 

new U(1), call it U(1)rR" The relation between the charges is Y = (B-L)/2+TR· 

It follows that the TR charges of the SU(2)L doublets Q, L are zero, and H and 

H have charge 1/2 and -1/2. The SU(2)L singlets Qc and Lc have charges 

+1/2 ( -1/2) for the upper (lower) components. That is, TR is just the diagonal 

generator of an SU(2)R, with Qc, Lc'"" 2. It is then natural to extend the U(1)rR 
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to the full SU(2)R· Thus the Standard Model particle content can be embedded 

into the Pati-Salam group G = SU(4) x SU(2)L x SU(2)R [15]. Other than the 

right-handed neutrino and the extra Higgs doublet H, no new matter, i.e. non-

gauge, particles have been introduced. It is remarkable that the Standard Model 

fields transform so simply under this new group : 

one generation+right-handed neutrino (4, 2, 1) E9 (4, 1, 2), 

two Higgs fields (2, 2). (1.13) 

Compare the economy of this particle content to that of the Standard Model given 

in Table 1.1. 

One interesting fact about this semi~unification is that the proton is stable. 

To see this, first note that the SU(4) gauge bosons decompose as 15 = (3, 4/3) E9 

(3, -4/3) E9 (8, 0) E9 (1, 0) under SU(3)c X U(1)B-L· Only the X "' (3, 4/3) and 

Y "' (3, -4/3) states carry baryon number and can potentially mediate proton . 
decay. The point is that the Standard Model fields are contained in ( 4, 2, 1) or 

(4, 1, 2), and each of these contains only one SU(3)c representation, i.e. Q or 

Qc, ·but not both. Consequently, the four-Fermi operator obtained by integrating 

out the massive SU(4) gauge bosons X or Y always contains two leptons, and 

never three quarks. So the four-Fermi operator conserves lepton number and the 

proton is stable. As will be seen later, this is in contrast to the predictions of more 

popular Grand Unified Theories. 

The embedding of the Standard Model into the Pati-Salam gauge group re-
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suits in an economy of particle content, but not of the gauge groups since there 

are still three gauge group factors. A further unification into 50(10) or 5U(5) is 

possible though. The isomorphisms 5U(4) ::= 50(6) and 50(4) ""'5U(2) x 5U(2) 

imply that the Pati-Salam gauge group is isomorphic to 50(6) x 50(4) which is 

a maximal subgroup of 50(10). This line of thought suggests that it is natural to 

embed the Pati-Salam gauge group into 50(10). This is in fact possible with an 

even further increase of economy. The spinorial representation of 50(6) is 8 and is 

reducible to 4 E9 4' due to chirality. Under the 50(6) ""' 5U( 4) isomorphism these 

spinorial representations get mapped to the fundamental and anti-fundamental 

representations of 5U(4) .. Likewise, under the second isomorphism the spina­

rial representation of 50(4), 4 ---+ (1, 2) E9 (2, 1). Thus using this isomorphism 

(4, 2, 1) E9 (4, 1, 2)---+ (4 Q9 2) E9 (4 0 2) under 50(6) x 50(4). But this is just the 

decomposition of the 16 of 50(10) ---+ 50(6) x 50(4). The conclusion is that a 

single generation of the Standard Model, plus a right-handed neutrino, fits exactly 

into the 16 representation of 50(10). 

This unification is very nice, but is it a generic feature of low-energy particle 

physics models, or is it more unique? That is, is it likely than an arbitrary low­

energy particle physics theory can be embedded into a Grand Unified Theory? 

The answer is most likely "no", but the author has no proof. Instead, the "fake" 

SM is presented as an example of a low-energy physics theory that is qualitatively 

similar to the SM, but most likely cannot be unified into a Grand Unified Theory. 

While the unification of the Standard Model into 50(10), or similarly, 5U(5), 
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is aesthetically pleasing and probably difficult to achieve in other "fake" Standard 

Models, is there any other reason to believe that a Grand Unified Theory exists? In 

fact, the simple Grand Unified Theories have some interesting phenomenological 

implications, such as the instability of the proton and the unification of the gauge 

couplings. 

It was stated earlier that the Grand Unified Theories do not dist_inguish be­

tween quarks and leptons. Experimentally, however, this is clearly not the case: 

quarks confine into protons and neutrons, leptons do not; quark masses are dif­

ferent from lepton masses; quark and lepton interactions are not the same, for 

example, the cross-sections i7(dRdR---+ dRdR)(E) and i7(LL---+ LL)(E) (here E is 

a typical energy scale appearing in the interaction) are different. How can this be 

reconciled with a Grand Unified Theory that unites quarks and leptons? 

In Grand Unified Theories there are many massless gauge bosons beyond those 

of the Standard Model. For example, there. are the X and Y bosons in the Pati­

Salam group, there are twelve extra gauge bosons in SU(5), and thirty-three in 

S0(10). Since they have not been detected yet, these. gauge bosons must be 

massive, and this means that the Grand Unified Theory must be spontaneously 

broken at some mass scale Maur which is representative of the masses of the 

extra gauge bosons. There is a decoupling theorem [16] which states that since 

these gauge bosons are heavy and their masses do not break any of the SM gauge 

symmetries, they have no measurable effect on scattering experiments performed 

at energies E < < Maur and their only effect is to renormalize the parameters of 
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the low-energy theory 5 . Thus, except for phenomena forbidden in the Standard 

Model such as proton decay, the physics of a Grand Unified Theory does not 

appear in any of the low-energy experiments. So at energies E < < Maur the 

effective theory is the SM (or MSSM), rather than a Grand Unified Theory. This 

is the origin of the differences between leptons and quarks listed earlier: they 

are caused. by physics in the low-energy theory. What this does mean, however, 

is that only at -energies E ~ Maur are the symmetries of the Grand Unified 

apparent. For example, in the minimal SU(5) theory both de and L are unified 

together into a single 5. Thus at these high energies, for example, the cross-section 

leptons are not distinguishable. 

It is interesting to see how this last result comes about. At low energies the 

cross-sections are different because the gauge couplings of the Standard Model, a 1 , 

a 2 and a 3 are all different. These couplings are measured at LEP using electron 

beams with energy E ~ Mz ~100 GeV. As the energy of a physical process 

is increased, however, virtual quantum effects of order (logE/Mz) become large 

and their effects can be summed up into an effective couplin:6 ai(E). Since in a 

simple Grand Unified Theory there is only onegauge coupling aaur, at energies 

E f:.- Maur, the couplings ai(E) of the Standard Model should all become equal 

5 Unless the experiment is searching for a process that is forbidden by the symmetries of the 

low-energy theory, but allowed by the interactions of the high-energy theory, e. g. proton decay. 

Then the high-energy physics is the leading effect. 
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to the one gauge coupling acur(E). 

So the point is that a necessary condition for simple Grand Unified Theories 

is that the Standard Model couplings should become equal (unify) at energies 

E ~ Mcur· Further, the energy-dependence of the gauge couplings depends 

on the particle content of the effective theory. Thus the gauge couplings of the 

Standard Model gauge groups may or may not unify with just the Standard Model 

particle content, or the particle content of some simple extension. It depends on 

both the particle content and, of course, the experimentally measured values of 

the Standard Model gauge couplings. 

So do the couplings of the Standard· Model or its simple extensions unify at 

high energies? In fact, as is evident from Figure 1.6, the unification is not very 

good in the Standard Model. In contrast, the gauge couplings in the MSSM do 

unify at the few percent level, which is well-within theoretical uncertainties such 

as the sparticle and Grand Unified mass spectrum. This is presented in Figure 

1. 7. This is remarkable since the particle content of the MSSM is dictated by the 

requirement of supersymmetry and the cancellation of gauge anomalies, and not 

of unification. Since this unification is highly non-trivial, it is a strong piece of 

indirect evidence for both low-energy supersymmetry and supersymmetric Grand 

Unified Theories. 

Another nice consequence of a supersymmetric SO(lO) GUT is that it provides 

some theoretical explanation for why R-parity is a good symmetry. Recall that 

the dangerous R-parity violating interactions are of the form MiMjMk, where i, j 
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Figure 1.6: Scaling of gauge couplings in the Standard Model. The band cor-

responds to the lO" error (0.003) on a3(Mz). The couplings do not appear to 

unify. 
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Figure 1.7: Scaling of the gauge couplings in the Minimal Supersyminetric Stan-

dard ModeL The band corresponds to the 10" error (0.003) on a3 (Mz). The 

couplings do appear to unify. 

and k are flavor labels. In 50(10) gauge theories these interactions are forbidden 

at the renormalizable leveL This is because the matter fields are in the 16, so the 

dangerous operator must be of the form 16i16j16k. These interactions, however, 

are not 50(10) gauge invariant and so they do not exist. 

A further inspection of Figure L 7 indicates that the gauge couplings unify at 

a mass scale Mcur ~ 2 x 1016 GeV. This is somewhat puzzling for the follow-

ing reason. The only "fundamental" mass scale in Nature is the Planck scale; 
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Mp£ ~ 1018 GeV obtained from Newton's constant. It then seems unlikely that 

the inferred unification scale Mcur is a fundamental scale in Nature. 

The philosophy assumed in this dissertation is that the small number 

Mcur/Mp1 ~ 10-2 is not fundamental, but rather hints at some more under-

lying physics; This is explored in Chapter 7 where two candidate Grand Unifica-

tion models are proposed, with Grand Unified gauge groups 8U(6) and 80(10), 

which generate the Grand Unification from the Planck Scale, i.e., the unifica-

tion mass scale Mcur is not introduced into the theory. This is roughly achieved 

through the supersymmetric analog of dimensional transmutation, whereby the 

small coupling of a gauge group generates a mass scale at low-energies through 

some non-perturbative dynamics. 

In addition, the models presented in Chapter 7 - in particular, the 80(10) 

model - also maintain the spirit of "unification and simplification". In Grand 

' Unified models the gauge group must be broken down to the Standard Model gauge 

group. This is achieved by the Higgs mechanism, just as in the Standard Model, by 

introducing some scalar particles transforming under some representation of the 

Grand Unified gauge group. For example, in minimal SU(5) a 24 is introduced, 

whereas in phenomenologically successful 80(10) models many 45s and 54s must 

be introduced. In the end, many particles must be introduced arid the symmetry 

breaking must be introduced into the theory. This is clearly the ugly part of 

these models. In contrast, in the 80(10) model of Chapter 6, the representation 

structure is rather simple. Further, the symmetry breaking is not introduced into 
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the theory. The correct vacuum is one of several discrete vacua, and the reason 

why the correct vacuum was selected depends on the early history the Universe. 

Finally, the S0(10) model also contains an unexpected result, and this has 

to do with the lifetime of the proton. In simple Grand Unified Models, such as 

SO(lO) or SU(5), the heavy gauge bosons can mediate proton decay. It occurs in 

these models since both Q and uc are unified into a single representation -the 10 

in SU(5), and the 16 in S0(10). Thus there is an interaction rv XQuc between 

X and the 10, and also an interaction rv X* Ldc between X and the 5. The 

exchange of the X gauge boson causes the proton to decay. In supersymmetric 

Grand Unified Theories the lifetime of the proton from this process is around 

1034
- 1036 years and is beyond the reach of existing experiments. 

In supersymmetric theories there is also an analogous and more dangerous pro­

cess in the Higgs sector that causes the proton to decay. In gauge theories with 

the SU(5) subgroups, the particles must come in complete SU(5) representations. 

This was automatically satisfied for the fermions and their supersymmetric part­

ners. Recall that in supersymmetric theories there are two Higgs doublets and they 

do not form complete SU(5) (or of any larger gauge group) representations. If 

H-+ 5 in the SU(5) theory, then there are some "missing SU(5) partners", H(3), 

with quantum numbers {3, 1, -1/3). These particle together with the missing 

partners of H may form a Dirac particle and have some arbitrary mass MHc· 

Since these fields carry charge they affect the evolution of the gauge couplings. 

Requiring that the gauge couplings still unify (as they appear to) implies that the 
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Q 

Figure 1.8: Superfield Feynman diagram from colored higgsino exchange leading 

to proton decay. The "cross" indicates that there is some mass mixing between 

the two colored higgsinos. 

masses of these colored Higgs fields must be close to Mcur- Why the masses of the 

doublets and triplets in the 5 and 5 Higgs representation are so wildly different 

is known in the literature as the "doublet-triplet" splitting problem. In fact, it 

is possible to prove that the measured couplings unify in supersymmetric theories 

only if there is a splft SU(5) representation, as occurs in the MSSM. (If all the 

matter (non-gauge) fields formed complete SU(5) representations- i.e. imagine 

there were no Higgs fields- then a3(Mz) = 0.07 is predicted in disagreement with 

its measured value 0.118 ± 0.003.) 

These colored Higgs fields can mediate proton decay in 80(10) or SU(5) the-

aries. The Feynman diagram is given in Figure 1.8. The "cross" indicates that 

there is some mass mixing between H(3) and H(3). The exchange of the H(3) 
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gives a decay p--+ K+vJ.L and n--+ K 0vJ.L with a lifetime that is roughly 

29 ( MHc )
2 

• 
T rv 10 1Q16 GeV years. (1.14) 

This is to be compared with the measured lifetime which is larger than 1032 years. 

The theoretical and experimental results are naively consistent only if MHc is 

pushed up to 3 x 1017 GeV. This solution is theoretically unattractive as it requires 

the positing of yet another mass scale. 

While there are several solutions to this problem, this dilemma has an unex-

pected and novel resolution in the 50(10) model of Chapter 7. Roughly speaking, 

the particular mechanism that generates the Grand Unification scale also naturally 

generates tiny couplings of the order Mcur/Mp1. These tiny couplings naturally 

appear in the mass mixing of the colored Higgs fields, and result in a suppression 

ofroughly Mcur/Mp1 in the "cross" appearing in the Feynman diagram in Figure 

1.8. This was not introduced into the theory, but was a consequence of the non-

renormalizable operators used to split the doublets and triplets. The suppression 

of the "cross" results in a suppression of roughly (Mauri Mp1) 2 
rv 10-3 in the 

decay rate, or in a lifetime of the proton that is a factor of 103 larger than before. 

The resulting lifetime is then consistent with its measured value. 
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Chapter 2 

Non-renormalization Theorem for the Wilsonian 

Gauge Couplings in Supersymmetric Theories 

A direct proof that the holomorphic Wilsonian beta-function of a renormaliz­

able asymptotically-free supersymmetric gauge theory with an arbitrary semi­

simple gauge group, matter content, and renormalizable superpotential is ex­

hausted at 1-loop with no higher loops and no non-perturbative contributions 

is presented. This is a non-perturbative extension of the well-known result of 

Shifman and Vainshtein. 

2.1 Introduction 

In their 1986 paper [17] Shifman and Vainshtein solved the anomaly puzzle in 

supersymmetric gauge theories. They argued that the supersymmetric extension 

of the anomaly equation should be written in operator form and then showed that 

the coefficient of the trace anomaly involves the Wilsonian gauge beta-function 

rather than the exact Gell-Mann and Low function [18]. The puzzle is resolved 

if it can be showed that the Wilsonian gauge beta-function is one-loop exact. 

A perturbative proof of the above statement was presented in [17] where it was 
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argued that all possible operators that could, in principle, contribute to the gauge 

beta-function beyond one-loop are necessarily of infrared origin, and should not 

appear in the Wilsonian effective action. 

In this Chapter a direct proof that there are no further non-perturbative viola­

tions is presented. More specifically, it is proven that the holomorphic Wilsonian 

beta-function of an arbitrary renormalizable asymptotically-free supersymmetric 

gauge theory with matter is exhausted at 1-loop with no higher loops and no 

non-perturbative contributions. 

The technique used to employ the theorem was introduced by Seiberg [19] and 

it is briefly reviewed here. To obtain the beta-function two versions of the theory 

with different cutoffs and coupling constants and the same low energy physics are 

compared. The couplings of the theory with the lower cutoff can be expressed in 

terms of the co.uplings of the theory with the higher cutoff and the ratio of the 

two cutoffs. Their functional dependence on the high cutoff couplings is restricted 

using holomorphy of the superpotential and gauge kinetic terms and selection 

rules. Holomorphy is a consequence of supersymmetry. To see this, elevate the 

couplings to background chiral superfields. They must appear holomorphically in 

the superpotential in order to preserve supersymmetry. Selection rules generalize 

global symmetries in the sense that the couplings in the superpotential are allowed 

to transform under these symmetries. Non-zero vacuum value~ of these couplings 

then spontaneously break these symmetries. Here only consider U(1) and U(1)R 

symmetries are considered. In the quantum theory they are generally anomalous, 
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but the same technique used for the coupling in the superpotential can be used. 

That is, it can be assumed that the 0-angle is a background field that transforms 

non-linearly to make the full quantum effective action invariant. 

· Then, following a method used in [20), these conditions on the functional rela­

tions between the couplings of the theories at different cutoffs are translated into 

restrictions of the functional form of the gauge beta-function. It can be shown 

that the gauge beta-function is a function of the holomorphic invariants allowed 

by selection rules. Then the functional dependence of the beta-function is re­

stricted further by varying the couplings while keeping the invariants fixed. This 

relates the beta-function of the original theory to the beta-function of a theory 

with vanishing superpotential. In addition, a strong restriction of the functional 

dependence of the beta-function on the gauge coupling is obtained. It has ex­

actly the form of a one-loop beta-function. The only ambiguity left is a numerical 

coefficient which can be calculated in perturbation theory. 

Next a short detour is made to explain what is meant by the Wilsonian beta­

function [21]. The Wilsonian beta-function describes the renormalization group 

flow of the bare couplings of the theory so that the lov· energy theory is cutoff 

invariant. Additionally, the vector and chiral superfields are not renormalized, 

i.e. canonical normalization of the kinetic terms [17] is not imposed. The usual 

convention in particle physics is to canonically normalize the kinetic term. It is 

obtained by using the covariant derivative f) + igA. Instead, here non-canonical 

normalization of the kinetic term is allowed. The normalization of the gauge fields 
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is such that the covariant derivative has the form o+iA. The gauge coupling only 

appears in front of the gauge kinetic term. In this case it is convenient to combine 

the B-angle and gauge coupling constant g into the complex variable T = 0 /2n + 

4ni/ g2 . In supersymmetric gauge theories the beta-function is holomorphic in the 

bare couplings only if the fields are not renormalized. Even if there is a canonical 

normalization at a higher cutoff, the Kahler potential will not be canonical at 

the lower cutoff. The rescaling of the chiral or gauge superfields is an anomalous 

transformation [17] that destroys the holomorphy of the superpotential and the 

beta-function 1 . The relation between the beta-functions in the two normalizations 

.. 
was first discussed in l a]. The beta-function for canonically normalized fields is 

known exactly [18] and receives contributions to all orders in perturbation theory. 

For a recJent discussion of these issues see also [20]. Again it is emphasized that 

this Chapter is concerned only with the holomorphic Wilsonian beta-function. 

It should also be clearly stated that the proof is not valid if any one of the 

one-loop gauge beta-functions is not asymptotically-free. This includes the case 

when the one-loop beta-function vanishes. As will be seen, exactly in this case 

tht U(1)n symmetry is non-anomalous. This makes it difficult to control the 

dependence of the beta-function on the gauge coupling. 

1 For some special theories like N = 2 SUSY Yang-Mills the rescaling anomaly of the chiral 

superfields cancels the rescaling anomaly of ·the vector superfield [20]. For these theories the 

statements made here are stronger since the canonical and holomorphic Wilsonian couplings 

coincide. 
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Various partial versions of this result already existed. As already mentioned, 

the perturbative non~renormalization theorem was proven in [17]. An analysis 

of possible non-perturbative violations to this theorem in the case of a simple 

gauge group with a vanishing superpotential could be found in [20]. It was also 

known that in the case of a simple gauge group with only Yukawa interactions 

present in the superpotential, possible non-perturbative corrections to the Wilso­

nian beta-function are independent of the gauge coupling [22]. It should also 

be mentioned that for some supersymmetric gauge theories it is possible to deter­

mine the exact beta-function for the canonically normalized fields, including all the 

non-perturbative terms [23]. The exact Wilsonian beta-function for these theories 

could then be obtained if the rescaling anomaly relating the different normaliza­

tions were known exactly, both perturbatively and non-perturbatively. While the 

rescaling anomaly is used in various places in the literature [17, 23] to relate the 

two gauge couplings, it was not clear to the author whether for these theories 

the exact form of the anomaly, including non-perturbative terms is known. A 

perturbative calculation of the anomaly was presented in [20]. 

Finally, it is noted that the theorem is valid in theories where no mass terms are 

allowed by the symmetries of the theory. This is of phenomenological interest as 

many supersymmetric extensions of the Standard Model share this characteristic. 

2.2 Simple Gauge Group 

The case of a simple gauge group G is considered first. Let the generalized 
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superpotential W be defined to include the kinetic term for the gauge fields 

(2.1) 

where 

(2.2) 

is the usual superpotential and trRTaTb = tRoab. Here M is the cutoff mass and 

was factored out so that all the couplings are dimensionless. The gauge coupling 

9 and B-angle are combined in the complex variable 

B 47ri 
T--+-. 
·. 271" g2 

(2.3) 

Note that unitarity requires T to be valued in the upper half plane. Since B is a 

periodic variable it is convenient to introduce a new variable q - e21rir. It is valued 

in the complex plane and transforms linearly under the anomalous transformations 

to be discussed below. Weak coupling is at q = 0. 

Consider now a theory with a different cutoff M' and with the same low energy 

physics. The Lagrangian at the new cutoff is 

£ = 2:= j d2 Bd2BZi<I>le2
vh<l>i + (/ d2BW(r', A~)k' m~J' c~, M') + h.c.) (2.4) 

t . 

where in particular, the fields <I>i are not renormalized to canonical normalization. 

The Zi depends non-holomorphically on the couplings, so renormalizing the chiral 

superfields would destroy the holomorphic form of W. The new coupling T
1 is 

a function of the old dimensionless couplings and the ratio M / M'. For later 
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convenience this is written as 

r' = r'(r, Aijk, mii, £;; ln(M/M')). (2.5) 

Supersymmetry requires a holomorphic dependence ofT on the first four argu-

ments. To see this, note that the couplings in the generalized superpotential can 

be considered as vacuum values of background chiral superfields. lnvariance of 

the action under supersymmetry transformations requires holomorphy of the su-

perpotential. 

To prove the non-renormalization theorem selection rules are used. These are 

global symmetries of the superpotential with all couplings considered as chiral su-

perfields. The couplings are assigned non-trivial transformation properties under 

the symmetry group. These symmetries will be spontaneously broken by·non-zero 

vacuum values of the couplings. In general the symmetries are also anomalous. 

They are are made non-anomalous by assigning a charge to q, i.e. transforming(} 

to compensate for the anomaly. Consider the U(1)R x U(1) global symmetry with 

the following charge assignment: 

Wa <I>· ~ Aijk mii Ci q 

U(1)R 1 2/3 0 2/3 4/3 2b0/3 

U(1) 0 1 -3 -2 -1 2 L:i t(~) 

The quantity b0 is given by b0 = 3tadj- L:i t(~), where t(~) is the normalization 

of the generators for the representation of the chiral superfield <I>i. For example, 
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t = 1/2 for a fundamental of SU(N). Define the gauge ,8-function by 

(2.6) 

The holomorphy ofT in (2.5) translates into holomorphy of the ,8-function. 

Since T -+ T + 1 is a symmetry of the theory, ,8 is a single valued function of q 

(2.7) 

First, consider the case when at least one mass term, call it m*, can be non-zero. 

If any ci could be non-zero, then there is a gauge singlet field which could be given 

a Majorana mass, so this is the same case as above. 

The gauge beta-function is U(1)R x U(1) invariant. This statement is non-

trivial and requires some explanation. Consider some arbitrary coupling A that 

transforms linearly under some U(1) or U(1)R symmetry. Its beta-function ,8>. 

must also transform linearly with the same charge as A 

iQ>.afJ (' ) _ {3 ( iQ>.a' ) e >. A, • . . - >. e A, .•. (2.8) 

where Q>. is the charge of A. This is true in particular for the beta-function of q. 

However in terms of the T variable 

(l d 2 . I d 2 . I !3 -1 (l 

fJ21rir = dln(M/M') Jr~T = dq Jr~T q = q fJq· (2.9) 

The additional q factor makes the T beta-function invariant. In what follows 

only the gauge beta-function is considered since the argument for the other su-

perpotential couplings is similar and known, i.e. there are no perturbative [6] or 
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non-perturbative (19] corrections to the usual superpotential. The subscript is 

dropped and it is denoted as {3. 

First consider U(1)R invariance. It requires that 

(2.10) 

However, the variables of f are not U(1) invariant. They have charges 

6tadj, 0, 3, -3, respectively. Invariance under U(1)R x U(1) requires that {3 is a 

yet another function 

( 

). 2tadj 

{J =F ~ -1 q bo 'q 
m* 

(2.11) 

Next take the limit m* -+ 0 keeping q and all the arguments ofF constant. If 

b0 > 0, this corresponds to taking all couplings except 7 to zero. Assuming that 

{3 is continuous it is found that {J(q, >.ijk, mii> ci) = {J(q, Aijk = mii = ci = 0) and 

thus it is independent of all the couplings in the superpotential. In fact when 

the superpotential vanishes it is known (20] that there are no non-perturbative 

corrections to the beta-function and the gauge coupling only runs at 1-loop2 . This 

just reflects the fact that no U(1)R x U(1) holomorphic invarian~ can be constructed 

solely in terms of q. Note the importance of holomorphy in these arguments. For 

example, if holomorphy is not required qij is invariant under an arbitrary U(1) and 

U(1)R symmetry. So no higher loops or non-perturbative corrections are present 

2 Note that this result can also be written as ftg = - ~~~2 g3 which is just the standard 1-loop 

beta-function. 
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and it is concluded that 

{3 = bo, (2.12) 

thus extending the perturbative result of Shifman and Vainshtein (17]. 

An exception to the previous argument occurs when the gauge and global 

symmetries of the theory allow only Yukawa couplings to be present in the super-

potential. For these theories 

{3 = J(q, Aijk)· (2.13) 

The beta-function must be U(1)R invariant. This requires 

!( 2boai/3 ' ) _ J( , ) e Q,Aijk - Q,Aijk · (2.14) 

Then by holomorphy {3. is independent of q. Further, in variance of {3 under the 

U(1) symmetry requires that f is a function of ratios of Aijk only. Choose one of 

the non-zero Aijk, ).* say, and divide through by >.*. Then 

(2.15) 

Consider the limit Aijk ---+ 0 while keeping the ratios Aijk/ ).* constant. In this limit 

{3 reduces to the one-loop result. So assuming that {3 is continuous, it follows that 

{3(>.ijk) = {3(Aijk = 0) = b0 , i.e. it is independent of the Yl.ikawa couplings. 

To conclude this section, it is noted that the discussion of the proof of the the-

orem was divided into two cases requiring separate proofs. Here a short argument 

is presented which extends the proof of the theorem, valid when at least one mass 

term is allowed, to theories which do not admit any bare mass terms. Consider 
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a theory with Lagrangian .C for which the symmetries of the theory forbid the 

presence of any mass terms. To this theory, add a non-interacting gauge-singlet 

field with mass m*. More concretely, the new theory defined at Misdescribed by 

the Lagrangian 

(2.16) 

This new theory satisfies the conditions of the theorem proven when at least one 

ma.Ss term is allowed, so the beta-function of the new theory, f3new, is exhausted at 

one-loop. But on physical grounds it can be concluded that f3new is identical to /3, 

the beta-function of the original theory, since in integrating over momentum modes 

M to M' the contribution from the gauge singlet completely factors out since it is 

non-interacting. So by this argument the proof of the theorem for theories with 

mass terms can be extended to theories for which mass terms are forbidden by the 

symmetries of the model. 

The results of this section are also valid for a semi-simple gauge group. The 

proof of this is sketched in the next section. 

2.3 Extension to a semi-simple gauge group 

Assume that the gauge group is G = ITAG A with each G A a simple group. Also 

assume that the superpotential has the form given in Section 2.2. Then if all the 

simple gauge groups are asymptotically-free the Wilsonian beta-functions of all 

the gauge couplings are one-loop exact. 
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For each simple gauge group G A define 

OA 4ni 
TA =-+-

27r g~ 
(2.17) 

and introduce QA = e2
1TiTA as in Section 2.2. The U(l)R x U(l) selection rules 

of Section 2.2 are extended by assigning all gauge chiral multiplets Wa,A charge 

(1,0). Then QA has charge (2b~/3,2L,itA(~)). It will be convenient to define 
1 

I); A (qA) bl. Then I); A has charge (2/3, 2 L,i tA ( £4)/b~ ). Weak coupling is at 

I);A = 0 since b~ is positive. 

The beta-functions for each simple gauge group are defined as in Section 2.2, 

so that 

(2.18) 

is a function of holomorphic invariants and invariant under the U(l)R x U(l) 

symmetry. 

The proof is done for two cases: 

1. Only Yukawa couplings are allowed. 

2. At least one mij =I 0 is allowed. 

In the first case invariance of f3A under U(l)R requires that f3A is a function of 

ratios of I);B only. That is, 

(2.19) 

Here an. arbitrarily chosen I); B. is selected and divided into the other Jl; 8 s, so that 

each I);B other than Jl;B. appears in the argument ofF only once. Now consider 
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the weak coupling limit KB ---+ 0 for all the gauge couplings. The argument of the 

beta-functions is 

(2.20) 

Since by assumption the one-loop beta-functions all have the same sign it is pos-

sible to take this limit while keeping the ratios KB/ KB. fixed. In this limit the 

beta-function is a function of the Yukawa couplings only. So assuming that the 

beta-functions are continuous in this limit, it is found that f3A(KB, Aijk) = f3A(KB = 

0, Aijk) = FA(Aijk)· But U(l) symmetry may be used to conclude that f3A is a func-

tion of Aijk/ >.*. The argument of Section 2.2 may now be repeated to conclude 

For the second case a straightforward generalization of the argument of Section . 

2.2 may be repeated with the conclusion that 

(2.21) 

Then the argument used in the first case of this Section is used to conclude that 

FA is independent of all of the QB and superpotential couplings. 

Note 

The statement of this theorem for the case of a simple gauge group was also 

made in the lecture notes [24]. In that proof the author considers a superpotential 

containing no composite operators, i.e. only operators linear in the fundamental 

fields. Of course such superpotential is not gauge invariant. It is however, only 
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used in an intermediate step to simplify the study of the charge assignment for the 

couplings in the physical gauge invariant superpotential. The U(l) charge of the 

coupling of a composite operator equals the sum of the charges of the couplings of. 

the fundamental fields entering the composite. In [24] however, it is also assumed 

that the U(l)R charge of the couplings of composite gauge invariant operators in 

the superpotential equals the sum of the charges of the couplings of fundamental 

fields forming the composite. While this is true for usual U(l) symmetries since the 

superpotential has charge zero and the sum of charges of the couplings must equal 

minus the sum of charges of the fields entering the composite, for U(l)R symmetries 

the superpotential has charge two and the arithmetic is more complicated. Because 

of this, the proof in [24] only works for a superpotential linear in matter fields, 

i.e. when only gauge singlet chiral superfields are present. We also generalized the 

theorem· to a semi-simple gauge group. 
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Chapter 3 

R-Parity Violation 

In this chapter it is argued that supersymmetric R-parity breaking ( fl,p) in­

teractions always result in Flavor Changing Neutral Current (FCNC) processes. 

Within a single coupling scheme, these processes can be avoided in either the 

charge +2/3 or the charge -1/3 quark sector, but not both. These processes are 

used to place constraints on /'lp couplings. The constraints on the first and the 

second generations are better than those existing in the literature. The fh inter­

actions may result in new top quark decays. Some of these violate electron-muon 

universality or produce a surplus of b quark events in tt decays. Results from the 

CDF experiment are used to bound these fh couplings. 

3.1 Introduction 

The Minimal Supersymmetric Standard Model (MSSM) with the gauge group 

G = SU(3)c x SU(2)L x U(l)y contains the Standard Model particles and their 

superpartners, and an additional Higgs doublet. In order to produce the observed 
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spectrum of particle masses, the superpotential is given by 

(3.1) 

where L = ( : ) and Q = (: ) denote the chiral superfields containing the 

lepton and quark SU(2)L doublets and Ec, uc and De are the SU(2)L singlets, 

all in the weak basis. H and H are the Higgs doublets with hypercharges 1/2 

and -1/2 respectively. The SU(2)L and SU(3)c indices are suppressed, and i,j 

and k are generation indices. However, requiring the Lagrangian to be gauge 

invariant does not uniquely determine the form of the superpotential. In addition, 

the following renormalizable terms 

(3.2) 

are allowed1. Unlike the interactions of the MSSM, these terms violate lepton 

number and baryon number. They may be forbidden by imposing a discrete sym-

metry, R-parity, which is ( -1)38+£+25 on a component field with baryon number 

B, lepton number Land spinS. Whether this symmetry is realized in nature must 

be determined by experiment. If both lepton and baryon number violating interac-

tions are present, then limits on the proton lifetime place stringent constraints on 

the products of most of these couplings. So, it is usually assumed that if R-parity is 

violated, then either lepton or baryon number violating interactions, but not both, 

are present. It is interesting that despite the large limits on the proton lifetime, 
--------------------------

1 A term /-LiLiH is also allowed. This may be rotated away through a redefinition of the L 

and H fields [25]. 
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some products of the R-parity violating couplings remain bounded only by the re­

quirement that the theory remain perturbative [26]. If either LiQiDk or uicDjD% 

terms are present, flavor changing neutral current (FCNC) processes are induced. 

It has been assumed that if only one R-parity violating ( /lp) coupling with a 

particular flavor structure is non-zero, then these flavor changing processes are 

avoided. In this single coupling scheme [27] then, efforts at constraining R-parity 

violation have concentrated on flavor conserving processes [28, 29, 30, 31, 32, 33]. 

It is surprising that, even though individual lepton or baryon number is violated 

in this scheme, the constraints are rather weak. 

In Section 3.2, it is demonstrated that the single coupling scheme cannot be 

realized in the quark mass basis. Despite the general values the couplings may 

have in the weak basis, after electroweak symmetry breaking there is at least one 

large fl,p coupling and many other f{p couplings with different flavor structure. 

Therefore, in the mass basis the R~parity breaking couplings cannot be diagonal 

in generation space. Thus, flavor changing neutral current processes are always 

present in either the charge 2/3 or the charge -1/3 quark sectors. These processes 

are used to plar::e constraints on R-parity breaking. Constraints on the first and 

the second generations that are much stronger than existing limits are obtained. 

The recent discovery of the top quark [34, 35] with the large mass of 176 Ge V 

opens the possibility for the tree level decays t --+ it +dk and t --+ di+dk if R-parity 

is broken. If the /'lp couplings are large enough: then these decay channels may 

be competitive with the Standard Model decay t--+ b + W. As no inconsistencies 
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between the measured branching fractions and production cross-section of the top 

quark and those predicted by the Standard Model (SM) have been reported, limits 

on the branching fractions for the ~ decay channels may be obtained. Since the 

existing lower bound on the mass of the lightest slepton is rv 45 Ge V [36], while the 

strong interactions of the squarks make it likely that the squarks are heavier than 

the sleptons, the decay t -t it +dk is more probable. In this analysis, it is therefore 

assumed that only the slepton decay channel is present. In Section 3.3 the Jh top 

decay channels are analyzed to place constraints on the t --+ it + dk coupling. For 

this reason, in this chapter only the $ terms LiQ}Dk are assumed to be present. 

The conclusions of Section 3.2, however, are valid even if the LiL}Ek terms are 

also present. Constraints on products of couplings when both Jl interactions are 

present may be found in reference [37]. Section 3.4 summarizes the results and 

compares them with limits existing in the literature. 

3.2 Flavor Changing Neutral Current Processes 

Flavor changing neutral current processes are more clearly seen by examining 

the structure of the interactions in the quark mass basis. In this basis, the J..ijk 

interactions are 

(3.3) 

where 

(3.4) 
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The superfields in Eqn.(3.3) have their fermionic components in the mass basis so 

that the Cabibbo-Kobayashi-Maskawa (CKM) matrix (3] VKM appears explicitly. 

The rotation matrices UL and DR appearing in the previous equation are defined 

by 

(3.5) 

(3.6) 

where Qi (qi) are quark fields in the weak (mass) basis. Henceforth, all the fields 

will be in the mass basis and the superscript m is dropped. 

Unitarity of the rotation matrices implies that the couplings >.~jk and ~ijk. 

satisfy 

(3.7) I . 

So any constraint on the $p couplings in the quark mass basis also places a bound 

on the f4 couplings in the weak basis. 

In terms of component fields, the interactions are 

.(3.8) 

where e denotes the electron and e its scalar partner and similarly for the other 

particles. 

The contributions of the R-parity violating interactions to low energy processes 

involving no sparticles in the final state arise fron1 using the f4 interactions an 

even number of times. If two A's or X's with different flavor structure are non-zero, 
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flavor changing low energy processes can occur. These processes are considered in 

references [25] and [38], respectively. Therefore, it is usually assumed that either 

only one )..' with a particular flavor structure is non-zero, or that the R-parity 

breaking couplings are diagonal in generation space. However, Eqn.(3.8) indicates 

that this does not imply that there is only one set of interactions with a particular 

flavor structure, or even that they are diagonal in flavor space. In fact, in this case 

of one )..~jk =I= 0, the CKM matrix generates couplings involving ea~h of the three 

down-type quarks. Thus, flavor violation occurs in the down quark sector, though 

suppressed by the small values of the off-diagonal CKM elements. Below, these 

processes .are used to obtain constraints on R-parity breaking, assuming only one 

)..~jk =I= 0. 

It would be more natural to assume that there is only one large Jh coupling in 

the weak basis, i.e., only one )..ijk =I= 0. As has been indicated, this generates many 

couplings with different flavor structure in the mass basis, e.g., many )..~mns. It is 

possible that 

(3.9) 

This will be the case if, for example, the rotation to the mass basis occurs only for 

the charge +2/3 quark sector. Then, in addition to the Feynman diagrams that 

contribute to the flavor changing neutral current processes when only one )..~jk is 

present, there are new contributions involving the )..~mn(m =I= j, n = k) vertices. 

However, these new contributions interfere constructively with the operators that 

are present in the effective Lagrangian that is generated when there is only one 
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non-zero >.;jk· So if these more natural assumptions are made, any constraint 

found for J..ijk is slightly better than the constraint that is obtained when only one 

\I . 
/\ijk IS present. 

It would seem that the flavor changing neutral current processes may be rotated 

away by making a different physical assumption concerning which $p coupling is 

non-zero. For example, while leaving the quark fields in the mass basis, Eqn.(3.3) 

gives 

(3.10) 

(3.11) 

(3.12) 

where 

(3.13) 

With the assumption that the >.;jk coefficients have values such that only one )...ijk 

is non-zero, there is only one interaction of the form NLDLDc. There is then no 

longer any flavor violation in the down-quark sector. In particular, there are no I 
f4 contributi"ons to the processes discussed below. But now there are couplings 

involving each of the three up type quarks. So these interactions contribute to 

FCNC in the up sector; for example, D0-D0 mixing. We use D0-D0 mixing to 

place constraints on R-parity violation assuming only one )...ijk =I= 0. Thus, there 

is no basis in which FCNC can be avoided in both sectors. 

The conclusion that FCNC constraints always exist in either the charged -1/3 
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Figure 3.1: fh contributions to K 0-K0 mixing with one A~jk =/= 0. Arrows indicate 

flow of propagating left handed fields. 

or charged 2/3 quark sectors follows solely from requiring consistency with elec-

troweak symmetry breaking, and is not specific to R-parity violation. For exam-

ple, a similar conclusion about leptoquark interactions, which are similar to .{lp 

interactions, is reached in reference [39). 2 

3.2.1 K 0-k0 Mixing 

With one A~jk =/= 0, the interactions of Eqn.(3.8) involve down and strange· 

quarks. So, there are contributions to K 0-K0 mixing through the box diagrams 

shown in Figure 3.1. A constraint on the 11-P co11plings is obtained by constraining 

the sum of the J4 and Standard Model contributions to the KL - Ks mass 

difference to be less than the measured value. 

Evaluating these diagrams at zero external momentum and neglecting the down 

quark masses, the following effective Hamiltonian is generated 

(3.14) 

where m;;; is the sneutrino mass and mdRk is the right-handed down squark mass. 

2The author thanks Y. Grossman for bringing this work to his attention. 
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As this operator is suppressed by the CKM angles, it is largest when A~jk is non-

zero for j = 1 or j = 2. 

The Standard Model effective Hamiltonian is [40] 

1-£6.8=2 G~ 2((1/ ) (T/ )* )2(d- J.J )2 
8M = 47r2 mc VKM 12 VKM 11. L"/ SL (3.15) 

where the CKM suppressed top quark contribution, the up quark mass, QCD 

radiative corrections, and long distance effects have been ignored. 

The ~S = 2 effective Hamiltonian is then 

1-£6.8=2 (3.16) 

(3.17) 

In the vacuum saturation approximation, this effective Hamiltonian contributes 

an amount 

(3.18) 

to the KL - K 8 mass difference. With !K = 160M eV [41], BK "' 0.6 [42], 

mK = 497 MeV [36], and J(~m)expl = 3.510 x 10-12 MeV [36], and me_ 2: 1.0 GeV, 

the constraint is 

(3.19) 

where Zi = mv)(lOO GeV) and wk = md"Rj(100 GeV). This constraint applies for 

j = 1 or j = 2 and for any i or k. The constraint for j = 3 is not interesting as the 

CKM angles suppress the f!-,p operator relative to the Standard Model operator. 
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3.2.2 B 0-B0 Mixing 

The Jh interactions also contribute to both B0-B0 mixing and B~-B~ mixing 

through box diagrams similar to those given in the previous section. As B~-B~ 

mixing is expected to be nearly maximal, it is not possible at present to place 

a constraint on any non-Standard Model effects that would add more mixing. 

However, BD___f3° mixing has been observed [43) with a moderate xd = b.mB/fB ='"'-' 

0.7 [36). 

The effe~tive Hamiltonian generated by these .IJ,p processes is 

(3.20) 

This is largest when A~3k is non-zero. 

The dominant contribution to B 0-B0 mixing in the Standard Model is [44) 

where Xt = mUm'fv, and 

G(x) = 4- llx + x2 

4(x- 1)2 

For a top mass of 176 GeV, G(xt) = 0.54. 

3x2 lnx 
2(1 - x) 3 

(3.21) 

(3.22) 

A constraint for A~3k is obtained by demanding that the sum of the Standard 

Model and Jh contributions to the BL- Bs mass difference not exceed the mea-

sured value. With !B = 200MeV [41), BB'"'"' 1.2 [45), mB = 5279MeV [36), 

l(b.m)expl = 3.3 x 10-10 MeV [36) and IVKMlJI 2: 0.004 [36), a conservative con-
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Figure 3.2: Ji4 contribution to K+ --+ n+vv with one A~jk =/:- 0. 

straint is 

(3.23) 

with zi and wk as previously defined. In this case the Ji4 couplings are only weakly 

constrained. 

In addition to inducing B 0-B0 mixing, these interactions also contribute to the 

b --+ s + 1 amplitude.- However, with reasonable values for squark and sneutrino 

masses, the constraint is significantly weaker than that found from the top quark 

analysis. 

The tree-level Feynman diagram in Figure 3.2 generates an effective Hamil-

tonian which contributes to the branching ratio for K+ --+ n+vv. Using a Fierz 

reahangement, a straightforward evaluation of this diagram gives 

(3.24) 

There is also a Standard Model contribution to this decay [44]. This is an 
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order of magnitude lower than the existing experimental limit. A bound on the 

Qp coupling is obtained by assuming that the fl-P effects dominate the decay rate. 

As the matrix element for this semileptonic decay factors into a leptonic and 

a hadronic element, the isospin relation 

(3.25) 

can be used to relate r[K+ ~ 7r+vv] to r[K+ ~ 7r0ve+]. The effective Hamil-

tonian for the neutral pion decay channel arises from the spectator decay of the 

strange quark. It is 

I 
'11 - 4G F V* . (- IL ) ( - ) 
rLeff - .J'i KM12 S£/ U£ V£i/!LeLi (3.26) 

So in the limit where the lepton masses can be neglected, 

(3.27) 

This ratio is valid for i = 1, 2 or 3, since in the massless neutrino and electron 

approximation, the integrals over phase space in the numerator and denominator 

cancel. So using BR[K+ ~ 7r+vv] s; 5.2 x 10-9 [46] (90%CL) and BR[K+ ~ 

1!'
0ve+] = 0.0482 [36], the constraint is 

(3.28) 

for j = 1 or j = 2. Using IVKMI31 2:: 0.004 [36] and IVKM231 > 0.03 [36], a 

conservative upper bound for .A~3k is 

(3.29) 
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3.2.4 D0-D0 Mixing 

If there is only one >..ijk in the mass basis, then from Eqn.(3.12) it is clear 

that flavor changing neutral current processes will occur in the charge +2/3 quark 

sector. Rare processes such as n°-n° mixing, n° -+ fJ+ fJ- and n+ -+ n+ z+z-, for 

example, may be used to place tight constraints on >..ijk· For illustrative purposes, 

in this section n°-n° mixing is considered. 

The interactions in Eqn.(3.12) generate box diagrams identical to those dis-

cussed in the previous sections if both the internal sneutrino (neutrino) propaga~ 

tors are replaced with slepton (lepton) propagators and the external quarks lines 

are suitably corrected. Using the same approximations that were made earlier, I 
the ~ effects generate the following effective Hamiltonian 

,., 

With fv = 200MeV [41), mv = 1864MeV [36), and i(~m)expi < 1.32 x 

10-10 MeV [36](90%CL), the constraint on >..ijk for j = 1 or j = 2 is 

(3.31) 

3.3 Top Quark Decay 

In the Standard Model, the dominant decay mode for the top quark is 

(3.32) 
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with a real W gauge boson produced. This has a partial decay width 

(3.33) 

where xw = mw /mt. The b quark mass has been neglected. 

The R-parity violating interactions (see Eqn. (3.8) with j = 3) ,.\~3kei~tL 

contribute to the decay tL -t lt + dRk at tree level [47], if kinematically allowed. 

This is possible only if there exist sleptons lighter than the top quark. The partial 

width for this process is 

(3.34) 

with Yi mt)mt [47]. The mass of the down type quark has been neglected. If 

this is the only non-zero R-parity coupling, the two top quark d~cay chann~ls are 

t -t b + W and t -t dRk + lt, with branching fractions 1 - x and x, respectively. 

The Lightest Supersymmetric Particle (LSP), denoted by x0 , is assumed to be 

neutral and that the real slepton decays with 100% branching fraction to the x0 

and a lepton. The presence of a non-zero R-parity breaking coupling implies that 
( \ 

the x0 is no longer stable [5]. The two dominant decays are [47] x0 -t vi+ b + dk 

and x0 -t ili + b + dk. The LSP decays inside the detector if [30] 

(3.35) 

where 'Y is the Lorentz boost factor of x0 . For this decay chain to be kinematically 

allowed, mxo ~ mb for k ~ 1 or k = 2, and mxo ~ 2mb for k = 3 are required. 

Using the previous equation, the maximum lower bound on ,.\~3k such that the LSP 
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decays inside the detector is 0.0003. x .fY for k = 3, and 0.002 x .fY for k = 1 

or k = 2; all for 300 Ge V squark masses. In the following' A~3k is assumed to be 

larger than this value so that the LSP decays within the detector. 

If a top quark decays through this R-parity violating process, the final state 

will contain one lepton, at least one b quark and missing transverse energy. The 

two novel features of this decay channel are that it spoils lepton universality and, 

when k = 3; produces a surplus of b quark events. Both of these signatures can 

be used to test the strength of R-parity violation. 

The CDF collaboration reconstructs tl quark events from observing: (1) dilep­

ton (electron or muon) events coming from the leptonic decays of both the W's; 

or (2) one lepton event arising from leptonic decay of one W and jets from the 

hadronic decay of the remaining W boson. CDF also requires a b-tag in the lep­

ton+jets channel. If the lightest slepton has a mass between 50 and 100 GeV, 

then the kinematics of the decay ~ --+ x0 + li will be similar to that of the leptonic 

decay of the W boson. A slepton o{ mass less than 45 Ge V is ruled out by the 

LEP limit on the Z decay width [36]. If the slepton mass is close to the top mass, 

then the b quark produced in the top decay via this channel will have less energy 

than the b quark from the top decay via the SM channel. Also, the lepton from 

the slepton decay will have more energy than the lepton from the W decay. These 

will affect the lepton and the b quark detection efficiencies. Although these decay 

channels will be present for any slepton lighter than the top quark, for the pur­

pose of obtaining a constraint, it is assumed that there is a slepton with a mass in 
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the range given above. The presence of the R-parity violating coupling will then 

contribute signals to all of these channels. 

It is assumed that the i = 1 coupling is non-zero. However, all that is required 

is that the slepton in the generation with the non-zero coupling have a mass in 

the range quoted above, i.e., if >.~3k =/= 0 then we require 50 GeV < me_ < 100 GeV, 

and if >.~3k =/= 0 then 50 Ge V < mil < 100 Ge V is required. Assuming also that 

the CDF data is consistent with lepton universality, the constraints we obtain for 

>.~3k and >.~3k are identical. 

In the k = 1, 2 cases, two b quarks are always produced in a tt event. In the 

k = 3 case, the LSP decays into bbvi or bbvi. Thus, four or six b quarks may be 

produced if one or both of the top quarks decay through the R-parity breaking 

channel; this possibility must be treated separately. 

The branching fraction for the di-electron event is 

BR[tt--+ ee +X] = x2 + L2 (1 - x) 2 + 2Lx(1 - x) (3.36) 

with L = leptonic branching fraction of W, approximately 1/9. The first term 

arises from both top quarks decaying via the R-parity violating interaction; the 

second is the Standard Model contribution; and the third is the contribution from 

one top quark decaying through the R-parity breaking channel and the other 

top quark decaying through the Standard Model channel. The other branching 
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fractions are 

BR[tl-+ 1111 +X] 

BR[tl-+ J-le +X] 

BR[tl-+ 11 +jets] 

BR[tl-+ e +jets] 

£2(1- x)2 

2(1 - x)2 £ 2 + 2x(1- x)L 

2(1- x)2L(1- 3L) 

2(1- x)2 £(1- 3L) + 2x(1- x)(1- 3L) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

The factor of 1 - 3L is the hadronic branching fraction of the W boson. Also, it 

is that assumed that the branching fraction for Z-+ l + x0 is close to one. Here 

the leptonic events produced from the Standard Model decay of the W boson into 

TVT are ignored. 

Two independent constraints on the .IJ,p interactions may be obtained from the 

top quark data. CDF has observed the tl cross section to be a(tl)exp = 6.8~~:~ 

pb (35]. The QCD calculation (48] gives the value a(tl)th = 5.52~8:~~ pb for 

mt = 176GeV. 

The first method is to compare the ratio of theoretically predicted values for 

the numbers of events found in two channels with the experimentally observed 

ratio. For example, a(tl)th x BR[tl-+ 11 +jets] x J Ldtx (detection efficiencies) is 

the number of 11 +jets events that should have been observed where J Ldt is the 

integrated luminosity. This theoretical prediction contains uncertainties in both 

the value for the tl production cross section and in the lepton and the b quark 

detection efficiencies. In comparing the ratio 

(a(tl)th x BR[tl-+ e +jets])/ (a(tl)th x BR[tl-+ 11 +jets]) (3.41) 

70 -



the uncertainties in the tt cross section cancel. The b-detection efficiencies also 

cancel. If the electron and the muon detection efficiencies in the lepton + jets 

channel are equal, these uncertainties will also cancel. The only remaining errors 

are statistical. The CDF collaboration reported observing 37 6-tagged events in 

the lepton + 2: 3 jets channel. In this set there were 50 b-tags, with a background 

of 22 b-tags. A conservative estimate for the background in the 37 events is 22. 

This leaves 15 tt events in the lepton +jets channel. Since no inconsistencies with 

electron-muon universality have been reported, a central value of 7 1-l +jets and 7 e 

+jets events will be assumed. This leads to 

BR[tt-+ e + jets]th 

BR[tt -+ 1-l + jets]th 
#(e +jets events) = 1 ~b 
#(1-l +jets events) 

(3.42) 

Inserting the theoretical predictions for the branching ratios leads to the constraint 

x < La/(1 +La), where a is the uncertainty in the previous ratio. In this case, 

a= b = 1/V7. This gives x < 0.077 at 95%CL which leads to 

(3.43) 

fork= 1 or k = 2 and a slepton of mass 100 GeV. 

A similar analysis may be performed for the dilepton channels. In principle 

these channels should lead to a good constraint since a non-zero A~3k coupling 

will lead to an excess of electrons observed in the di-electron channel over the 

number of muons observed in the di-muon channel. However at present only a 

small number of dilepton events have been observed and an interesting constraint 

cannot be obtained. 
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In the other method the number of events produced in a given channel is 

compared with the theoretical expectation. The number of produced events is 

cr[tt]th x BR[t --+ l + jets]th x f Ldt. Here cr[tt]th is the production cross section 

calculated in perturbative QCD for the assumed top quark mass of 176 GeV. The 

fact that the number of experimentally observed events in any given channel is 

consistent with, within experimental errors, the number expected in the Standard 

Model will also be used. The actual number of events detected depends upon the 

detection efficiency. We will use the number of observed events in any channel to 

determine the statistical accuracy with which the rate in that channel is measured, 

and then constrain the strength of the lJ,p terms by requiring that the rate is not 

changed by more than the error. 

This leads to the constraint 

BR[tt--+ l +jets, x]th 
BR[tt--+ l +jets, x = O]th 

(3.44) 

within theoretical and experimental errors. Using the theoretical and experimental 

values for the production cross sections [35, 48]1eads to 

2 BR[tt--+ l +jets, x]th d 
E < . <1+ 

- BR[tt--+ l +Jets, x = O]th -
(3.45) 

with E = 0.89 and d = 1.05. The constraint on x is then 

. ( 1-2L-.j(l-2L)2-4Ld(1-L)) 
x :::; mm 1 - E, 2(1 _ L) (3.46) 

The first entry is the constraint from the J-L + jets channel and the second entry is 

from thee +jets channel. For these values of E and d, the constraint is x :::; 0.11. 
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For a 100 Ge V slepton this translates into the constraint 

(3.47) 

for k = 1 or k = 2. 

For this coupling the analysis of the previous section must be modified in the 

lepton + jets channel since the &-detection efficiencies no longer cancel. This is 

because in the R-parity breaking decay channel three b quarks are produced. To 

correct for this, introduce the function P(k, n) that gives the probability that, 

given that n b quarks are produced, k of them are detected. Then the number of 

observed single b quark events expected in the e+jets channel is 

#(e +jets events) = ( 2(1 - x) 2 £(1 - 3L )P(1, 2) + 2x(1 - x)(1 - 3L )P(1, 4)) 

xN (3.48) 

where 

N = J Ldt x a(tt)th 

With P(1, 2) ::; P(1, n) for n 2: 2, tl;ten 

(3.49) 

#(e +jets events) 2: (2(1- x) 2L(1- 3L) + 2x(1- x)(1- 3L)) P(1, 2) x N 

(3.50) 

These approximations will give a conservative limit for >.~33 . The analysis of the 

previous section may now be carried out with the following restrictions: 
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(i) In comparing the ratio of the numbers of events detected in two channels with 

the theoretical prediction, the inequality in Eqn.(3.50) indicates that only upper 

limit in Eqn.(3.42) may used; 

(ii) In comparing the number of events detected in a channel with the theoretically 

predicted value for that channel, only the upper bou.nd in Eqn.(3.45) may be used 

in the e+jets channel, and either limit may be used in the J-L+ jets channel. With 

these caveats, a conservative limit on the branching fraction for t ---+ b + ~+ is then 

. ( 1-2L-J(l-2L)2 -4Ld(1-L)) 
x <.5: mzn La/(1 +La), 1- t, 2(1 - L) (3.51) 

For the errors quoted in the previous section, the result is 

(3.52) 

As the R-parity breaking decay channels produce three b quarks, then for mod-

erate values of >.~33 or >.~33 , semileptonic events containing four and six b quarks 

should be observable at the Tevatron. The non-observance of these events should 

provide the strongest test for the R-parity breaking couplings >.~ 33 or >.;33 . If limits 

on the branching fractions for the tt pair to decay into these excess b quark chan-

nels are known, then the R-parity branching fraction xis constrained. Namely, 

1. BR[tt---+ X+ 2': 3b' s] <.5: B1 :::;.. x <.5: ( 1 - J1 - B 1) (3.53) 

JL2 + B2 (1- 2£)- L 
2. BR[tt---+ X+ 2': 3b' s + 2e] <.5: B2 :::;.. x <.5: 

1 
_ 

2
£ . (3.54) 

3. BR[tt---+ X+ 2': 6b' s + 2e] :<.5: B3 :::;.. x :<.5: jii; (3.55) 

4. BR[tt---+ X+ > 3b' s + e] < B4 :::;.. x < - 1- 1---- 1 ( ~ . 2B4 ) 
- - - 2 1-3£ (3.56) 
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(3.57) 

This constrains I ,\~33 1. To constrain I ,\~33 1, interchange e with f1, in the previous 

equations. 

The constraints on l-\~33 1 and l-\~33 1 found in this section are comparable to 

those obtained from examining !lp contributions either to Z -+ bb and Z -+ 

z+z- decays [32] or to forward-backward asymmetry measurements (A~8 ) in e+e­

collisions [28]. The point of this exercise has been to illustrate how comparable 

lJ,p constraints may be obtained from analyzing top quark decays even though the 

experimental and th "?retical errors are still large. These processes will provide 

much better tests of R-parity violation once more top quark decays are seen. 

3~4 Summary 

In this chapter it has been argued that R-parity breaking interactions always 

lead to flavor changing neutral current processes. It is possible that there is a 

single fiP coupling in the charge +2/3 quark sector. But requiring consistency 

·vith electroweak symmetry breaking demands that fJ,p couplings involving all the 

charge -1/3 quarks exist. That is, a single coupling scheme may only be possible 

in either the charge 2/3 or the charge -1/3 quark sector, but not both. As a result, 

flavor changing neutral current processes always exist in one of these sectors. The 

processes K+ -+ 71"+ 1/V' K 0 - K0 mixing, B 0 - 13° mixing and D0 - jjO mixing 

have been used to constrain the fip couplings. If there is CKM-like mixing in 
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the c;harged -1/3 quark sector, then the constraints are quite stringent; see Table 

3.1. The tightest constraint is on J><jkJ for j = 1, 2 and any i and k. This comes 

from the rare decay K+ -+ 1r+vii. The constraints we obtain for the first two 

generations are more stringent than those presently existing in the literature. 

The R-parity breaking interactions lead to the top quark decay t -+ li +db if 

the slepton is lighter than the top quark. Some of the new top quark decays spoil 

electron-muon universality or result in tl events with more than 2 b quarks. At 

present, the CDF collaboration has not reported any inconsistencies with lepton 

universality or reported any events with more than 2 b quarks. These decays also 

lower the branching fractions for Standard Model top quark decays. Both of these 

observations are used to constrain some fh couplings. 

A list of the known model independent constraints on the A~jk couplings is 

presented in Table 3.2. Although several of these couplings are constrained by 

different low energy processes, only the smallest known upper limit is listed. With 

the exception of .X~33 , the constraints on the third quark generation couplings are 

only of order ef sin Bw. Once more top quark decays are observed the signatures 

discussed in this chapter will more tightly constrain these couplings. 
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IA~jkl IA~jkl IA~jkl 

111 0.012a 211 0.012a 311 0.012a 

112 0.012a 212 0.012a 312 0.012a 

113 0.012a 213 0.012a 313 0.012a 

121 0.012a 221. 0.012a 321 0.012a 

122 0.012a 222 0.012a 322 0.012a 

123 0.012a 223 0.012a 323 0.012a 

131 0.19b 231 0.19b 331 0.19b 

132 0.19b 232 0.19b 332 0.19b 

133 0.001 c 233 0.19b 333 0.19b 

Table 3.1: Constraints on j.A~jkl from:(a) K+ ---+ 1r+vv (90%CL); (b) b ---+ sviJ 

(90%CL) [49]; (c) Ve mass (90%CL) [29]. These constraints were obtained as­

suming CKM-like mixing in the charged -1/3 quark sector. All limits are for 

100 GeV sparticle masses. 
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1-X~jkl 1-X~jkl l_x;jkl 

111 0.03a 211 0.09b 311 0.18d 

112 o.o3a 212 0.09b 312 0.18d 

113 o.o3a 213 0.09b 313 0.18d 

121 0.261 221 0.17e 321 0.18d 

122 0.45c 222 0.17e 322 0.18d 

123 0.26c 223 0.17e 323 0.18d 

131 0.261 231 0.229 331 0.26h 

132 0.4i 232 0.4i 332 0.26h 

133 0.001i 233 0.4i 333 0.26h 

Table 3.2: Constraints on 1-X~jkl from:(a) charged current universality (95%CL) 

[28]; (b) f(1r -t eve)/f(1f -t J.LV/-1) (1a) [28]; (c) Ap8 (1a) [28]; (d) BR[r -t 

1rv7 ] (95%CL) [31]; (e) BR[D0 -t K-JJ+vi-1]/ BR[D0 -t K-e+ve] (95%CL) [31]; 

(f) atomic parity violation and eD asymmetry (1a) [28]; (g) vJL deep-in~lastic 

scattering (95%CL) [28]; (h) partial Z 0 decay width (95%CL) [32]; (i) top quark 

decay (95%CL); (j) Ve mass (90%CL) [29]. All limits are for 100GeV sparticle 

masses. 
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Chapter 4 

Signals of Supersymmetric Flavor Violation at 

the LHC 

In a generic supersymmetric extension of the Standard Model, there will be 

lepton flavor violation at a neutral gaugino vertex due to misalignment between 

the lepton Yukawa couplings and the slepton soft masses. Sleptons produced at 

the LHC through the cascade decays of squarks and gluinos can give a sizable 

number of events with 4 leptons. This channel could give a clean signature of 

supersymmetric lepton flavor violation under conditions which are identified. 

4.1 Introduction 

In the supersymmetric Standard Model (SM), the quadratically divergent cor­

rections to the Higgs (mass) 2 cancel due to supersymmetry (SUSY). The remain­

ing corrections are logarithmically divergent, proportional to the SUSY breaking 

masses of the sparticles (the superpartners of the SM particles) and result in a 

negative Higgs (mass) 2 due to the large top quark Yukawa coupling. Thus, the 

superpartners of the SM particles must have masses :S 1 TeVin order for SUSY 

to solve the gauge hierarchy problem and lead to natural electroweak symmetry 
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breaking. 

With the sparticle masses at the weak scale, these new particles (especially 

gluinos and squarks) will be produced in significant amounts at the LHC. After 

the initial discovery of the sparticles, the focus will be on precision measurements 

of their masses and mixings just as, for example, the next step after the discovery of 

the heavy quarks was the measurement of their detailed properties. In this chapter, 

a relatively clean signal at the LHC for detecting the mixing angle between the 

scalar partners of the charged leptons (the sleptons) is presented. 

A flavor-violating signal is obtained from the production of real sleptons, fol­

lowed by their oscillation into a different flavored slepton, and subsequent decay 

to a lepton. Some formulae for these oscillations are given in section 4.1.1. At 

a ee linear collider, the production of slepton pairs can then give ep, events with 

missing energy. This was studied in [50, 51]. Dilepton flavor and CP violating 

signals at the LHC and NLC were studied in [52]. At a hadron collider (the 

LHC), sleptons can be pair-produced by the Drell-Yan process giving the same 

signal. This was studied in [53, 54], and is a promising signal for large flavor mix­

ing angles an.:l when the SUSY background is known to be small. Real sleptons 

can also be produced at the LHC in the decays of the next-to-lightest neutralino 

(xg), which are mainly produced in the cascade decays of gluinos and squarks. 

In section 4.3.1, flavor violating dilepton events from xg decays are briefly con­

sidered. The production of xg pairs can give rise to events with 4 leptons, with 

the dramatic flavor violating signal identified by a (3e + p,) or (3p, +e) lepton 
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signature, hard jets, no b-jets, and of course missing energy. This is discussed 

in section 4.3.2. Conditions on the supersymmetric spectrum that are favorable 

for the suppression of the dominant supersymmetric background, occurring from 

heavier neutralinofchargino and stop decays, are identified. Ideas for determining 

the remaining dominant supersymmetric background occurring from T decays are 

also presented. These are all conveniently summarized in the end of the chapter. 

In section 4.3.2, a brief estimate of the expected 4-lepton signal at a generic 

point in SUSY parameter space is given. Next, in section 4.3.2, a particular point 

in the "minimal supergravity" inspired parameter space is considered (55, 56]. 

It is found that at this LHC Point, a 5a discovery (2a exclusion) is obtained 

for a right-handed (RH) first and second generation mixing angle sin On > 0.13 

(sin On > 0.08) with an integrated luminosity of 100 fb- 1 at low luminosity. The 

discovery potential at high luminosity is still optimistic though less quantitative, 

due to uncertainties in r-jet detection efficiencies and larger b-jet mistagging 

rates. In any case, the values for the mass splitting (between e and jJ,) that are 

favorable for the discovery of a signal satisfy the J1 ---+ e"( bound even for a maximal 

mixing angle. Thus the LHC has the opportunity of probing mixing angles that 

are beyond the reach of the current J1 ---+ e"( limit. 

4.1.1 Lepton Flavor Violation due to Slepton Mass Mixing 

To begin consider the lepton-slepton-neutral gaugino vertex with the leptons 
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and sleptons in the gauge basis: 

[* gauge zgaugeXO 
a a ' (4.1) 

where a= 1, 2, 3 is a flavor index. Next perform a unitary transformation, V, on 

both lg and lg to go to the mass eigenstate basis for the l's: 

(4.2) 

In this basis the coupling remains diagonal in flavor space (now denoted by a). In 

general, however, the slepton and lepton mass matrices are not related so that the 

same unitary matrix, V, may not diagonalize them both. In this general case, the 

slepton (mass) 2 matrix in the basis la is not diagonal. For example, even if the 

slepton (mass) 2 matrix in the gauge basis [~auge of Eqn.(4.1) is diagonal but not 

ex 1, it will have off-diagonal elements in the hasis la of Eqn.(4.2). So, a further 

unitary transformation, W, is needed to rotate to the slepton mass basis. In this 

basis the slepton-lepton-gaugino vertex is: 

(4.3) 

So, in the mass basis for leptons and sleptons (la and li) a mixing matrix W =j:. 1 

in general appears at the neutral gaugino-lepton-slepton vertex. This mearis that 

there is a coupling between, for example, e (in the mass basis), 1-l and x0 - this 

will be referred to as SUSY lepton flavor violation. The focus of this chapter is 

the detection of this SUSY lepton flavor violation at the LHC. 

The theoretical expectations for W are varied. In models with broken flavor 

symmetries, it is expected that W rv VKM· In such cases a Cabibbo-like mixing 
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angle for the first two generations and a !:l.m/m close to the J-l --+ e"f bound is 

expected [57]. In contrast, in models of gauge-mediated supersymmetry breaking 

the dominant contribution to the soft masses is universal and it naively appears 

that there is no interesting flavor physics. There is, however, a subdominant flavor 

non-universal supergravity contribution. This likely results in large mixing angles 

[52]. The magnitude of !:l.m/m depends on the supersymmetry breaking scale and 

while clearly model-dependent, c::mld easily be l"'oJ r /m or larger, which is needed 

to give an observable flavor-violating signal at the LHC (this is discussed later in 

this section). 

For simplicity, the case of 1-2 mixing with mixing angle() is discussed. In this 

case there are strong limits on the mixing angle and the e- [1, mass splitting from 

lepton flavor changing processes. For example, J.1 --+ e'Y gives an important con-

straint. For degenerate left-handed sleptons, and with the LSP (x~) approximately 

bino-like (B0 ), the constraint on sin 2()R and the mass splitting /:im between the 

right-handed sleptons is approximately 

sin 2()R(!:im)/m ;S 0.01 x 
BR(J-t--+ e"f) 
4.9 x w-n 

(A more proper formula is given in section 4.3.2). 

(4.4) 

Suppose a real selectron is produced in the basis ofEqn.(4.2) (say in association 

with an electron). Since e (a= 1) is not a mass eigenstate, there is a probability 

that as it propagates it will convert to a [1, (a = 2) and hence decay into a J-l 
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[51, 52]: 

(4.5) 

where x = (~m)2 / ((~m)2 + f 2 ) is the quantum interference factor and assuming 

BR(l -t lx~) = 1. Here r is the decay width of the slepton. Note that for 

~m ~ r the interference effect can be neglected so that x "' 1. in this case the 

oscillation probability can be large. Typically, r "-' O:emm "-' 0.01m so that X "-' 1 if 

(~m)/m ~ 0.01. This is close to the upper bound from the p, -t e1limit, so there 

could be a suppression due to either x or sinO [51, 52]. It is possible, however, 

that for a specific SUSY spectrum the decay width could be much smaller than 

this naive estimate, allowing for a larger range of ~m/m consistent with the rare 

decay limit (even for large mixing angles) and x "' 1 so that the oscillation signal 

is not suppressed 1
. 

Similarly, a neutralino can decay into e+ p,- ore- p,+ through an intermediate 

slepton: 

(4.6) 

Using Eqn.(4.5) the rate for a flavor violating decay is 

Here to simplify notation BR(xg -t e-e+,jj,+p,-) =: BR(xg -te-e+) +BR(xg -t 

jj,+ p,-). This notation will be used throughout the chapter. Also, the BR on the 

right-side of Eqn.(4.7) is in the (tbsence of any mixing. In the case of interest here 

1 In fact, this occurs at the LHC Point discussed in section 4.3.2. 
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of small mass splittings, !:l.m « m, the neutralino decay rate into selectrons or 

smuons are equal in the absence of any mixing. Next, in the absence of mixing, 

(4.8) 

The factor of two occurs since x~ may decay to e's of both charges. This result 

and Eqn. ( 4 .. 7) relates the flavor-violating and flavor-conserving decays: 

where the BR on the right-side of the above equation is in the absence of mixing. 

Here l is either e or J.t. This result applies for xg decays to real sleptons, i.e., 

for mxg > mi. For mxg < mf, there is an additional suppression of (!:l.m)/m in 

the decay amplitude due to the supersymmetric analog of the Glashow-Iliopoulos­

Maiani (GIM) cancellation as in the case of J.t -+ e-y, resulting in negligible e~t 

signal. So an observable eft signal requires the production of real sleptons 2
. 

4.2 Slepton Production by Drell-Yan Process 

One way to produce sleptons at a hadron collider is through the Drell-Yan 

process: 

( 4.10) 

Thus the production of sleptons is identified by events with no jets, 2 hard isolated 

leptons and Pi', assuming that x~ is stable or decays outside the detector. These 

events will be referred to as "flavor conserving" dilepton events. 

2 Alignment models with Llm "'m are not considered here since sin B"' 0(10-2 ). 
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There is a SM background to the signal from w+w- and tt production. These 

backgrounds are known, in principle. In [58] a set of kinematic cuts on the leptons, 

as well as a jet-veto, are found which sufficiently reduce these backgrounds. These 

cuts reduce the signal as well - of course, the reduction is much more for the 

background. 

There is also a SUSY background from pp ---+ x+x- ---+ w+w-x~X~· This 

background depends on the model-dependent x+x- production cross section. But, 

for supergravity motivated parameter choices with mq ~ m 9, this background can 

be sufficiently reduced by using the same cuts used to remove the SM background 

[58]. For example, from the analysis of [58] (see Table III of [58]) with 10 (fb)-1 

and for a slepton mass "' 100 Ge V there are"' 20 signal events with no background 

events remaining after the cuts. 

Actually, a clever method [54] for detecting the sleptons is to form the asymme-

to AF, so a non-zero value would provide evidence for slepton production. 

In the lepton flavor mixing case the pair production of sleptons will produce 

eJ-L events with Pr - these events will be referred to as "flavor violating" dilepton 

events. The background to this signal is from the same sources as for the flavor 

conserving dilepton signal (with the same rate) as well as from ii* production 

followed by leptonic decays of TS. 

The detection of SUSY lepton flavor violation using the above flavor violating 

dilepton events for the CMS detector at the LHC was studied in references [53, 54] 
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for the case of maximal mixing (8 = 1r /4). With the mixing angle being maximal, 

the flavor violating dilepton signal rate is high; see Eqn.(4.5) (assuming x "' 1). 

In fact, the number of flavor conserving and flavor violating events from slepton 

production in this case are the same and each is equal to one half the signal in 

the zero mixing case so that AF ~ 0 (unlike the case of zero or non-maximal 

mixing). In the case where the production cross-sections for staus (7) and the 

lightest charginos are comparable to that of the sleptons, the production rate 

for the SUSY background to ep events is "' 4% of the total flavor conserving 

signal (in the absence of mixing). 3 Thus, the chargino and stau backgrounds 

are much smaller. The high signal and low SUSY background rate (compared to 

the signal) for maximal mixing enables detection of a 5a flavor violating signal for 

sleptons masses up to 250 Ge V and LSP masses mx? < 0.4meR with an integrated 

luminosity of 100 fb- 1 . 

There are some objections to the generality of this result, though. A more 

general spectrum could result in a larger chargino or stau background. For ex­

ample, there is no reason to expect the chargino production cross-section to be 

related to the slepton production cross-section. However, as mentioned above, the 

kinematics of slepton production and decay are different enough from that of the 

chargino background that an appropriate set of kinematic cuts could distinguish 

3Here, it is assumed that BR (x+ --t w+xV ~ 100% so that the leptonic BRs of x+ are the 

same as for W. If the left-handed sleptons are lighter than x+, then the leptonic BRs of x+ may 

be enhanced substantially, in turn increasing the SUSY background. 
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the two, at least for supergravity motivated parameter choices with comparable 

squark and gluino masses [58]. Next, the stau background is sensitive to the stau 

mass, which is likely to differ from the selectron and smuon masses 4 . The stau 

background has softer leptons, so a cut on the PT of the leptons may help dis­

tinguish this background from the signal. The success of this may require large 

statistics and knowledge of the stau production cross-section. Thus, in general, 

the SUSY background may not be small. 

Next, detection of flavor violation for smaller mixing angles is discussed. Since 

the signal is ex sin2 0, it is significantly smaller for say Cabibbo-like mixing an­

gles. In this case, it is crucial to know the SUSY background more precisely since 

it is comparable to the· signal (assuming similar cross sections for sleptons and 

charginos). While the quantity AF (> 0 for non-maximal mixing) is, up to sta­

tistical fluctuations, background-free as far as slepton detection is concerned, it 

is not useful for providing evidence for slepton flavor violation since the chargino 

background would need to be determined first. This is because the deviations 

in the values of AF and N(eJ-t) from the SM for a non-zero mixing angle could 

be reproduced, in the case of zero mixing angle, with a lower slepton production 

cross-section and a higher chargino production cross-section. 

Even if the SUSY background can be reduced sufficiently by an appropriate 

set of cuts, since the signal is suppressed by the small mixing angle (there will 

4 The rare decays r -t e'Y, r -t J-l'Y and J-l -t e'Y allow for 0(1) splitting between the third and 

first two generation scalars for C K M -like mixing angles. 

88 



also be a reduction of the signal due to these cuts), it may not possible to probe 

1 

Cabibbo-like mixing angles. For example, in the case of no mixing, Table 4 of 

reference [54] gives 195 dilepton signal events for the set of cuts labeled 1 with 

L = 10fb-1 and a slepton mass of 100 GeV. The number of signal events in the 

case of mixing for L = 100fb-1 is then 1950 x 2 x sin2 Ocos2 ()(assuming x rv 1). 

The SM background from WW production is 9920 for the same set of cuts. Thus 

a 5£J signal (requiring S/VB > 5) is possible only for sinO~ 0.4. Since this signal 

was obtained for a 24 Ge V LSP, only larger angles will be probed for larger LSP 

masses (since the leptons will be softer in that case). For sleptons heavier than 

100 Ge V the prospects for detecting small mixing angles are clearly worse. 

Thus, in the situation where the SUSY background is known to be small, e.g. 

if an appropriate set of cuts for a more general spectrum can separate the chargino 

background from the signal, then the flavor violating dilepton events from Drell-

Yan production of sleptons is a promising signal for the detection of flavor violation 

in the case of large mixing angles. Otherwise, it is important to look for other 

discovery channels for slepton flavor violation. 

4.3 Slepton Production in Cascade Decays 

The other way to produce sleptons is through the cascade decays of gluinos 

and squarks. At the LHC, the production cross sections of squarks and gluinos are 

much larger than the Drell-Yan production ofsleptons, neutralinos, and charginos. 

So, a larger production of sleptons (if they are light) is expected in the cascade 
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decays than from direct Drell-Yan production. In a generic SUSY event, the 

production of two real (or virtual from gluino decay) squarks will be followed 

by their cascade decays ultimately to the LSP through intermediate electroweak 

sparticles (sleptons, charginos, neutralinos). Assuming for simplicity that the 

spectrum is gaugino-like, i.e., xg ~ w3, xt ~ vv+ and X~ ~ B, the following 

squark decays are obtained: 

BR(iin ---+ qxD ~ 1, 

BR(ih ---+ qxg) 1 
~· 

3' 

BR(ih ---+ q'xi·-) 2 
~ -

3 
(4.11) 

Thus, a typical SUSY event is: 

pp ---+ gg, gij ---+ ijij 

---+ XEwX~w + X, (4.12) 

'th I f O +,-
Wl XEw, XEw one o X1,2, X1 · 

4.3.1 Dilepton Events 

If one of the squarks decays to xg followed by the decay of xg to a slepton (if 

BR(xg ---+ ll) is significant) a large number of ef..L events in the presence of lepton 

flavor mixing (see Eqns.(4.6) and (4.9)) is obtained. These events also have at 

least 2 high PT jets and large PT· 

There is no background from w+w- production since this background con-

tains no hard jets (assuming jet detection is good). There is a background from 
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tt production followed by leptonic decays of the W's from ·the top quarks. This 

can be reduced by rejecting events with b-jets or using- a high J5r cut. 

There is a SUSY background from the decays of both squarks to charginos, 

followed by chargino decays to w+, w- or[, [*. This background is distinguishable 

from the signal though. The invariant mass distribution of the 2 leptons from the 

xg decay has a sharp edge (which is a function of the neutralino and slepton 

masses) [55, 56] unlike the case of the 2 leptons from x+x- det'ays. Also, the 

angle between the 2 leptons from the decay of xg is likely to be smaller than in the 

case of 2 leptons from x+ and x-. Such kinematic cuts on the invariant mass of 

the dileptons and the angle between them easily reduce the number of background 

events sufficiently if we are interested in detecting flavor conserving dileptons from 

xg decays. 

But, in the case of the flavor violating dilepton events, (as in section 4.2) 

since the signal is suppressed by the mixing angle (while the background is the 

same), the number of background events that survive (relative to the signal) after 

cuts depends crucially on the model-dependent cross sections for producing x+x­

vs. xg 5 . So in general it is difficult to be sure that the cuts have reduced the 

5 For example, the ratio of the number of events with x+x- to those with (at least) one xg is 

larger for s-channel ijij* production than for gluino pair production which is seen as follows. For 

the gg case, the probability of getting two QL is 1/4 compared to a probability of 3/4 for getting 

at least one QL whereas for s-chanil.ei ijij* production the probabilities are the same. Same sign 

chargino events are also obtained from gg production whereas s-channel ijij* production can give 

only opposite-sign chargino pairs. Thus, if the s-channel ijij* production is larger, the number 
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background sufficiently. 6 

In the circumstance that x+x- are dominantly produced from 99 cascade de-

cays, the x+ x- flavor violating background can be estimated as follows. An equal 

number of same-sign and opposite-sign chargino pairs are expected since 9 is a 

Majorana particle. The same-sign chargino pairs produce same-sign dileptons so 

that the opposite-sign chargino eJ-t background can be estimated from the number 

of same-sign ee and /-£/-£events. Unfortunately, in the more general case the x+x+ 

and x+x- production cross sections are not related sincethe chargino pairs do not 

always come from gluino pair decays. For example, pp-+ i]Lij£ can lead to x+x-, 

but not to x+x+. 

It might be possible to estimate the x+x- background by analyzing the ( ob-

served) (signal + background) distribution of the invariant mass of the flavor 

violating dileptons [59]. As mentioned earlier, the dilepton invariant mass dis-

tribution for xg decay has a sharp edge unlike the case of the background. The 

position of this edge (denoted by Mu) can be easily found by looking at the dis-

tribution of the invariant mass of flavor conserving dileptons (where the x+x-. 

of x+x- events relative to xg events increases. 
6There is also a SUSY background from xg decays to fT followed by leptonic decays of the 

r's. A cut on the dilepton invariant mass can reduce .this: the leptons from the r decays are 

softer than those from the ef P/xg decays and so have a smaller invariant mass. But, since, 

in general, BR (xg -t fr) is not related to BR (xg -tee), as for the chargino background, we 

cannot be sure that the fr background has been sufficiently reduced (by the cuts) since this 

background is unknown. 
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background is very small) [55, 56]. In the case of flavor violating decays, the exis­

tence of an edge in the (observed) opposite-flavor dilepton distribution ( e.g. eJ-t) 

at Mu would then be an indication of flavor violation. However, since the flavor 

violating dilepton signal is suppressed by (small) mixing relative to the flavor con­

serving dilepton signal (whereas the x+x- background is the same for both kinds 

of dileptons), the edge at Mu in the opposite flavor dilepton case might not be as 

sharp as for the same flavor dilepton case - this depends on the model-dependent 

cross sections for producing x+x- vs. X~· 

Next, in the distribution of the invariant mass of the flavor violating dileptons, 

the events beyond Mu (this value can be obtained from the same flavor dilepton 

distribution if the edge is not so sharp in the opposite-flavor dilepton distribution) 

are mostly from the x+x- background [59]. Extrapolating (assuming say a flat 

distribution for the x+x- background) from the data in this region, the x+x­

background in the region with invariant mass less than Mu can be estimated. An 

excess of eJ.L events (with invariant mass between zero and Mu) over this estimate 

will be a signal for flavor violation. 7 This extrapolation may not be reliable 

for invariant masses much smaller than Mu since the distribution of the x+x­

background in this region is not known. A detailed simulation is required to know 

this distribution (it is known only that it does not have an edge at Mu). Near Mu 

the extrapolation should be more reliable and that is the region where the signal 

7 The invariant mass of the leptons from the rr decays (from xg) is less than Mu and so this 

background cannot be estimated this way. 
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is peaked (since the flavor violating dileptons from xg decay also have a sharp 

edge at Mu). An excess in this region (rather than the whole region between 

zero mass and M 11 ) might thus be a better signal for flavor violation [59] - as . 

mentioned earlier, the distribution will have a edge (or a "step") at Mu. Also, the 

TT background in the region near Mu is negligible since the leptons from these 

decays are softer [59]. However, statistics are larger if the region from zero mass 

to Mu is used. 

The chargino background can also be eliminated in considering a flavor violat­

ing and C P violating dilepton signal [52]. The presence of non-trivial phases in 

the slepton mixing matrix W breaks CP, and results in a non-vanishing asymme­

try: N(e+J.l-- e-J.l+) =I 0. In this case, the x+x- background is not important 

since it is CP symmetric. 

To summarize, if the number of eJ.l events (that pass certain cuts) from either 

Drell-Yan or cascade production is used to detect flavor violation, the SUSY 

background from x+x- pairs (which passes the same cuts) is difficult to estimate, 

in general, and may be too large. T.he possibility of using the observed opposite­

flavor dilepton mass distribution (in the case of cascade decays) to estimate the 

chargino background is interesting, though, and warrants further study [59]. 

4.3.2 Events with 4 leptons 

A dramatic flavor violating signal is obtained through the pair production of 

two xgs, followed by the decays of both xgs to slepton and lepton pairs. Such an 
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event contains 4 leptons and occurs if both squarks in a SUSY event decay into 

xg. If one of the xgs has a flavor violating decay: xg -+ fz -+ eJ-t, then events 

containing 3e 1j.t, or 3j.t1e will be produced. A typical decay chain is then: 

(4.13) 

These events are identified .by 4 isolated leptons (with the 3-f 1 flavor structure), at 

least 2 high 'PT jets, 'flr, and concentrating on only those events produc~d from the 

decays of first two generation squarks, no b-jets. These events will be referred 

to as "flavor violating" 4 lepton events. The absence of b-jets is important in 

distinguishing the signal from other SUSY and SM backgrounds (see below). 

The backgrounds to these events arise from both SM and SUSY sources. 

The dominant SM background occurs from tt production with semileptonic 

decays of the bs (or tl, production with 2 leptons from 'Y) and leptonic decays of 

the W s. In this case, however, the leptons from b decays will not be isolated (or 

the invariant mass of 2 of the leptons will be zero in the case of tt{'). Also, these 

events have 2 b quarks and can be rejected using b-jet veto. Double gauge boson 

production can give 4 lepton events, but none of these events have the 3+ 1 flavor 

structure. Triple gauge boson production (WWZ or WW'Y) can give events with 

4 leptons and the correct flavor asymmetry, but some initial state gluon radiation 

is needed to give the 2 hard jets. The production cross-section for such events is 
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small. Also, events of this kind can also be rejected since the invariant mass of 2 

of the leptons will either be zero or mz. 

One important obstacle in identifying flavor-violating dilepton events was the 

potentially large background from x+x- production. In the 4 lepton signal, how-

ever, there is no x+x- background from the squark decays since this gives only 2 

leptons. 

The weak decay ij -+ W ij', if kinematically allowed, can lead to a possible 

background. For example, the process 

- _, 
QLQL -+ w-ii1 + xtq 

w- -+ e -i) 

_, 
qL -+ 0 II + -

X2Q -+ 1-l 1-l + · · · 

xi -+ J-l+VX~ (4.14) 

is a potential background. For the first two generation squarks, however, the 

decay ij -+ W ij' is kinematically forbidden. This is because the mass splitting 

in an electroweak doublet occurs from the electroweak D-terms and is less than 

· m'fv/mii < mJ.·"· This process is allowed for the top and bottom squarks, but such 

an event contains 2 b-jets and this background can be reduced with a b-jet veto. 

There is a SUSY background to the flavor violating 4 lepton events from pro-

duction of heavier neutralinos or chargino in the cascade decays of squarks. For 

example, 
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X~-+ w+x- -+ eJ.L+ .. ·, 

xg-+ fz -+ ee (or J.LJ.L)X~- (4.15) 

This background is small in the so-called gaugino-like region. In this region there 

is very little gaugino-Higgsino mixing. Then, the heavier chargino and the two 

heaviest neutralinos are dominantly Higgsinos and the two lightest neutralinos 

and the lighter chargino are mairily gauginos; this turns out to be typical of the 

SUSY parameter space still allowed by experimental data. Thus, the decays of 

the first two generation squarks into the heavier neutralinos or chargino are highly 

suppressed by the first two generation Yukawa couplings, small gaugino-Higgsino 

mixing, and also by phase space. 

Another potentially large background can also occur from the production of 

the heavier sleptons (say, the left-handed) and/or sneutrinos. Sleptons can decay 

to xgz and iJ to xt l if kinematically allowed. If the neutralino and chargino decay 

to leptons, then this decay chain can give 3 (or 2) leptons. With 1 (or 2) leptons 

from another decay of this kind (or some other decay chain), this can mimic the 

flavor violating 4-lepton signal. If the left-handed sleptons are paired produced 

through the Drell-Yan mechanism, then these' events do not contain any hard jets 

and may be rejected. Thus, the only source for a background from heavier sleptons 

is their production in the decays of gluinos and squarks. Such a decay does not 

occur directly, but only through the decays of gluinos and squarks to the heavier 

neutralino and chargino. The heavier neutralinos and chargino can then decay 

to the left-handed sleptons. As argued in the previous paragraph though, in the 
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gaugino-like region, the heavier neutralinosfchargino are dominantly Higgsinos so 

that their decays to the sleptons are suppressed by the lepton Yukawa couplings 

and small gaugino/Higgsino mass mixing angles. So this background is negligible. 

However, top squarks (and bottom squarks for large tan ,8) will have significant 

decay branching fractions into heavier neutralinos or chargino even if they are 

purely Higgsinos since the third generation Yukawa couplings (and hence couplings 

of the squarks to Higgsinos) are large. Further, as mentioned earlier, Ws may be 

produced in the direct decay of stops or sbottoms. Also, top quarks from stop 

or sbottom decays produce W s. Both of these processes give additional isolated 

leptons. This leads to a potential background even if stops or sbottoms decay only 

to the lighter chargino and neutralinos. For example, the following decay chain is 

a possible background: 

ii* -+ bx- + txg, 

t -+ w+b-+ e+ b + ... ' 

X -+ w- o - + XI -+ J-l .•• ' 

xg -+ e+e-x~- (4.16) 

These backgrounds to flavor violating 4 lepton events can be reduced by rejecting 

any 4 lepton event that contains at least one 1 b-jet. Note that the top or bot-

tom squark background has at least 2 b quarks. The efficiency for rejecting this 

background is discussed in a later section where a specific spectrum is considered. 

There is also an important SUSY background from decays of taus and staus 
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produced from the decays of two xgs. That is, 

Xo
2 

--'- - ----'" o + -r TT -r e~-tx 1 ... , 

( 4.17) 

This background can be estimated/measured as follows. In the above decay chain, 

if one T decays hadronically instead of leptonically, the result is 3e 1 T-jet events. 

If a. lower bound on the T-jet detection efficiency is known, an upper bound on the 

number of 3e 1~-t events coming from T decays is obtained by using the number of 

3e 1 r-jet events. An excess of 3e 1~-t events over this background is a signature of 

lepton flavor viola tim"· •· 

Lastly, the following xg decay chains can also give flavor violating dileptons: 

h (or) Z -t TT -t ef-t. (4.18) 

In combination with another xg decay to ee or J-tf-t, these decay chains can give 

flavor violating 4-lepton events. In the gaugino region, the decay xg -t Zx~ is 

suppressed since there is no vertex with Z and 2 neutral gauginos. In any case, 

an effective BR (xg -t rr) can be defined to include these two decay chains in 

addition to the xg -t TT decay. It will be shown in section 4.3.2 that this (in 

general unknown) BR does not affect the estimate of the (effective) T background 

obtained by using the 3e 1 r-jet events. 

A quick estimate of number of 4 lepton events 
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A typical value for the total SUSY production cross section (gluinos and 

squarks) at the LHC is: 

7r0.2 
CYSUSY rv 10 ~ rv 100 pb 

s 
(4.19) 

with V§ rv 1 TeV, a 8 rv 0.1 and summed over colors and generations (the factor of 

10). Assuming that the probability to get a ih is 1/2 and BR(ih -t xg q) = 1/3, 

this gives 

( 4.20) 

If BR(xg -t x~z+z-) "'0.16 (for each of l = e, J.L) and for"' one year of running at 

low luminosity which gives an integrated luminosity of L rv 10 (fb)-1 , the expected 

number of events is : 

rv 30,000, 

N (4l where l = e, J.L) 

N (3l + l') 4 sin2 
() cos2 ()X N(4l) rv 550, (4.21) 

for si.n () ~ 0.2 and X rv 1. To be clear, 

and 

In the next section this definition for N ( 4l) is trivially extended to include leptons 

produced by the decay of TS. Thus, typically, a large number of 4 lepton flavor 

100 



violating events is expected from the cascade decays of squarks 8 . 

Detailed estimates at Point 5 (Point A) of LHC studies 

One Point of the LHC supersymmetry studies (55, 56] contains a spectrum that 

is favorable for the detection of a flavor-violating 4 lepton signal. The minimal 

supergravity input parameters for this point are: 

m0 = 100 GeV, M1; 2 = 300 GeV, Ao = 300 GeV, 

tan/3 = 2.1, sgn(tt) = +, ffitop = 170 GeV. (4.24) 

Renormalization group evolution of these input parameters to the weak scale re-

suits in a mass spectrum which is given in Table 4.1. Note that mxg ~ 230 GeV > 

mi ~ 160 GeV so that the decay of xg into real sleptons is allowed. 
R . 

Th~ production cross-section for SUSY particles is presented in Table 4.2, and 

is dominated by gq production. In total CJsusY ~ 16 pb. To estimate the number of 

signal and background events, the branching fractions of the sparticles are needed. 

These are given in Table 4.3. Note that at this Point BR(xg --7 lili) "' 0.12 and 

is reduced due to the large branching fraction BR(xg --7 hx~). ·This gives from 

8 Both xgs decaying to flavor violating dileptons gives (e+p.-)(e+p.-) and (e+p.-)(p.+e-) 

events. The latter cannot be distinguished from the events where one xg decays to e+e- and 

the other to p.+ J.L-. The former events can also be used as a signal of flavor violation, but the 

number of these events is expected to be very small since they require both xgs to decay into 

flavor violating dileptons. For simplicity these events were not included in Eqn.(4.23). 
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g 770 QL 685 QR 660 h 100 

tl 500 t2 715 bl 635 b2 660 

lL 240 lR 160 xt 230 X~ 500 

X~ 120 xg 230 xg 480 X~ 505 

Table 4.1: Mass spectrum in GeV at LHC Point [55, 56]. Here ij = u, d, c, s, and 

z = e, Ji, :r-. 

gg 1750 gij' gij* 8300 ijij* 2380 

ijij' 2820 bb* 300 tt* 700 

Table 4.2: The production cross-sections in fb for different SUSY particles at the 

LHC Point [55, 56]. Here all flavors QH = u, d, c, s and H = L, Rare summed 

over. 
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g ~ qii£ 30 g ~ qijR 30 g ~ ilt 14 

g ~ bLb 15 g ~ bRb 10 i2 ~ Zoi1 26 

- 0 t2 ~ x4t 21 - ± t2 ~ X2 b 18 - - ± t2(ti) ~ X1 b 15 (63) 

- - 0 t2(ti) ~ x2t 8 (17) - 0 t2 ~ x 3t 6 - - 0 t2(ti) ~XI t 6 (20) 

- 0 qL ~ qx2 32 - ± qL ~ qx1 64 - 0 qL ~ qx1 1.5 

- ± qL ~ qx2 1.5 - 0 qL ~ qx4 1 - 0 qR ~ qx1 99 

xg ~ iRl 36 xg ~ hx~ 63 lR ~ lx~ 100 

i 0 L ~ X1e 90 xt ~ w+x~ 98 h~TT 5 

Table 4.3: Branching fractions (in percent) for sparticles at LHC Point [56). Here 

ij = u, d, c, s, and i = e, [1,, f. 

decays of first two generation squarks the number of xg pairs produced: 

(The factors of 1/2 and 1/4 are easy to understand: 1/2 of all ijij* produced from s-

channel gluon and 4-point contact interaction 9 , and 1/4 of all ijij's produced (from 

t-channel gluino exchange) are left-handed pairs.) This is for one year of running 

at low luminosity (L = 10 fb- 1 ) and for one detector. Hereafter estimates of event 
I . 

numbers will use this integrated luminosity. A realistic detection efficiency of 90% 

for single e, p,, and 90% for the single-prong decay T ~ 1fV (BR ~ 0.11) will be 

used. These are needed to determine the number of 4-lepton and 3-lepton +r-jet 

9It is assumed that all of the ijij* production is by this channel. This is reasonable since most 

of the hard collisions at LHC energies are likely to be gluon-gluon. 
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events that are detected. Later, a comment on a more realistic 7-jet detection will 

be made. 

Next the 4-lepton signal and background are estimated. 

Due to the decay chain 

h -t 77 

the effective BR (xg -t 77X~) - Rr is 

0.15. 

Using the above BR and BR (xg -t iRz) - 0.12 for each of l 

BR (7 -t ev) ~ BR (7 -t f-LV) ~ 1/2 x 0.35, 

BR (xg -t eex~' 1-l/-lXn = 2 X 0.12 X ( 1 - 2 sin2 e cos2 Ox) 
1 

+Rr X (0.35)
2 

X 2' 

1 
+Rr X (0.35) 2 

X 2' 

(4.26) 

(4.27) 

e, fJ, and 

( 4.28) 

where the first terms in each equation are from decays of e and [1, and the second 

terms are from 7 decays. 

Then, the total number of 4-lepton events expected from xg pair decays (in-

eluding detection efficiencies, but parameterizing the acceptance cut as Ecur- see 
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later 10 ) is 

N(4l) 

( 2) 2 4 3400 X 0.24 + R7 X (0.35) X (0.9) X Ecur 

~ 149 X ECUT· ( 4.29) 

To get 3e lJ.L + 3J.L1e events, one xg has to decay into eef 1111 and the other to eJ.L. 

Thus, the number of 3e 111 + 3J1 1e events from flavor-mixing for sin(} = 0.2 and 

x rv 1 (it is shown later that these values are consistent with the J1 -+ e1 limit) is 

~ 20 X EcUT· (4.30) 

There is an extra factor of 2 since either xg can decay to flavor violating dileptons. 

Next, the number of 3e 111 + 3J1 1e events from leptonic decays of 7S produced 

from xg is 

BFv N (xgxg) x 2 x ( Rr x (0.35) 2 x ~) 

xBR (xg-+ eex~, f.lf.lX~) x (0.9)4 x E4t x Ecur 

~ 9 X EcUT· (4.31) 

Here, c41 is the acceptance for 4 leptons with 2 of them coming from the decay 

chain xg -+ 77 relative to that for all 4 leptons coming from xg -+ ee or f.l{L. Since 

10 Detection efficiency refers to the probability that the lepton (orr-jet in a later case) will be 

detected given that it passes the acceptance cuts. 
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the leptons from the T decay are softer, it is expected that c41 :::_ 1. 11 To get the 

number in the last line above, c41 ::::::: 1 has been assumed. 

Finally, the above 2 numbers are f~om the leptonic decays of 2 xgs from the 

decays of first two generation squarks only. As mentioned before, stop/sbottom 

decays to W, xg etc. can give a background to the flavor violating 4-lepton signal 

(see Eqn.(4.16)). To reject these events, a b-jet veto is used. This implies that 

events with 4 leptons coming from 2 xg decays with (at least) one xg coming from 

a stop/sbottom decay will also be rejected; this is the reason for not including the 

xg pairs from stop/sbottom decays in the numbers above. 

Measuring the background from xg --+ TT decays is discussed next. 

As mentioned earlier, the idea is to measure the number of (3e T -jet) + 

(2e 111 T- jet) + · · · events where r-jet refers to the hadronic decay ofT. At this 

LHC Point the number of these events (including detection efficiencies) is 

N(3l + T- jet) 

( 4.32) 

A factoi' of2 is due to eitherr decaying to a jet. Here, Er includes BR (r--+ hadron) 

and the efficiency for detecting a hadronic decay ofT. The variable c31 is the accep­

tance for (3+ 1 r-jet) relative to that for 4leptons all of which come from the decay 

chain xg --+ ee, M/1· It is expected that 1 ~ C3! ~ C4! since the lepton from the T 

11 Strictly speaking, the factor c4z should be included in determining N(4l) and SFv as well. 

But since the number of events in these samples from T decays is very small, it is a good 

approximation to assume c41 ~ 1 in those numbers. 
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decay is softer than the r-jet and since the T decay products (both lepton and jet) 

are softer than the leptons from the decay chain x~ -+ ee, JtJ.l. From Eqns.(4.31) 

and (4.32) and assuming BR (x~-+ eex~, J.lJ.lX~) ~ BR (x~-+ eex~, J.lJ.lX~, eJ.lx~), 

the following re~ation is obtained 

, BFv 
0.9 X 

0
"
35 

X c41 
~ N(3l + r- jet) x 2 . 

. 2 X c31 X Er 
(4.33) 

Note that Rr cancels in the ratio. Thus, using the (3l + T- jet) detection together 

with an understanding of the T detection efficiency (cr), as well as the acceptance 

for 4 leptons (with 2 of them from T decays) versus (3 leptons +r-jet) (c4L/c31 ), 

the number of (3e 1J.1 + 3J.11e) events from T decay (Eqn.(4.31)) contained in the 

full 4-lepton sample can be obtained from the above relation. This is important, 

as it means that the x~ -+ TT background to the flavor-violating signal can be 

determined without knowing the relative branching fraction of xg to h, it, or i'r. 

Assuming that the detection efficiency for the decay r -+ rrv (which has a BR 

of 0.11) is 0.9 so that Er ~ 0.9 x 0.11, and assuming c31 ~ 1 gives 

N(3l + T- jet) ~ 11 x Ecur· (4.34) 

Independent of this, it is worth remarking that with enough statistics it might 

be possible to measure BR(xg -+ hxV, BR(xg -+ ee, JtJ.l) and BR(xg -+ i'r) 

assuming that these are the dominant decay modes of xg. The decay chain xg-+ 

hx~ -+ blix~ (where x~ is from cascade decays of squarks as usual) gives bb events 

with high Pr jets and PT· Comparing these to the number of dilepton events from 
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xg decays gives 

(4.35) 

Similarly, the number of 3l + 1 r-jet events compared to 4-lepton events is 

N(3l + T- jet) Rr 
N(4l) ex: BR(xg-+ eex~, fl,p,x~) · (4.36) 

All the events in the above two equations have in addition high pr jets and pr to 

make sure that these are from cascade decays of squarks. From these two mea-

surements and the assumption. that L:: BRs = 1 the above-mentioned branching 

ratios can be obtained. This could provide complementary information to the 

flavor violating signal dise;::3ed here. 

Returning to the main subject of this section, an observation of an excess of 

the 'flavor violating' 4-leptons events over those from T decay (Eqn.(4.31)) would 

be a strong evidence for lepton flavor violation. But, before concluding that SUSY 

lepton flavor violation has been detected, the background to the flavor violating 

4 lepton events from stop/sbottom production (see Eqn.(4.37) below) must be 

removed, and also the r-jet detection efficiency c7 must be known. These two 

issues are discussed next. 

The 7 hadronic decays from Z-+ TT at the LHC were simulated for the ATLAS 

detector in [60] 12
. This study shows that a detection efficiency E7 for a hadronic 

T decay (including the multi-prong decays, i.e, a total T decay BR of 0.65) of 

~ 40 X 0.65% with a rejection factor of 15 for non-T jets can be achieved. This is 

12There is also a study of detecting r-jets from heavy SUSY Higgs decay for the CMS detector 

(61]. 
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possible since 7-jets have lower particle multiplicity, narrower profile and smaller 

invariant mass than the QCD jets [60]. A similar detection efficiency (or even 

better detection efficiency and rejection of non-7 jets if the strategy is optimized 

for this case) for 7-jets from sparticle decays could be expected. 

The important point about this though is that it suffices to know a lower 

limit on the 7-jet detection efficiency to get an upper limit on the number 

of (3e ltt) + (3ttle) events from tau decays using the (3e 7- jet) events (see 

Eqn.(4.33)). Similarly, since c41 :S c3t, an upper limit on BFv can be obtained 
'\ 

even though these c's may not b(( known precisely. Also, if the 7-jet detection 

(and QCD jet rejection) is good, there will be larg.e number of events with 2 lep-

tons a~d 2 7-jets from 2 xg decays. These can be used in addition to the 3 lepton 

lr-jet events to estimate the background to flavor violating 4 lepton events from · 

i /7 decays. 

To reduce the stop and sbottom backgrounds a b-jet veto can be used. Before 

using this veto, the number of expected 3e ltt + 3tt le events from decays of i or b 

toW, x~, xr etc. (in the absence of any flavor mixing) can be estimated using the 

production cross-sections and branching fractions from Tables 4.2 and 4.3. The 

result is, including lepton detection efficiencies: 

N(t or b) ~50 X ccUT· (4.37) 

I Each of these events has at least 2 b quarks. So with a b-detection efficiency of 

60% (and rejection factor of 200 against non-b jets at low luminosity [62]), the 
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number of 3e 1p + · ··· events from stop/sbottom decays after the b-jet veto goes 

down to 8. This can be further reduced by using a b-tagging efficiency of 90% 

with a mistagging rate of 25% (i.e., rejection factor of 4 against non-b jets) at 

low luminosity [56, 62]; this will reduce the signal by a bit. This strategy can be 

optimized depending on the luminosity [62]. 

Lastly, to get actual number of events, the cuts used to select these events must 

also be taken into account. The effect of these cuts on the signal and background 

rates is buried in the fudge factor EcuT· For example, Pr ~ 10 GeV and I 'TJ i.:S 2.5 

is required to be able to detect e or p. Also, to reduce any remaining small SM 

background, i.e., to make sure that these are SUSY events, various cuts on pr, Pr 

of jets, a variable Meff [55, 56] related to Tlr, Prof jets, can be imposed. Analysis 

of the events simulated in [56] showed that there were rv 40 events with 4 leptons 

with nob-jets that pass all the cuts mentioned above compared to the estimate of 

rv 149 from cross-sections and BRs, Eqn.(4.29): there is an acceptance factor of 

Ecur rv 1/4 from the various kinematic cuts. We have also checked that almost all 
I 

of these (simulated) events have 2 xgs as expected. 13 There are very few events in 

this sample (from the simulation) with heavier neutralinos/chargino in agreement 

with the expectation from the very small BRs of the first two generation squarks 

to these sparticles at this point in the SUSY parameter space [56] (see Table 4.3). 

The number of events (from the simulation) with at least 1 b quark and 4 leptons 

13The information about whether an event in the simulation has xgs, is, x~s etc. is from the 

event generator. 
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is also in rough agreement (up to the acceptance factor) with the number of 4 

lepton events with at least 1 stopfsbottom expected from the cross-section and 

branching fraction estimates. 14 

Including an acceptance factor of EcuT rv 1/4 for both background and signal, 

a b-jet detection ·efficiency of 60% (which was not included in Eqn.(4.37)) and 

detection efficiency of 90% for the decay T --t 1rv, and a 66% 4-lepton detection 

efficiency (the T and lepton detection efficiencies were included in the previous esti-

mates ofS FV etc.), a summary of the expected number of events at low luminosity 

is : 

N(4l) 37 X 
L ,......, ,......, 

10 fb- 1 

SFv 
sin2 2() L ,......, 5x XX ,......, 

0.15 10 fb- 1 

BFv 2x 
L ,......, ,......, 

10 fb-:- 1 

N(3l + T- jet) 
L ,......, 3x ,......, 

10 fb- 1 

N(i or b) 
L 

(4.38) ,......, 2 X ,......, 
10 fb- 1 . 

While these numbers may be a little small for one detector and one year of running 

at low luminosity (L = 10fb-1), there is cause for optimism. More integrated 

luminosity L from> 1 year of running and/or 2 detectors can significantly increase 

the statistics. Further, a larger BR(xg --t Ll) would give more statistics. This could 

occur at a point in the SUSY parameter space with a heavier Higgs boson, and 

14 We have also checked that these simulated events do have at least 1 stopfsbottom. There 

are very few events in this sample with no stops/sbottoms but with b-jets from initial state gluon 

radiation. 
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thus a lower BR(xg-+ hx~). 

To illustrate the discovery or exclusion significance of these results, an inte­

grated luminosity of L = 100 fb- 1 is considered. This could occur for 5 years of 

running at low luminosity for two detectors 15 . For this integrated luminosity there 

are 22 4-lepton flavor violating events from the i /r background, and 30 3-lepton 

T-jet events. There will also be 125 4-lepton flavor violating events before the 

b-jet veto from the i/b background. Next, the b-tagging efficiency is optimized 

so that the i/b background is (less than or) equal to the 1a statistical error in i /r 

background while at the same time the reduction of the signal due to mistagging 

is small. This is achieved with a b-tagging efficiency of 80%, rather than the 60% 

of before. At this higher tagging efficiency there is a mistagging rate of 1 in 50, 

so there is very little reduction of the signal. With an 80% b-tagging efficiency, 

5 i/b background events remain since each event has at least 2 b-jets. Then the 

background is dominated by the i/r decays. A 5a (2a) discovery (exclusion) re­

quires that S/VB > 5 (S/VB > 2), and this requires >23 (> 9) signal events. So 

a 5a discovery is obtained for 

vfxsin20R > 0.26 (5a discovery) or sin OR> 0.13 for X rv 1. (4.39) 

15 0ne year of running at high luminosity is also possible. In this case however, the b-jet 

mistagging rate increases to 1 in 6 for a b-tagging efficiency of 80% [62]. Since most of the 

signal events occur from ij[J production and so contain at least three hard jets, approximately 

40% of the signal could be rejected. In this case the discovery (and exclusion) limits on sin OR 

increase by about 25%. In addition, the tau-jet detection efficiency at high luminosity is not 

known since a low luminosity was used in the ATLAS study. 
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If no signal is observed then the 2o- exclusion limit is 

I vfx sin 20R > 0.16 (2o- exclusion) or sin OR> 0.08 for X rv 1. ( 4.40) 

To end this section; these values of sin 20R and !:::..m/m that may be probed 

by the LHC are compared to the constraints on these parameters obtained from 

Jl--+ e"(. The LHC signal is proportional to sin2 2BR x, with X rv 1 if !:::..m 2:, rand 

X« 1 if !:::..m « r. The decay Jl--+ e"( places an tipper limit on sin2BR!:::..m/m 

(Eqn.(4.4)) so that there is competition between the two probes of flavor violation. 

Thus, in order for the signal at the LHC to be significant in the region ?f the 

(sin 2BR, !:::..mfm) plane beyond the reach of the Jl --+ e"( limit, there should be a 

range of !:::..m/m where !:::..m 2:. r so that x rv 1 and !:::..m/m is small enough (for 
'· 

a given value of sin 2BR) so that Jl --+ e"( is suppn~ssed. It will be seen that for 

!:::..mfm rv r /m (so that X rv 1), at this LHC Point, sin 2BR is unconstrained by 

the Jl --+ e"( limit, affording the LHC the opportunity to either detect a signal or 

extend the limit. 

At this Point x~ ~ B0 . A computation of the one-loop B0 contribution gives 

!:::..m1 (100 GeV mR) 2 

( ) . BR(Jl--+ e'Y). (4.41) 
sin 2BR m1 M2o 20F 0'.£, O'.R, t < 0.013 X 4.9 X lQ-11 

X! 

( 4.42) 

with 

K( ) = g(x)- g(y) ( ) = 1 + 2xlogx- i 2 

X, y ' 9 X 2( 1)3 ' x-y x-
( 4.43) 
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and 

H(x) = -x3 + 9x2 + 9x -17- (6 + 18x) logx. 
6(x- 1)5 

(4.44) 

Two useful facts are H(1) = ~K(1, 1) = -1/20; hence the factor of 20 on the 

left side of Eqn.( 4.41). At this LHC Point, mlR rv160 GeV, mx? "' 120 GeV, and 

miL "' 240 GeV. Inputing these masses into the above for!flula simplifies it to: 

sin2BR LlmR 

3 
X ---. X (1 + 0.48t) < 0.03 X 

0. 9 mR 
BR(!-l--+ ef') 
4.9 X 10-11 . 

(4.45) 

At this Point t ~ 5 - 10. However, a larger variation in t is allowed without 

affecting the flavor violating signal, since both A and sgn(!-l) do not qualitatively 

affect the 4-lepton event rate 16 . In any case, the values sin 2BR ~ 0.39 and 

flmR "' f (so that X rv 1) with a typical value off "' CXemm rv 10-2 
X mR are 

consistent with f-l --7 e')' - recall that sin 2BR ~ 0.39 and x "' 1 was assumed to 

obtain the estimate of Spv in Eqn.(4.30). In fact, at this LHC Point r rv 125 

MeV [56], so that r /m f'V 8 X w-4 which is smaller than CXem· So for Llm/m ,(, 

2 r /m ~ 1.6 X w-3 ' it follows that X f'V 1. From Eqn. ( 4.45) and for maximal 

mixing (sin 20R = 1), !:lm/m < 0.39 X 0.03/(1 + 0.48t) ~ 4 X 10-3 (for t ~ 5). 

Thus for 1.6 X w-3 ;S !:lm/m ;S 4 X w-3 and sin 2BR = 1, 1-l --7 e')' is satisfied and 

x "' 1. So at this Point even for maximal mixing there is a large range of !:lm/m 

for which x "' 1 and 1-l --7 e')' is safe. Of course, smaller mixing could be probed by 

the LHC, in which case the upper bound on !:lm/m allowed by 1-l --7 e')' is larger. 

In this case for a given sin BR there is a larger range of Llm/m for which x "' 1 (so 

that there is no suppression of the LHC signal) and 1-l --7 e')' is safe. 

16It is important to maintain the relation mxg > me.R though. 
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4.4 Summary 

The point of this Chapter is to demonstrate that it is possible to detect SUSY 

lepton flavor violation at the LHC using events with 4 leptons from the CjlSCade 

decays of squarks provided the following conditions are satisfied: 

0. Either R-parity is conserved or x~ (LSP) decays outside the detector, 

1. xg pair production in cascade decays of squarks is large and xg has a large 

decay branching fraction to [* l (to get enough statistics), 

2. Hadronic decays of TS can be detected with a known efficiency so that the 

background from the xg ~ TT decay can be estimated, 

3. The b-jet detection efficiency is good so that the background from events 

with stop/sbottom can be rejected, 

4. The stop/sbottom production rate, either direct or in gluino decays, is not 

too much larger than the production of first two generation squarks, 

5. The first two generation squarks decay largely to Xg, X~ and Xf, so that 

the background to flavor violating 4 lepton events from decays of heavier neu­

tralinos/chargino to Ws, lighter chargino, heavier sleptons etc. is small. This 

condition can be realized in the so-called gaugino-like region, 

6. The mass splitting is .6.m rv r or larger, so there is no suppression of the 

signal due to the quantum interference effect. 

The arguments presented here are clearly semi-quantitative, and further study 

requiring a detailed simulation of these processes is required. 
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Chapter 5 

Finetuning in Low-Energy Gauge Mediation 

The fine tuning in models of low energy gauge mediated supersymmetry break-

ing required to obtain the correct Z mass is quantified. To alleviate the fine tuning 

problem, a model with split (5 + 5) messenger fields is presented. This model has 

additional triplets in the low energy theory which get a mass of 0(500) GeV from 

a coupling to a singlet. The _improvement in fine tuning is quantified and the spec-

trum in this model is discussed. The same model with the above singlet .coupled 

to the Higgs doublets to generate the J1- term is also discussed. A Grand Unified 

version of the model is constructed and a known doublet-triplet splitting mecha-

nism is used to split the messenger (5 +S)'s. A complete model is presented and 

some phenomenological constraints are discussed. 

5.1 Introduction 

One of the outstanding problems of particle physics is the origin of electroweak 

symmetry breaking (EWSB). In the Standard Model (SM), this is achieved by 

one Higgs doublet which acquires a vacuum expectation value (vev) due to a 

negative mass squared which is put in by hand. The SM has the well known 

gauge hierarchy problem [4]. It is known that supersymmetry (SUSY) stabilizes 
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the hierarchy between the weak scale and some other high scale without any fine 

tuning if the masses of the superpartners are less than few TeV [63, 64]. The 

Minimal Supersymmetric Standard Model (MSSM) is considered as a low energy 

effective theory in which the soft SUSY breaking terms at the correct scale are 

put in by hand. This raises the question : what is the origin of these soft mass 

terms, i.e., how is SUSY broken ? If SUSY is broken spontaneously at tree level in 

the MSSM, then there is a colored scalar lighter than the up or down quarks [65]. 

So, the superpartners have to acquire mass through either radiative corrections 

or non-renormal~zable operators. Thus there is a "hidden" sector where SUSY is 

broken spontaneously at tree-level and then communicated to the MSSM by some 

"messengers". 

There are two problems here: how is SUSY broken in the hidden sector at 

the right scale and what are the messengers ? There are models in which a 

dynamical superpotential is generated by non-perturbative effects which breaks 

SUSY [66]. The SUSY breaking scale is related to the·Planck scale by dimensional 

transmutation. Two possibilities have been discussed in the literature for the 

messengers. One is gravity which couples to both the sector3 [67]. In a supergravity 

theory, there are non-renormalizable couplings between the two sectors which 

generate soft SUSY breaking operators in the MSSM once SUSY is broken in the 

"hidden" sector. In the absence of a flavor symmetry, this theory has to be fine 

tuned to give almost degenerate squarks and sleptons of the first two generations 

which is required by Flavor Changing Neutral Current (FCNC) phenomenology 
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[65, 68]. The other messengers are the SM gauge interactions [11]. In these models, 

the scalars of the first two generations are naturally degenerate since they have 

the same gauge quantum numbers. This is an attractive feature of these models, 

since the FCNC constraints are naturally avoided and no fine tuning between the 

masses of the first two generation scalars is required. If this lack of fine tuning is a 

compelling argument in favor of these models, then it is important to investigate 

whether other sectors of these models are fine tuned. In fact, it will be argued 

(and this is also discussed in [69, 70, 71]) that the minimal model (to be defined 

in section 5.2) of low-energy gauge-mediated SUSY breaking requires a minimum 

7% fine tuning to generate a correct vacuum (Z mass) if no superpartners are 

discovered at LEP2. Further, if a gauge-singlet and extra vector-like quintets 

are introduced to generate the "11" and "B 11" terms, then the minimal model of 

low energy gauge-mediated SUSY breaking requires a few percent fine tuning to 

correctly break the electroweak symmetry. These fine tunings makes it difficult 

to understand, within the context of these models, how SUSY is to offer some 

understanding of the origin of electroweak symmetry breaking and the scale of the 
' 

Z and W gauge boson masses. 

This chapter is organized as follows. Section 5.2 reviews both the "messenger 

sector" in low energy gauge-mediated SUSY breaking models that communicates 

o/ 

SUSY breaking to the Standard Model and the pattern of the sfermion and gaugino 

masses that follow. Section 5.3 quantifies the fine tuning in the minimal model 

using the Barbieri-Giudice criterion [63). Section 5.4 describes a toy model with 
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split (5 + 5) messenger representations that improves the fine tuning. To maintain 

gauge coupling unification, additional triplets are added to the low energy theory. 

They acquire a mass of 0(500) GeV by a coupling to a singlet. The fine tuning in 

this model is improved to rv 40%. The sparticle phenomenology of these models 

· is also discussed. Section 5.5 discusses a version of the toy model where the above 

mentioned singlet generates the J.-t and J.-t~ terms. This is identical to the Next­

to-Minimal Supersymmetric Standard Model (NMSSM) [72] with a particular 

pattern for the soft SUSY breaking operators that follows from gauge-mediated 

SUSY breaking and this particular solution to the fine tuning problem. Then this 

model is shown to be tuned to rv 20%, even if LEP does not discover SUSY /light 

Higgs. It is also shown that the NMSSM with one complete messenger (5 + 5) is 

fine tuned to rv 2%. Section 5.6 discusses how it is possible to make this toy model · 

compatible with a Grand Unified Theory (GUT) [13] based upon the gauge group 

SU(5) x SU(5). The doublet-triplet splitting mechanism of Barbieri, Dvali and 

Strumia [73] is used to split both the messenger representations and the Higgs 

multiplets. Section 5. 7 presents a model in which all operators consistent with 

symmetries are present and for which the low energy theory is th8 model of section 

5.5. In this model R-parity (Rp) is the unbroken subgroup of a ?4 global discrete 

symmetry that is required to solve the doublet-triplet splitting problem. This 

model has some metastable particles which might cause a cosmological problem. 

Appendix A gives the expressions for the Barbieri-Giudice parameters (for the 

fine tuning) for the MSSM and the NMSSM. 

119 



5.2 Messenger Sector 

In the models of low energy gauge-mediated SUSY breaking [69, 74] (hence-

forth called LEGM models), SUSY breaking occurs dynamically in a "hidden" 

sector of the theory at a scale Adyn that is generated through dimensional trans-

mutation. SUSY breaking is communicated to the Standard Model fields in 

two stages. First, a non-anomalous U(1) global symmetry of the hidden sec-

tor is weakly gauged. This U(1)x gauge -interaction communicates SUSY break-

ing from the original SUSY breaking sector to a messenger sector at a scale 

Amess "" axAdyn/(4n) as follows. The particle content in the messenger sector 

consists of fields¢>+, <1>- charged under this U(1)x, a.gauge singlet field S, and 

vector-like fields that carry Standard Model quantum numbers (henceforth called 

messenger quarks and leptons). In the minimal LEG M model, there is one set 

of vector-like fields, ij, l, and q, [that together form a (5 + 5) of SU(5). This 

is a sufficient condition to maintain unification of the SM gauge couplings. The 

superpotential in the minimal model is 

(5.1) 

The scalar potential is 

V = L 1Fil2 + m!l<i>+l2 + m:_l<i>-1 2
· (5.2) 

i 

In the models of [69, 74], the ¢>+, <1>- fields communicate (at two~loops) with the 

hidden sector fields through the U(1) gauge interactions. Then, SUSY breaking in 
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the original sector generates a negative value"" - (axArtyn) 2 /(47r) 2 for the mass 

parameters m~, m:_ of the¢+ and cl>- fields. This drives vevs of 0 (Amess) for the 

scalar components of both ¢+ and c/>-, and also for the scalar and F-component 

of S if the couplings )..8 , gx and )..</> satisfy the inequalities derived in [70, 75]. 1 

Generating a vev for both the scalar and F-component of S is crucial, since this 

generates a non-supersymmetric spectrum for the vector-like fields q and l. The 

spectrum of each vector-like messenger field consists of two complex scalars with 

masses M 2 ±Band two Weyl fermions with mass M where M = )..S, B = )..F8 

and ).. is the coupling of the vector-like fields to S. Since the breaking of the 

SM at this stage is undesired, M 2 
- B 2:0. In the second stage, the messenger 

fields are integrated out. As these messenger fields have SM gauge interactions, 

SM gauginos acquire masses at one loop and the sfermions and Higgs acquire soft 

scalar masses at two-loops [11]. The gaugino masses at the scale at which the 

messenger fields are integrated out, Amess ~ M are [74] 

aa(Amess) '""" a( ( Fs ) 
Ma = 47r Asusy ~ NR m)fr AmS2 · (5.3) 

The sum in Eqn.(5.3) is over messenger fields (m) with normalization 

Tr(TaTb) = Nfl(m)6ab where the T's are the generators of the gauge group Gin 

the representation R, fr(x) = 1 + O(x), and Asusy = B/M = Fs/S = xAmess 

with x = B / M 2
. 

2 Henceforth, the approximation AsusY ~ Amess is used. The 

1 This point in field space is a local minimum. There is a deeper minimum where SM is broken 

[70, 75]. This problem is avoided by adding another singlet to the messenger sector [70]. This 

does not change the conclusions found here about the fine tuning. 
2If all the dimensionless couplings in the superpotential are of 0(1), then x cannot be much 
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exact one-loop calculati_on [76] of the gaugino mass shows that !1 ( x) :::; 1.3 for 

x :::; 1. The soft scalar masses at Amess are [74] 

(5.4) 

where C~ ( si) is the Casimir of the representation of the scalar i in the gauge group 

G and h(x) = 1 + O(x). The exact two-loop calculation [76] which determines h 

shows that for x :::;0.8 (0.9), h differs from one by less than 1%(5%). Henceforth 

/ 1 ( x) = 1 and h ( x) = 1 are used. In the minimal LEG M model 

( ) 
aa(Amess) 

Me Amess = 47!" Amess, (5.5) 

2A~ess X (5.6) 

(
C (a3(Amess))

2 
C (a2(Amess))

2 
~ (a1(Amess)Y)

2
) 

3 47r + 2 47r + 5 47r ' 

where Q = T3L+Y and a 1 is the SU(5) normalized hypercharge coupling. Further, 

c3 = 4/3 and c2 = 3/4 for colored triplets and electroweak doublets respectively. 

The spectrum in the models is determined by only a few unknown parameters. 

As Eqns.(5.3) and (5.4) indicate, the SUSY breaking mass parameters for the 

Higgs, sfermions and gauginos are 

(5.7) 

The scale of Amess is chosen to be '"" 100 Te V so that the lightest of these particles 

escapes detection. It follows that the intrinsic scale of supersymmetry breaking, 

smaller than 1. 
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Adyn, is rv 10000 TeV. The goldstino decay of the lightest Standard Model super­

partner then occurs outside the detector [77]. The phenomenology of the minimal 

LEG M model is discussed in detail in [77]. 

5.3 Fine Tuning in the Minimal LEGM 

A desirable feature of gauge mediated SUSY breaking is the natural suppression 

of FCNC processes since the scalars with the same gauge quantum numbers are 

degenerate [11]. But, the minimal LEGM model introduces a fine tuning in the 

Higgs sector unless the messenger scale is low. This has been previously discussed 

in [69, 70] and quantified more recently in [71]. This discussion is outlined in order 

to introduce some notation. 

The superpotential for the MSSM is 

(5.8) 

The scalar potential is 

where V1-1oop is the one-loop effective potential. The vev of Hu (Hd), denoted by 

vu(vd), is responsible for giving mass to the up (down)-type quarks, 11i = mkd +112
, 

f-L~ = mku + 112 and f-L~, 3 m~", m~d are the SUSY breaking mass terms for the 

3 p,~ is often written as B p,. 
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--------------

Higgs fields. 4 Extremizing this potential determines, with tan f3 == vu/vd, 

1 2 -mz 
2 

Pi - fi,~ tan 2 f3 
tan2 f3- 1 ' 

2 

sin2(3 = 2 _
2

J..L3 _
2

, 

. f-Ll + f-L2 

(5.10) 

(5.11) 

where M = f..LI + 28~-loopfavl. For large tan (3, m~/2 :=:::: -(mk, + J..L
2
). This 

indicates that if lmk,. I is large relative to m~, the J..L
2 term must cancel this large 

number to reproduce the correct value for m~. This introduces a fine tuning in 

the Higgs potential, that is naively of the order m~/(2lmkJ). It is·demonstrated 

below that this occurs in the minimal LEG M model. 

In the minimal LEG M model, a specification of the messenger particle con-

tent and the messenger scale Amess fixes the sfermion and gaugino spectrum 

at that scale. For example, the soft scalar masses for the Higgs fields are 

:=:::: a2(Amess)Amess/(47r). Renormalization Group (RG) evolution from Amess to 

the electroweak scale reduces mk .. due to the large top quark Yukawa coupling, 

At, and the squark soft masses. The one loop Renormalization Group Equation 

(RGE) for mk .. is (neglecting gaugino and the trilinear scalar term (HuQuc) con-

tributillllS ) 

dm2 (t) 3..\2 

H.. :::::: _t (m2 (t) + m~ (t) + m2- (t)) dt 81f2 Hu uc Q ' 
(5.12) 

which gives 

m~..(t :=:::: ln(Ami )) :=:::: m~..(0)- 83..\~(m~jO)+m~c(O)+m~(O))ln(Ame_ss). (5.13) 
~s 1f ~ 

4 The scale dependence of the parameters appearing in the potential is implicit. 
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On the right-hand side of Eqn.(5.13) the RG scaling of m~ and m~c has been ne­

glected. Since the logarithm itl ~ln(Amess/mi) is small, it is naively expected that 

m'k, will not be driven negative enough and will not trigger electroweak symmetry 

breaking. But in this case the squarks are heavy. For example, the squarks are 

~ 500 GeV (1 TeV) for a messenger scale Amess = 50 TeV (100 TeV. Thus the 

radiative corrections from virtual top squarks are large. A numerical solution of 

the one-loop RGE (including gaugino and the trilinear scalar term (Hjjuc) con-

tributions) determines -m'k, =(275 GeV) 2 ((550 GeV)2
) for Amess =50 TeV (100 

TeV) and setting At = 1. Therefore, m~/(2lm't-J) rv0.06 (0.01), an indication of 

the fine tuning required. · 

To reduce the fine tuning in the Higgs sector, it is necessary to reduce lm't-J; 

ideally so that m't ~ -0.5m~. The large value of lm'k I at the weak scale is a 
u . u 

consequence of the large hierarchy in the soft scalar masses at the messenger scale: 

m~R < m'k « m2Q- -c· Models of sections 5A,5.5, and 5.7 attempt to reduce the 
u ,u 

ratio m~/m'k, at the messenger scale and hence improve the fine tuning in the 

Higgs sector. 

The fine tuning may be quantified by applying one of the criteria of [63, 64]. 

The value 0* of a physical observable 0 will depend on the fundamental param-

eters (.Xi) of the theory~ The fundamental parameters of the theory are to be 

distinguished from the free parameters of the theory which parameterize the so-

lutions to 0(.\i) = 0*. If the value 0* is unusually sensitive to the underlying 

parameters (.Xi) of the theory then a small change in Ai produces a large change 
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in the value of 0. The Barbieri-Giudice function 

·(5.14) 

quantifies this sensitivity [63]. This particular value of 0 is fine tuned if the 

sensitivity to >.i is larger at 0 = 0* than at other values of 0 [64]. If there are 

values of 0 for which the sensitivity to >.i is small, then it is probably sufficient 

to use c( 0, >.i) as the measure of fine tuning. 

The function c(m~, >.i) is determined by performing the following. The spar-

ticle spectrum in the minimal LEG M model is determined by the four parame-

ters Amess, J.L~, J.L, and tan f3 5
. The scale Amess fixes the boundary condition for 

the soft scalar masses, and an implicit dependence on tan f3 from At, >.b and A7 

arises in RG scaling6 from J.LRG = Amess to the weak scale, that is chosen to be 

J.L'1c = mz + ~ ( mz + mzc). The extremization conditions of the scalar potential 

(Eqns.(5.10) and (5.11)) together with mz and mt leave two free parameters that 

are chosen to be Amess and tan f3 (see Appendix A for the expressions for these 

functions). 

A numerical analysis yields the value of c(m~, J.L2 ) that is displayed in Figure 

5.1 in the (tan /3, Amess) plane. Note that c(m~, J.L2) is large throughout most of 

the parameter space, except for the region where tan f3 ~ 5 and the messenger 

scale is low. A strong constraint on a lower limit for Amess is from the right-

handed selectron mass. Contours meR = 75 Ge V ("' the LEP limit from the 

5 Here an arbitrary JL~ at Amess is allowed for. 
6 The RG scaling of At was neglected. 
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~· 
run at vfS ~ 170 GeV [78]) and 85 GeV ( rv the ultimate LEP2 limit [79]) are 

also plotted. The (approximate) limit on the neutralino masses from the LEP 

run at vfS ~ 170 GeV, mx~ + mxg = 160 GeV and the ultimate LEP2 limit, 

mx~ + mxg rv 180 GeV are also shown in Figures 5.1a and 5.1c for sgn(~-t) = -1 

and Figures 5.1b and 5.1d for sgn(~-t) = +1. The constraints from the present and 

the ultimate LEP2 limits on the chargino mass are weaker than or comparable to 

those from the selectron and the neutralino masses and are therefore not shown. 

If mz were much larger, then 'c rv 1. For example, with mz = 275 GeV (550 GeV) 

and Amess= 50 (100) TeV, c(m~; ~-t2 ) varies between 1 and 5 for 1.4 ~ tan (3 ~ 2, 

and is ~ 1 for tan (3 > 2. This suggests that the interpretation that a large value 

for c(m~; ~-t2 ) implies that mz is fine tuned is probably correct. 

From Figure 5.1 it is concluded that in the minimal LEGM model a fine tuning 

of approximately 7% in the Higgs potential is required to produce the correct value 

for mz if no sparticles are discovered at LEP2. Further, for this fine tuning the 

parameters of the model are restricted to the region tan (3 :<- 5 and Amess ~ 45 

TeV, corresponding to me.n ·~ 85 GeV. It has also been checked that adding more 

complete (5 + 5)'s does not reduce the fine tuning. 
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Figure 5.1: Contours of c(m~; J-L2
) =(10, 15, 20, 25, 40, 60) for a MSSM with a 

messenger particle content of one ( 5 + 5). In figures (a) and (c) sgn(J-L) = -1 and 

in figures (b) and (d) sgn(J-L) = +1. The constraints considered are: (I) meR =75 

GeV, (II) mx~ + m-xg = 160 GeV, (III) meR =85 GeV, and (IV) mx~ + m-xg = 180 

GeV. 
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5.4 A Toy Model to Reduce Fine Tuning 

5.4.1 Model 

In this section the particle content and couplings in the messenger sector that 

are sufficient to reduce lmku I is discussed. The aim is to reduce m~/mku at the 

scale Amess. 

The idea is to increase the number of messenger leptons (SU(2) doublets) 

relative to the number of messenger quarks (SU(3) triplets). This reduces both 

m~/mku and m~/m~R at the scale Amess (see Eqn.(5.4)). This leads to a smaller 

value of lmkJ in the RG scaling (see Eqn.(5.13)) and the scale Amess can be 

lowered since meR is larger. For example, three doublets and one triplet at a scale 

Amess = 30 TeV, so that meR ~ 85 GeV gives lmk..(m¢)1 ~ (100GeV) 2 for At= 1. 

This may be achieved by the following superpotential in the messenger sector 

w - - - 1 3 
Aq1 Sq1til + .A~tSl1h + At2 Sl2l2 + At3 Sl3l3 + 3-XsS 

1 
+-X4>S¢J_¢J+ + 3-XNN3 + Aq2 Nq2q2 + Aq3 Nq3q3, (5.15) 

where N is a gauge singlet. The two pairs of triplets q2 , ij2 anJ q3 , ij3 are required at · 

low energies to maintain gauge coupling unification. In this model the additional 

leptons l2 , l2 and l3 , ~couple to the singletS, whereas the additional quarks couple 

to a different singlet N that does not couple to the messenger fields ¢Y+, ¢J_. 

This can be enforced by discrete symmetries (such a model is discussed in section 

5.7). Further, discrete charges that forbid any couplings between Nand S at the 
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renormalizable level are assumed to exist (this is true of the model in section 5. 7) 

so that SUSY breaking is communicated first to S and to N only at a higher loop 

level. 

5.4.2 Mass Spectrum 

Before quantifying the fine tuning in this model, the mass spectrum of the 

additional states is briefly discussed. While these fields form complete represen­

tations of SU(5), they are not deg~nerate in mass. The vev and F-component 

of the singlet S gives a mass Amess to the messenger lepton multiplets if the 

F-term splitting between the scalars is neglected. As the squarks in Qi + iii 

(i=2,3) do not couple to S, they acquire a soft scalar mass from the same two­

loop diagrams that are responsible for the masses of the MSSM squarks, yielding 

mii ~ a3 ( Amess) Asu sy / ( v'61r). The fermions in q+ij also acquire mass at this scale 

since, if either Aq2 or Aq3 "' 0(1), a negative value for m~ (the soft scalar mass 

squared of N) is generated from the -AqN qij coupling at one loop and thus a vev for 

N"' mq is generated. The result is m!/mq ~ v'67r/a3(Amess)(Amess/AsusY) ~ 85. 

The mass splitting in the extra fields introduces a threshold correction to 

sin2 Ow if it is assumed that the gauge couplings unify at some high scale 

McuT ~1016 GeV. This splitting shifts the prediction for sin2 Ow by an amount 

~ -7x 10-4 In(m!/mq)n, where n is the number of split (5+5). 7 In this case n =2 

7The complete (5 + 5), i.e., h,l1 and q1 ,ih, that couples to Sis also split because >.1 f. Aq 

at the messenger scale due to RG scaling from Maur to Amess· This splitting is small and 
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and mtfmq"' 85, so .6.sin2 Ow"' -6 x 10-3
• If a3 (Mz) and aem(Mz) are used as. 

input, then using the two-loop RG equations sin2 Ow(MS) = 0.233 ± 0(10-3 ) 

is predicted in a minimal SUSY~GUT (80]. The error is a combination of 

weak scale SUSY and GUT threshold corrections(80]. The central value of 

the theoretical prediction is a few percent higher than the measured value of 

sin2 Ow(MS) = 0.231 ± 0.0003(36]. The. split extra fields shift the prediction of 

sin2 Ow to rv 0.227 ± O(lo-3) which is a few percent lower than the experimental 

value. In sections 5.6 and 5. 7 it is shown that this spectrum is derivable from a 

SU(5) x SU(5) GUT in which the GUT ~hreshold corrections to sin2 Ow could be 

"' 0(10-3) -0(10-2
) (81]. It is possible that the combination of these GUT thresh­

old corrections and the split extra field threshold corrections make the prediction 

of sin2 Ow more consistent with the observed value. 

5.4.3 Fine Tuning 

To quantify the fine tuning in these class of models the analysis of section 

5.3 is applied. In the RG analysis the RG scaling of At, the effect of the extra 

vector-like triplets on the RG scaling of the gauge couplings, and weak scale SUSY 

threshold corrections were neglected. That this approximation is consistent has 

been checked a postiori. As in section 5.3, the two free parameters are chosen 

to be Amess and tan {3. Contours of constant c(m~, J.L2
) are presented in Figure 

5.2. Shown are contours of mx? + mxg = 160 GeV, and meR = 75 GeV in Figure 

neglected. 
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5.2a for sgn(J-L) = -1, and 5.2b for sgn(J-L) = +1. These are roughly the present 

limits from LEP (including the run at ..jS ~ 170 Ge V [78]). The (approximate) 

ultimate LEP2 reaches [79] mx? + mxg = 180 GeV, and meR= 85 GeV are shown 

in figure 5.2c for sgn(J-L) = -1 and figure 5.2d for ;gn(J-L) = +1. Since J.-L2 (~ (100 

GeV) 2
) is much smaller in these models than in the minimal LEGM model, the 

neutralinos (x~ and xg) are lighter so that the neutralino masses provide a stronger 

constraint on Amess than does the slepton mass limit. The chargino constraints 

are comparable to the neutralino constraints and are thus not shown. It is clear 

that there are areas of parameter space .in which the fine tuning is improved to ",...; 

40% (see figure 5.2)'. 

While this model improves the fine tuning required of the J-l parameter, it would 

be unsatisfactory if further fine tunings were required in other sectors of the model, 

for example, the sensitivity of m~ to J-l~, Amess and At and the sensitivity of mt 

to J.-L
2

, J.t~, Amess and At. These are all found to be less than or comparable to 

c(m~; J.-L2). The other fine tunings are now discussed in detail. 

For large tan {3, the sensitivity of m~ top~, c(m~; J-LD ex 1/ tan2 {3, and is there­

fore sr1aller than c(m~; J.-L2
). A numerical analysis shows that c(m~; J-LD ;:; c(m~; J.-L

2
) 

for all tan f3. 

In the one-loop approximation m'ku and m'kd at the weak scale are pro­

portional to A~ess since all the soft masses scale with Amess and there is only 

a weak logarithmic dependence on Amess through the gauge couplings. It is 

found numerically that (A~essfm'kJ(8m'kj8A~ess) "' 1. Then, c(m~; A~ess) ~ 
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Figure 5.2: Contours of c(m~; f-12
) =(1, 2, 3, 5, 7, 10) for a MSSM with a messenger 

particle content of three (l +f)'s and one (q + ij). In figures (a) and (c) sgn(f-1) = 

-'-1 and in figures (b) and (d) sgn(f-1) = +1. The constraints considered are: 

(I) meR =75 GeV , (II) mx? + mxg = 160 GeV, (III) meR =85 GeV, and (IV) 
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most of the parameter space. 

In the one-loop approximation, m7-I)t) is 

(5.16) 

Appendix A) 

(5.17) 

This result measures the sensitivity of m~ to the value of At at the electroweak 

scale. While this sensitivity is large, it does not reflect the fact that At(Mp1) 

is the fundamental parameter of the theory, rather than At(Mweak)· Using both 

numerical and analytic computations it is found that, for. this model with three 

(5 + 5)'s in addition to the MSSM particle content, b)..t(Mweak) ~ 0.1 x b)..t(Mpt), 

and therefore 

(5.18) 

For a scale of Amess = 50 TeV (mQ ~ 600 GeV), c(m~; At(Mpt)) is comparable 

to c(m~; J.L2
) which is ~ 4 to 5. At a lower messenger scale, Amess ~ 3..__5 TeV, 

corresponding to squark masses of~ 450 GeV, the sensitivity of m~ to At(Mp1) is 

~ 2.8. This is comparable to c(m~; J.L2 ) evaluated at the same scale. 

The sensitivity of mt to the fundamental parameters is discussed next. Since, 
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687 616 612 319 125 

656 546 

Table 5.1: Soft scalar masses in GeV for messenger particle content of three (l+[)'s 

and one q + ij and a scale Amess = 50 Te V. 

(5.19) 

is obtained. Numerical computations determine that the last term in c(mt; Ai) is 

small compared to c(m~; Ai) and thus over most of parameter space c(mt; Ai) ~ 

~c(m~; Ai)· As before, the sensitivity of mt to the value of At at the GUT/Planck 

scale is much smaller than the sensitivity to the value of At at the weak scale. 

5.4.4 Sparticle Spectrum 

The sparticle s~ectrum is now briefly discussed to highlight deviations from 

the mass relations predicted in the minimal LEGM model. For example, with 

three doublets and one triplet at a scale of A = 50 TeV, the soft scalar masses 

(in GeV) at a renormalization scale f-l1a = m; + ~(m~3 + m~3 ) ~ (630 GeV)2, for 

At = 1, are shown in Table 5.1. 

Two observations that are generic to this type of model are: (i) By construe-
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tion, the spread in the soft scalar masses is less than in the minimal LEG M model. 

(ii) The gaugino masses do not satisfy the one-loop SUSY-GUT relation Mdai = 

constant. In this case, for example, M3/a3 : M2/a2 ~ 1:3 and M3/a3 : MI/a1 ~ 

5:11 to one-loop. 

It is also found that for tan j3 ~ 3, the Next Lightest Supersymmetric Particle 

(NLSP) is one of the neutralinos, whereas for tan j3 ;S 3, the NLSP is the right­

handed stau. Further, for these small values of tan /3, the three right-handed 

sleptons are degenerate to within~ 200 MeV. 

5.5 NMSSM 

In section 5.3, the J-l term and the SUSY breaking mass J-l~ were put in by 

hand. There it was found that these parameters had to be fine tuned in order to 

correctly reproduce the observed Z mass. The extent to which this is a "problem" 

may only be evaluated within a specific model that generates both the J-l and J-l~ 

terms. 

For this reason, in this section a possible way to generate both the J-l term and 

J-l~ term in a manner that requires a minimal modification to the model e>f either 

section 5.2 or section 5.4 is discussed. The easiest way to generate these mass terms 

is to introduce a singlet N and add the interaction N HuHd to the superpotential 

(the NMSSM)[72]. The vev of the scalar component of N generates J-l and the vev 

of the F -component of N generates J-l~. 

Note that for the "toy model" solution to the fine tuning problem (section 
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5.4), the introduction of the singlet occurs at no additional cost. Recall that in 

that model it was necessary to introduce a singlet N, distinct from S, such that 

the vev of N gives mass to the extra light vector-like triplets, qi, iii (i = 2, 3) 

(see equation 5.15). Further, discrete symmetries (see section 5.7) are imposed to 

isolate N from SUSY breaking in the messenger sector. This last requirement is 

necessary to solve the fine tuning problem: if both the scalar and F -component 

of N acquired a vev at the same scale as S, then the extra triplets that couple to 

N would also act as messenger fields. In this case the messenger fields would form 

complete (5 + 5)'s and the fine tuning problem would be reintroduced. With N 

isolated from the messenger sector at tree level, a vev for N at the electroweak 

scale is naturally generated, as discussed in section 5.4. 

Next, a comment on the necessity and origin of these extra triplets is made. 

Recall that in the toy model of section 5.4 these triplets were required to maintain 

the SUSY-GUT prediction for sin2 Ow. Further, it will be seen that they are 

required in order to generate a large enough -m~ (the soft scalar mass squared 

of the singlet N). Finally, in the GUT model of section 5.7, the lightness of these 

triplets (as compared to the missing doublets) is the consequence of a doublet-

triplet splitting mechanism. 

The superpotential in the electroweak symmetry breaking sector is 

(5.20) 

which is similar to an NMSSM except for the coupling of N to the triplets. The 
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superpotential in the messenger sector is given by Eqn.(5.15). 

The scalar potential is 8 

(5.21) 

The extremization conditions for the vevs of the real components of N, Hu and 

Hd, denoted by VN, Vu and Vd respectively (with v = Jv?;_ + v~ ~ 250 GeV), are 

with 

J-l2 

-2 m­z 

1 2 
2mz 

sin 2{3 

" 

(5.22) 

fii - ji~ tan2 {3 
(5.23) 

tan2 {3- 1 
J-l2 

2-2: -2' 
f-l2 I-ll 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

The expected size of the Yukawa couplings Aq, AN and >..H is now discussed. 

The RGE's must be used to evolve these couplings from their values at Maur or 

Mpt to the weak scale. The quarks and the Higgs doublets receive wavefunction 

8In models of gauge mediated SUSY breaking, AH=O at tree-level and a non-zero value of 

AH is generated at one loop. The trilinear scalar term AN N 3 is generated at two-loops and is 

neglected. 
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renormalization from SU(3) and SU(2) gauge interactions respectively, whereas 

the singlet N does not receive at one-loop any wavefunction renormalization from 

gauge interactions. So, the couplings at the weak scale are in the order: Aq "' 

0(1) > >.H > AN if they all are 0(1) at the GUT /Planck scale. 

It is next shown that without the N qij coupling it is difficult to drive a vev for 

N. The one loop RGE for mJv is 

Since N is a gauge-singlet, mJv = 0 at Amess·· Further, if Aq = 0, an estimate for 

mJv at the weak scale is then 

(5.29) 

i.e., >.H drives mJv negative. The extremization condition for VN, Eqn.(5.22), and 

using Eqns.(5.24) and (5.26) (neglecting AH) shows that 

(5.30) 

has to be negative for N to acquire a vev. This implies that m'k., and m'kd at Amess 

have to be greater than "' (350 GeV) 2 which implies that a fine tuning of a few 

percent is required in the electroweak symmetry breaking sector. With Aq "'0(1), 

however, there is an additional negative contribution to mJv given approximately 

by 

(5.31) 
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-- -- -----

This contribution dominates the one in Eqn.(5.29) since Aq > AH· and the squarks 

ij, q have soft masses larger than the Higgs. Thus, with Aq =I= 0, m~ + AkV2 /2 is 

naturally negative. 

Fixing mz and mt, leaves the following parameters: Amess, Aq, AH, AN, tan,8, 

and VN. Three of the parameters are fixed by the three extremization conditions, 

leaving three free parameters that for convenience are chosen to be Amess, tan ,8 2:1, 

and AH. The signs of the vevs are fixed to be positive by requiring a stable vacuum 

and no spontaneous C P violation. The three extremization equations determine 

the following relations 

(5.32) 

(5.33) 

(5.34) 

where 

1 m2 tan2 a - m2 
--m2 + H,. fJ Hd 

2 z 1- tan2 ,8 
(5.35) 

sin2,8(2J-L2 + ih~,. + ih~d). (5.36) 

The superpotential term N HuHd couples the RGE's for mkv., m'kd and m~. Thus 

the values of these masses at the electroweak scale are, in general, complicated 

functions of the Yukawa parameters At, AH, AN and Aq· In this case, two of these 

Yukawa parameters (Aq and AN) are determined by the extremization equations 

and a closed form expression for the derived quantities cannot be found. To 

simplify the analysis, the dependence of m't,. and m'td on AH induced in RG scaling 
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from Amess to the weak scale is neglected. · Then m~u and m~d depend only on 

Amess and tan f3 and thus closed form solutions for AN, VN and m'f.v can be obtained 

using the above equations. Once m'fv at the weak scale is obtained, the value of 
\ 

Aq is obtained by using an approximate analytic solution. An exact numerical 

solution of the RGE's then shows that the above approximation is consistent. 

5.5.1 Fine Tuning and Phenomenology 

The fine tuning functions considered below are c(O; >..H), c(O; AN), c(O; At), 

c( 0; Aq) and c( 0; Amess) where 0 is either m~ or mt. The expressions for the fine 

tuning functions and other details are given in Appendix A. In the RG analysis the 

approximations discussed in subsection 5.4.3 and above were used and found to be 

consistent. Fine tuning contours of c( m~; )..H) are displayed in Figures 5.3a and 

5.3b for )..H = 0.1 and Figures 5.3c and 5.3d for )..H = 0.5. Numerical computations 

show that the other fine tuning functions are either smaller or comparable to 

The existing phenomenological constraints on this model and also the ultimate 

constraints if LEP2 does not discover SUSY /light Higgs(h) are discussed. These 

are shown in Figures 5.3a, 5.3c and Figures 5.3b, 5.3d respectively. The processes 

9 In computing these functions the weak scale value of the couplings AN and AH has 

been used. But since AN and AH do not have a fixed point behavior, it is found that 
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Figure 5.3: Contours of c(m~; AH) for the NMSSM of Section 3.5 and a messen-

ger particle content of three (l + [)'s and one (q + ij). In figures (a) and (b), 

c(m~; AH)=(4, 5, 6, 10, 15) and AH =0.1. In figures (c) and (d), c(m~; AH) =(3, 

4, 5, 10, 15, 20) and AH=0.5. The constraints considered are: (I) mh + ma = mz, 

(II) men =75 GeV, (III) mx? + mxg = 160 GeV, (IV) mh = 92 GeV, (V) men =85 

GeV, and (VI) mx? + mxg = 180 GeV. For AH =0.5, the limit mh > 70 GeV 

constrains tan /3 < 5 (independent of Amess) and is thus not shown. 
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eRen observable at LEP are considered; Since this model also has a light pseu-

doscalar, the upsilon decays T -t ('-y + pseudoscalar) are also considered. It is 

. found that the model is phenomenologically viable and requires a t;:v 20% tuning 

even if no new particles are discovered at LEP2. 

The constraints on the scalar and pseudoscalar spectra ofthis model are first 

considered .. There are three neutral scalars, two neutral pseudoscalars and one 

complex charged scalar. First consider the mass spectrum of the pseudoscalars. 

At the boundary scale Amess, SUSY is softly broken in the visible sector only by 

the soft scalar masses and the gaugino masses. Further, the superpotential of 

Eqn.(5.20) has an R-symmetry. Therefore, at the tree level, i.e., with AH =0, the 

scalar potential of the visible sector (equation 5.21) has a global symmetry. This 

symmetry is spontaneously broken by the vevs of NR, H!:, and H!} (the superscript 

R denotes the real component of fields), so that one physical pseudoscalar is 

massless at tree level. It is 

. 1 . 
a= V ( vNN

1 + v sin 2{3 cos {JH~ + v sin 2{3 sin fJHJ), 
v'Jv + v2 sin2 2{3 

(5.37) 

where the superscripts I denote the imaginary components of the fields. The 

second pseudoscalar, 

A 2 NI H~ H~ ,...._, -- + + --=-~ 
v N v sin {3 v cos {3 ' 

(5.38) 

acquires a mass 

(5.39). 
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through the IFNI 2 term in the scalar potential. 

The pseudoscalar a acquires a mass once an AH-term is generated, at one-loop, 

through interactions with the gauginos. Including only the wino contribution in 

the one-loop RGE, AH is given by 

(5.40) 

where M2 is the wino mass at the weak scale. Neglecting the mass mixing be-

tween the two pseudoscalars, the mass of the pseudo-Nambu-Goldstone boson is 

computed to be 

If the mass of a is less than 7.2 GeV, it could be detected in the decay Y-+ a+/'[36]. 

Comparing the ratio of decay width for Y -+ a+ I' to Y -+ p,- + p,+ [36, 82], the 

limit 

sin 2,8 tan ,8 
v < 0.43 V ( 2506e V )2 + sin

2 2,8 
(5.42) 

is found. 

Further constraints on the spectra are obtained from collider searches. The 

non-detection of Z -+ scalar + a at LEP implies that the combined mass of the 

lightest Higgs scalar and a must exceed rv 92 GeV. Also, the process e+e- -+Zh 

may be observable at LEP2. For )..H = 0.1, the constraint mh + ma ;<; 92 GeV IS 
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stronger than mh ~ 70 GeV which is the limit from LEP at y's ~ 170 GeV [78]. 

The contour of mh + ma = 92 Ge V is shown in Figure 5.3a. Shown in Figure 5.3b 

is the contour of mh = 92 GeV ("-'the ultimate LEP2 reach [83]). For )..H = 0.5, 

the constraint mh ~ 70 Ge V is stronger than mh + ma ~ 92 Ge V and restricts 

tan ,B ~ 5 independent of Amess. The contour mh = 92 Ge V is shown in Figure 

5.3d. Note that the allowed parameter space is not- significantly constrained. 

These limits make the constraint of Eqn.(5.42) redundant. The left-right mixing 

between the two top squarks was neglected· in computing the top squark radiative 

corrections to the Higgs masses~ 

The pseudo-Nambu-Goldstone boson a might be produced along with the 

lightest scalar h at LEP. The tree-level cross section in units of R = 87/ s nb is 

2 ( 2 2)3 + - s 2 mh ma o-(e e -t h a) ~ 0.15 ( _ 2 ) 2 ).. v 1, -,- , 
s- mz s s 

(5.43) 

where g>.j cos Ow is the Z(a8h- h8a) coupling, and 

(5.44) 

A numerical check of the parameter space allowed by mh A: 70 GeV and )..H :::;0.5 

shows that the production cross-section for ha is less than both the current limit 

set by DELPHI [84] and a (possibl~) exclusion limit of 30 fb [83] at y's ~ 192 GeV. 

The production cross-section for hA is larger than for ha and A is therefore in 

principle easier to detect. However, for the parameter space allowed by mh ~ 70 

GeV, numerical calculations show that mA ~ 125 GeV,_ so that this channel is 
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not kinematically accessible. 

The charged Higgs mass is 

(5.45) 

which is greater than about 200 GeV in this model since m'kd ~ (200GeV) 2 for 

Amess ~ 35 Te V and as j.t
2 rv -m'k .... 

The neutralinos and charginos may be observable at LEP2 at JS ~ i92 GeV if 

mx+ ~ 95 GeV and mx~ +mxg ~ 180 GeV. These two constraints are comparable, 

and thus only one of these is displayed in Figures 5.3b and 5.3d, for An = 0.1 

and An= 0.5 respectively. Also, contours of mx? + mxg = 160 GeV (rv the LEP 

kinematic limit at JS ~ 170 GeV) are shown in Figures 5.3a and 5.3c. Contours of 

85 Ge V ( rv the ultimate LEP2 limit) and 75 Ge V ( rv the LEP limit from JS ~ 170 

Ge V) for the right-handed selectron mass further constrain the parameter space. 

The results presented in all the figures are for a central value of mt=175 GeV. 

By varying the top quark mass by 10 GeV about the central value of mt= 175 

Ge V the fine tuning measures and the LEP2 constraints (the Higgs mass and the 

neutralino masses) are found to vary by~ 30 %, but the qualitative features are 

unchanged. 

From Figure 5.3 it is seen that there is parameter space allowed by the present 

limits in which the tuning is ~ 30 %. Even if no new particles are discovered at 

LEP2, the tuning required for some region is ~ 20%. 

It is also interesting to compare the fine tuning measures with those found 
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in the minimal LEGM model (one messenger (5 + 5)) with an extra singlet N to 

generate the 1-l and 1-l~ terms. 10 In Figure 5.4 the fine tuning contours for c(m~; >.H) 

are presented for >-n=O.l. Contours of meR= 75 GeV and mx? + mxg = 160 GeV 

are also shown in Figure 5.4a. For AH = 0.1, the constraint mh + ma :<, 92 GeV is 

stronger than the limit mh :<, 70 GeV and is shown in the Figure 5.4a. In Figure 

5.4b, the (approximate) ultimate LEP2 limits are shown, i.e., mh = 92 GeV, 

mx? + mx~ = 180 Ge V and meR = 85 Ge V. Of these constraints, the bound on the 

lightest Higgs mass (either mh + ma ~ 92 Ge V or mh ~ 92 Ge V) provides a strong 

lower limit on the messenger scale. So in the parameter space allowed by present 

limits the fine tuning is ~ 2% and if LEP2 does not discover new particles, the 

fine tuning will be ;::; 1%. The coupling AH is constrained to be not significantly 

larger than 0.1 if the constraint mh + ma ~ 92 Ge V (or mh ~ 92 Ge V) is imposed 

and if the fine tuning is required to be no worse than 1%. 

5.6 Models Derived from a GUT 

This section discusses how the toy model of section 5.4 could be derived from 

a GUT model. 

In the toy model of section 5.4, the singlets N and S do not separately couple 

to complete SU(5) representations (see Eqn.(5.15)). If the extra fields introduced 

to solve the fine tuning problem were originally part of (5 + 5) multiplets, then 

10It is assumed that the model contains some mechanism to generate -m'J.., "' (100GeV) 2 -

(200GeV) 2 ; for example, the. singlet is coupled to an extra (5 + 5). 
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Figure 4 

Figure 5.4: Contours of c(m~; ,\H) =(50, 80, 100, 150, 200) for the NMSSM of 

Section 5 with ,\H =0.1 and a messenger particle content of one (5 + 5). The 

constraints considered are: (I) mh + ma = mz, (II) meR =75 GeV, (III) mx? + 

mxg = 160 GeV, (IV) mh =92 GeV, (V) meR =85 GeV,. and (VI) mx? + mxg = 

180 GeV. A central value of mt =175 GeV is assumed. 
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the missing triplets (missing doublets) necessarily couple to the singlet S(N). The 

triplets must be heavy in order to suppress ·their contribution to the soft SUSY 

breaking mass parameters. If the only other mass scale is Maur, then they must 

acquire a mass at Maur· This is just the usual problem of splitting a (5 + 5) [13]. 

For example, if the superpotential in the messenger sector contains four ( 5 + 5) 's, 

(5.46) 

then the SU(3) triplets in the (5t + 51)'s and the SU(2) doublet in (5q + 5q) 

must be heavy at Maur so that in the low energy theory there are three doublets 

and one triplet coupling to S. This problem can be solved using the method 

of Barbieri, Dvali and Strumia [73] that solves the usual Higgs doublet-triplet 

splitting problem. The mechanism in this model is attractive since it is possible 

to make either the doublets or triplets of a quintet heavy at the GUT scale. Their 

model is now briefly described. 

The gauge group is SU(5) x SU(5)', with the particle content E(24, 1), 

E'(1; 24), q,(5, 5) and <!>(5, 5) and the superpotential can be written as 

W = if..{3 (M s:a' s:a , "'a s:a' , '"''a' s:a)if..f3' 
'±'a' q,u{3,u{3 + /\LJ{3u{3' +A LJ {3'u{3 '±'a + 

(5.47) 

A supersymmetric minimum of the scalar potential satisfies the F - flatness con-

ditions 

149 



(5.48) 

With the ansatz 11 

L; = VE diag(2, 2, 2, -3, -3), L;' = VE' diag(2, 2, 2, -3, -3), (5.49) 

the F4> = 0 condition is 

(5.50) 

matrix is the vev of <I>. To satisfy this condition, there is a discrete choice for the 

pattern of vev of <I> : i) v3 =/= 0 and M 3 = 0 or ii) v2 =/= 0 and M 2 = 0. Substituting 

either i) or ii) in the FE and FE' conditions then determines v3 (or v2 ). With two 

sets of fields, 1>1 , ~1 with v3 =!= 0 and 1>2 , ~2 with v 2 =/= 0 , we have the following 

pattern of symmetry breaking 

SU(5) x SU(5)' (SU(3) X SU(2) X U(1)) X (SU(3) X SU(2) X U(1))' 

v~2 S M (the diagonal subgroup). (5.51) 

If the scales of the two stages of symmetry breaking are about equal, i.e. VE, VE', rv 

v3, v2 rv Maur, then the SM gauge couplings unify at the scale Maur- 12 

11 The two possible solutions to the F-flatness conditions are :E = VE diag(2, 2, 2, -3, -3) and 

:E = VE diag(l, 1, 1, 1, -4). 
12See [73] and [81] for models which give this structure of vevs for the cp fields without using 

the adjoints. 
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The particular structure of the vevs of <I> 1 and <I>2 can be used to split repre-... 

sentations as follows. 

Consider the Higgs doublet-triplet splitting problem. With the particle content 

5h(5, 1), 5h(5, 1) and X(1, 5), X(1, 5) and the superpotential 

(5.52) 

the SU(3) triplets in 5h, 5h and X, X acquire a mass of order Mcur whereas the 

doublets in 5h, 5h and X, X are massless. Now only one pair of doublets is wanted 

I in the low energy theory (in addition to the usual matter fields). The doublets in 

X, X can be made heavy by a bare mass term McurXX. Then the doublets in 

5h, 5h are the standard Higgs doublets. But if all terms consistent with symmetries 

are allowed in the superpotential, then allowing Mcur<I>1<h, McurXX, 5hX<I>1 

and 5hX <I> 1 implies that a bare mass term for 5h5h is allowed. Of course, a 11 term 

115h5h of the order of the weak scale can be put in by hand, as in section 5.4. 

However, it is theoretically more desirable to relate all electroweak mass scales to 

the original SUSY breaking scale. So, the 11 term should be related to the size 

of SUSY breaking. Recall that in section 5.5 it was shown that the NMSSM is 

phenomenologically viable and "unfine tuned" in these models. 

The vev structure of <I>2 , <I> 2 can be used to make the doublets in a 5 + 5 heavy. 

Again, there are two pairs of light triplets and one of these pairs can be given a 

mass at the GUT scale. 

This mechanism of making either doublets or triplets in a (5 + 5) heavy can be 
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used to show how the model of section 5.4 is derivable from a GUT. The model , 

with three messenger doublets and one triplet is obtained from a GUT w~th the 

following superpotential . 

(5.53) 

Here, some of the "extra" triplets and doublets resulting from splitting (5 + 5) 's 
' . 

are massless at the GUT scale. For example, the "extra" light doublets are used 

as the additional messenger leptons. After inserting the vevs and integrating out 

the heavy states, this corresponds to the superpotential in Eqn.(5.15) with the 

transcription: 

·5 5 
' 

--+ ql' ill + h ' fl 

5t, 5t --+ 12, f2 

Xt,Xt --+ 13, [3 

5q,5q --+ q2, ii2 

Xq,Xq --+ q3, ii3· (5.54) 

This section is concluded with a remark about light singlets in SUSY -GUT's 
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with low energy gauge mediated SUSY breaking. 13 In a SUSY -GUT with a singlet 

N coupled to the Higgs multiplets, there is a potential problem of destabilizing 

the mweak/ Mcur hierarchy, if the singlet is light and if the Higgs triplets have 

a SUSY invariant mass of O(Mcur) [85]. In the LEGM models, a B-type mass 

for the Higgs triplets and doublets is generated at one-loop with gauginos and 

Higgsinos in the loop, all(j with SUSY breaking coming from the gaugino ·mass. 

Since Sl:JSY breaking (the gaugino mass and the soft scalar masses) becomes soft 

above the messenger scale, Amess rv 100 TeV, the B-type mass term generated 

for the Higgs triplets is suppressed, i.e., it is O((a/4n)M2A!tess!Mcur). Similarly 

the soft mass squareds for the Higgs triplets are 0 ( m!eakA!tessf M~ur). Since the 

triplets couple to the singlet N, the soft scalar mass and B-term generates at 

one-loop a linear term for the scalar and F-component of N respectively. These 

tadpoles are harmless since the SUSY breaking masses for the triplets are so 

small. This is to be contrasted with supergravity theories, where the B-termrv 

O(mweakMcur) and the soft mass _rv O(mweak) for the triplet Higgs generates a 

mass for the Higgs doublet that is at least rv O(JmweakMcur/(4n)). 

5.7 One complete Model 

The model is based on the gauge group G1ac = SU(5) x SU(5)' and the global 

symmetry group Gglo = z3 X z~ X Z4. The global symmetry acts universally 

on the three generations of the SM. The particle content and their G1ac x G910 

13 The author thanks H. Murayama for bringing this to his attention. 
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. ) 

quantum numbers are given in Tables 5.2 and 5.3. The most general renormalizable 

superpotential that is consistent with these symmetries is 

where, 

.X35q<P2Xq + 5.35q<hXq, 

- - - - 1 3 
.X6 S5t5t + .X7S5q5q + .XsSXhXt + .XgSXXh + 3-XsS , 

- 1 3 - -
-.Xy5h5hN + 3-XNN + .XqNXX 

+.XwN'XXq + .XuN'XqX + ~.XN'N'3 , 
. 3 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

The origin of each of the W/s appearing in the superpotential is easy to under-

stand. In computing the F=O equations at the GUT scale, the only non-trivial 

contributions come from fields appearing in. W1 , since all other Wis are bilinear in 

fields that do not acquire vevs at the GUT scale. The function of W1 is to generate 

th~ vevs I:, I:' ~-v diag [2, 2, 2, -3, -3], 4>I == <P2 "'diag [0, 0, 0, 1, 1] and 4>f = <P1 "' 

diag (1, 1, 1, 0, 0]. These vevs are necessary to break Gtoc ~SU(3)c x SU(2) x U(1)y 
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I 

(this was explained in section 5.6). The role of W3 and W4 is to generate the nec­

essary splitting within the many (5 + 5)'s of Gzoc that is necessary to solve the 

usual doublet-triplet splitting problem, as well as to solve the fine tuning problem 

that is discussed in sections 5.3, 5.4 and 5.5. The messenger sector is given by 

W5 • It will shortly be demonstrated that at low energies this sector contains three 

vector-like doublets and one vector-like triplet. The couplings in W6 and W7 at 

low energies contain the electroweak symmetry breaking sector of the NMSSM, the 

Yukawa couplings of the SM fields, and the two light vector-like triplets necessary 

to maintain the few percent prediction for sin2 Ow as well as to generate a vev for 

N. 

Next it is shown that the low energy theory of this model is the model that is 

discussed in section 5.5. 

Inserting the vevs for <I> 1 and 1>1 into W3 , the following mass matrix for the 

colored triplet chiral multiplets is obtained: 

5h 
0 AlVq.l 0 0 0 

xh 
:X 1 Vq.l 0 0 0 0 

(5h, xh, 5z, Xz) 5z (5.63) 

0 0 0 A2V<f11 0 

Xz 
0 0 :X2vq.1 0 M1 

X 

" arid all other masses are zerO;" There are a total of four vector-like colored triplet 

fields that are massive at MauT· These are the triplet components of (5h, Xh), 

(5h,Xh), (5z,X1) and (Xz,TH), where THis that.linear combination of triplets in 
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51 and X that marries the triplet component of X1• The orthogonal combination 

to TH, TL, is massless at this scale. The massless triplets at McuT are (5q, Sq), 

(Xq, Xq) and (X, TL), for a total of three vector-like triplets. By inspection, the 

only light triplets that couple to S at a renormalizable level are 5q and Sq, which 

was desirable in order to solve the fine tuning problem. Further, since X contains 

a component of TL, the couplings of the other light triplets to the singlets N and 

N' are 

(5.64) 

where Aq = >.q cos a', 5.11 = >.. 11 cos a' and a' is the mixing angle between the 

triplets in 51 and X, i.e.,-·TL = cosa'X- sino:'51• The A.qNTLX coupling is also 

desirable to generate acceptable J-l and J-l~ terms (see section 5.5). 

In section 5.4, 5.5 it was also demonstrated that with a total of three messen­

ger doublets the fine tuning required in electroweak symmetry breaking could be 

alleviated. By inserting the vev for <I>2 into W4 , the doublet mass matrix is given 

as 

M1 0 0 X 

(Xt, Sq, Xq) 0 0 A3V<I>2 5q (5.65) 

0 A3V<I>2 0 Xq 

and all other masses are zero. At McuT the heavy doublets are (X1, X), (5q, Xq) 

and (Sq, Xq), leaving the four vector-like doublets in (5h, 5h), (5t, 51), (X, Xt) an~ 

(Xh, X h) massless at this scale. Of these four pairs, (5h, 5h) are the usual Higgs 

doublets and the other three pairs couple to S. 
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The (renormalizable) superpotential at scales below Mcur is then 

w 1 
A.qNihq2 + 

3
A.NN3 + A.10N'qsii2 

· I 1 t3 
+A.uN q2ij3- AHNHuHd + 3)..N,N 

+A.6SZ1Zt + A.7Sij1q1 + A.sSZ2l2 

(5.66) 

where the fields have been relabeled to make, in an obvious notation, their SU(3) x 

SU(2) x U(l) quantum numbers apparent. 

This section concludes with comments about the choice of Z4 as a discrete 

symmetry and about non-renormalizable operators in our model. 

The usual R-parity violating operators 10sM5sM5sM are not allowed by the 

discrete symmetries, even at the non-renormalizable level. In fact, R-parity is a 

good symmetry of the effective theory below Mcur- By inspection, the fields that 

acquire vevs at Mcur are either invariant under Z4 or have a Z4 charge of 2. (for 

example, <I> 1), so that a Z2 symmetry is left unbroken. In fact, the vevs of the other 

fields S, N, N' and the Higgs doublets do not break this Z2 either. By inspecting. 

the Z4 charges of the SM fields, we see that the unbroken Z2 is none other than the 

usual R-parity. So at Mcur, the discrete symmetry Z4 is broken to Rp. Also note 

that the Z4 symmetry is sufficient to maintain, to all orders in 1jMp1 pperators, 

the vev- structure of <I>1 and <I>2 , i.e., to forbid unwanted couplings between <I> 1 and 

<I>2 that might destabilize the vev structure [81]. This pattern of vevs was essential 

to solve the doublet-triplet splitting problem. It is interesting that both R-parity 
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invariance and requiring a viable soiution to the doublet-triplet splitting problem 

can be accommodated by the same Z4 symmetry. 

The non-SM matter fields (namely, the messenger 5's and X's and the light 

triplets) have the opposite charge to the SM matter fields under the unbroken Z2 . 

Thus, there is no mass mixing between the SM and the non-SM matter fields. 

Dangerous proton decay operators are forbidden in this model by the discrete 

symmetries. Some higher dimension operators that lead to proton decay are al­

lowed, but are sufficiently suppressed. These are discussed below. 

Renormalizable operators such as lOsM 10sM5q and 10sM5sM5q are forbidden 

by the Z3 symmetries. This is_ necessary to avoid a large proton decay rate. A 

dimension-6 proton decay operator is obtained by integrating out the colored 

triplet scalar components of 5q or Sq. Since the colored scalars in 5q and Sq 

have a mass "'0(50 TeV), the presence of these operators would have led to an 

unacceptably large proton decay rate. . 

The operators 10sM 10sM 10sM5sM I MPL and 10sM 10sM 10sM5sM x 

(<I?~ I M~1 )n I Mp1, which give dimension-5 proton decay operators, are also forbid­

den by the two Z3 symmetries. The allowed non-renormalizable operators that 

generate dimension-5 proton decay operators are suffuciently suppressed. The 

operator 10sM 10sM 10sM5sMN' I(MPL) 2
, for example, is allowed by the discrete 

symmetries, but the proton decay rate is safe since VN' "' 1 TeV. 

The operators 10i5j~ 1 (X or Xq)IMp1 could, in principle, also lead to a large 

proton decay rate. Setting ~1 to its vev, the superpotential couplings, for example, 
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>..i1(uicDjX(3)+QiL1X(3)) are generated with Aij suppressed only by vq,)Mp1• In 

this model the colored triplet (scalar) components of X and Xq have a mass mq"' 

500 GeV, giving a potentially large proton decay rate. But, in this model these 

operators are forbidden by the discrete symmetries. The operator 10l)/PrXS/M~1 

.is allowed giving a four SM fermion proton decay operator with coefficient "' 

( Vq, 1 v8 / M~1 ) 2 /m~ "' 10-34GeV-2
. This is smaller than the coefficient generated 

by exchange of the heavy gauge bosons of mass Mcur, which is "' 9bur/ M'8ur "' 

1/2 10-32GeV-2 and so this operator leads to proton decay at a tolerable rate. 

With our set of discrete symmetries, some of the messenger states and the 

light color triplets are stable at the renormalizable level. Non-renormalizable op­

erators lead to decay lifetime for some of these particles of more than about 100 

seconds. This is a problem from the viewpoint of cosmology, since these particles 

decay after Big-Bang Nucleosynthesis (BBN). With a non-universal choice of dis­

crete symmetries, it might be possible to make these particles d~cay before BBN 

through either small renormalizable couplings to the third generation (so that the 

constraints from· proton decay and FCNC are avoided) or non-renormalizable op­

erators. Alternatively, if the reheat temperature is below the mass scale of these 

particles they will not have a relic. abundance today. These issues, however, are 

beyond the scope of this chapter. 

5.8 Summary 

In this chapter the fine tuning required in models of low energy gauge-mediated 
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w 5i 10i 5h 5h 

Gtoc (5,1) (10,1) (5,1) (5, 1) 

z3 1 a a a2 

Z' 3 b 1 1 b2 

z4 c c c2 c2 

w ~ ~I <I>2 <I>2 <I>l <I>l 

Gtoc {24, 1) (1, 24) (5,5) (5,5) (5, 5) (5, 5) 

z3 1 1 1 1 1 1 

Z' 3 1 1 1 1 1 1 

z4 1 1 1 1 c2 c2 

w 5t 5t Xt Xt 5q 5q 

Gtoc (5, 1) (5,1) (1, 5) (1, 5) (5,1) (5,1) 

z3 a2 1 1 a 1 a2 

Z' 3 1 1 1 1 b2 b 

z4 c2 c2 1 1 1 1 

Table 5.2: SU(5) X SU(5)' X z3 X z~ X z4 quantum numbers for the fields of 

the model discussed in _section 7. The generators of z3 X z~ X z4 are labeled by 

(a, b, c). The three SM generations are labeled by the index i. 
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w Xq Xq xh .xh X .X 

Gloc (1' 5) (1,5) (1, 5) (1' 5) (1,5) (1, 5) 

z3 a 1 a a2 a2 a 

Z' 3 
b2 b b 1 1 b2 

z4 1 1 1 1 1 1 

w 8 N N' ¢+ <P-

z3 a 1 a a a 

Z' 3 1 b b2 1 1 

z4 1 1 1 1 1 
\ 

Table 5.3: 8U(5) X 8U(5)' X z3 X z~ X z4 quantum numbers for the fields of 

the model discussed in section 7. The generators of z3 X z~ X z4 are labeled by 

(a, b, c). The three SM generations are labeled by the index i. 
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SUSY breaking to obtain the correct Z mass was quantified. It was demonstrated 

that the minimal model requires a fine tuning of order rv 7% if LEP2 does not 

discover a right-handed slepton. It was discussed how models with more messenger 

doublets than triplets can improve the fine tuning. In particular, a model with a 

messenger field particle content of three ( l + [) 's and only one ( q + ij) was tuned 

to rv 40%. It was found that it was necessary to introduce an extra singlet to give 

mass to some color triplets (close to the weak scale) which are required to maintain 

gauge coupling unification. It was also discussed how the vev and F-component of 

this singlet could be used to generate the J.1 and B J.1 terms. It was found that for 

some region of the parameter space this model requires rv 25% tuning and that 

limits from LEP do not constrain the parameter space. This is in contrast to an 

NMSSM with extra vector-like quintets and with one (5 + 5) messenger field, for 

which it was found that a fine tuning of rv 1% is required and that limits from 

LEP do significantly constrain the parameter space. 

I~ was further discussed how the model with split messenger field representa­

tions could be the low energy theory Of a SU(5) x SU(5) GUT. A mechanism 

simil::1.r to the one used to solve the usual Higgs doublet-triplet splitting problem 

was used to split the messenger field representations. All operators consistent 

with gauge and discrete symmetries were allowed. In this model R-parity is the 

unbroken subgroup of one of the discrete symmetry groups. Non-renormalizable 

operators involving non-SM fields lead to proton decay, but at a safe level. 

162 



Chapter 6 

Non-decoupling of the First and Second 

Generation Scalars 

The supersymmetric contributions to the Flavor Changing Neutral Current 

processes may be suppressed by decoupling the scalars of the first and second 

generations. It is known, however, that the heavy scalars drive the stop masses 

squared negative through the two-loop Renormalization Group evolution. This 

tension is studied in detail. Two new items are included in this analysis: the effect 

of the top quark Yukawa coupling and the QCD corrections to the supersymmetric 

contributions to !:lmK. Even with Cabibbo-like mixing between the squarks of the 

first two generations, these squarks must be heavier than rv 40 TeV to suppress 

LlmK. This implies, in the case of a high scale of supersymmetry breaking, that the 

boundary value of the stop mass has to be greater than rv 7 Te V to keep the stop 

mass squared positive at the weak scale. Low-energy supersymmetry breaking at 

a scale that is of the same order as the mass of the heavy scalars is also considered. 

In this case the finite parts of the two-loop diagrams are computed to estimate 

the contribution of the heavy scalar masses to the stop mass squared. It is found 

that for Cabibbo-like mixing between the squarks, the stop mass at the boundary 

needs to be larger than rv 2 TeV. Thus, for both cases, the large boundary value of 
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the stop masses leads to an unnatural amount of fine tuning to obtain the correct 

Z mass. 

6.1 Introduction 

The origin of electroweak symmetry breaking (EWSB) and the subsequent 

. gauge hierarchy problem are two large mysteries of the Standard Model (SM). 

Supersymmetry (SUSY) provides a promising solution to these problems, by both 

stabilizing the weak scale against radiative corrections[6], and by naturally break­

ing the electroweak symmetry through the quantum corrections of the superpart­

ner of the top quark to the Higgs boson mass [86]. It is known, however, that 

generic weak scale values for the masses of the first two generation scalars give 

rates for many flavor violating processes that are in disagreement with the experi­

mental observation. The measured value of !).mK and detection limits for f-l ---+ ery, 

and J-l ---+ 3e, for example, require that the first two generation scalars be degener­

ate to within a few tenths of a percent if their masses are at the weak scale [65, 68]. 

Constraints from CP violation are generally even more severe. Understanding the 

origin of this degeneracy is the supersymmetric flavor problery{. Attempts to re­

solve this puzzle without introducing any fine tuning include: using approximate 

non-abelian or abelian symmetries[87]; communicating supersymmetry breaking 

to the visible sector by gauge interactions that do not distinguish between flavors 

[11 J; squark-quark mass matrix alignment [88]; and raising the soft masses of the 

first two generation scalars to the tens of TeV range [89, 90, 91, 92, 93, 94, 95, 96]. 
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The phenomenological viability and naturalness of this last scenario is the sub­

ject of this chapter. To suppress flavor changing processes, the heavy scalars must 

have masses between a few TeV and a hundred TeV. The actual value depends on 

the degree of degeneracy and mixing between the masses of the first two genera­

tion scalars. As discussed in Reference [97], the masses of the heavy scalars cannot 

be made arbitrarily large without breaking color and charge. This is because the 

heavy scalar masses contribute to the two-loop Renormalization Group Equation 

(RGE) for the soft masses of the light scalars, such that the stop soft mass squared 

become more negative in RG scaling to smaller energy scales. This negative con­

tribution is large if the scale at which supersymmetry breaking is communicated 

to the visible sector is close to the Grand U~ification scale[97]. With the first two 

generation soft scalar masses ~ 10 TeV, the initial value of the soft masses for 

the light stops must be ~ (few TeV) 2 to cancel this negative contribution [97] to 

obtain the correct vacuum .. This requires, however, an unnatural amount of fine 

tuning to correctly break the electroweak symmetry[63, 64]. 

In this chapter these issues are analyzed. Two new items not previously dis-. 

cussed within this context are included: the effect of the large top quark Yukawa 

coupling, At, in the RG evolution, that drives the stop soft mass squared more neg­

ative; and QCD radiative corrections in the flmK constraint [98]. This modifies 

the bound on the heavy scalar masses that is consistent with the measured value 

of flmK. This, in turn, ,affects the minimum value of the initial scalar masses that 

is required to keep the scalar masses positive at the weak scale. 
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This severe constraint obtained for the initial stop masses assumes that su­

persymmetry breaking occurs at a high scale. This leaves open the possibility 

that requiring positivity of the scalar masses is not a strong constraint if the scale 

of supersymmetry breaking is not much larger than the mass scale of the heavy 

scalars. In this chapter this possibility is investigated by computing the finite 

parts of the same two-loop diagrams responsible for the negative contribution to 

the light scalar RG equation, and using these results as an estimate of the two­

loop contribution in an actual model of low-energy supersymmetry breaking. It 

is found that in certain classes of models, requiring positivity of the soft masses 

may place strong necessary conditions that such models must satisfy in order to 

be phenomenologically viable. 

This chapter is organized as follows. In section 6.2 an overview of the ingre­

dients of the analysis is presented. Some philosophy and notation is discussed. 

Section 6.2.1 discusses the constraints on the masses .and mixings of the first two 

generation scalars obtained from 11mK after including QCD corrections. It is 

found, in particular, that Cabibbo-like mixing among both the first two genera­

tion left-handed squarks and right-handed squarks requires them to be heavier 

than 40 TeV. Section 6.2.2 discusses the logic of the RG analysis, and some for­

mulas are presented. This analysis is independent of the 11mK analysis. Sections 

6.3 and 6.4 apply this machinery to the cases of low-energy and high-energy su­

persymmetry breaking, respectively. Section 6.3 deals with the case in which the 

scale at which SUSY breaking is communicated to the SM sparticles is close to the 
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mass of the heavy sc-alars. The finite parts of the two-loop diagrams are used to 

estimate the negative contribution of the heavy scalars. For Cabibbo-like mixing 

among the left-handed and right-handed squarks of the first two generations the 

boundary value of the stop masses has to greater than rv 2 Te V to keep the stop 

masses squared positive at the weak scale. This results in a fine tuning of naively 

1% in electroweak symmetry breaking [63]. Also discussed are the cases where 

there is 0(1) mixing among only the right or left squarks of the first two genera­

tions, and requiring positivity of the slepton masses squared implies a constraint 

on the stop masses of rv 1 Te V if gauge-mediated boundary conditions are used 

to relate the two masses. This is comparable to the direct constraint on the initial 

stop masses. Section 6.4 considers the case where the SUSY breaking masses for 

the SM sparticles are generated at a high scale ("' 1016 Ge V). In this case, the neg­

ative contribution of the heavy scalars is enhanced by a large l<?garithm. Various 

boundary conditions for the stop and Higgs masses are considered and it is found 

that for an order of 0.2 degeneracy between the first two generation squarks, the 

boundary value of the stop mass needs to be larger than rv 7 TeV. This gives a 

fine tuning of naively 0.02%[63]. For 0(1) mixing between the left (right) squarks 

only, the minimum initial value of the stop is rv 4(2) TeV. In section 6.5 the scale 

of supersymmetry breaking is varied between 50 TeV and 2 x 1016 GeV. Uppers 

bounds on the amount of degeneracy required between the first two generation 

scalars, that is consistent with positivity of the light scalar masses, naturalness in 

electroweak symmetry breaking, and the measured value of tlmK, are obtained. 
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These results are summarized in Figures 6.12 and 6.13. The results of this chap­

ter are summarized in section 6.6. Appendix B discusses the computation of the 

two-loop diagrams which give the negative contribution of the heavy scalars to 

the light scalar mass squareds. 

6.2 Overview. 

The chiral particle content of the Minimal Supersymmetric Standard Model 

(MSSM) contains 3 generations of 5+10 representations of SU(5). The super­

symmetry must be softly broken to not be excluded by experiment. Thus the 

theory must also be supplemented by some "bare" soft supersymmetry breaking 

parameters, as well as a physical cutoff, MsuSY· The "bare" soft' supersymmetry 

breaking parameters are then the coefficients appearing in the Lagrangian, defined 

with a cutoff MsuSY· It will be assumed for simplicity that"the bare soft masses, 

m;,0 , the bare gaugino masses MA,o, and a bare trilinear term for the stops, AtAt,o,. 

are all generated close to this scale. The MSSM is then a good effective theory at 

energies below the scale Msusy, but above the mass of the heaviest superpartner. 

The physical observables at low-energies will depend on these parameters. If 

an unnatural degree of cancellation is required between the bare parameters of 

the theory to produce a measured observable, the theory may be considered to be 

fine tuned. Of course, it is possible that a more fundamental theory may resolve 

in a natural manner the apparent fine tuning. Soludons to the gauge-hierarchy 

problem are well-known examples of this. The Higgs boson mass of the SM is fine 
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tuned if the SM is valid at energies above a few Te V. This fine tuning is removed 

if at energies close to the weak scale the SM is replaced by a more fundamental 

theory that is supersymmetric[6]. 

One quantification of the fine tuning of an observable 0 with respect to a bare 

parameter .A0 is given by Barbieri-Giudice [63] to be 

(6.1) 

It is argued that this only measures the sensitivity of 0 to .A0 , and care should 

.be taken when interpreting whether a large value of .6. necessarily implies that 

0 is fine tuned [64]. It is not the intent of this chapter to quantify fine tuning; 

rather, an estimate of the fine tuning is sufficient and Eqn.(6.1) will be used. In 

this chapter the value of 0 is considered extremely unnatural if .6.( 0; .A0 ) > 100. 

The theoretical prediction for .6.mK (within the MSSM) and its measured value 

are an example of such a fine tuning: Why should the masses of the first two gener-

ation scalars be degenerate to within 1 GeV, when their masses are 0(500 GeV)? 

Phrased differently, the first two generation scalars must be extremely degenerate 

for the MSSM to not be excluded by the measured value of .6.mK. An important 

direction in supersymmetry model building is aimed at attempting to explain the 

origin of this degeneracy. 

One proposed solution· to avoid this fine tuning is to decouple the first two 

generation scalars since their masses are the most stringently constrained by the 

flavor violating processes [89, 90, 91, 92, 94, 95, 96]. In this scenario, some of the 
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first two generation scalars have masses M 5 » mz. To introduce some notation, 

n5 (n 10 ) will denote the number of 5 (10) scalars of the MSSM particle content 

that are very heavy 1 . Thus at energy scales E « Ms the particle content is that 

of the MSSM, minus the n5 5 and n10 10 scalars. In the literature this is often 

referred to as 'The More Minimal Supersymmetric Standard Model'[92]. 

There are, however, other possible and equally valid sources of fine tunings. 

The measured value of the Z mass is such an example [63]. The minimum of the 

renormalized Higgs potential determines the value of the Z mass which is already 

known from experiment. The vacuum expectation value (vev) of the Higgs field is,· 

in turn, a function of the bare parameters of the theory. The relation used here, 

valid at the tree-level, is 

(6.2) 

It is clear from this Equation that requiring correct electroweak symmetry breaking 

relates the value of the soft Higgs masses at,the weak scale, m1d (p,c) and m1u (J.Lc), 

to the supersymmetric Higgs mass p,. A numerical computation determines the 

dependence of m1)J.Lc) and m1d(J.Lc) on the bare parameters MA,o, mL0 and Ms. 

In the MSSM, the cancellation required between the bare parameters of the theory 

for it not to be excluded by the Z mass increases as the scale of supersymmetry 

breaking is increased. Typically, the bare mass of the gluino, stops, and the first 

two generation squarks must be less than a few TeV and ten TeV, respectively, 

1 It is assumed that the heavy scalars form complete SU(5) multiplets to avoid a large Fayet-

Illiopoulus D- term at the one-loop level[96, 92]. 
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for successful electroweak symmetry breaking not to be fine tuned at more than 

the one per cent level [63, 64, 96]. 

These two potential fine tuning problemsm - the supersymmetric flavor prob-

lem and that of electroweak symmetry breaking- are not completely independent, 

for they both relate to the size of supersymmetry breaking [96, 97]. Thus the con-

sistency of any theoretical framework that attempts to resolve one fine tuning issue 

can be tested by requiring that it not reintroduce any comparable fine tunings in 

other sectors of the theory. This is the situation for the case under consideration 
' 

here. Raising the masses of the first two generation scalars can resolve the super-

symmetric flavor problem. As discussed in [96], this results in a fine tuning of m~ 

through the two-loop dependence of m'ii, (Ike) on M8 . There is, however, another 

source of fine tuning of mz due to the heavy scalars: these large masses require 

that the bare masses of the stops, in particular, be typically larger than a few 

TeV to keep the soft masses squared positive at the weak scale [97]. This large 

value for the bare stop mass prefers a large value for the vev of the Higgs field, 

thus introducing a fine tuning in the electroweak sector. Further, this fine tuning 

is typically not less than the original fine tuning in the flavor sector. This is the 

central issue of this chapter. 

6.2.1 .D.mK Constraints 

At the one-loop level the exchange of gluinos and squarks generates a !::,.S = 

2 operator. In the limit of interest here, M 3 < < Ms, the !::,.S = 2 effective 
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Lagrangian at the scale Ms obtained by integrating out the squarks is 

(6.3) 

Terms that are O(Mf/M'f,) are subdominant and neglected. Next, the exact result 

is expanded in powers Of bLL,RR = S£,RCL,R1JL,R(mi - m~)LL,RR/m~V,L,R' where 

m~v is the average mass of the scalars, and where 1JL,Ris the phase and sL,R is the 

1-2 element of the WL,R matrix that appears at the gluino-squark-quark vertex2
. 

Since this approximation underestimates the magnitude of the exact result this 

analysis is conservative[97]. The coefficients Ci to leading order in bLL, bRR, are 

(6.4) 

The coefficient 61 is obtained from c1 with the replacement oiL --+ 6~R· The 

operators oi are 

(6.5) 

and 0 1 is obtained from 0 1 with the replacement L --+ R. The Wilson coefficients, 

C1 - C5 , are RG scaled from the scale of the squarks, Ms , to 900 MeV using the 

2In this chapter only 1-2 generation mixing is considered. Direct L- R mass mixing is also 

neglected. 
,, 
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anomalous dimensions of the operators, 0 1 -05 . The anomalous dimension of 0 1 

is well-known [99) and is p,dCifdp, == a 8 C1j1r. The other anomalous dimensions 

may be found in Ref. [98) and have been independently verified by the author 

(also see Ref. [98) for a more general analysis of QCD corrections to the SUSY 

contributions to K - K mixing). These authors, however, choose to RG scale 

to Jlhad, defined by as(!lhad)=l. The validity of the perturbation expansion is 

questionable at this scale; here instead the RG scaling is stopped at 900 MeV, 

where a 8 (900 MeV) I"V .4. The result is 

K,I(\ (Ms) 

. 1 
K,4C4(Ms) + 3(K,4- K,5)C5(Ms) 

K,5C5(Ms) (6.6) 

where 

(6.7) 

The effective Lagrangian at the hadronic scale is then 

a;(Ms) ( ( d )2 d 2 - d d 8 ) 
Leff = 216M~ -22 8LL K101- 22(8RR) "101 + 8LL8RR(3(4"4 + 5"s)04- 40,.s05 ) + h.c .. 

(6.8) 
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The SUSY contribution to the K - k mass difference is 

(!:lmK )susY = 2Re < KI.CeJJIK > . (6.9) 

The relevant matrix elements (with bag factors set to 1) are 

( 
1 1 ( mK ) 

2
) / 2 -+- mK 

24 4 m 5 + md K 

( 
1 1 ( mK ) 

2
) / 2 - -+- mK 

- 8 12 ms + md K 
(6.10) 

in the vacuum insertion approximation. The values [36] mK = 497 MeV, !K = 160 

MeV, ms = 150 MeV' (!:lmK)exp = 3.5 X w-12 MeV, and as(Mz) = 0:118 are 

used. This gives a 5 (mb) = 0.21, a 5 (mc) = 0.29 and a 5 (900 MeV) = 0.38 using 

the one-loop RG evolution. Once values for (n5 , n 10 , 6fL, 6~R) are specified, a 

minimum value forMs is obtained by requiring that (!:lmK )susy = (!:lmK)exp· In 

the case that both 6RR =!= 0 and 6LL =!= 0, both the left-handed and right-handed 

squarks are assumed to be heavy, .so that (n5 , n 10 ) = (2, 2). In this case only 

the dominant contributio~ to !:lmK, which is rv 6fLb~R' is required to equal the 

measured value of !:lmK. If 6RR =!= 0 and 6LL = 0, only the right-handed squarks 

are assumed to be heavy, and thus (n5 , n 10 ) = (2, 0). Similarly, if 6LL =!= 0 and 

()RR = 0 then (n5 , n10 ) = (0, 2). Limits are given in Tables 6.1 and 6.2 for some 

choices of these parameters. These results agree with Ref. [98] for the same choice 

of input parameters. For comparison, the limits gotten by neglecting the QCD 

corrections are also presented in Tables 6.1 and 6.2. Here 6fL (6~R) = (i) 1, (ii) 

0.22, (iii) 0.1, and (iv) 0.04 are considered. These correspond to: (i) no mixing 
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JRe(JfLJ~R) (ns, n 10 ) = (2, 2) (ns, n10) = (2, 2) 

QCD incl. no QCD 

1 182 TeV 66 TeV 

0.22 40 TeV 15 TeV 

0.1 18 TeV 7.3 TeV 

0.04 7.3 TeV 3.1 TeV 

Table 6.1: Minimum values for heavy scalar masses Ms obtainedfrom the mea-

sured value of l::i.mK assuming Ml / M~ « 1. The limits labeled 'QCD incl.' include 

QCD corrections as discussed in the text. Those labeled as 'no QCD' do not. 

and no degeneracy; (ii) Cabibbo-like mixing; (iii) Cabibbo-like mixing and rv 0.5 

degeneracy; and (iv) Cabibbo-like mixing and Cabibbo-like degeneracy. Only 

cases ( i), ( ii) and (iii) are expected to be relevant if the supersymmetric flavor 

problem is resolved by decoupling the first two generation scalars. Note that for 

(n5, n 10 ) = (2, 0), Table 6.2 implies that Ms must be larger than rv 30 TeV if it is 

assumed there is no small mixing or degeneracy (6~R = 1) between. the first two 

generation scalars. 

The limits obtained from the measured rate of C P violation are now briefly 

discussed. Recall that the C P violating parameter E is approximately 

klrv lim < Kl£eJJIK > I' 
vfit:J.mK 

(6.11) 

and its measured value is kl rv ITJool =2.3x10-3 [36]. In this case, the small value 
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Re(b~R) (bfL = 0) (ns,nw) = (2,0) (ns, nw) = (2, 0) 

QCD incl. noQCD 

1 30 TeV 38 TeV 

0.22 7.2 TeV 8.9 TeV 

0.1 3.4 TeV 4.1 TeV 

0.04 1.4 TeV 1.7 TeV 

Table 6.2: Minimum values for heavy scalar masses Ms obtained from the mea­

sured value of !:l.mK assuming Mj / M1 « 1. The limits labeled as 'QCD incl.' 

include QCD corrections as discussed in the text. Those labeled as 'no QCD' do 

not. The limits for (n5 , n10 ) = (0, 2) obtained by bfL H b~R are similar and not 

shown. 
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of t implies either that the phases appearing in the soft scalar mass matrix are 

extremely tiny, or that the masses of the heavy scalars are larger than the limits 

given in Tables 6.1 and 6.2. In the case where the phases are 0(1), 

lm < KI.CeJJIK >"" Re < KI.Cef!IK > and thus the stronger constraint on Ms 

is obtained from t and not !:lmk, for the same choice of input parameters. In 

particular, the constraint from CP violation increases the minimum allowed value 

of Ms by a factor of 1/V2../2t ""12.5. This significantly increases the minimum 

value of the initial light scalar masses that is allowed by the positivity requirement. 

6.2.2 RGE analysis 

The values of the soft masses at the weak scale are determined by the RG 

evolution. In the DR' scheme [101, 102, 103], the RG equations for the light scalar 

masses are, including the gaugino, A-term and At contributions at the one-loop 

level and the heavy scalar contribution at the two-loop level (104], 

"6 1 ( 2 +--Yial t)TrYm (t), 
5 47f 

(6.12) 

with 7] = (3, 2, 1) for h = Hu, ic, i, respectively, and zero otherwise. For simplicity 

it is assumed that MA,o/ aA,o are all equal at Msusy. The initial value of the gluino 

mass, M 3,0 , is then chosen to be the independent parameter. To avoid a large 
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Fayet-Illiopoulus D-term at the one-loop level, the heavy scalars are assumed to 

form complete SU(5) representations[96, 92]. SU(5) normalization for the U(1) 

coupling constant is used and Q = T3 + Y. Finally, C~ is the quadratic Casimir 

for the gauge group G A that is 4/3 and 3/4 for the fundamental representations of 

SU(3) and SU(2), and 3/5Y? for the U(1) group. The cases (n5 , n 10)= (I) (2, 2), 

(II) (2, 0), (III) (0, 2) are considered. The results for the case (3, 0) is obtained, to 

a good approximation, from Case (II) by a simple scaling, and it is not discussed 

any further. 

Inspection of Eqn.(6.12) reveals that in RG scaling from a high scale to a 

smaller scale the two-loop gauge contribution to the soft masses is negative, and 

that of the gauginos is positive. The presence of the large At Yukawa coupling 

in the RGE drives the value of the stop soft mass squared even more negative. 

This effect increases the bound on the initial value for the stop soft masses and 

is included in this analysis. In this analysis the top quark mass in M S scheme is 

fixed at 167 GeV. 

In the MSSM there is an extra parameter, tan ,8, which is the ratio of the 

vacLum expectations values of the Higgs fields that couple to the up-type and 

down-type quarks respectively. Electroweak symmetry breaking then determines 

the top quark mass to be mt = At/ ../2v sin ,B with v rv 24 7 Ge V. In this analysis the 

regime of small to moderate tan ,B is considered, so that all Yukawa couplings other 

than At are neglected in the RG evolution. In this approximation the numerical 

results for h ::j:. i or ic are independent of tan ,B. In the numerical analysis of 
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sections 6.3 and 6.4 tan (3=2.2 is considered. In section 6.5 tan (3 = 10 is also 

considered. 

In the case of low-energy supersymmetry breaking, the scale Msusy is not 

much larger than the mass scale of the heavy scalars. Then the logarithm 

r-vln(Msusy/Ms) that appears in the solution to the previous RG equations is 

only 0(1). In this case the finite parts of the two-loop diagrams may not be 

negligible and should be included in the analysis. These finite parts are used to 

estimate the size of the two-loop heavy scalar contribution in an actual model. 

The full two-loop expression for the soft scalar mass at a renormalisation scale 

J.tR is m}uu(J.tn) = rnkz,(J.tn) + m}tnite(J.tn), where rnkz,(J.tn) is the solution to the 

RG equation in DR' scheme, and m}inite(J.tn) is the finite part of the one-loop 

and two-loop diagrams, also computed in DR' scheme. The finite parts of the 

two-loop diagrams that contain internal heavy scalars are computed in Appendix 

B and the details are given therein. The answer for these two-loop finite parts is 

(assuming all heavy scalars are degenerate with common mass M'j,) 

(6.13) 

where the gaugino and fer~nion masses are neglected. Since the DR' scheme is 

used to compute the finite parts of the soft scalar masses, the limits obtained 

on the initial masses are only valid, strictly speakirig,~-in t~is scheme. This is 

179 



especially relevant for the case of low scale SUSY breaking. So while these finite 

parts should be viewed as semi-quantitative, they should suffice for a .discussion 

of the fine tuning that results from the limit on the bare stop mass. For the case 

of high scale SUSY breaking, the RG logarithm is large and so the finite parts are 

not that important. 

The numerical analysis for either low-energy or high-energy supersymmetry 

breaking is described as follows. 

The RG equations are evolved from the scale Msusy to the scale at which the 

heavy scalars are decoupled. This scale is denoted by J-Ls and should be O(M8 ). 

The RG scaling of the he: ~vy scalars is neglected. At this scale the finite parts of the 

two-loop diagrams are added to mji (J-Ls). Note that since the two-loop information 

included in the RG analysis is the leading O(M'!J effect, it is sufficient to only use 

tree-level matching at the scale J-Ls· Since the heavy scalars are not included in 

the effective theory below Ms and do not contribute to the gauge coupling beta 

functions, the numerical results contain an implicit dependence on the number of 

heavy scalars. This results in a smaller value for a3 (J-Ls) compared to its value if 

instead all the scalars have a ,......, 1 TeV mass. This tends to weaken the constraint, 

and so it is included in our analysis 3 . The soft masses are then evolved using the 

one-loop RGE to the mass scale at which the gluinos are decoupled. This scale is 

fixed to be J-Lc=1 TeV. 

3This is the origin of a small numerical discrepancy of "' 10% between these results and the 

analysis of [97] in the approximation At = 0. 
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A constraint on the initial value of the soft masses is obtained by requiring that 

at the weak scale the physical scalar masses are positive. The experimental limit is 

rv 70 GeV for charged or colored scalars[100]. The physical mass of a scalar is equal 

to the sum of the soft scalar mass, the electro-weak D-term, the supersymmetric 

contribution, and some finite one-loop and two-loop contributions. As mentioned 

in the previous paragraph, in the effective theory below Ms the finite two-loop 

part from the heavy scalars is included in value of the soft scalar mass of the 

light sparticles at the boundary, defined at J-tR = J-ts rv M8. The finite one­

loop contributions are proportional to the gaugino and other light scalar masses, 

and are smaller than the corresponding logarithm that is summed in m;(J-tn). 

So these finite one-loop parts are neglected. Further, the electroweak D-terms 

are less than 70 GeV. For the scalars other than the stops, the supersymmetric 

contribution is negligible. In what follows then, m; (J-ta) > 0 is required for scalars 

other than the stops. The discussion with the stops is complicated by both the 

large supersymmetric contribution, m;, to the physical mass and by the L - R 

mixing between the gauge eigenstates. This mixing results in a state with mass 

squared less than min(mf + m;,mlc + m;), so it is a conservative assumption 

to require that for both gauge eigenstates the value of ml + m; is larger than 

the experimental limit. This implies that ml;~(70 GeV) 2-(175 GeV)2 = -(160 

Ge V)2. Instead, in what follows ml; 2: 0 is required. This results in an error that 

is (160GeV) 2 /2ml;,o :::::: 26 GeV if the constraint obtained by neglecting mt is rv 1 

TeV. For the parameter range of interest it will be shown that the limit on the 
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initial squark masses is rv 1 TeV, so this approximation is consistent. 

Then the above two analyses are combined as follows. The !:::.mK constraints of 

section 6.2.1 determine a minimum value forMs once some theoretical preference 

for the b"'s is given. Either a natural value for the b"'s is predicted by some model, 

or the b"'s are arbitrary and chosen solely by naturalness considerations. Namely, 

in the latter case the fine tuning to suppress !:::.mK is roughly 2/b". Further, a 

model may also predict the ratio M3/Ms. Otherwise, Eqns.(6.1) and (6.2) may 

be used as a rough guide to determine an upper value for M 3 , based upon nat­

uralness considerations of the Z mass. Without such a limitation, the positivity 

requirements are completely irrelevant if the bare gluino mass is suffuciently large; 

but then the Z mass is fine tuned. Using these values of M3 and Ms, the RGE 

analysis gives a minimum value for the initial stop masses which is consistent with 

!:::.mK and positivity of the soft masses. This translates into some fine tuning of 

the Z mass, which is then roughly quantified by Eqns.(6.1) and (6.2). 

Finally, this analysis may also be extended to include models that contain a 

Fayet-Illiopoulos hypercharge D-term, (v, at the tree-level. The effect of the 

D-term is to shift the soft scalar masses, m~,o ~ m~,o = m~,o + Yi(v. In this case, 

the positivity analysis applies to m~,0 , rather than m~,o· 

6.3 Low Energy Supersymmetry Breaking 

This section investigates the positivity requirement within a framework that 

satisifes both of the following: (i) supersymmetry breaking is communicated to 
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the visible sector at low energies; and (ii) multi-TeV scale soft masse~, Ms, are 

generated for some of the first two generation scalars. This differs from the usual 

low-energy supersymmetry breaking scenario in that here M}; » mf;,O is assumed. 

In the absence of a specific model, however, it is difficult to obtain from the posi-
' 

tivity criterion robust constraints on the scalar spectra for the following reasons. 

At the scale MsusY it is expected that, in addition to the heavy scalars of the 

MSSM, there are particles that may have SM quantum numbers and supersymme-

try breaking mass parameters. All these extra states contribute to the soft scalar 

masses of the light particles. The sign of this contribution depends on, among 

other things, whether the soft mass squared for these additional particles is posi-

tive or negative - clearly very model-dependent. The total two-loop contribution 

to the light scalar masses is thus a sum of a model-dependent part and a model 

independent part. By considering only the model-independent contribution only 

isolated one particular contribution to the total value of the soft scalar masses 

near the supersymmetry breaking scale has been isolated. However, these results 
f 

are used to estimate the typical size of the finite parts in an actual model. That 

is, if in an actual model the sign of the finite parts is nega~ive and its size is of 

the same magnitude as inEqn.(6.13), the constraint in that model is identical to 

the constraint obtained here. The constraint for other values for the finite parts 

is then obtained by a simple rescaling. 

Before discussing the numerical results, the size of the finite contributions are 

estimated in order to illustrate the problem. Substituting Ms rv 25 TeV, a 3 (25 
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TeV) "'0 .. 07 and a 1 (25 TeV) "'0.018 into Eqn.(6.13) gives 

2 )2( ( Ms )
2 

6mii;::::; -(410 GeV n5 + 3n10 ) 
25 

TeV (6.14) 

for squarks, and 

6m~c ;::::; - ( (n5 + 3n10)(70 GeV? + (n5 - n 10)(100 GeV?) (
25
i.v) 2 

(6.15) 

for the right-handed selectron. The negative contribution is large if Ms "'25 TeV. 

For example, if n5 = n10 = 2 then 6m~c ;::::; -(200 GeV) 2 and 6m~;::::; -(1.2 TeV) 2
. 

If n5 = 2, n 10 = 0, then 6m~c;::::; -(170 GeV) 2 and 6m~;::::; -(580 GeV) 2 . 

In this low-energy supersymmetry breaking scenario, it is expected that 

MsusY '"" Ms. In the numerical analysis Msusy = J-Ls is assumed since the 

actual messenger scale is not known. The scale J-Ls is chosen to be 50 TeV. At 

the scale J-Ls =50 TeV the J-Ls-independent parts of Eqn. (6.13) are added to the 

initial value of the soft scalar masses. The soft masses are then evolved using the 

RG equations (not including the two-loop contribution) to the scale J-Lc= 1TeV. 

First, the constraints the positivity requirement imply for ji =!= iL or in are 

discussed. In this case m}i is renormalized by Mj,0 , M~, ml,
0 

and the initial value 

of TrYm2
- Dy,0 . A numerical computation gives 

m}i,o + (0.243C~ + 0.0168C~ + 0.00156Y/)Mi,o +CD X w-3YiDY,O 

. . 2 1 3 2 
-(0.468C3 + 0.09502 + 0.0173Jii )2(ns + 3nl0) x 10- M8 

-(ns- nlO) ( ( -0.00058 + 0.0016(ns + 3niO))M.§- 0.925Ml,o) Yi X w-3 

-0.0174(ns - niO)Yi X w-3 M.§ (6.16) 
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where the strongest dependence on (n5 , n 10 ) has been isolated. The coefficient 

appearing in front of Dy,o is cv = -6. The numerical coefficients in Eqn.(6.16) also 

depend on (n5 , n 10 ) and the numbers presented in Eqn.(6.16) are for (n5 , n10 ) = 

(2,0). This sensitivity is, however, only a few percent between the four cases 

under consideration here 4
• Requiring positivity of the soft scalar masses directly 

constrains m};,o/M'ff; and M'i,,0 /M'ff; .. 

The value of Dy,o depends on the spectrum at the supersymmetry break-

ing scale, and is therefore model-dependent.· To obtain model-independent con-

straints from the positivity requirement, the combination m2
1
-. 

0 
- m2

1
-

0 
+ cv x 

"' "' 

10-3 x YiDY,o is constrained. Only this combinatio:a appears in the weak-scale value 

for the scalar mass of h· The numerical effect is small, since with DY,o ,....., O(mfi,
0

), 

the coefficient of m};,o is shifted from 1 to ,....., (1 - 6) x 10-3}i. 

The positivity requirement m}i for h =j; i or [cis given in Figure 6.1 _for different 

values ofn5 and n10 • That is, in figure 6.1 the minimum value ofmj;,o/Ms required 

to keep the soft masses positive at the scale f.LG is plotted versus M3,0/ Ms. From 

these Figures it is seen that the positivity criterion is weakest for n 5=2 and n 10=0. 

This is expected since in this case the heavy particle content is the smallest. Note 

that even in this "most minimal" scenario the negative contribution to the masses 

are rather large. In particular, Figure 6.1 implies that for (n5 = 2, n10 = 0) and . 
Ms ,....., 25 TeV, Jm~c :::::: -(190 GeV) 2 for M3,0 as large as 1 TeV. In this case it 

is the two-loop contribution from the hypercharge D-term that is responsible for 

4 This dependence is included in Figure 6.1. 
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the large negative mass squared. In the case (n5 , n 10)=(2, 2), Figure 6.1 implies 

that forMs rv 25 TeV, bm~c ~ -(210 GeVf and bmgc ~ -(1.1 TeV) 2 for M3,0 as 

large as 1 TeV. 

The positivity requirement for the stops is obtained next. In this case it is not 

possible to directly constrain the boundary values of the stops for the following 

simple reason. There are only two positivity constraints, whereas the values of 

m¥ (J.La) and mfc (J.La) are functions of the three soft scalar masses m¥ 0, mlc 0 and , , 

m~u,o· To obtain a limit some theoretical assumptions must be made to relate the 

three initial soft scalar masses. 

The numerical solutions to the RG equations for tan ,8=2.2 and (n5 , n10 ) 

(2, 0) are 

mf(J.La) 2 2 1 3 
-0.0303At + 0.00997 AtM3,0 + 0.322M3,0 + Cn X 6 X w- Dv,o 

-0.0399(m~u,O + mfc,o) + 0.960mf,o- 0.000645cLMJ 

. 2 2 -2 3 
-0.0606At + 0.0199AtM3 0 + 0.296M3 0 + Cn X - X w- Dyo 

' ' 3 ' 

m~u (J.La) 
2 2 1 3 

-0.0909At + 0.0299AtM3,0 - 0.0289M3,0 + Cn X 2 X w- Dv,o 

(6.17) 

The numerical coefficients other than that of M s do not vary more than a 

. few percent between the different values for (n5 , n10 ), and thus this dependence 

is not shown. The values of the Ms coefficient are (cL,cR, cH) = (1, 1, 1), 

(3.62, 3.84, 4.59), (2.78, 3.04, 3.92), for (n5 , n 10 ) = (2,0), (2, 2) and (0, 2), respec-
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Figure 6.1: Limits for mj;,o/Ms from the requirement that the masses squared are 

positive at the weak scale, for low~energy supersymmetry breaking. The regions 

below the curves are excluded. For the case (2,0), the limits for the other squarks 

are very similar to that for Q and are therefore not shown. 
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tively. Also, cv = -6. Inspecting Eqns.(6.1) and (6.2) implies that to keep m~ 

fine tuned at less than 1% (L}. :S 100) in each of the bare parameters, the following 

must be satisfied : J.l~ 460 GeV; M3,0~2.3 TeV; mi,o~l.7 TeV; m5~80 TeV and 

m10~50 TeV for (n5 , n10 ) = (2, 2). Finally, for other values of these parameters 

the fine tuning increases as L}_ = 100 X m2 /m5, where rho is the value of m that 

gives L}. = 100. 

It is possible to show, using the fact that YHu + YQ + Yuc = 0, that the solutions 

in Eqn.(6.17) are unchanged if m?,o is replaced with m?,o = m?,o +CD X w-3YiDY,O 

and set Dy,o = 0. In what follows then, the posivitity analysis is used to constrain 

m?,o for the stops. The- ~:lfference between m?,o and m?,o is small, though, owing to 

the small coefficient appearing in front of Dy,0 . In the remainder of this section 

the tilde on m? 0 will be removed to simplify the notation. , 

To constrain the initial values of the stop masses only gauge-mediated super-

symmetry breaking mass relations are considered. An inspection of Eqn.(6.17) re-

veals that to naturally break electroweak symmetry a small hierarchy mL0 > m~u,o 

is required. This is naturally provided by gauge-mediated boundary conditions 

5
. The relations between the soft scalar masses when supersymmetry breaking is 

communicated to the visible sector by gauge messengers are (11] 

(6.18) 

Substituting these relations into Eqn.(6.17) and assuming At,o =0 determines 

5In fact, low-energy gauge--mediated supersymmetry breaking provides "too much" elec-

troweak symmetry breaking [105]. 
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mt (J-ta) and mtc (J-ta) as a function of M3,0 , 1\II'j, and mfc ,o. Figure 6. ~ plots the min-

imum value of mic ,o/ M 3,0 required to maintain both mt (J-tc) ~ 0 and mtc (J-ta) ~ 0. 

Another interesting constraint on these class of models is found if it is assumed 

that the initial masses of all the light fields are related at the supersymmetry 

breaking scale by some gauge-mediated supersymmetry breaking (GMSB) mass 

relations, as in Eqn.(6.18). This ensures the degeneracy, as required by the flavor 

changing constraints, of any light scalars of the first two generations. This is 

required if, for example, one of n5 or n 10 are zero. Then in the previous limits 

of m;;,o for h =/:. i or £c, constraints on the initial value of mic are obtained by 

relating mj;,o to mic,o using Eqn.(6.18). In this case the slepton masses provide 

the strongest constraint and they are also shown in Figure 6.2. This result may 

be understood from the following considerations. The two-loop hypercharge D-

term contribution to the soft mass is "' Yi(n5 - n10 )a 1 a3M~ and this has two 

interesting consequences. The first is that for n5 =/:. n 10 , the resulting 6m2 is 

always negative for one of ec or L. Thus in this case there is always a constraint 

on mfc once gauge-mediated boundary conditions are assumed. That this negative 

contribution is large is seen as follows. The combined tree-level mass and two-loop 

contribution to the selectron mass is approximately m~c,o- ka1a3 M'j, where k is 

a numerical factor. Substituting the gauge-mediated relation m~c,o rv ni/a~mfc,o' 

the combined selectron mass is ni/a~(mfc 0 - k(a3 /a1 )a~M~). Since the combined , 

mass of the stop is rv mfc 0 -k'a~M~, the limit for mfc 0.obtained from the positivity , , 

requirement for m~c is comparable or larger than the constraint obtained from 
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requiring that mlc remains positive. For example, with n5 = 2, n 10 = 0 and 

Ms f"V 25 TeV, the right-handed slepton constraint requires that mic 0 ""' 1.1 TeV. 
' 

For n 10=2, n5=0 and Ms f"V 25 TeV, L3 is driven negative and implies that mic 0 f"V 

' 

1 TeV. From Figure 6.2 it is seen that these results are comparable to the direct 

constraint on mic,o obtained by requiring that color is not broken. 

The positivity analysis only constrains mi;,o/Ms for a fixed value of M3,0/M8 . 

To directly limit the initial scalar masses some additional information is needed. 

This is provided by the measured value of .6.mK. If some mixing and degeneracy 

between the first two generation scalars is assumed, parameterized by (bLL, bRR), 

a minimum value for Ms is obtained by requiring that the supersymmetric contri-

bution to .6.mK does not exceed the measured value. The results given in section 

6.2 are used to calculate this minimum value. This result together with the posi-

tivity analysis then determines a minimum value for mic 0 for a given initial gluino 
' 

mass M3,0 . The RG analysis is repeated with Jl.s = Ms, rather than JJ..s=50 TeV. 

Only the results found by assuming GMSB mass relations between the scalars 

are presented. These results are shown in Figure 6.3. The mass limits for other 

fi are easily obtained from the information provided in Figure 6.1 and Table 6.2 

and are not shown. From Figure 6.3 we find that for (n5 , n10 ) = (2, 2) and M3,0 

less than 2 TeV, mic 0 must be larger than 8 TeV for JbLLbRR = 1, and larger 
' 

than 1.8 TeV for JbLLbRR = 0.22. This results in .6.(m~, mf 0 ) of 2000 and 120, 
' 

respectively. In this case both the squark and selectron limits for mic 0 are com-, 

parable. The limits for other choices for JbLLbRR are obtained from Figure 6.3 
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Figure 6.2: Limits for mfc,o/ Ms from the requirement that the stop and slepton 

mass squared are positive at the weak scale. The regions below the curves are 

excluded. Low-energy gauge-mediated supersymmetry breaking mass relations 

between the light sparticles and tan (3 =2.2 are assumed. 
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by a simple scaling, since to a good approximation /j.mK "' fJ LL[J Fin/ M~. For the 

cases (n5 , n10 ) = (2, 0) and (0, 2), the corresponding limits are much weaker. In 

the case (n5 , n 10 ) = (2, 0), for example, only for fJRR rv 1 does the selectron mass 

limit require that mic 0 rv1 TeV. The limits for a smaller value of fJ are not shown. , 

This section concludes with some comments about how these results change if 

CP violation is present in these theories with 0(1) phases. Recall from section 6.2 

that for the same choice of input parameters, the limits on the initial stop masses 

increases by about a factor of 12. This may be interpreted in one of two ways. 

Firstly, this constrains those models that were relatively unconstrained by the 

/j.mK limit. Concentrate only on those models with n 5 = 2 and n 10 = 0, since this 

case is the most weakly constrained by the combined /j.mK and positivity analysis. 

The conclusions for other models will be qualitatively the same. Inspecting Figure 

6.3 implies that the limit mfc 0 >1 TeV 6 is only true if [JRR rv 0(1). Smaller values , -

of fJ RR do not require large initial stop masses. From the C P violation constraint, 

however, smaller values for fJRR are now constrained. For example, if [JRR rv0.1 

and 0(1) phases are present, then mfc,o >1 TeVis required. Secondly, the strong 

constraint from E could partially or completely compensate a weakened constraint 

from the positivity analysis. This could occur, for example, if in an actual model 

the negative two-loop contribution to the stop mass squared for the same initial 

input parameters is smaller than the estimate used here. For example, if the 

estimate of the two-loop contribution in an actual model decreases by a factor of 

6 For GMSB relations only. The direct constraint on the stop masses is slightly weaker. 
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I 

"' (12.5) 2 and 0(1) phases are present, the limit in this case from· E for the same 

o is identical to the values presented in Figure 6.3. 

6.4 High Scale Supersymmetry Breaking 

This section considers the case in which SUSY breaking is communicated to 

the MSSM fields at a high energy scale, that is taken to be 7 Mcur = 2 x 1016 

GeV. In this case, the negative contribution of the heavy scalar soft masses to 

the soft mass squareds of the light scalars is enhanced by "' ln(Mcur/50 TeV), 

since the heavy scalar soft masses contribute to the RGE from Mcur to mass of 

the heavy scalars. It is clear that as the scale of SUSY breaking is lowered the 

negative contribution of the heavy scalar soft masses reduces. 

This scenario was investigated in Ref.[97], and the difference between that 

analysis and the results presented here is briefly discussed. In the analysis of 

Ref. [97], the authors made the conservative choice of neglecting At in the RG 

evolution. The large value of At can change the analysis, and it is included here. 

Here it is found that for some pattern of initial stop and up-type Higgs scalar 

masses, e.g. universal scalar masses, this effect increc.ses the constraint on the · 

stop masses by almost a factor of two. This results in an increase of a factor of 

3-4 in the amount of fine tuning required to obtain the correct Z mass. Further, 

7 This choice for the high scale is done to remain agnostic about any physics appearing between 

the Grand Unification scale and the Planck scale. This also results in a conservative assumption, 

since the negative two-loop contribution is smaller with Msusy = Mcur-
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Figure 6.3: Limits for mic 0 from the requirement that the stop and slepton mass , 

squared are positive at the weak scale while suppressing !:1mK, for different values 

of (n5, n10 ), and (oLL, oRR)· The regions below the curves are excluded. Low-

energy gauge-mediated supersymmetry breaking mass relations between the light 

scalars and tan f3 =2.2 are assumed. 
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in combining the positivity analysis with the constraints from the LlmK analysis, 

the QCD corrections to the Flavor Changing Neutral Current (FCNC) operators 

has been included, as discussed in section 6.2. In the case (n5 , n10 ) = (2, 2), this 

effect alone increases the positivity limit by a f.actor of"' 2- 3. The combination 

of these two elements imply that the positivity constraints can be quite severe. 

This section proceed as follows. First, the RGEs are solved from MauT to 

Jls where the heavy scalars are decoupled. At this scale, the finite parts of the 

two-loop diagrams are added. Next, the RGEs are evolved (without the heavy 

scalar terms in the RGEs) from Jls to JlG using these new boundary conditions. 

Except where stated otherwise, the scales J-Ls and J-LG are fixed to be 50 Te V and 

1 Te V, respectively. 

For h =/: i, fc the numerical computations give 

2 . . 2 2 
m];,

0 
+ (2.84C3 + 0.639C~ + 0.159Yi )M3,0 + cnYiDY,o 

( C i · ci 2) 1 ( ) 3 2 - 4.38 3 + 1.92 2 + 0.622Yi 2 ns + 3nw X w- Ms 

+(ns- nlO) ( 17.2Mi,o + (0.226- O.Oll(ns + 3nw))M1) Yi X w-3 

-0.829(ns- nw)Yi X w-3 M§, (6.19) 

These results agree with Ref.[97] for the same choice of input parameters. The 

term proportional to Dy,o, and the terms in the last line result from integrating 

the one-loop hypercharge D-term. In this case en= -0.051. As in the previous 

section, the numerical coefficients in Eqn.(6.19) depend on (n5 , n10 ) through the 

gauge coupling evolution, and the numbers in Eqn.(6.19) are for (n5 , n10 ) = (2, 0) 8 . 

8The numerical results presented in Figure 6.4 include this dependence. 
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Requiring the soft masses squared to be positive constrains m;,o = ml,0+cDYiDv,0. 

Figure 6.4 plots the values of m ko I Ms that determine m}i (J.Lc) = 0 as a function 

of M3/ Ms, for h = Li, Qi, uf, df and ef. It is emphasized that the results 

presented in Figure 6.4 are independent of any further limits that FCNC or fine 

tuning considerations may imply, and are thus useful constraints on any model 

building attempts. 

For the stops, the numerical solutions to the RGEs for tan ,8 = 2.2 are 

2 2 1 -0.021At + 0.068AtM3 o + 3.52M3 0 +CD x -Dyo 
' ' 6 ' 

-0.142(m1-,.,o + m~c,o) + 0.858m~,o- C£ X 0.00613M~ 
. :-·. 

2 2 -2 
-0.042At + 0.137 AtM3 0 + 2.33M3 0 + cD x -Dyo , ' 3 ' 

-0.283(m1-,.,o + m~,o) + 0.716m~c,o- cR x 0.00252M~ 

2 2 1 -0.063At + 0.206AtM3 o- 1.72M3 0 +CD x -Dvo 
' ' 2 ' 

-0.425(mf,o + mfc,o) + 0.574m1-,.,o + CH X 0.00193M~ (6.20) 

where (cL, cR, cH) = (1, 1, 1), (3.57, 4.92, 5.15), (2.7, 4.16, 4.27) for (n5 , n 10 ) = 

(2, 0), (2, 2) and (0, 2), respectively. Also, cD = -0.051. The mixed two-loop 

cvntribution to the RG evolution is ex: (n5 - n 10 ) and is not negligible. Thus there 

is no simple relation between the c's for different values of n5 and n 10 . From 

Eqns. (6.2) and (6.1) it is clear that to keep m~ fine tuned at less than 1% 

(~ ::; 100) in each of the bare parameters, then the following must hold : J.L;::;, 

(n5 , n10 ) = (2, 2). The fine tuning of the Z mass with respect to the heavy scalars 
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Figure 6.4: Limits for mj;,o for different values of (n5 , n10 ) from the requirement 

that the mass squareds are positive at the weak scale, assuming a supersymmetry 

breaking scale of Mcur. The regions below the lines are excluded. 
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is discussed in (96]. Finally, for other values of these parameters the fine tuning 

increases as~= 100 x m2 /ih~, where m0 is the value of ih that gives~= 100. 

As in section 6.3, Eqns.(6.20) are rewritten in terms of ihi,o = mi,o + cvYiDY,O· 

This is equivalent to setting DY,o = 0 in Eqns.(6.20), and relabeling mi,o -t ihi,o· 

In what follows, the positivity analysis is used to constrain m; 0 . Since cv is small 
' 

and Dy,o '""O(m2
), the difference between ihi,o and mi,o is small. To simplify the 

notation, in the remainder of this section the tilde is removed from m~.o· 

As was also discussed in section 6.3, some relations between m~,O' m~c,o and 

mk,.,o are needed to obtain a constraint from Eqn.(6.20), using m~(f...lc) > 0 

and m~c (f...lc) > 0. Both model-dependent and model-independent constraints 

on the initial values of the stop masses are discussed next. The outline of the rest 

of this section is as follows. First, universal boundary _conditions are assumed. 

These results are presented in Figure 6.5. Model-independent constraints are ob-

tained by the following. Assume that mk,.,o = 0 and choose At,o to maximize 

the value of the stop masses at the weak scale. These results ate presented in 

Figure 6.6. It is further argued that these constraints represent minimum con-

straints as long as mk,.,o 2: 0. To obta~n another set of model independent con-

straints, the electroweak symmetry breaking relation is used to eliminate mku,o in 

favor of f...l· Then the positivity limits for different values of P,/ Ms are presented, 

where P,2 = f...l2 + ~m~, and assume that mkd,o = 0 to minimize the value of f...l 

9 These limits are model-independent and are presented in Figure 6.7, for the 

9 Strictly speaking, this last assumption is unnecessary. Only the combination P.'k = [1,2 
-
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case n5 = n 10 = 2. These analyses are then combined with the limits on Ms 

obtained from flmK. This section then concludes with some discussion about the 

anomalous D-term solutions to the flavor problem. 

First universal boundary conditions are considered for the stop and Higgs 

masses. That is, assume that mf,o = mfc,o = mku,o = m5. Figure 6.5 plots 

for tan,B = 2.2 the minimum value of m0 /Ms required to maintain ml(J.La) > 0 

and mfc (J.La) > 0. This value of tan ,B corresponds to At(Maur) = .88, in the 

case that (n5 , n10 ) = (2, 0). For comparison, the results gotten assuming At = 0 

may be found in Ref.[97]. For n5 = n 10 = 2, note from figure 6.5 that if Ms = 

20 TeV and the gaugino masses are small, the limit on the stop mass is ffi£c,o 2 

6.2 TeV. This limit is weakened to 6 TeV if M3,0 -;.;; 300 GeV is allowed. Even in 

this case, this large initial stop mass requires a fine tuning that in this case is 

fl rv (6 TeV) 2 /m~ rv 4200, i.e. a fine tuning of -:.:;w-3 is needed to obtain the 

correct Z mass. 

Next assume mku,o == 0 and choose the initial value of At,o to maximize the 

value of mf (J.La). The values of mf 0 and mfc 0 are chosen such that mf (J.La) > 0 
' ' ' 

and mfc (J.La) > 0. Note that in this case the constraint is ·;veaker because the At 

contribution to the RG evolution of the stop masses is less negative. These results 

are plotted in Figure 6.6. 

This case is discussed in some more detail to argue that the minimum value 

mhd,o/ tan2 (3 appears in the analysis. Thus for mhd,o =I 0 the results are unchanged if the 

replacement [L -t fLH is made. 
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of mi;,o obtained in this way will be valid for all m'ku 2: 0 and all At,O· Eliminate 

the At,O term by choosing At,O = kM3,0 such that the At contributions to mri (f.lc) 

is. maximized. Other choices for At,O require larger values for mr 0 to maintain ,, 

mri (J-tc) = 0. The value of k is determined by the following. A general expression 

for the value of the soft masses of the stops at the weak scale is 

mf(J-tc) = -aA;,o + bAt,oM3,o + cMl,o + · · ·, (6.21) 

mfc (J-tc) = -'-2aA;,o + 2bAt,oM3,o + dMl,o + · · · , (6.22) 

with a, c and d positive. The maximum value of mri (J-tc) is obtained by choosing 

At,o = bM3,0/2a. The value of the stops masses at this choice of At,o are 

2 ) ( b2 ) 2 mi (J-tc = c + -4 M3 o + ... ' 
a ' 

(6.23) 

2 ) ( b2 ) 2 mic(J-tc = d + 2 4a M3,o + · · ·. (6.24) 

An inspection of Eqn.(6.20) gives b = 0.068. and a= 0.021 for tan f3 = 2.2. In this 

case the "best" value for At,o is Af,0 rv 1.6M3,0 • It then follows that the quantity 

b2 / 4a = 0.055 is a small correction to the coefficient of the gaugino contribution 

in Eqn.(6.20). Thus the difference between the minimum initial stop masses for 

At,o = 0 and At,o= Af,0 is small. Next assume that m'ku,O = 0. Requiring that 

both mr (J-tc) = 0 and mrc (J-tc) = 0 determines a minimum value for mr,o and 

mrc,o· Now since the m'ku,O contribution to both the stop soft masses is negative 

(see Eqn.(6.20)), the minimum values for mr 0 found by the preceding procedure 
" 

are also minimum values if any m'ku,o > 0 is allowed. 
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So for all At,o and all mk.,,o 2: 0, the limits presented in Figure 6.6 represent 

lower limits on the initial stop masses if it is required that the soft masses remain 

positive at the weak scale. Further, the limits in this case are quite strong. For 

example, Figure 6.6 implies that if Ms i"'..J 20 TeV and M3,0 i"'..J 200 GeV (so that 

.. 
M3,0 /Ms i"'..Jl0-2), then the initial stop masses must be greater than 3.5 TeV in the 

case that (n5 , n10) = (2, 2). The results are stronger in a more realistic scenario, 

i.e. m1-,.,o > 0. If, for example, m1-,.,o i"'..J mfc,o/9 the constraints are larger by only 

a few percent. In the case that m1-,.,o = mfc,o = mf,o, presented in Figure 6.5, 

however, the constraint on the initial it mass increases by almost a factor of two. 

So far relation between m1-,.,o and mfc,o has been assumed in order to obtain 

constraints on the initial stop masses; e.g., m1- 0 = 0 or m1- 0 = m 2t-c 0 . Perhaps 
u, u, ) 

a better approach is to use the EWSB relation, Eqn.(6.2), to eliminate m1-,.,o in 

favor of J-L2 . This has the advantage of being model-independent. It is also a 

useful reorganization of independent parameters since the amount of fine tuning 

required to obtain the correct Z mass increases as J-l is increased. To obtain some 

lin:tits m1-d,o = 0 is chosen 10 to minimize the value of J-L2
, and m1-u,O is required 

to be positive. The minimum value of mic,o/Ms and mi,olMs for different choices 

of Ji/Ms are gotten by solving mfc(J-la) = 0 and mf(J-la) =. 0. These results are 

presented in figure 6.7. In this figure the positivity constraints terminate at that 

value of M 3,0 which gives m1-,.,o = 0. 

As discussed in the above, reducing the valu~ of m1-u,o decreases the positivity 

10This assumption is unnecessary. See the previous footnote. 
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limit on mi;,o· Consequently the fine tuning of m~ with resp~ct to mL0 is also 

reduced. But using Eqns.(6.20) and (6.2), it can be seen that decreasing m't-u,o 

while keeping mrc (J..tc) = 0 and mr (J..tc) = 0 results in a larger j..l, thus increasing 

the fine tuning with respect to J..l. This can also be seen from figure 6. 7. It is 

found, for example, that if M 3,0 / Ms rv 0.01, the small value [1,/ Ms = 0.01 requires 

mr 0/Ms rv 0.25. For Ms = 10 TeV, this corresponds to J..l rv 100 GeV and 
" 

mi;,o 2: 2.5 TeV. A further inspection of figure 6.7 shows that for the same value 

of M3,o/Ms, a value of mi,o/Ms = 0.17 is allowed (gotten by decreasing m'ku,o) 

only if [1,/Ms is increased to 0.14. This corresponds to J..l = 1.4 TeV for Ms = 10 

TeV; this implies that l~,~m~; p) rv 930. Thus the limit on the initial stop masses 

can only be decreased at the expense of increasing p. 

Finally, the limits become weaker if m'ku,o < 0. This possibility is theoretically 

unattractive on two accounts. Firstly, a nice feature of supersymmetric extensions 

to the SM 'is that the dynamics of the model, through the presence of the large 

top quark Yukawa coupling, naturally leads to the breaking of the electroweak 

symmetry[86]. This is lost if electroweak symmetry breaking is already present at 

the tree-level. Secondly, the fine tuning required to obtain the correct Z mass is 

increased. Figure 6.7 implies that while reducing m't- 0 below zero does reduce . '" 

the limit on the initial stop masses, the value of J..l increases beyond the values 

quoted in the previous paragraph, thus further increasing the fine tuning of the Z 

mass. This scenario is not discussed any further. 

Next the positivity analysis of this section is combined with the results of 
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Figure 6.5: Limits for m0 / Ms from the requirement that the stop masses squared 

are positive at the weak scale, for tail f3 = 2.2, At,o = 0 and assuming universal 

scalar masses at Mcur for the stop and Higgs scalars. The regions below the 

curves are excluded. 

203 



---------------------

~ 0.2 

~ 
~0.15 .... 

tf:: 
0.1 • f 

0.05 y fc 

0 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

M3rfMs 

~ 0.1 

~ 0.08 n5=2, n10=0 ~ 

·-' 0.06 tf:: • f 
0.04 

fc y 
0.02 

0 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

M3rfMs 

~ 

~ 0.15 n5=0, n10=2 ""' ~ ·-' 1f:: 0.1 • f 

0.05 
y fc 

0 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

M3.rfMs 

Figure 6.6: Limits for mi 0/Ms, mic 0 /Ms, from the requirement that the stop , , 

masses ~quared are positive at the weak scale, for MsusY = Mcur, tan {3 = 2.2 

and assuming that m'ku,o = 0. The value of At,o is chosen to maximize the value of 

the stop soft masses at the weak scale. The regions below the curves are excluded. 

204 



"' 0.3 
~ ,.," 

0.25 

• f 

• f 

0.2 

0.15 

p!M5 = 0.1 

0.1. 

0.05 

Jl/Ms = 0.01 

0 
0 0.01 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.1 

Figure 6.7: Limits for mi 0 /Ms, mic 0 /Ms, from the requirement that the stop 
' ' 

masses squared are posit~ve at the weak scale, for (n5 , n 10 ) = (2, 2), MsusY = 

Mcur, tan ,8 = 2.2, and different values of P,/ M8 . The contours end at that value 
' . 

of M3 ,0 / Ms that gives mHu,ol Ms = 0. The value of At,o is chosen to maximize the 

value of the stop soft masses at the weak scale. The regions below the lines are 

excluded. 

205 



section 6.2 to place lower limits on the soft scalar masses. For giv~n values of 

bLL, ORR, a minimum value of Ms, Ms,min, is found usi.ng the results of section 6.2. 

This is combined with the positivity analysis in Figure 6.6, to produce the results 

shown in Figure 6.8. Also shown are other limits gotten by assuming mku,o = m~c,o· 

These results are presented in Figure 6.9. Figure 6.10 also presents the stop mass 

limits for different values of f.l, restricted to mku,o ~ 0 and for J6LL8RR = 0.04. 

In all cases the heayy scalars were decoupled at Ms,min, rather than 50 TeV, and 

so the positivity analysis was repeated. The value of At,o was chosen to maximize 

the value of the stop masses at the weak scale. For completeness, the results 

for the cases (n5 , n10 ) = (2; 0) and (0, 2) and mk 0 = 0 are presented in Figure 
u, ' 

6.11. To repeat: the minimum allowable values for the stop masses consistent with 

mku,o > 0, gotten by setting mku,O = 0, are given in Figures 6.8 and 6.11. 

Next some consequences of this numerical analysis are discussed. Only the 

case n5 = n 10 = 2 is considered, since this is the relevant case to consider if 

the supersymmetric flavor problem is explained by decoupling the heavy scalars. 

Other choices for n5 and n 10 require additional physics to explain the required 

degeneracy or alignment of any light non-third generation scalars. From Figures 

6.8 and 6.9 it is seen that for J8LL8RR = 0.22 and M3,0 ::::; 1 TeV, mi;,0 ';<::,7 TeV 

is required. If instead both L\(m~; M~) and L\(m~; M3,0 ) are restricted to be less 

than 100, theri Ms;::; 10 TeV and M3,0;:;; 300 GeV is required. To not be excluded 

by L\mK, further require that J8LL6RR;::;0.06. For this value of J8LL8RR = 0.06, 

a minimum value for mio of rvl.5-2.5 TeVis gotten by rescaling the results in 
' 

206 



_figures 6.8 and 6.9 for JbLLbRR = 0.04 by an amount 0.06/0.04. The range depends 

on the value of m~u,o' with the lower (upper) limit corresponding to m~u,o = 0 

(mfc,0). Thus L1(m~; mL0 ) "'400- 800. This fine tuning can be reduced only by 

either increasing M3,0 - which increases L1(m~, M3,0 ) beyond 100- or by reducing 

Ms- which requires a smaller value for JbLLbRR· So unless vbRRbLL is naturally 

small, decoupling the heavy scalars does not provide a natural solution to the 

flavor problem. 

This section concludes by discussing the constraint this analysis implies for 

those models which generate a split mass spectrum between different generations 

through the D-term contributions of the anomalous U(1) gauge symmetry[91, 95, 

94]. In the model of set D of [94], there are two 5s at 7 TeV and 6.1 TeV and two 

lOs at 6.1 and 4.9 TeV, respectively, so that L1mK is suppressed. These values 

must be increased by a factor of 2.5 to correct for the QCD enhancement of the 

SUSY contribution to L1mK, as discussed in section 6.2. To obtain a conservative 

bound on the initial stop masses from the positivity requirement, first assume 

that all the heavy scalars have a common mass Ms = 2.5 x 5TeV= 12.5 TeV. 

(It would have been 5 TeV without the QCD correction.) TLen assuming a weak 

scale value of the gluino mass that is less ~han 710 GeV and setting m~u,o = 0 

(~fc,o), Figure 6.6 (6.5) implies that mf,o 2: 2.r" (3.6) TeVis required. This leads to 

L1(m~; mf 0) 2: 580 (1700). To obtain a better bound, the analysis is repeated using 
' 

It is possible to do this since o~ly this combination appears in the RG analysis 
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masses squared are positive at the weak scale while suppressing LlmK. It was 

assumed that MsusY = Mcur, tan {3 = 2.2 and that m~u,o = 0. The value ·of 

At,o was chosen to maximize the value of the stop soft masses at the weak scale. 
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chosen to maximize the value of the stop soft masses at the weak scale. The heavy 

scalars were decoupled at the minimum value allowed by !:lmK. The regions below 

the lines are excluded. 

209 



---- ---------

. { 

• t 
2 

bRR = bLL = 0.04 

1.5 

I 
.--.~ . 

0.5 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 

M30 (TeV) 
' 

Figure 6.10: Limits for mi,o and mic,o from the requirement that the stop masses 

squ::tred are positive at the weak scale while suppressing !:::.mK, for (n5, n 10 ) = 

(2, 2), J6LL6RR = 0.04, and different values of J..L. The contours terminate at 

m't 0 = 0. It was assumed that MsusY = Mcur and tan f3 = 2.2. The value of u, 

At,o was chosen to maximize the value of the stop soft masses at the weak scale. 

The heavy scalars were decoupled at the minimum value allowed by l:::.mK. The 

regions below the lines are excluded. 

210 



:;:-5 
~ 
'-4 

"' •::" 
3 OLL =I 

2 n5=0, n10=2 

• r,f 

I 
0.9 
0.8 
0.7 

0.6 

0.5 

0.4 

0.3 OLL = 0.22 

0.2 

O.I 
0 0.5 I 

:;:-4 

~ 
~3 

•:: 

2 

1 
0.9 
0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

O.I 
I.5 2 2.5 

M
3

_
0 

(TeV) 

0 0.5 

n5=2, n10=0 

• 

I 

f 

I.5 

M3.0 (TeV) 

Figure 6.11: Limits for mi,o' mic,o from the requirement that the stop masses 

squared are positive at the weak scale while suppressing !J.mK, for the cases 

(n5 , n 10) = (2, 0) and (0, 2). It was assumed that MsusY = Mcur, tan (3 = 2.2 and 

that mku,o = 0. The value of At,o was chosen to maximize the value of the stop 

soft masses at the weak scale. The heavy scalars were decoupled at the minimum 

value allowed by !J.mK. The regions below the lines are excluded. 

211 



for (ns, n10) = (2? 2). It is found (assuming mku,o = 0 and the gluino mass at 

'> the weak scale is less than 710 GeV) that mi,o rv 2.4 TeV. In the model of [95], 

6RR ~ 6LL ~ 0.01. To obtain a limit on the initial stop masses, use the bound 

obtained from either Figures 6.8 or 6.9 for 6RR = 6LL ~ 0.04, and divide the limit 

by a factor of 4. By inspecting these Figures it is seen that this model is only 

weakly constrained, even if mku,o rv mf,o· Next the limits in this model when 

0(1) CP violating phases are present is discussed. To obtain the minimum value 

of Ms in this case, the minimum value of Ms obtained from the tlmK constraint 

for 6LL = 6RR = 0.04 should be multiplied by 12.5/4; dividing by 4 gives the result 

for 6LL = 6RR = 0.01, and multiplying by 12.5 gives the constraint on Ms from 

E. The result is M8 ;<:, 23 TeV. Next, assume that M 3,0 is less than 300 GeV, so 

that the value of the gluino mass at the weak scale is less than 710 GeV. This 

gives M3,0 / Ms :::; 0.013. Using these values of M3 ,0 and Ms, an inspection of 

Figures 6.5 and 6.6 implies that mio must be larger than 3.9 TeV to 6.9 TeV, , 

depending on the value of mk,o· This gives tl(m~; m¥,0) 2: 2000. In the model of 

[91], M3,0 /Ms ~ 0.01 and mj,o/Ms ~ 0.1. Inspecting Figures 6.5 and 6.6 implies 

that these values are excluded for (n5 , n 10 ) = (2, 2) and (0, 2). The case (2, 0) is 

marginally allowed. The model of [91] with (n5 , n 10 ) = (2, 2) and At = 0 was also 

excluded by the analysis of Ref.[97]. 

6.5 Using Finetuning to Constrain fJ 

In this section, the messenger scale, Msusy, is varied between the GUT scale 
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I and a low scale rv 50 TeV, and the boundary values of the stop and gluino masses 

are restricted so that EWSB is not fine tuned. This gives us an upper limit to o 

if both positivity of the stop mass squareds at the weak scale and suppression of 

.6.mK is imposed. In other words, values for (o, MsusY) are determined which sat-

isfy the following requirements: 1. Suppression of the SUSY contribution to .6.mK 

by making the mass of the first two generation scalars, Ms, large. 2. Positivity 

of the stop masses squared and 3. Fine tuning in electroweak symmetry breaking 

does not exceed 1% or 10% (i.e., both .6.(m1, mf,o) and .6.(m1, M3,o) are smaller 

than either 100 or 10). 

An upper limit to o satisfying the above requirements is obtained as follows. 

For a given MsusY compute, using Eqns.(6.1) and (6.2), the boundary values of 

. . ( 2 2 ) the stop mass, mi,max' and the glumo mass, M3,max, such that both .6. mz, mi,o 

and .6.(m1, M3,0 ) are equal to some maximum value .6.max which is chosen to be 

100 or 10. 11 Substituting these values of the bare stop12 and gluino masses into 

11 In computing the 6o's, tan f), in addition to m'ku (mz), should be regarded as a function of 

the bare parameters. However, this additional contribution to the 6. 's is small for tan f) .2:. 2 

and also makes the magnitude of 6. larger. This dependence which is a conservative choice is 

neglected. 
12Strictly speaking, we should translate the upper bound on m~, ,o into an upper bound on m~, ,o 

using m~,,o = ml,,o + cvYi,DY,o + Yl,(D, i.e., to that combination appearing in the positivity 

constraint. Instead, we use the same bound for both mt_0 and m~,,o· This is reasonable, 

since cv is generally small (~0.05), and Dy,o "" O(m2 ). In any case, this effect is in the 

opposite direction for i and [c. In the case that (v i- 0, a slightly larger (0(30%)) value for 

6 may be allowed as compared to (v = 0. This is because if (v < 0, the maximum value 
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the expression for the weak-scale value of the stop mass squared, determines the 

maximum value of Ms, Ms,max, such that the stop masses squared at the weak 

scale are positive. Using this value for Ms and the analysis described in section 

6.2.1, an upper limi~ to b is obtained from the /j.mK constraint. This value of 

b and Msusy then satisfies the above-mentioned three requirements. This can 

be seen as follows. For the given Msusy, if b is larger than this limit, then to 

suppress /j.mK, Ms has to be larger than Ms,max· But, then to keep the stop 

masses squared positive at the weak scale, the boundary value of either the stop 

or the gluino mass has to increase beyond mi,max or M3,mai respectively, leading 

to !j.(m~, m~,0 ) or !j.(m~, M3,o) .larger than fj.max, i.e., increasing the fine tuning 

in EWSB. 

In Figures 6.12 are shown the.limits on voLLbnn as a function of Msusy for 

the case (n5 = 2, n 10 = 2). In the top of figure 6.12, m'ku,o = 0 is assumed. GMSB 

relations between the stop and Higgs masses are assumed in the bottom of Figure 

for m~c 
0 

is larger than m 2t- • This, in turn, allows for a larger value of Ms, and hence c5. 
t , ,max 

Naturalness considerations limit ICvl, though. The EWSB relation for m1, Eqn.(6.2), contains 

a term linear in (v. Requiring that .6.(m1, (v) < 100 implies that l(vi~(D,max = (900 GeV) 2 • 

Thus for a high scale of supersymmetry breaking, the upper bound on mlc,o may be increased 

to m~c O "'mt~ + -32 (D,max"' -35 mt~ , while maintaining .6.(m1,mt~c 0 ) = .6.(m2z,(D) = 100. t , ,max ,max , 

This roughly translates into an increase of"' ..j5f3 = 1.3 in the limit to c5. The actual limit will 

be smaller, since with this choice of sign for (v, the positivity constraint for the left-handed stop 

is now stronger. It is thus reasonable to require that the maximum value of ml, ,o be comparable 

to m~ 
t,,max 
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6.12. For both cases, ~max = 100, tan f3 = 2.2 and 10 are considered. For other 

choices for ~max, the upper limit to 6 roughly scales as J ~max/100, since both 

mi,maXl M3,max and therefore Ms,max scale as J ~max· 

In the case of GMSB mass relations, the boundary value of the Higgs mass and 

the stop masses are comparable for high MsuSY· Since m'k 0 results in a negative 
"' 

contribution to the stop mass squared, this tends to reduce the stop mass squared 

at the weak scale as compared to the case m'k 0 = 0. Then, from the above 
"'. 

analysis, it is possible to see that Ms,max ·and, in turn, the limit on 6 is smaller 

for the GMSB case as compared to the case m'k,,o = 0. This can be seen by 

comparing the top and bottom of Figure 6.12. 

In Figure 6.13 the limits on 6RR and 6LL for (n5 = 2, n10 = 0) and (n5 = 

0, n 10 = 2) are shown, respectively. Here m'k,,o = 0 is assumed and tan f3 = 2.2 

and 10 are considered. If ~max is chosen to be 100, then a constraint on 6 (6 :S 0.5) 

is obtained only for high values of MsuSY· So, instead ~max is chosen to be 10. 

Further numerical computations for tan f3 = 10 determine that the limits on 

the boundary value of the stop mass from requiring positivity of the mass squared 

at the weak scale do not differ by more than a few percent from the case tan f3 = 2.2 

(for the same values of the gluino and heavy scalar masses). However, the fine 

tuning of EWSB for the same gluino and stop mass is smaller for tan f3 = 10 as 

compared to tan f3 = 2.2. This is because, for tan f3 = 10, At is smaller than in the 

case tan f3 = 2.2. Hence the sensitivity of the weak scale value of m'k, to mf,o and 

M 3,0 is smaller. Also, the tan2 f3/(tan2 f3 -1) factor in Eqn.(6.2) is smaller, further 
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reducing the sensitivity of m1 to m~,o and M3,0 . In other words, for tan f3 = 10, 

mt,max and M3,max are larger so that Ms,max and, in turn, the limit on 6 is larger. 

This can be seen in Figures 6.12 and 6.13. 

6.6 Summary 

This chapter has studied whether the SUSY flavor problem can be solved by 

making the scalars of the first and second generations heavy, wit~ masses Ms 

(~few TeV), without destabilizing the weak scale. If the scale, Msusy, at which 

SUSY breaking is mediated to the SM scalars is close to the GUT scale·, then 

the heavy scalars drive the light scalar (in particular the stop) mass squareds 

negative through two-loop RG evolution. In order to keep the mass squareds at 

the weak scale positive, the initial value of the stop (and other light scalar) soft 

masses, mji,o' must typically be ~ 1 TeV, leading to fine tuning in EWSB. Two 

new effects are included in this analysis: the effect of At in the RGEs which makes 

the stop mass squareds at the weak scale more negative and hence makes the 

constraint on the initial value stronger, and the QCD corrections to the SUSY 

box diagrams which contribute to K- k mixing. 

Some results of the analysis for Msusy = Mcur can be summarized as follows. 

The gluino mass (at the weak scale) is restricted to be less than about 710 GeV, 

so that the fine tuning of m1 with respect to the bare gluino mass, M 3,0 , is not 

worse than 1%. This requires that M 3,0;:;300 GeV. Also assume that m't,,o = 0 to 

maximize the value of the stop masses at the weak scale. Then for J&LL&RR = 0.22, 
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value of the stop masses at the weak scale. 
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the value of the stop masses at the weak scale. 
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Ms ~ 40 TeVis required to be consistent with 6.mK. With these assumptions, this 

implies that for M3,0 less than 1 TeV, mi;,o > 6.5 TeVis needed to not break color 

and charge at the weak scale. Even for JoLLoRR = 0.04, it is found that Ms :2: 7 

TeV is needed. This implies that mi,o > 1 TeV is required if M3,0 ::; 300 GeV. 

This results in a fine tuning of I"'.J 1%. For OLL = 1 and ORR= 0, it is found that 

> . £ > Ms I"'.J 30 TeV and mio > 4.5 TeV. For OLL = 0.22 and URR = 0, Ms I"'.J 7 TeV and , 

mi,o > 1 TeV are found. For OLL = 0 and ORR = 1, Ms :2: 30 TeV and mic,o > 2.5 

TeV are found. The constraints are weaker for smaller v<llues of o. In a realistic 

model, m~u,o might be comparable to ml,o and the constraints on mi,o in this case 

are stronger. This is also discussed. It is noted that independent of the constraint 

from K - k mixing, this analysis can be used to check the phenomenological 

viability of any model that has heavy scalars. The phenomenological viability of 

the anomalous D-term solution is also discussed, and is found to be problematic. 

The possibility that MsusY = Ms was also considered. In this case, there is 

no RG log enhancement of the negative contribution of the heavy scalar masses 

to the light scalar masses. For this case, the finite parts of the two-loop diagrams 

are computed and used as estimates of the two-loop contribution of the heavy 

scalars to the light scalar soft mass squareds. Theseresults are combined with the 

constraints from K- k mixing to obtain lower limits on the boundary values of 

the stops." As an example, gauge-mediated SUSY breaking boundary conditions 

were assumed for the light scalars. If n5 =/= n 10 then one of the selectron masses, 

rather than the stop masses, provides the stronger constraint on mi;,o once gauge-
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mediated boundary conditions are used to relate mec,o and mt,o to mi;,o· Some of 

the results can be summarized as follows. The gluino mass at the weak scale is 

restricted to be less than about 2.3 TeV, again to avoid more than 1% fine tuning 

of m~ with respect to the gluino mass. For JbLLbnn = .22 it is found that mi;,o ~ 

1.4 TeVis required. The fine tuning of m~ with respect to the stop mass is rv 1.5% 

in this case. For the cases bLL = 0 and bnn = 1, and bLL = 1 and bnn = 0 it 

is found that mi,o ~ 1 TeV. As before, the constraints on mi,o for smaller values 

of b are weaker than rv 1 TeV. Again, the constraints in anactual model of this 

low-energy supersymmetry breaking scenario could be different, and the results 

discussed here should be treated as estimates only. The C P violating constraints 

from E are also discussed, and find that these limits increase by a factor of rv 12 if 

0(1) phases are present. 

Finally, in section 6.5 the scale of supersymmetry breaking is varied between 

50 TeV and 2 x 1016 GeV. Uppers bounds to b, that are consistent with positivity 

of the light scalar masses, naturalness in electroweak symmetry breaking, and 

(.6..mK )exp' are obtained. These results are summarized in Figures 6.12 and 6.13. 
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Chapter 7 

Dynamically Generating the Grand Unification 

Scale 

· Two models which generate the supersymmetric Grand Unification Scale from 

the strong dynamics of an additional gauge group are presented. The particle 

content is chosen such that this group confines with chiral symmetry breaking. 

Fields that are usually introduced to break the Grand Unified group appear in­

stead as composite degrees of freedom and can acquire vacuum expectation values 

due to the confining dynamics. The models implement known solutions to the 

doublet-triplet splitting problem. The SO(lO) model only requires one higher di­

mensional representation, an adjoint. The dangerous colored Higgsino-mediated 

proton decay operator is naturally suppressed in this model to a phenomenologi­

cally interesting level. Neither model requires the presence of gauge singlets. Both 

models are only technically natural. 

7.1 Introduction 

One of the most beautiful ideas for physics beyond the Standard Model (SM) is 

the idea ,[13] that the gauge groups of the Standard Model (SM) unify into a single 
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gauge group, the Grand Unified Theory (GUT). This wouldprovide some common 

understanding for the diversity of particle content and parameters that constitute 

the Standard Model. That one generation of fermions can be accommodated 

by a single 16 of 50(10) is too remarkable to be a coincidence! More indirect 

evidence for this framework is provided by the precision electroweak data. These 

suggest that the gauge couplings of the Standard Model unify at a high energy 

scale. In fact, a very good agreement with the data is obtained if softly-broken 

supersymmetry is realized close to the weak scale. 

This naturally leads to a consideration ofsupersymmetric GUTs [65]. The scale 

of supersymmetric unification inferred from the data is Mcur rv 2 X 1016 GeV. 

Above this scale Nature may be-described by a supersymmetric GUT. The value of 

this scale given by the data does not appear to be directly related to any other mass 

scale in Nature. The closest scale is the reduced Planck mass, M = 1/v'87rGN, 

which is about a factor of 100 larger than the GUT scale. Most attempts at 

supersymmetric model building remain agnostic about the origin of the GUT 

scale, and simply put into the theory by hand both the scale and pattern of 

symmetry breaking. While this is technically natural in supersymmetric theories, 

it completely avoids the issues of the origin of the GUT symmetry breaking and 

the small value of Mcur / M. This issue is particularly relevant if the scale ¥ 

is representative of a fundamental scale of new physics. If this is the case, then 

the small value of the supersymmetric Grand Unification scale compared to the 

Planck scale is perplexing. 
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Some of these issues can be addressed by applying some of the recent de­

velopments in the strong dynamics of supersymmetric gauge theories [107]. In 

particular, the strong dynamics of an additional gauge group that confines with 

chiral symmetry breaking at a scale close to the GUT scale is considered. The 

idea of using strong dynamics to generate the supersymmetric GUT scale has only 

recently been expl~red [108, 109, 110]. This was first explored in Reference [108], 

where a dynamically generated superpotential with a runaway behavior is used 

to generate Mcur/M. In Reference [110] the confining dynamics without chiral 

symmetry breaking is used in a novel manner to solve the doublet-triplet splitting 

problem. In that model though, a large top quark Yukawa coupling is only possi­

ble if the unification scale is uncomfortably close to the Planck scale. In Reference 

[109] the quantum confinement with. chiral symmetry breaking is used to generate 

the GUT scale. 

The idea of using strong supersymmetric dynamiCs to generate ratios of sym­

metry breaking scales has also been applied to flavor symmetries [111, 112]. The 

first phenomenological application of quantum confinement with chiral symmetry 

breaking in this context is given in Reference [112]. 

The outline of this chapter is as follows. Section 6.2 describes some features 

that are common to the models presented in section 6.3 and 6.4. Section 6.3 in­

troduces a model with an SU(6) GUT group. Section 6.4 introduces the preferred 

model which has an 50(10) GUT group. 
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7. 2 Overview 

In the models presented in this chapter an extra gauge group Gc is introduced 

and assumed to become strong at a scale A rv MauT· The particle content of Gc is 

chosen so that it confines with chiral symmetry breaking. This sector of the theory 

will be called the 'confining sector'. By identifying the GUT group, Gaur, with 

a global symmetry of the confining sector, the composite fields of the confining 

sector are charged urider the GUT group. For example, in the first model presented 

below, an adjoint of SU(6)aur is composite. In the second model, a symmetric and 

antisymmetric tensor of S0(10)aur is composite. This differs from the model of 

Reference [109], where the confining sector in that model does not contain particles 

charged under the GUT group. Below the scale of confinement, some of the 

composite fields will acquire vacuum expectation values (vevs) as a consequence 

of the dynamics of confinement .. In the models presented here there is a discrete 

. 
set of sup~rsymmetric vacua. In one of these vacua the vevs of the composite fields 

break the GUT group; this together with some superpotential interactions lead to 

a.phenomenologically acceptable vacuum. The small value of Maur/MPL is then 

understood as naturally arising from the dimensional transmutation of the small 

gauge coupling of Gc at the Planck scale. 

The simplest example of a supersymmetric gauge theory that exhibits con-:-

finement with chiral symmetry breaking is SU(N) with N flavors Q + Q and no 

superpotential [107]. This will be the model for the confining sector. It is con-
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jectured that below the scale of strong dynamics, A, of the SU(N) group, the 

appropriate degrees of freedom are the confined "baryons" B, B, and "mesons" 

M of the SU(N) group, where 

M ! "' Q1 Q~ · (o- o o)· 
t at"''' (7.1) 

(7.2) 

(7.3) 

The charges of the baryons and mesons under the global SU(N) xSU(N) x U(1) 8 , 

are indicated in parentheses. The space of supersymmetric vacua for the baryons 

and mesons is described by [107] 

de.tM- BE =A2
N. (7.4) 

1 I 
The left-hand side of this equation vanishes at the classical level as a consequence . 

of the Bose statistics of the superfields Q and Q. Quantum corrections result 

in a non-vanishing value for the right-hand side. The important point is that 

along the supersymmetric vacua, some of the confined fields necessarily acquire 

vevs, breaking the global symmetry down to a subgroUJ..·. This conjecture satisfies 

two nontrivial consistency tests [107]: holomorphic decoupling of one flavor; and 

t'Hooft anomaly matching of the unbroken glob.al symmetries. 

In this chapter a diagonal subgroup of the global symmetry of the confining 

sector is gauged and identified with the GUT group. The mesons of the confining 

sector therefore transform under the GUT group. It will be assumed that the 
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weakly gauging of a global symmetry of the confining sector does not affect· the 

confining dynamics of Gc, and does not ruin the quantum modification with chiral 

symmetry breaking. This is a reasonable assumption since the GUT group is 

weakly gauged at the scale A rv Mcur rv2x 1016 GeV. 

Perhaps the most difficult problem in GUT model building is the origin of the 

doublet-triplet mass splitting. The excellent agreement between the measured and 

theoreticaily predicted value of sin2 Ow assumes that the particle content below 

the unification scale contains the (supersymmetric) SM chiral matter content plus 

two electroweak Higgs doublets. In a minimal SU(5) GUT, the Higgs fields fit 

into a 5 and 5 of SU ( :0;. The presence of the remaining particle content of these 

representations-the two colored Higgs triplets- much further than a few decades 

below the GUT scale completely ruins this agreement. More generally, requiring 

that there exists one large split SU(5) representation is a strong constraint on 

model building. The models presented in this chapter implement two known 

solutions to this problem: the Higgs as "pseudo-Goldstone bosons" [113] and 

the "Dimopoulos-Wilzcek" [114] missing vevs mechanism. The latter solution is 

implemented in an SO(lO) GUT gauge group, whereas the former is based upon 

an SU(6) GUT group. 

In the models presented here the quantum confinement is therefore not directly 

responsible for the doublet-triplet splitting: The structure outlined above must 

be supplemented with a non-vanishing superpotential in order to implement the 

doublet-triplet splitting. A non-vanishing superpotential must be added in any 
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case: a generic point on the quantum modified constraint breaks SU(N) x U(1) 8 , 

down to U(l)N-l_ This provides too much symmetry breaking. A point that only 

breaks to a larger subgroup is therefore an enhanced symmetry point, correspond­

ing to a particular choice of the vevs of M and B. At the enhanced symmetry 

point, there are many massless particles in addition to the Nambu-Goldstone mul­

tiplets. These correspond to the would-be Goldstone bosons of the more generic 

symmetry breaking pattern, and at the enhanced symmetry point, transform as ad­

joints under the unbroken gauge group. These particles must acquire masses from 

additional superpotential interactions. These superpotential interactions then ex­

plicitly break the global symmetry of the confining sector down to Gaur x U(l)B'· 

It is then a concern whether the presence of this superpotential might destabi­

lize the confinement and chiral symmetry breaking. The form of the superpotential 

for the fundamental fields of the group Gc, Q, Q, and any fields '1/JM not charged 

under Gc, in the two models presented here is 

(7.5) 

The superpotential We involving the confining fields will by fiat contain only 

non-renormalizable operators, suppressed by a scale assumed to be either the 

Planck mass or reduced Planck mass. If confinement occurs, the coefficient c of 

an operator with mass dimension d in the low-energy theory that arose from an 

operator with N ( QQ)s in the high energy theory is expected to be 

(7.6) 



where A is a constant that is expected to be of order unity. For the models 

considered below, d = -1,0 or 1, N is 1 or 2, and N- d is positive. Sirice 

these coefficients are suppressed by powers of A/ M, the presence of these terms in 

the superpotential is a small perturbation to the quantum confinement. It is then 

reasonable to expect that these operators do not destroy the quantum confinement 

with chiral symmetry breaking. This assumption will be made for the remainder 

of the chapter. 

In the usual GUT model building framework, the unification of the gauge cou­

plings can be significantly affected by the presence of M-1 suppressed operators 

[115]. In an SU(5)· model, for example, the gauge field-strength tensor F can 

have non-renormalizable interactions with an adjoint E. The operator cEF F / 4M. 

results in a tree-level relative shift of the gauge couplings 1/ gJ that is approxi­

mately eM aur / M. This translates into a shift in the low-energy value of sin Bfv 

that for M/Maur = 20 is ~sinBfv(Mz) rv ±few X c X w-3
. In the GUT mod­

els presented in this chapter, some of the higher dimensional representations are 

co~posite. For the composite fields, the gravitational smearing operator arises 

from a higher dimension operator in the fundamental theory. The coefficient of 

this operator below the confinement scale then contains an additional suppres­

sion of A/ M. This extra factor completely suppresses the smearing effect unless 

the coefficient of the operator in the fundamental theory is unnaturally large-of 

O(M/Maur)-and Maur/M is rv 1/20. Non-composite higher dimensional fields 

can contribute to the gravitational smearing. In the 50(10) model, it turns out 
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that these contributions are completely negligible. 

This section concludes with a discussion of some technical issues that occur 

throughout the chapter. Implicit in the discussion that follows will be the assump­

tions that (global) sup~rsymmetry is unbroken, and that the non-trivial Kahler 

potential has a strictly positive definite Kahler metric [112]. 

Supersymmetric minima are found by looking for solutions to the F -flatness 

equations 0 = Fi = 81/J; W for the confined and '1/JM fields. This is rather naive, 

since the vevs of the fields will typically be O(A) and the Kahler potential is 

non-calculable for these field values. It is not clear then that the "baryons" and 

"mesons" are the correct degrees of freedom. For the purposes of determining 

the existence of supersymrrtetric vacua with a particular pattern of symmetry 

breaking, however, the last assumption of the previous paragraph is sufficient 

[112]. With these assumptions, a supersymmetric vacuum found using a trivial 

Kahler potential will remain supersymrrietric for the non-trivial Kahler potential. 

The spectrum of the particle masses is also important for phenomenology. For 

this, knowledge of the Kahler potential is required. Despite the absence of this 

information, a few important points about the mass spectrum can be extracted 

from the superpotential [112]. For example, a particle that is massless (zero eigen­

vector of Fi,k) in the case of a canonical Kahler potential for the confined fields will 

remain massless in the case of a non-trivial Kahler potential. Similarly, a" massive 

particle iri the trivial Kahler potential will remain massive for a non-trivial Kahler 

potential. So the mass spectrum computed by assuming a trivial Kahler potential 
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will be used to check that the superpotential with a non-trivial Kahler poten­

tial results in superheavy masses to all the particles that should have superheavy 

masses. 

In the models presented here, the superpotential interactions that involve the 

confining fields occur from higher dimension operators, so that after confinement 

the superpotential coupling of those operators is 5. rv >..(A/ M)n « >.., with ).. rv 

0(1). Particles that acquire their m~ss from these operators will then have masses 

somewhat below the GUT scale. These masses remain uncalculable though, since 

they should be computed at a scale that is comparable to the vev that is generating 

the mass, which in this case is O(A). 

The one-loop prediction for sin2 Ow is modified by the presence of these light 

states below the GUT scale since they do not in general form complete SU(5) rep­

resentations. An attempt at quantifying this correction is made by assuming that 

the naive calculation-i.e. assuming a canonical Kahler potential-of the spectrum 

gives the correct mass spectrum to within a factor of a few (times unity), and 

further, that the correction to sin2 Ow from particles with masses much smaller 

than the confinement scale is well-approximated by the usual one-loop computa­

tion. The corrections from particles with masses near the confinement scale are 

not calculable and not discussed. 

Finally, in the two models presented here certain operators allowed by the 

gauge symmetries of the theory must be absent from the superpotential in order 

not to ruin the doublet-triplet splitting mechanisms. All the dangerous operators 
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cannot be forbidden by any global symmetries, since some of them will have the 

same quantum numbers as other operators that are required to be present in 

the superpotential. If these models were only the effective theory of some more 

fundamental field theory, then the dangerous operators ·could perhaps be generated 

at the tree-level by integrating out some heavy particles at the scale M. In this 

case however, the full theory above the Planck scale is not known and probably 

not a field theory. It is then possible that the full theory could be responsible for 

the absence of these dangerous operators, even though from the low-energy theory 

they cannot be forbidden by any symmetries. 

7.3 SU(6) x SU(6) 

The gauge group is SU(6)c x SU(6)aur where one factor of SU(6) is the 

confining group Gc, and the other factor is the SM unified gauge group. Consider 

six flavors, Q + Q of SU(6) that are also charged under the SU(6)auT· Further, 

introduce two Higgs fields H, H, and an adjoint ~N that are charged under only 

the SU(6)auT· The particle content under SU(6)c x SU(6)aur is then 

Q rv (6, 6), 

Q rv (6, 6), 

H rv (1, 6), 

H rv (1, 6), 

~N rv (1, 35). 
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The SU(6)c group is assumed to confine at a scale A "' Mcur with a quantum 

modified constraint. In this case the confined "meson" M/ "'Q:Q~ "'35 + 1 un-

der the SU(6) GUT symmetry. The "baryons" B"' t.Q6 and B"' t.Cf are singlets 

under the SU(6)cur group. No gauge singlets are required in the fundamental 

theory. 

The superpotential in terms of the fundamental fields is chosen to be 

(7.7) 

The scale M is assumed to be the reduced Planck mass rv2x1018 GeV. The trace 

sums over the SU(6)cur indices. All the dimensionless parameters are assumed to 

be of order unity. This superpotential.contains the minimum number of interac-

tions necessary (as shown below) to successfully implement in the phenomenolog-

ically preferred vacuum the doublet-triplet splitting and give GUT scale masses 

to all the other particles. A more general superpotential is allowed provided that: 

(1) Only non:..renormalizable operators involving Q, Q are allowed. (2) To keep 

the Higgs doublets light, the superpotential that only involves the 35s and the H, 

fi fields must preserve a SU(6) x SU(6) global symmetry [113]. The operators 

H(QQ)nH and H("E,N)nH, for example, must be absent. (3) Supersymmetry is 

not spontaneously broken. 

After confinement occurs, the superpotential written in terms of the confined 
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fields E"' 35 and a"' 1 , i.e. Q~Q~ r-: AE{ + Aa6{ /V6, is 

( 
;;; ) 1- 1-

Wo A det(E + a/v6)- BB- A6 + 2'A 1AtrE2 + 2'A2Aa2 

+5.4trE~E + 5.5atrE~ + (HH)(5.3a + gtrE~/M). 

It is expected that 

(7.8) 

as an estimate of the size of the couplings in the confined description. The quan-

tum modified constraint has been added using a Lagrange multiplier A. This su-

perpotential contains all the non-perturbative (superpotential) information from 

the strong SU(6)c dynamics. It is interesting that in this case a term in the 

superpotential for QQ that generates a cubic term trE3 is not required. In most 

supersymmetric GUT models, the cubic term is required to obtain a non-trivial 

vacuum. In this case, it is the interaction Adet(E+a) from the quantum modified 

constraint that balances the mass terms to obtain a non-trivial supersymmetric 

vacuum. 

The F -flatness equations are 

(7.9) 

0 = FB = AB, 0 = F B = AB' (7.10) 

(7.11) 

(7.12) 
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- - 2 1 2 
A1AE + A4(EN- 6trEN) 

1 
+Adet(E + a/v'6)((E + a/v'6)-1 -

6
tr(E + a/v'6)- 1

), (7.14) 

In addition to the phenomenologic~lly preferred vacuum, these eq•..!ations include 

other discrete solutions. In some of these solutions SU(6)aur is unbroken. For 

example, a solution with a and A non-zero, and all other vevs equal to zero, exists. 

So although the preferred vacuum is discrete, it is assumed that it was selected in 

the early history of the universe. This could occur if, for example, the preferred 

vacuum is a global minimum of the scalar potential after supersymm~try breaking 

effects are included. 

To break SU(6) down to the SM gauge group, it is assumed that 1 

1 1 

0 1 

0 1 
H = H = VH (7.16) 

0 1 

0 -2 

0 -2 

1 H = H is required by SU(6)cur D-ftatness. 
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The vevs A, CJ, VL;, VN and VH are .the solutions to 

(7.17) 

(7.18) 

(7.19) 

(7.20) 
.· 

and for A =f. 0, det(I; + CJj.;6) = A6 . The quantities a, band K are defined to 

Appendix C it is demonstrated that a discrete solution exists with A rv (A/ M)A - 3 

and with all vevs non-zero and ofO(A). Thus at this vacuum the vevs of the baryon 

fields are forced to the origin. 

This vacuum implements the Higgs as "pseudo-Goldstone bosons" solution 

to the doublet-triplet splitting problem [113]. This mechanism is now briefly 

described. Firstly, the scalar potential for H, H and I;, L;N has a U(6) x SU(6) 

global symmetry. The U(6) acts on Hand H, whereas the SU(6) symmetry acts 

on I; and L;N· For the vacuum in Eqn.(7.16), the global U(6) x SU(6) symmetry 

is broken to [SU(5)] x [SU(4) x SU(2) x U(1)] by the vevs of H, I; and L;N· The 

unbroken gauge group is then SU(3)c x SU(2) x U(1)y. The breaking of the 

gauge symmetry results in 23 Nambu-Goldstone boson multiplets; the breaking of 

the SU(6) x U(6) results in 27 Goldstone boson multiplets. So all but 4 of the 

Goldstone; bosons acquire mass of 0( Mcur) from the super-Riggs mechanism. 
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To see that these four pseudo-Goldstone bosons carry the quantum number 

charges of two electroweak doublets, first note that under SU(4) x SU(2), 35 = 

(4, 2) + (4, 2) + (15, 1) + (1, 3) + (1, 1). Inspecting the vevs of E and EN, the 

combination vr;f:: _ vr:E+vNEN of the fields (4, 2), and of the fields (4, 2), in E and 

EN are the Goldstone bosons of the breaking of one global SU(6) symmetry. Since 

SU(3)c is embedded in SU(4), these Goldstone bosons contain two electroweak 

doublets. The Goldstone bosons of the SU(6) --+ SU(5) breaking are 5 + 5 + 1 of 

SU(5), and also contain two electroweak doublets. Tl;le combination 3vr;f:: + vHH 

of electroweak Higgs doublets are the fields eaten by the super-Higgs mechanism. 

The orthogonal combination remain massless and are the two Higgs doublets of 

the SM. The non-renormalization theorems of supersymmetry guarantee that these 

fields remain massless to all orders in perturbation theory. 

The fields in the adjoint (15, 1) and (1, 3) of both I: and I:N, as well as the 

remaining combination of (4, 2), and of (4, 2), in E and I:N orthogonal to f::, do 

not correspond to any broken generators and must acquire their masses from the 

superpotential interactions. It is conveinent to express the SU(5) or SM charge 

assignments of this particle content: one complete 24 and 5+5 of SU(5); 4,singlets; 

and one (8, 1~ 0) + (1, 3, 0) + (3, 1, -1/3) + (3, 1, 1/3). A naive estimate for the 

masses of the physical fields is obtained by computing the fermion mass matrix 

assuming a canonical Kahler potential. The results are presented in Appendix C, 

and are summarized here. All the fields have a mass m 1'-.J A 2 / M, a consequence 

of the suppression of the superpotential couplings for the confined theory. 
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These light fields affect the unification of the gauge couplings and may in 

principle also mediate proton decay. The corrections to sin2 Ow are discussed 

first. These corrections occur from two sources. There could be large threshold 

corrections from the strong dynamics occuring at A. These are non-calculable 

and will not be considered. The other is from the light states (8, 1, 0), (3, 1, 0), 

(3, 1, 1/3) and (3, 1, -1/3) which have a mass m rv A2/M . The correction to 

sin2 Ow from these light states, using a naive one-loop running approximation 

from Maur to their masses is 

2 aem ln(Maur/m) 
~sin Ow=- 57r ln Maur/m rv -0.003 X ln 200 . (7.21) 

The reason2 for the small correction is that the shift in sin2 Ow is dominated by 

the light (3, 1, 1/3) and (3, 1, -1/3) states. This.is because the shift from the 

(8, 1) and (1, 3) states almost cancel. Recall that a sufficient condition for the 

prediction for sin2 Ow to be unchanged by the presence of some extra matter at a 

scale m is that (c5b3 - c5b2 )/(c5b2 - c5bt) = (b3 - b2)/(b2 - bt), independent of m. For 

an adjoint of SU(3) and SU(2) , c5b3 = 3, c5b2 = 2 and c5b1 = 0. In this case the 

LHS of this condition is 1 and the RHS is ~ x 2, which is close to 1. The other light 

states form approximate complete SU(5) representations and do not ·significantly 

affect the gauge-coupling unification. The theoretical prediction without the light 

fields, sin2 Ow rv .233 ± 0(10-3
) [116], is a little larger than the measured. value of 

0.231[36]. The effect of these light states is to shift the prediction in the correct 

direction. The uncertainty in the uncalculable corrections to sin2 Ow, however, are 

2 The author thanks N. Arkani-Hamed for this observation. 
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probably of the same order, with an unknown sign. 

The problem of forbidding operators of the forrp. On rv H ( QQ)n H is discussed 

next. These operators explicitly break the U(6) x SU(6) symmetry of the scalar 

potential. Consequently, if these operators are present they could give too large of 

a mass to the electroweak Higgs doublets. In this model, the term H HtrQQ occurs 

in the superpotential. Any symmetry that allows this term also allows the term 

H( QQ)H in the superpotential. This operator ruins the doublet-triplet splitting, 

so it must be assumed that this term is absent. Higher dimensional operators 

must also be forbidden. Since the confinement introduces additional suppressions 

of O(An/Mn), only a few ofthe first higher dimensional operators must be absent. 

More concretely, requiring that On not result in a mass for the Higgs superfields 

that is larger than a TeV and assuming that A/MPL rv 1/200, implies that only 

the first three (n =1,2 and 3) higher dimensional operators must be forbidden. 

Operators of the type H(EN )n H are also dangerous and must be absent. 

At this point it is probably not clear what role the extra adjoint plays in this 

model. In fact, this field is not needed to obtain an acceptable spectrum for 

the massive fields. It is introduced instead to obtain a large top quark Yukawa 

coupling. In order for the top quark not to have an irrelevant Yukawa coupling, 

it is necessary that the Yukawa interactions between the top quark and the Higgs 

doublet explicitly break the global SU(6) x U(6) symmetry. The top quark must 

therefore couple to both Hand E. If E is composite, then such a coupling cannot 

be of order unity; rather, it will be suppressed by A/ M. The top quark must 
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therefore interact with a fundamental ~-

The large top quark Yukawa coupling arises from considering the following 

embedding of the SM chiral fields [117] . The chiral matter content is one 20, 

3 x 15 and 6 x 6. The SU(5) decomposition of these fields is, 20 = 10 + 10, 

15 = 10 + 5 and 6 = 5 + 1. The three 5s of the SM are contained in three of 

the 6s, and the other 3, call them 6', acquire mass at the GUT scale. The first 

two generation lOs are contained in two of the 15s, ,and the third generation 10 
/ 

is a linear combination of the 10 in the 20 and the 10 in the remaining 15 153 . 

This spectrum is obt~ined from the superpotential [117] 

(7.22) 

The vev of H gives GUT-sized Dirac masses to the 5 and 5 fields in the 3 15s 

and 3 6's. From the vevs of ~N and H, a linear combination of the 10 in the 

20 and the 10 in 153 acquires a GUT-sized Dirac mass with the 10 in the 20. 

The orthogonal combination is the third generation 10 and remains massless. In 

sum, this superpotentialleaves 3 (10 + 5)s massless. The large top quark Yukawa 

coupling arises from the first two interactions. 

The (3, 1, 1/3) and (3, 1, -1/3) fields have a Dirac mass somewhat below the 

GUT scale. Whether they may mediate proton decay at too large of a rate is 

then a concern. Since the top quark couples to these fields through the 20~N20 

interaction, it naively appears that a dangerous proton decay operator is generated 

by integrating out these heavy fields, and then rotating the top quark to the mass 
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basis. For this operator to be generated, however, a coupling of L,N or L, to a 5 of 

SU(5) (6 of SU(6)) is required. Such a coupling is not present in the superpotential 

of Eqn.(7.22). So this issue depends crucially on the origin of the other fermion 

masses. For example, if all the fermion masses arise from interactions with H and 

H, then a dangerous proton decay operator is not generated by the exchange of 

these states [117). 

An upper bound on M is determined by the value of the Landau pole of the 

SU(6)aur gauge coupling. The SU(6) coupling at the scale M is then 

-1 43 7 
asu(6) (M) = 24- -lnA/mJ- -lnM/A. 

GUT 11K 2K 
(7.23) 

The first logarithm is the contribution to the GUT gauge coupling at the GUT 

scale from the particle content with mass m; the second logarithm is the contribu-

tion of the full SU(6) particle content to the running of the gauge coupling above 

A. Inserting m rv A2/M and requiring that achr(M) 2:1 implies lnM/A ~ 10. 

7.4 SU(lO) x SO(lO) 

The gauge group is SU(lO)c x SO(lO). The SU(lO)c group is the confining 

gauge group, and the Grand Unified group is SO(lO). The particle content is 

Q rv (10, 10), 

Q rv (10, 10), 

A rv (1, 45), 
I \ 

16 rv (1, 16), 
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16 "' (1, 16), 

T1 "' (1, 10), 

T2 "' (1, 10). 

This particle content is rather economical as it requires only one higher dimensional 

representation, an adjoint, and no gauge singlets 3 . It is,assumed that the 8U(10)c 

group confines at a scale A "' Mcur with a quantum modified constraint. In this 

case the confined "meson" M/ "' Q:Q~ "' 45 +54+ 1 under the 80(10) GUT 

symmetry. The fields are labeled 8 "' 54, A" "' 45 and a "' 1. The "baryons" 

B "'EQ6 and B"' c?:/ are singlets under the 80(10)cur group. 

The superpotential in the fundamental theory is chosen to be 

W A1T1AT2 + A2T2(QQ)T2/M + A316(QQ)I:16/M + A41616tr(QQ)/M 

+A5tr(QQ) 2/M + A7A2(QQ)/M + A11 16(QQ)AsAL:16/M2, (7.24) 

where L:ii = [rj, ri]/4i are the generators of 80(10) in the spinorial representation. 

The subscript "AS" indicates that only the anti-symmetric contribution of QQ 

is allowed to be present; the symmetric contrihqtion spoils the doublet-triplet 

splitting. It is technically natural for only the anti-symmetric contribution to be 

present; the full theory above the Planck scale must be responsible for the absence 

of the symmetric operator. The operators T1 ( QQ)nT1 must also be absent. 

The renormalizable and M-1 suppressed operators appearing in W are all re-

3 Also see Reference [118] for an economical model. In this model though, the origin of the 

unification scale is not addressed. 
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quired: (i) The operators ex A1 , A2 are required for the doublet-triplet splitting. 

(ii) The operator ex A7 arranges the vev of A to be in the "Dimopoulos-Wilzcek" 

(DW) form [114], required to perform the doublet-triplet splitting. (iii) The oper-

ators ex A3 and A4 are necessary to break the rank of the group. (iv) The operator 

ex As is necessary to fix all the vevs. This point is made clear later. ( v) The 

operator ex An is required to give mass to some fields charged under the SM. This 

point is also discussed later. Although this operator is linear in A, the DW for A 

is not ruined because this operator does not contribute to the F flatness equations 

4 . The choice for this operator is not unique; other operators that are linear in 

A2 are possible, but i:ltey are higher dimensional. It is non-trivial that with this 

choice for W, the low-energy particle content only contains the SM fields and their 

superpartners. 

After confinement occurs the superpotential is 

w (7.25) 

with 

(7.26) 

(7.27) 

4This interesting feature is also used in Reference (120, 121] to g~ve mass (in a different 

context) to some charged particles. This is accomplished by a cubic term in the superpotential 

that is a product of three different antisymmetric tensors. 
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1 - n2 - - - 11 - . 
+2.A7AA + .A16a1616 + .A4Aij16~ij16 

+5.u (AA")ij 16~ij 16/ M. (7.28) 

The naive expectation for the couplings is 5.2,3 ""' .A2A/ M, 5.4 ""' .A3A/ M, 5.16 ""' 

It is assumed that S, A", and A acquire the vevs 

S=s(111-~ -~)tO.( 1 0
) A"=(" " "b" b")10.(

0 
, , , 

2
, 

2 
VY , a , a , a , , VY 

0 1 1 
-01)' (7.29) 

A = (a, a, a, b, b) ® (: ~ 1 
)- (7.30) 

These vevs break SO(lO)---+ SU(3) x SU(2) x U(1)y x U(1)x. The spinor field 16 

is assumed to acquire a vev x in the SU(5)-singlet direction5 . The unbroken gauge 

group is then SU(3) x SU(2) x U(1)y. It is argued below that the superpotential 

guarantees that the vevs of A, a, A", S, 16 and A are naturally of the order of 

A""' MauT and (A/M)A-7 , respectively. Other vac11a exist, but they are isolated 

from the vacuum considered here. 

The doublets and triplets in T1 are split using the DW·mechanism [114]. The 

orb to vanish; it is a discrete choice. The DW mechanism for giving the triplets in 

the 51,2 and 51,2 Higgs fields GUT-sized masses requires that b = 0. It is assumed 

that this minimum was selected in the early history of the universe. With this 

5The D-flatness condition for SO(lO) requires the vevs of 16 and 16 to be equaL 
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choice, the mas.s matrix for the colored triplets in the 51,2 and 51,2 Higgs fields is 

(7.31) 

in the (T1, T2) basis. Since the diagonal element is suppressed by a factor of 

O(A/ M) relative to the off-diagonal element, the colored triplets form two Dirac 

particles with masses MHc "' ..\1a "' ..\1A "' A. The mass matrix for the 4 elec­

troweak doublets in T1 and T2 only has an entry for T2 (2)T2 (2) since b = 0. The 

mass of the Dirac heavy doublet is 5.2a- 35.3s/2"' A2 jM. The two electroweak 

doublets in T1 are massless, and are identified as the Higgs fields responsible for 

giving mass to the up-type and down-type quarks of the SM. 

It is interesting that the magnitude of the elements of M has a structure that is 

favorable for the suppression of the proton decay rate. It in fact provides a natural 

realization of the "weak suppression" of the decay rate that is advocated by Babu 

and Barr [120]. This is seen as follows. First note that the diagonal element is 

suppressed by a factor of O(A/ M) relative to the off-diagonal element, reflecting 

the fact that the diagonal entry arises from a non-renormalizable operator in the 

fundamental theory. If the SM fermions only couple to T1 , \then the proton decay 

amplitude from the exchange of the heavy colored Higgsinos is proportional to 

M !l. In this case the matrix element is ( 5.2a + 5.:3 s) / ( ,\1 a) 2 
"' A 2 / M. This results 

in a decay rate that is approximately (A/ M) 2 
"' 10-3 times the unsuppressed rate. 

This is sufficient to suppress the dangerous Higgsino-exchange proton decay 

operator to a level that may be observable at SuperKamiokande. To obtain the 
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four-fermion operator responsible for the nucleon decay, the operator gotten by 

integrating out the colored triplet Higgsinos must be dressed with a vertex function 

involving either internal wino or gluino propagators. As emphasized in Reference 

[119], the gluino-dressed amplitude is comparable to the wino-dressed amplitude 

if Vulvd =tan f3 is large. Since tan f3 rv mt/mb rv 40 is naturally predicted within 

an S0(10) GUT, the decay mode p-+ K 0 J.L+ may be competitive with the (wino-

dressed) neutrino decay modes [119]. 

The dominant decay modes for the wino-dressed operator are p -+ K+ Du and 

n -+ K 0 Du [122]. To obtain an estimate for the nucleon lifetime in this model, 

their result for the lifetime of the nucleon is rescaled by a factor of (M I A) 2 . The 

result is 

K
o 32 ( M 0.0058GeV3 MH - TeV-1 

)
2 

T n -+ i} rv 10 X -- c - · rs. 7.32 
( u) ·. 31A (3 . 1016GeV j(u, d)+ j(u, e) y ( ) 

The function f is obtained by dressing the external squarks with winopropagators 

to obtain a four-fermion operator. It is computed in Reference [123], and depends 

on the sparticle spectrum. In the limit that the squark mass, mQ, and slepton 

mass, mt, are much larger than the wino mass, mu_., f "'mwlm}._, with mx the 

larger of mQ and mt. The hadronic matrix element f3 is defined in Reference [122]. 

I Requiring that M not exceed the Landau pole of the S0(10)aur group implies 

that MIA~ 30 - 70. (This constraint is discussed below.) This requirement of 

consistency also strongly constrains the presence of any additional matter content 

(this is also discussed below). This suggests that the Yukawa couplings of the 
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SM fermions to the Higgs doublets are generated close to the GUT scale, a crucial 

assumption required to obtained the limit quoted in Eqn.(7.32). To obtain realistic 

quark and lepton masses in an SO(lO) model though, these Yukawa couplings 

probably arise from higher-dimensional operators [124]. In this case the flavor 

structure of the colored-triplet Higgs to matter may differ from the electroweak 

doublet couplings to matter, thereby altering the predicted ·lifetime [119]. For 

this reason, the result quoted in Eqn.(7.32). should be treated as an estimate. 

This estimate is to be compared with the existing experimental limit of r(n --+ 

K 0Du) > .86 x 1032 years [36]. So the nucleon lifetime is naturally suppressed to 

a phenomenologically interesting level. 

Next the expected size of the vevs and the mass spectrum are discussed. The 

F -flatness equations are (setting b = 0) 

det(S +A"+ o)JlO)- BB = A10
, 

AB = 0 AB = 0 
' ' 

_· 2 - 2 - 2 
0 = Fu = ..\16X - 3..\lOa + ..\5A(j + !1"r\AK (3u + 2v) , 

v10 

- 2(1- 2 ) 0 = Fs = ..\6As- 5 '2..\ 9a - AK(u- v)_ , 
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(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 
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A and Bare 

a/v'lO + s a/v'lO- 3s/2 
u = v = --~----'------=-

(a/v'lO + s) 2 + a"2 
' (ajy'W- 3s/2)2 + b"2

' 
(7.41) 

a" H' A= · B= . 
(ajy'W + s)2 + a"2 

' (afy'W- 3s/2)2 + b"2 (7.42) 

An inspection of these equations also indicates that without the operators AS2 , 

Aa2 and AA"A", the F-flatness equations would only constrain the values of A, 

x2 and a2 in the combination /X2 /A and a2 /A. Thus one of these vevs would be 

unconstrained. As a result, not all the particle masses would be fixed by the input 

parameters. This problem is avoided by including the (QQ) 2 operator, i.e. the 

operator ex: >.5 , in the ftmdamental theory. In this case, a new solution cannot be 

gotten by rescaling A, with the .Xi and A fixed, and rescaling the vevs of any of 

the fields, thus indicating that a2
, x2 and A are fixed by the input parameters. 

Next it is argued that these equations fix the vevs of S, A, a and A" to be 

on the order of A, without any fine tuning of the couplings in the fundamental 

theory. By redefining A= (A/M)A the Fi = 0 equations now contain an overall 

factor of A/ }1 if the expected relation between the superpotential couplings in 

the fundamental and confined theories is valid. As a result the Fi equations no 

longer contain any small dimensionless couplings. The expected solution to this 

new set of equations is then x, a, a", b", a rv s and A rv A - 7 . The confinement 

equation fixes s rv A. Therefore all the vevs are v rv A and A rv (A/M)A-7• 

This result is not obvious a priori, since the superpotential couplings appearing 
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in the F equations are suppressed by powers of A/ M. A slightly more rigorous 

argument, also showing that A=!= 0, is presented in Appendix D. This implies that 

the baryons vevs are forced to zero at this minimum. Two numerical solutions 

which support these arguments are also given in Appendix D. These expectations 

for the size of the couplings, A, and vevs will be important below in estimating 

the mass spectrum. 

The superpotential for this model contains enough operators to give superheavy 

masses to all the particles that should be heavy. The results of computing the mass 

matrices assuming a canonical Kahler potential are given in Appendix D, and are 

summarized here. The particles have masses at one of three scales: mL = A 4 / M 3
; 

m1 = A2/M; and A. The naive expectation is that all the particles have a mass 

m rv m 1 . This is because all the vevs are O(A), and the mass matrices are linear 

in the superpotential couplings which contain a factor A/M, and in the parameter 

A which also contains a factor of A/ M. 

This expectation turns out to be correct except for a U£ rv (3, 1, -2/3) 

and fh rv ul, which acquire a Dirac mass from the superpotential operator 

(A" A)ij16:Eij16. These fields are massless in the absence of this operator for 

the following reason. The SU(5) decomposition of A = 24 + 10_ + 10 + 1. This 

clearly contains a u E 10 and u E 10. The only possible source for a mass term 

for these fields is given by Wvw- Further, since S does not contain au and u, 

this mass term must occur from setting S and a to their vevs. The resulting mass 

- -
is proportional to >.9 s + >. 10a. The DW form for A and FA = 0, however, forces 
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this quantity to vanish 6
. The addition of the operator trA4 

/ M does not change 

the conclusion of this argument. The mass of these fields is gotten therefore from 

the M-2 suppressed operator. The result of a computation of the mass spectrum, 

presented in Appendix D, implies that the naive expectation for their mass is 

The particle content of the fields with mass m "' m 1 is now enumerated. The 

8U(5) quantum numbers of the representations .at this scale are: 1 x (10 + 5) + 

1 x (10 + 5) + 2 x 24 + 1 x (15 + 15). At the scale m 1 there is also a split 7 24, 

with SM quantum numbers 8 - (8, 1, 0) and 3 (1, 3, 0). There are also some 

leftover fields, that together with U£ and fh which have a mass m "' mL, form 

a complete 10 + 10 of 8U(5). These leftover fields have a mass m "' m 1 . The 

representations in the 80(10) 101 + 102 are split by the DW mechanism. One pair 

of electroweak doublets is massless and are the Higgs fields responsible for giving 

mass to the up-type quarks, down-type quarks, and leptons. The other doublet . 

fields, h = (1, 2, -1/2) and h (1, 2, 1/2), acquire a Dirac mass mh "'m1. There 

are also a number of gauge singlets which acquire masses m "' m 1 . 

The triplets in the 80(10) 101 + 102 , 2 x. (3, 1, 1/:::) + 2 x (3, 1, -1/3), acquire 

masses O(A). The 33 Nambu-Goldstone bosons multiplets acquire a mass m"' A 

I from the super-Riggs mechanism. 

6The same argument also implies that the Majorana mass term for the 8 in A vanishes. These 

fields, however, acquire a Dirac mass with the 8 € S. 
7The missing partners are the Nambu-Goldstone bosons of the SU(5) -4 SU(3)c x SU(2) x 

U(l)y breaking. 
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The incomplete SU(5) representations affect the prediction for sin2 Bw, which 

is discussed next. First it is approximated that all the charged particles at each 

of the three scales mL, m 1 and Mcur are degenerate. In this approximation the 

contribution to ~ sin2 Bw occurs from splitting between the scales. The result of 

the usual one-loop computation implies that the light particles shift the prediction 

for sin2 Bw by an amount 

. 2 . aem ( m1 4 A ) ~sm Bw=-- ln---ln- . 
2n mL 5 m1 

(7.43) 

The first term is the contribution from U£ and 1h; these fields only contribute 

between mL and m.'-.· since above the mass scale m 1 they fit into a complete 

10 + 10 of SU(5). The second term is the sum of the contributi,ans from 8, 

3, h and h. As is evident, for mL < m 1 there is an 0(1) cancellation between 

the two contributions. Since mL arises from a higher dimensional operator than 

does m 1, mL < m 1 applies for this model. It is then reasonable to expect that 

the 0 ( 1) cancellation occurs. Inserting the naive expectation m L rv A 4 I M 3 and 

. lnMIA 
~ sin2 (} rv -5 X 10-3 X . 

w ln30 
(7.44) 

As is shown below, requiring that the S0(10)cur not have a Landau pole below . 
M restricts MIA;:;; 30.- 70. With this constraint, the shift in sin2 Bw is consis-

tent with the measured value, once other theoretical uncertainties are considered. 

The .largest of these are uncalculable threshold corrections from the light ( approxi-

mately) complete SU(5) representations. Since the splitting within each multiplet 
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gives a contribution that is naively aem/2rr x 0(1), the large size of the light 

representations could result in a correction that is comparable or larger than the 

correction given in Eqn.(7.44). 

It is next argued. that any "gravitational smearing" [115] of the couplings at 

the GUT scale are small in this model. First, the only possible dimension-4 

operator in the superpotential involving the S0(10)cur chiral gauge multiplet 

Wij is AijWjkWki/M. This, however, vanishes due to the anti-symmetry of A. 

Next, the operators g8 SWW/M and guaWW/M are allowed. The vev of a does 

not break SU(5), so it only results in a common shift of the gauge couplings. The 

shift is tiny since 9u rv A/M. The vev of S does break SU(5), so this operator 

results in a tree-level correction to the unification of the couplings. An estimate 

for the shift in sin2 Ow that this incurs is 

(7.45) 

It is expected that g8 rv A/ M since this operator occurs from a dimension -4 

operator in the superpotential of the fundamental theory. So this results in a 

tiny shift to sin2 Bw. Finally, operators only involving 16, 16 and WW are also 

suppressed by an extra factor of A/M. The vev of 16 does not break SU(5), so 

this operator only results in a tiny common shift to the gauge couplings. 

An upper limit to M is given by the value of the Landau pole of the S0(10) 

GUT gauge coupling. This model is not asymptotically-free above the GUT scale 

since it contains a large particle content. More problematic though, is the fact 
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that most of the particle masses are a factor of A/ M below the GUT scale. While 

this particle content does not result in a large shift to sin2 Bw since they mostly 

form complete SU(5) representations, the matter content does increase the value 

of o:cuT· The value of o:so(1o)(M), using naive one-loop running and with tree-level 

matching, and including the contribution of 3 16s of the SM, is 

_ 1 3 ( 5 A 5 · A ) 16 M 
o: ( ) ( M) = 24 - - (2 + -) ln - + (93 - -) ln - - - ln -. 

so 
10 2271" 3 mL . 3 m1 21r A 

(7.46) 

The second term is the contribution from U£ +uL, the third term is the contribution 

from the particles with mass m 1 , and the last term is the contribution from the 

S0(10) particle content above A. Inserting mL "'A4/M3 and m 1 "'A2/M, the 

limit is 

M 
A~ 31. (7.47) 

This implies M "'0.6- 1 x 1018 GeV. Note, however, that this limit is sensitive 

to the actual spectrum. For example, if the naive expectation underestimates the 

spectrum by a factor of 4, then the limit increases to M /A~ 75. This corresponds 

to M rv 1 - 2 x 1018 Ge V. 

The Landau pole limit also strongly constrains any modifications to the model. 

For example, adding to the model either an extra adjoint A' which acquires a mass 

at 2 x Mcur, or an extra 16' + 16' + 10' + 10" which all acquire a mass Mcur 

restricts M / A~20. The presence of N5 additional SU(5) 5 + 5 multiplets is also 

strongly constrained by this requirement of consistency. These fields would be 

required, for example, in any low-energy physics that is responsible for the origin 
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of supersymmetry or flavor symmetry breaking. Requiring MIA > 20 implies that 

the mass M5 of these multiplets satisfies 

(7.48) 

In particular: N5+5 = 1 is marginally allowed if M 5 = 1010 GeV; N5+5 = 2 is 

marginally allowed if M5 = 1014 GeV. These constraints ate weakened if the naive 

estimate, A 2 I M, for the chiral GUT spectrum underestjmates the spectrum by a 

factor of 4. In this case, 

(7.49) 

for MIA> 20. In particular: N5+5 = 2 is allowed for M5 = 1010 GeV; N5+5 < 5 is 

required for M 5 = 1014 GeV. Either direct or indirect evidence for additional chiral 

content that does not satisfy Eqn.(7.48) or Eqn.(7.49) would strongly disfavor this 

model. 

This section concludes with a few comments about the consistency of neglecting 

certain operators in the superpotential. The superp~tential terms crAij16~ij16 

. or SikAkj 16~ij 16 must be absent to avoid ruining the DW form for A. These 

operators would contribute to FA(2), forcing a non-vanishing value for b. These 

operators are present in the low-energy theory if the operators tr( QQ)A16~16 

or (QQ)sA16~16 are present in the superpotential of the fundamental theory. 

Any symmetry which forbids these dangerous operators also forbids the operator 

(A"A)i1 16~i1 16. This option is not viable since this operator is required to give 

mass to a (3, 1, -2l3)+h.c. fields. (The DW form for A, however, is unaffected 
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by the presence of this operator since it does not contribute to the Fi equations.) 

So it must be assumed that the dangerous operators are not present in the fun­

damental theory. The perturbative non-renormalization theorems then guarantee 

that these operators will not be generated, at least in perturbation theory. This 

argument does not exclude the possibility that these dangerous operators could 

be generated by the non-perturbative dynamics of the SU(lO)s or SO(lO)aur 

groups. By combining the requirement of holomorphy of the superpotential with 

some anomalous fake U(l) symmetries [107] it is possible to exactly show, how­

ever, that if these operators are initially absent in the high-energy theory they 

will not be generated as the cutoff is lowered. In particular, it can be shown that 

the coefficient of a dangerous operator at a lower cutoff is only proportional to 

its initial value; i.e. it is independent of Asu(lo)/ M, Aso(lo)/ M and all the other 

superpotential couplings. Then there is no reason for these dangerous operators 

to be generated by the confining dynamics. 

7.5 Summary 

In this chapter two models are presented that generate the Grand Unifica­

tion scale from the strong dynamics of a confining group. The particle content 

of the confining group is chosen so that this sector confines with chiral symmetry 

breaking. The particles in this sector are also charged under the Grand Unified 

group. It follows that the composite fields which arise from the confining dynam­

ics transform under the GUT group as either higher dimensional representations 
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or singlets. Below the scale of confinement these composite fields acquire vevs. 

In each of the models presented here, there is a locally isolated supersymmetric 

vacuum in which the GUT group is broken to the SM group, and the resulting 

spectrum provides an acceptable phenomenology .. Two GUT models are consid­

ered: SU(6) and SO(lO). Known solutions to the doublet-triplet splitting problem 

are incorporated in each model. Proton decay in both models is at an acceptable 

rate, and in particular, in the SO(lO) model the dangerous dimension-5 proton 

decay operator is suppressed to an interesting level. This suppression is a natural 

consequence of the confining dynamics. Each model requires no fine tuning of any · 

non-vanishing superpotential couplings. The fundamental theory in both models 

also contains an economical particle content, requiring no gauge singlets and only 

one higher dimensional representation. 
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Appendix A 

Fine tuning Expressions 

In this section the Barbieri-Giudice parameters for both the MSSM and 

NMSSM in a gauge mediated SUSY breaking scenario are presented. 

In an MSSM with gauge mediated SUSY breaking, the fundamental parameters 

of the theory (in the visible sector) are: Amess; At; Ji,; and Jl-~· Once electroweak 

symmetry breaking occurs, the extremization conditions determine both m~ and 

tan {3 as a function of these parameters. To measure the sensitivity of m~ to one 

of the fundamental parameters .Xi, we compute the variation in m~ induced by a 

small change in one of the Ai· The quantity 

c5m~ _ 2 . ) <5-Xi 
-2- = c(mz, Ai ~' 
mz -"i 

(A.l) 

where 

(A.2) 

measures this sensitivity [63]. In the case of gauge mediated SUSY breaking 

models, there are four functions c(m~; .Xi) to be computed. They are: 

c(m2 . 2 ) _ 2J.L
2 

( 1 tan
2 

(3 + 1 4 tan
2 f3(iii - p,~) ) ( ) 

z,J.L - m~ + (tan2 (3-1)2 (p,I-p,~)(tan2 (3+1)-m~(tan2 (3-1)) ' A.
3 

t 2 (3 1 -2 -2 
4 2 (3 an + J.ll - J.l2 tan 

(tan2 (3- 1)3 m~ 
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4 -2 -2 
;:::;:: --f-ll - f-l2 for large tan /3, 

tan2 j3 m~ ' 
(A.4) 

(A.5) 

This measures the sensitivity of m~ to the electroweak scale value of At, At(Mweak), 

The Yukawa coupling At(Mweak) is not, however, a fundamental parameter of the 

theory. The fundamental parameter is. the value of the coupling at the cutoff 

A 0 = Maur or Mpt of the theory. We really should be computing the sensitivity 

of m~ to this value of At. The measure of sensitivity is then correctly given by 

(A.6) 

We remark that for the model discussed in the text with three l + [and one q + ij 

messenger fields, the numerical value of (At(A0 )/At(Mweak))8At(Mweak)/8At(A0
) is 

typically "' 0.1 because At(Mweak) is attracted to its infra-red fixed point. This 

results in a smaller value for c(m~; At) than is obtained in the absence of these 

considerations. 

With the assumption that m'ku and m'kd scale with A~ew we get 
c 

c(m~; A~esJ = c(m~; m~J + c(m~; m~d) 

112 tan2 j3 + 1 
1 +2-- X 

m~ (tan2 j3- 1)2 

4tan2 f3(m'ku + m'kJ(fli- jj~)/m~ 
(iii- jj~)(tan2 j3 + 1) - m~(tan2 j3- 1) · 
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The Barbieri-Giudice functions for mt are similarly computed. They are 

(A.8) 

(A.9) 

(A.lO) 

(A.ll) 

Since mz and mt are measured, two of the four fundamental parameters may 

be eliminated. This leaves two free parameters, which for conveinence are chosen 

to be Amess and tan;;-:-

In a NMSSM with gauge mediated SUSY breaking, the scalar potential for 

N, Hu and Hd at the weak scale is specified by the following six parameters: 

the N 3 coupling, )..N. In minimal gauge mediated SUSY breaking, the trilinear soft 

SUSY breaking term N HuHd is zero at tree level and is generated at one loop by 

wino and bino exchange. In this case, AH()..i) = )..HA()..i)· Since the trilinear scalar 

+erm N 3 is generated at two loops, it is small and is neglected. The extremization 

conditions which determine mz = g~v2/4 (v = Jv~ + v~), tanj3 = vu/vd and VN _ 

as a function o~ these parameters are given in Section 5.5. Eqn.(5.22) can be 

written, using J-l = AHVN/-12 as 

(A.12) 
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Eqn.(5.23) is 

1 2 2 2 2 tan2 (1 2 1 0 
-gzv + fJ, - m + m · -8 Hu 1 - tan2 f3 Hd 1 - tan2 f3 - · (A.13) 

Substituting v'fv from Eqn.(5.22) in Eqn.(5.26) and then using this expression for 

f.J,~ in Eqn.(5.24) gives 

(A.14) 

The quantity c = (>.dm~)(om~jo>.i) measures the sensitivity of mz to these 

parameters. This can be computed by differentiating Eqns.(A.12), A.13 and A.14 

with respect to these parameters to obtain, after some algebra, the following set 

of linear equations: 

where 

!. 
2 

A A1I_(AH-AN sin 2{3) 
g~A~ 

v2 ~ 
g~(tL~+tL~) AN 

AH 
-X 

fJ, 

0 

1 

1 

si~ 2(3~2 
~'1 +tL2 

~'I -tL~ 2 tan {3 
v2 (1-tan2 {3)2 

_l ~ 1-tan2 {3 
2 AN (l+tan2 {3) 2 

1-tan2 {3 
(l+tan 2 {3) 2 

0 

Ah sin 2/3 v2 
16A~ tL2 

v2 (A k sin 2{3 v2 1 ) 
tL?+tL~ 16AN tL2 - 2AH 
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0 

tan2 {3-1 A3 

(l+tan 2 {3) 2 4At 

(A.15) 

.(A.16) 

(A.17) 

tan 2 (3-1 ~· v 2 

(l+tan2 /3) 2 4AN tLi+tL~ 



fJ tan /3 
&>:i 

, (i = u, d, N), 

0 

tan2 /3 
1-tan2 /3 

0 

1 
tan2 /3-1 

0 
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(A.l8) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

0 

(A.23) 



0 

A1 sin2,B 

2A~ 

3 ~ v2 sin2,B 
BAN J.L~+J.L~ 

0 

0 

A~ sin 2,8 
- 4At 

2f_ v2 sin 2,8 
-BAN J.L~+J.L~ 

(A.24) 

(A.25) 

(A.26) 

In deriving these equations AH(>.i) = >.HA(>.i) was assumed and 8A/8>.H was 

neglected. Inverting these set of equations gives the c functions. We note that 

these expressions. for the various c functions are valid for any NMSSM in which 

the N 3 scalar term is negligible and the N HuHd scalar term is proportional to 

>.H. In general, these 6 parameters might, in turn, depend on some fundamental 

parameters, Ai· Then, the s~nsitivity to these fundamental parameters is: 

(A.27) 

For example, in the NMSSM of section 5.5, the fundamental parameters are 
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mt leaves 3 free parameters, which we choose- to be AmeSSl A.H and tan ,B. As ex-

plained in that section, the effect of AH in the RG scaling of m~ .. and m~d was 

neglected, whereas the sensitivity of m~ to A.H could be non-negligible. Thus, we 

have 

(A.28) 

We find, in our model, that c(m~; m~) is smaller than c(m~; A.H) by a factor of 

"" 2. Also, using approximate analytic and also numerical solutions to the RG 

equation form~, we find that (A.H/m~)(fJm~jfJA.H) is~ 0.1. Consequently, in 

the analysis of section 5.5 the additional contribution to c(m~; A.H) due to the 

dependence of m~ on AH was neglected. A similar conclusion is true for AN. Also, 

(A.29) 

We find that (A.qfm~ )(fJm~ j8>..q) is ~ 1 so that c(m~; >..q) is smaller than 

c(m~; AH) by a factor of 2. 
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Appendix B 

Two-loop calculation 

In this Section we discuss the two-loop contribution of the heavy scalar soft 

masses to the light scalar soft masses. These contributions can be divided into two 

classes. In the first class, a vev for the hypercharge D-term is generated at two-

loops. The Feynman diagrams for these contributions are given in Figure B.1 and 

are clearly rv a 1 ai· These diagrams are computed in a later portion of this Section. 

In the other class, the two-loop diagrams are rv al. These have been computed by 

Poppitz and Trivedi[106]. So, we will not give details of this computation which can 

be found in their paper. However, our result for the finite parts of these diagrams 

differs slightly from theirs and we discuss the reason -for the discrepancy. When 

one regulates the theory using dimensional redt1ction [101, 102] ( compactifying to 

D < 4 dimensions), the vector field decomposes into aD-dimensional vector and 

4 - D scalars, called €-scalars, in the adjoint representation of the gauge group. 

Thus the number of Bose and Fermi degrees of_freedom in the vector multiplet . 

remain equal. The E-scalars receive, at one-loop, a divergent contribution to their 

mass, proportional to the supertrace of the mass matrix of the matter fields. 

Neglecting the fermion masses, this contribution is·· 

2 a 2 2 
<5me = --

4 
(- + ln 47r- 1)(n5 + 3nlO)Ms. 

7f E 
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In our notation D = 4 - E. Poppitz and Trivedi choose the counterterm to can-

eel this divergence in the M S scheme, i.e., the counterterm consists only of the 

divergent part, proportional to 1/t::. When this counterterm is inserted in a one-

loop E-scalar graph with SM fields (scalars) as the external lines , one obtains a 

divergent contribution to the SM scalar soft masses (the 1/t:: of the counterterm is 

cancelled after summing over the E adjoint scalars running in the loop). Poppitz 

and Trivedi use a cut-off, Auv, to regulate this graph, giving a contribution from 

this graph that is: 

2 ""( ) i 1 (aA 2 2 2 mi =- L- n5 + 3n10 CA- --) M8 lnAuv 
A 16 n 

(B.2) 

with no finite part. We, on the other hand, choose theE-scalar mass counterterm 

in the MS scheme, i.e., proportional to 2/t::-')'+ln4n (where')'~ 0.58 is the Euler 

constant) and use dimensional reduction to regulate the graph with the insertion 

of the counterterm. This gives a contribution 

"" ) i 1 (aA)2 2 2 . 2 -L;(ns+3n10 CA- -· M8 (--')'+ln4n) E 
A 16 n E 

"" i 1 (aA)2 2 - L.,;(ns + 3nio)C A- - M8 (2/t:- 2')' + 2ln4n) 
A 8 n 

(B.3) 

In the first line the first factor of (2/t::-')'+ln4n) is from the counter-term insertion, 

the second factor is the result of the loop integral, and the over-all factor of E 

counts the number of E-scalars running in the loop. In the M S scheme, i.e., after 

subtracting 2/t::-'')'+ln4n, we are left with a finite partl proportional to -')'+ln4n. 

The remaining diagrams together give a finite result and we agree with Poppitz 

1The same finite part is obtained in the MS scheme,regulated with DR' . 
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___________ ::r ______ _ ··--·--·---][ ........... . 

Figure B.l: Mixed two-loop corrections to the scalar mass. Wavy lines, wavy lines 

with a straight line through them, solid lines, and dashed lines denote gauge boson, 

gaugino, fermion and scalar propagators, respectively. The double-line denotes the 

hypercharge D-term propagator. 

and Trivedi on this computation. Our result for the finite part of the two-loop 

diagrams (neglecting the fermion masses) is 

m~,Jinite (J-1) 1 ( 1r2 . ( M2 ) ) -8 ln(47r)- 'Y + "3- 2 -ln J-1; 

""'(aA(J-1))
2 
( . )Ci M2 x ~ -7r- n5 + 3n· o A s (B.4) 

whereas the Poppitz-Trivedi result does not have the ln( 47r)- ,.Yin the above result. 

The computation of the two-loop hypercharge D-term, which gives contribution 

to the soft scalar mass squareds proportional to a 1 as and a 1 a 2 (i.e., the "mixed" 

two-loop contributon) is discussed below in detail~ 

Two-loop hypercharge D-term 
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The two-loop diagrams of Figure B.l are computed in the Feynman gauge and 

all the fermion and gaugino masses are set to zero. It is convenient to calculate in 

this gauge because both the scalar self-energy and the Dy-term vertex corrections 

are finite at one-loop and thus require no counter-terms. We have also computed 

the two-loop diagrams in the Landau gauge and have found that it agrees with the 

calculation in the Feynman gauge. The calculation in the Landau gauge requires 

counter-terms, is more involved, and hence the discussion is not included. Finally, 

in the calculation a global SU(5) symmetry is assumed so that a hypercharge D-

term is not generated at one-loop [96, 92]. 

The sum of the four Feynman diagrams in Figure B.l is given in the Feynman 

gauge by 

(B.5) 

where the trace is over the gauge and flavour states of the particles in the loops. 

If the particles in the loop form complete 5 and 10 representations with a common 

mass M8 , the sum simplifies to 

(B.6) 

The functions 11 , ! 2 and h are 
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These functions are now computed. 

Evaluating 11 

After a Feynman parameterization and performing a change of variables, 11 = 

and 

After some algebra we find that 

J (m2) = f(3 - D) (m2)D-3 2D B(2- D/2 3- D/2) (B.12) 1 (47r)D D/2-1 ' ' 

]z(m2) = r~!~~) (m2)D-3 x(4B(3-D/2, 2-D/2)~4B(2-D/2, 2-D/2)+B(l-D/2, 2-D/2)), 

(B.l3) 

where B(p, q) = f(p)f(q)/f(p + q) is the usual Beta function. 

Combining these two results gives 

I (m2 ) = f(3 - D) (m2 )D-31 - D B(3- D/2 2- D/2) (B.14) 
. 1 . (47r)D D- 2 ' . 

Evaluating 12 

I dDp I dD k 1 k2 
- k . p 1 

(27r)D . (27r)D (p2 _ m2)2 k2 (p _ k)2 

(4~)Df(3- D)(m2)D~3B(Dj2, 1- D/2). 

267 



Evaluating 13 

f dD k . 1 f dD q 1 
(27r)D (k2 _ m2)2 (27r)D q2 _ m2 

( 
i f(2 - D/2) (m2)D/2-2) ( i f(2 - D /2) (m2)D/2-1) 

(47r)D/2 (47r)D/2 D/2- 1 

1 2 1 ( 2 D-3 
-(47r)D(f(2-D/2)) D/2-1 m) . 

We may now combine / 1, h and / 3 to obtain 

T(m2) - 4h(m2)- 4J2(m2) + h(m2) 

= (~
2

;~;
3 

x (4 (~ -_~B(3- D/2, 2- D/2)- B(D/2, 1- D/2)) r(3- D) 

1 2 
- D/

2 
_ 

1 
r(2- D/2) ). (B.15) 

Writing D = 4- t: and expanding in t: gives 

T(m2) = ( 16~2 ) 2 (~ + (6- ~1r2 + 4(ln(47r)- 1)- 4lnm2) m2 + O(t:)). 

(B.l6) 

In the MS scheme the combination 2/t: + ln(47r)- 1 is subtracted smt. The finite 

piece that remains is 

Thus in the M S scheme 
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Appendix C 

Spectrum of SU(6) x SU(6)cur 

First the existence of a solution to the Fi = 0 equations with all vevs of O(A) 

and A"" (A/ M)A - 3 is discussed. The second part of this Appendix contains the 

results of calculating the mass spectrum, assuming a canonical Kahler potential. 

Since the Fi = 0 equations are l~near in vii and v'J..,, it is straightforward to 

solve for them in terms of a and vr;. The remaining two equations determine 

A =I= 0 and x = a /vr;. In particular, x is the solution to 

(3x2 
- ( J6(3 - a - 'Y )x - v'6a + 12(3 = 0, (C.1) 

where a = -,\1 , (3 = -j3 j 4M/(12gA), and 'Y - -j2 - 24j5(3/j4 . Note that 

(3 rv a rv 'Y rv A/M. Since each term appearing in Eqn.(C.1) is linear in A/M, 

it follows that x rv 0(1), i.e. a rv vr; is expected. The quantum constraint then 

fixes vr; rv A. It follows from FH = 0 that v'J.., = _j3Ma/(12g) is O(A2). Next, 

v~ = -(Mvr;jg)(j5x- j 4 ) is also O(A2
). Finally, either Fr; = 0 or F(f = 0 

determines A rv (A/M)A-3 . 

The non-Nambu-Goldstone multiplet fields charged under the SM, with the 

exception of the SM Higgs doublets, are all contained in E and EN. Since these 

fields acquire their mass from the SU(4) xSU(2) preserving vevs of E, EN or (H H), 

it is convenient to classify the mass spectrum according to the SU(4) x SU(2), 
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rather than the SU(3) x SU(2) x U(l)y, charge assignments. 

The mass matrix for the Q"' (4, 2) and Q"' (4, 2) fields (after some algebra 

using the Fi = 0 equations) in the (:E, L:N) basis is· 

(C.2) 

By using the Fi = 0 equations it can be verified that this matrix annihilates 

the state (v~,vN), which is a Nambu-Goldstone boson of the gauge symmetry 

breaking. The massive eigenvalue is non-zero and naively mQ "' A 2 I M. 

The mass matrix for the (15, 1) fields (after some algebra using the Fi = 0 

equations) in the (L:, L:N) basis is 

(C.3) 

It can be shown after some algebra that the determinant of this matrix is 

-45.4AK avd a - b) . This is non-zero since Vt f 0 implies that a f b. The 

expected masses for the two eigenvalues is then m15 "' A 2 I M. 

The mass matrix for the· (1, 3) fields (after some algebra using the Fi = 0 

equations) in the (L:,L:N) basis is 

(C.4) 

It can be shown that the determinant of this matrix is -.J65.4Abv~ (3{3x2 -5(3.J6x+ 

.J6a). A comparison of this result with Eqn.(C.l) indicates that it is non-vanishing 
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for generic values of the >.is. The expected masses for the two eigenvalues is then 

m 3 "'"'A2 /M. 
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Appendix D 

Spectrum of SU(lO) x SO(lO)cur Model 

Arguing that all the vevs are of order A ; Numerical solution 

In this the only concern is whether a discrete solution with all A, a, a", b", 

a, s and x non-zero exists. This result is obtained by showing that if s =I= 0, 

then A =I= 0 and all other vevs are comparable to s. Then the non-vanishing of A 

implies that B = B = 0. The confinement condition then fixes s rv A. To begin, 

first note that FA fixes a rv s. The Fl6 equation implies that 3a" + 2b" rv a ,....., s. 

Thus either a" rv b" rv s; orb"« a" rv s (or a"« b" N s). Next it is argued that 

the last two cases do not occur. In the first case, b" « a", so that B << A. Next, 

the two FA" equations are inconsistent if either AKA « )qa" or AKA » 5..7a11
• 

So AKA rv 5..7a't and 5..7b" rv x2 « 5..7a" is the only consistent solution to the two 

FA" equations. Thus if b" «a", F16 fixes a" rv sup to small corrections of O(b''). 

Similarly, the first FA" fixes A up to small corrections. But now the two equations 

Fa and Fs each determine a rv s; these two equations for a cannot in general 

be simultaneously satisfied. Therefore, b" « a" is not a viable (supersymmetric) 

solution. · The argument against a" « b" is similar. Therefore a" rv b". Next 

suppos~ that A = 0. 'Then FA" fixes a" = b", and together with F 16 and FA, 

determines x,....., s. But now there are two remaining equations, Fs and Fa, for one 
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In general, these two equations will not be satisfied; therefore A =/= 0. The vev a 

can be eliminated from Fs and Fa; the remaining equation, together with FA" and 

F16 may be used in principle to determine x, a", b" rv s' and also fix A. (x2 « Aa" 

is not possible; FA, F5 , FA"' F16 and Fa are 6 equations in only 5 unknowns: a, 

a", b", a and A.) The Fs equation ~ill not in general be satisfied with a2 « As 

or a2 »As; since AK(u....:.. v) is O(A2 s/M) and =1- ~6As in general, Fs determines 

a rv s. 

Two numericalsolutions to the Fi = 0 equations supports these arguments. In 

the first (I) solution, the input parameters are chosen to be : ~4 = 0.01, ~5 = 0.02, 

- - - - -
A6 = 0.03, A7 = 0.04, Ag = 0.05, A10 = 0.06 and A16 = 0.045. The solution, in 

units of A = 1, is 

a= -0.64, s = 0.77, a"= 0.50, b" = 0.70, a= 1.2, x. 2.5, A= -0.01. 

(D.1) 

In the second (II) solution, the input parameters are chosen to be : A4 = 0.0134, 

.\5 = 0.0123, .\6 = -0.03, .\7 = 0.0225, .\g = 0.045, .\10 = 0.0623 and .\16 

0.03657. The solution, in units of A = 1, is 

a= -0.62, s = 0.85, a" = -0.14, b;' = 1.1, a= -0.87, x = 1.2, A= 0.04. 

(D.2) 

These parameters are chosen to be small since A rv AA/ M rv 0.03A for A/ M rv 

1/30. Aside from this feature, there is nothing special about this choice of super-
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potential couplings. As expected, all the vevs are O(A) and A rv (A/M)A-7
• 

Detailed Mass Spectrum 

The mass matrices pres~nted here were computed assuming a canonical Kahler 

potential; this is suffucient to determine the rank of the matrix. 

For future purposes it will be useful to note that the Fi equations are invariant 

under the following rescaling of couplings and fields: 

(x,a)-+ (gx,ga) ,(a",b",s,a,K)-+ (a",b",s,a,K). (D.4) 

Any coupling not listed is left invariant. This mapping relates the solutions to the 

Fi = 0 equations in two theories with different superpotential couplings which are 

related by this scale transformation. 

The uc ""' (3, 1, -2/3)+h.c. mass matrix in the (A", 16(16), A) basis is, with 

5. = ~u/M, 
2AK(u2 + A2

)- 2~7A 
- -

i5.x2 2i>.4x- 2>.ax 

Muc'iJ' = , -2i~4X- 25.ax -4~4a" -25.a"x (D.5) 

-i5.x2 -25.a"x 0 

Using the Fi = 0 equations the reader can verify that this matrix has only one zero 

eigenvalue. The product of the two non-zero eigenvalues is given by the coefficient 

Therefore, this matrix contains an extra massless particle in the limit X-+ 0. With 

"X # 0, the naive expectation for this product of eigenvalues is (A/M) 4A2
. The 
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larger eigenvalue is muH = 5.4(4a" + x 2 ja"), and is approximately A2 /M. So the 

smaller eigenvalue is muL = 5.2 x 2 (4a2 + 4a"2 + x 2)/muw The naive expectation 

for this quantity is (A/ M) 3 A. 

The mass matrix for Ec rv (1, 1, 1) + h.c., in the (A", 16(16), A) basis is 

2AK(v2 + B2
)- 25.7A 2i.\4X i5.x2 

MEc Ec...:.. 
' 

-2i.\4X -45.4b" -25.b"x (D.6) 

-i5.x2 -25.b"x 5.\9 s 

Using the Fi = 0 equations it can be verified that this mass matrix has one zero 

eigenvalue. The masses of the other two states are 55.9s and -5.4 ( 4b" + x 2 jb"), to 

lowest order in >.A. 

The mass matrix for the Y ""' (3, 2, -5/6) and X ""' (3, 2, 5/6) fields is given 

in the (A", S, A) basis by 

~2iAK(uB + vA) 0 

-2iAK(uB + vA) . -2AK(uv- AB) + 2.X5A i.Xga (D.7) 

0 

It can be verified, after some tedious algebra, that this matrix has one zero eigen-
• I 

value. This matrix is therefore rank 2. The masses of the other two states are 

The Q rv (3, 2, 1/6) and Q rv (3, 2, -1/6) mass matrix, in the (A", S, 16(16), A) 

basis, is 
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2AK(uv + AB)- 2~7A -2iAK(Av- Bu) 2i~4X- .Xax i.Xx2 

2iAK(Av- Bu) -2AK(uv + AB) + 2~6A 0 -i>.ga 

-2i~4X- .Xax 0 -2~4(a" + b") -:-.X( a"+ b")x 

-i.Xx2 i>.ga -.X( a"+ b")x 5-
2..\gs 

(D.8) 

It can be verified that this matrix has at least one zero eigenvalue. To verify that it 

has only one zero eigenvalue, it is suffucient to verify that the coefficient of O(e) in 

the expansion of det(MQQ-el) is non-vanishing. Since the entries proportional to 

~ result in a tiny pertl!rbation to the spectrum of MQQ' it is suffucient to compute 

the 0 (e) coefficient, call it p, while setting >. = 0. In this case it is 

p 
(Bu-Av) -- 2 2 

4AK (u2 + A 2)(v2 + B 2) ( -2>.4>.6 (uB - (u- v)uv- A v)A (D.9) 

_j7j9(B(u2 + A2
) + A(v2 + B2))A 

If this vanishes at generic values for the couplings constants, then it must, m 

particular, vanish for two solutions and sets of couplings constants that are related 

by Eqns.(D.3) and (D.4). Under this scaling, however, p ex C x (c1g-2 + c2g-4 ), 

with C, c1 and c2 functions of the initial vevs and couplings. This vanishes only 

if either C = 0 or c1 = 0 and c2 = 0. The first condition, C = 0, implies 

Av = Bu, whereas the second c2 = 0 implies that A + B = 0 and u - v = 0. 

Either of these conditions over-constrain the vevs, so they will not be satisfied at 

276 



a generic solution. In particular, p = (0.07) 3 for the numerical solution (I) given 

by Eqn.(D.l). The expected mass for the three massive eigenvalues is therefore 

O(A2IM). 

The mass matrix for the coloured adjoints (8, 1, 0) in the (A", S, A) basis is 

-2iAKuA 0 

Mss = -2iAKuA -AK(u2 - A2 ) + ~6A i-\9 a (D.IO) 

0 i-\9a 0 

The determinant is (~9a) 2 (~7A- AK(u2 - A2)) and is non-vanishing. The size of 

the three masses is expected to be m 8 "" A 2 I M. For the numerical solution (I) in 

Eqn.(D.l), this determinant is (0.05) 3 .. 

The mass matrix for the SU(2) apjoints (1, 3, 0) in the (A", S, A) basis is 

-AK(v2 - B 2) + ~7A -2iAKvB 0 

Maa = -2iAKvB -AK(v2
- B 2 ) + ~6A 0 (D.ll) 

0 0 -~~gS 

The determinant is 

(D.l2) 

and is non-vanishing. The size of the three masses is expected to be m 3 "" A 2 I M. 

For the numerical solution (I) in Eqn.(D.l), this determinant is -(0.04)3 . 

The S field contains (6, 1, 2l3)+h.c. and (1, 3, -l)+h.c .. These fields acquire 

Dirac masses -AK(u2 +A2
) and -AK(v2 +B2

), respectively. The (3, 1, Il3)+h.c. 

and (1, 2, -ll2)+h.c. fields in the 16 + 16 acquire Dirac masses -4~4 (a" + b")' 

and -2~4 (3a" + b") , respectively .. 
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Finally, there are 8 gauge singlets in this model. The quantum modified con­

straint implies that only 7 of these are independent. The quantum modified con­

straint can be used to solve for one of the gauge singlets. Of the remaining 7, 

one of these is the Nambu-Goldstone boson multiplet of the SO(lO) -+ SU(5) 

symmetry breaking. The mass matrix for the remaining 6 gauge singlets is rather 

cumbersome and is not presented here. For the numerical solution (I) presented at 

the start of this Appendix, it can be checked that the determinant of this matrix 

is -6 x w-7 (in units of A= 1.); the typical mass of each singlet is then rv 0.09A. 
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