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Approximate Projection Methods: Part I. Inviscid Analysis * 

Ann S. Almgren, John B. Bell, and William Y. Crutchfield t 
Lawrence Berkeley National Laboratory, Berkeley, California 

Abstract 

The use of approximate projection methods for modeling low Mach number flows avoids many 
of the numerical complications associated with exact projection methods, but introduces additional 
design choices in developing a robust algorithm. In this paper we first explore these design choices in 
the setting of inviscid incompressible flow using several computational examples. We then develop 
a framework for analyzing the behavior of the different design variations and use that analysis 
to explain the features observed in the computations. As part of this work we introduce a new 
variation of the approximate projection algorithm that combines the advantages of several of the 
previous versions. 

1 Introduction 

The term "projection methods" refers to a class of fractional step algorithms for modeling 
unsteady low Mach number flows characterized by a divergence constraint on the velocity field. In 
these methods an intermediate velocity field is constructed by advancing the momentum equations 
in time without enforcing the constraint. In the next step of the algorithm this field is projected 
back onto the constraint. 

Projection methods have been used for incompressible flow modeling for several decades, but 
approxima~e projection methods have appeared only in the past few years. They have been numeri
cally tested on a number of flows in two and three spatial dimensions, but adequate analysis of their 

properties has been lacking to date. In this paper we provide an analytical basis for understanding 
the behavior of approximate projection methods, and some of the design decisions that accompany 

their use. 
For the purposes of this paper we will focus on inviscid, constant density flows, with numerical 

examples in two dimensions. In the second paper in this series we will extend the analysis to the 
modeling of viscous flows. The extension to variable density flows, and adaptive projection methods 
with subcycling in time, will follow. 

*This work was supported by the Applied Mathematical Sciences Program of the DOE Office of Mathematics, 
Information, and Computational Sciences, under contract DE-AC03-76SF00098. 

tcontact information: MS 50A-1148, LBNL, 1 Cyclotron Rd., Berkeley, CA 94720. ASAlmgren@lbl.gov, 
JBBell@lbl.gov, WYCrutchfield@lbl.gov. 
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In the original projection method developed by Chorin [5] and Temam [23] the projection step 

of the algorithm is specified by defining discrete operators D and G, approximating divergence and 

gradient, respectively, which are skew-adjoint; i.e., D = -Gr. With this definition the discrete 
projection, P = I - G(DG)-1 D (with boundary conditions implicitly defined by the the flow 

problem), is a discrete orthogonal projection on the finite-dimensional space of vector fields defined 
on the mesh. In Chorin's formulation both pressure and velocity are specified at nodes and central 

differences are used for the definition of D and G. This results in an expanded five-point stencil for 
the discrete Laplacian, L = DG, which must be inverted to apply the projection. This expanded 

stencil produces a local decoupling of the mesh points and leads to a 2d-dimensional kernel for 

G where d is the dimension of the problem. Bell, Colella, and Glaz [3] use a discretization of 
the projection based on a finite element method due to Fortin [7] which uses pressure defined 

on cell centers with velocities. ,given at nodes. This approach produces a more compact stencil 

but also generates a local decoupling of the grid and dim ker G > 1. (For two dimensional 
problems dim ker G = 2.) Bell, Colella and Howell [4] use a fully cell-centered analog of Chorin's 

algorithm. This scheme exhibits a local decoupling; however, in the presence of Dirichlet boundary 
conditions, the cell-centered approximation eliminates the nonconstant elements in ker G. (For 
periodic problems dim ker G = 2d as in the original Chorin algorithm.) 

In the absence of boundaries the additional elements in ker G are not a problem for incompress
ible flow modeling because the operator (DG)-1 is applied to a vector field that lies in the range 
of D. In the presence of boundaries, however, the nonconstant elements in the kernel introduce ad
ditional, artificial compatibility constraints on the boundary of the physical domain. In addition, 

for more complex low Mach number models, such as low Mach number combustion, a term that is 
not in the range of the divergence operator is often added to the divergence constraint to represent 
the expansion or contraction of the fluid due to additional physics. The presence of this additional 
source term can result in marked oscillations in the solution, as noted by Lai [10] and Lai, Bell and 
Colella [11]. An additional difficulty associated with the local decoupling is that the nonstandard 
discretizations of DG require specialized iterative procedures that properly respect the stencil that 
is used. (See [4, 8] for a discussion of such a procedure.) 

Almgren et al. [2] first introduced the notion of an approximate projection to circumvent 
the numerical difficulties with exact discrete projections. Approximate projections are defined 
by replacing the projection operator P by an approximation P = I- G(L)-1D, where L is an 
approximation to but not identically DG. The approximate projection methods discussed here 

were designed to operate on cell-centered co-located velocities, to avoid any local decoupling of 
the stencils, to provide a symmetric discretization of the potential flow inherent in inhomogeneous 

boundary conditions, and to generate a linear system that fits the framework of conventional fast 
iterative techniques (e.g. multigrid) for second-order elliptic equations. 

The approximate projection introduced by Almgren et al. [2] defines pressure on nodes and uses 
a finite element formulation with bilinear basis functions to derive a nine-point (in two dimensions) 
stencil for the Laplacian operator. The finite element derivation gives a characterization of this 
projection as an exact discrete p.rojection onto an enriched space followed by an L2 projection onto 

a subspace corresponding to piecewise constant velocity fields. This derivation provides an analytic 
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characterization of the effect of the "approximateness" and proves stability of the approximation. 
A standard five-point nodal approximation to the Laplacian can also be used. This approxima

tion can be constructed in a similar manner by specifying pressure to be piecewise linear on the 
standard triangularization of a square mesh. The analogous three-dimensional seven-point nodal 

discretization has been successfully used by Almgren et al. in [1], but lacks the finite element 
derivation. 

Lai [10] introduced a cell-centered approximate projection where pressure is defined at cell 
centers and which uses a standard five-point centered-difference stencil for the Laplacian. The 
stability of such a scheme was shown in [10]; this approximate projection has been used by Martin 
[12] in an adaptive projection algorithm, and a variation of this (with the same L but a higher-order 
D)by Minion [14] in an adaptive scheme. 

Approximate projections have also been successfully applied to more general low Mach number 

flows arising in combustion (e.g.,[17, 18]) and atmospheric flow (e.g.,[21, 22]). However, in spite of 
these successful applications, approximate projection algorithms are not without their own prob
lems. Adopting an approximate projection approach introduces a number of design choices that are 
not relevant for an exact discrete projection. When applied to "difficult" problems or to long-time 
integrations, approximate projection algorithms can produce poor quality results. Rider discusses 
some of these design choices for the five-point cell-centered scheme [19] and describes a collection 
of filtering techniques to deal with artifacts he observes in numerical tests [20]. 

The goal of this paper is to develop an analytical framework to explain the performance of 
different variations of approximate projection methods and to explore methods for improving their 

behavior. ~n the next section we will give a brief overview of projection methods using an ex
act projectiqn; in Section 3 we introduce several different formulations of approximate projection 

schemes. In the following two sections we present a temporal analysis of approximate projections, 
then a spatial analysis of the three specific approximate projections discussed here. In Section 6 we 
discuss issues related to the coupling between the advection scheme and the choice of approximate 
projection, and in Section 7 we present our conclusions and discussion. 

2 Overview of Exact Projection Methods 

In this paper we will consider constant density, inviscid, incompressible flow, governed by 

Ut + (U · 'V)U + 'Vp = 0, 

'V. u = 0, 

where (in two dimensions) U = ( u, v) and p represent the velocity and pressure, respectively. 

(2.1) 

(2.2) 

The projection method is a fractional step scheme for solving (2.1)-(2.2). In the advection step 
we solve (2.1) without enforcing the constraint. In the projection step, we then apply a projection 
to the intermediate velocity field to enforce the constraint. For the advection step we solve 

U*,n+l un 
----,----- + [(U · 'V)ur+% = -Gpn-% 

b.t 
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for the intermediate velocity U*,n+l. The pressure gradient is evaluated at tn-% and is treated as a 

source term. For the computations presented here, the advection term, Nn+% = [(U · V')U]n+lf2 , is 

approximated at time tn+lf2 to second-order in space and time using an explicit predictor-corrector 

scheme described in Appendix A. (We note that the analysis presented later in the paper is ap

plicable when other approaches are used to compute Nn+%. Experiments with different options 

in the predictor-corrector, scheme presented in section 6 are suggestive of the degree to which the 
conclusions reached here are applicable to other methods.) 

The velocity field U*,n+l is not, in general, divergence-free. In the projection step of the 

algorithm the intermediate velocity field can be decomposed into a discrete gradient of a scalar 

potential and a discretely divergence-free vector field which correspond, respectively, to the new 

pressure gradient and the new velocity, i.e., 

PU*,n+l 
' 

= !:lt Gpn-% +(I- P)U*,n+l 

To apply the projection operator we solve DG¢ = DV for a scalar field ¢, where, in this case, 
V = U*,n+l. We then define the divergence-free part of V, in this case un+I, by Vd = V- G¢>. 

By construction DV d = 0; thus, un+I exactly satisfies the discrete form of divergence constraint. 

3 Approximate Projections 

For an exact projection, V can take many forms, all of which lead to exactly the same solution 
(assuming an exact solution of the resulting Poisson equation). Two natural candidates for V are 
the velocity itself or the update to velocity. One could also modify each of these by removing the 

pressure gradient component of the update. Specifically, one might choose any of the following 
(with the b.t scaling for convenience): 

(1) v 
U*,n+l 

b.t 

(2) v 
U*,n+l 

+ Gpn-% 
b.t 

(3) v 
U*,n+l _ un 

= 
!:lt 

(4) v 
U*,n+l _ un 

+ Gpn-%, 
!:lt 

Then, after solving DG¢ = DV and setting V d = V - G¢, the new velocity and pressure would 
be defined, respectively, by 

(1) un+l !:lt vd, pn+% = pn-% + ¢ 

(2) un+l b.t vd, pn+% = ¢ 

(3) un+l un +b.t vd, pn+% = pn-% + if> 

(4) un+l = un +b.t vd, pn+% = ¢ 
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For approximate projections the choice of V has a nontrivial effect on the solution. Because the 
approximate projection operators are second-order accurate approximations to an exact projection, 

the methods which result from each choice of V are all second-order accurate for smooth problems, 
but not identical. 

For the sake of clarity, we here introduce some notation for the different spatial and ,temporal 
discretizations. We will refer to the approximate projection with the nine-point nodal discretization 
of L as N9, that with the five-point nodal discretization of L as N5, and that with the five-point 

cell-centered discretization of L as C5. In addition, for all results we will specify which version of 
Vis being projected; e.g., N9_3 will indicate the nine-point nodal scheme, version (3) of V. In the 
published literature, Almgren et al. [1, 2] have presented results using N5_3 and N9_3; Martin 
[12] used C5_2, and Minion [14] has used C5A. Rider [19] presents extensive testing of C5_1-4 

in conjunction with the development of filters to reduce numerical artifacts. 
We also note here that for each of the approximate projection operators, P, there is a corre

sponding ~xact discrete projection P = I- G(DG)-1D defined using the same D and G used 
to define P. We will refer to the exact nodal projection as N ...EX and the exact cell-centered 
projection as C....EX. 

To demonstrate the second-order accuracy of the different versions of the approximate projec
tions, we present results from a time-periodic test case with diagonally translating vortices. The 
initial data is 

u(x, y) = 1 - 2 cos(x) sin(y) 

v(x, y) 1 + 2 sin(x) cos(y) 

on a square domain, 211" x 211". The exact solution to the Euler equations with this initial data is 

Uex(x, y, t) = 1 --; 2 cos(x - t) sin(y- t), 

Vex(x, y, t) = 1 + 2 sin(x- t) cos(y- t), 

Pex(x, y, t) = - cos(2(x- t))- sin(2(y- t)). 

For each version of V and each approximate projection we present results at three different res

olutions: 322
, 642

, and 1282
• In all cases we use fourth-order unlimited slopes in the predictor. 

The L2 norms of the error in u and Px are shown in Figures 1 and 2, respectively. It is clear that 
each method is second-order accurate; in addition, it is evident that there are differences between 
the solutions resulting from the different forms of the projections, most noticeably C5A. We will 
explain these differences in the next two sections. 

As demonstrated above, the difficulty with using approximate projections is not a question of 
formal accuracy on smooth problems. Instead, problems tend to appear as a buildup of "noise" 
during longer time integrations of more complex problems. To illustrate this behavior we present 
results from each of the approximate projections run on on a more complex problem, namely the 
inviscid dynamics of a random initial distribution of vorticity. A key feature of this problem is that 
it contains substantially more high frequency content than the previous test case. The initial data 
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for this problem are given by specifying a random stream function with spectral characteristics 
defined by 

~ w 
1/l(k) = JkJ(1 + (lkJ/6)4 ) 

where w is a normally distributed random variable mapped into the complex domain with the 

appropriate symmetries so that the inverse Fourier transform of,(!; is a real function, 1/J. We then 
define U 0 as the discrete curl of 1/J. The initial data for this problem are similar to the initial data 

used to test the decay at high Reynolds number of the two-dimensional Navier-Stokes equations to 
the sinh-Poisson mean field equations derived by Joyce and Montgomery [9]. This type of problem 

has been studied extensively by a number of authors. (See the early work by McWilliams [13] and 
other studies such as Montgomery et al. [15] and the references cited therein.) We note that the 

key difference between the initial data we have constructed and the data used in the above studies 
is that in those studies the kinetic energy scales like k-3 for large k, but here we are imposing a 

more rapid decay for large k. This more rapid decay reduces the very high frequency components 
of the solution so that the computations are less sensitive to the behavior of the advection scheme. 

(Results similar to those presented here are also obtained with the richer spectrum but the anomalies 
occur at higher resolution and longer time integrations, which are prohibitive for extensive testing.) 

We examine the evolution of the solution from time t = 0 to 10, over which time the initial 

random vorticity essentially coalesces into two smooth patches of counter-rotating vorticity. In 

Figure 3 we show raster plots of the vorticity and Px at t = 0 and t = 10 on a 642 grid calculated 
with N9_2, The domain is the unit square with doubly periodic boundary conditions, and all 
calculations are run with CFL = 0.9. 

Several variations of the approximate projection produce poor results for this problem. In 
particular, in Figures 4 through 6 we show the vorticity and Px at t = 10 as calculated using N9_1, 
C5_3, and N5A, respectively. In Figure 4, checkerboarding (high frequency error in the solution) 
is evident in the pressure gradient and to a lesser extent in the vorticity. Similarly, in Figure 5, high 

frequency error is visible, though due to the cell-centered discretization the error appears more as 
"striping" than checkerboarding in the vorticity. Figure 6 shows more coherently structured but 
equally unphysical features in both the vorticity and pressure gradient. 

In Figure 7 we plot the numerical divergence of velocity (calculated in each case with the 
same D as the approximate projection used) as a function of time for all twelve cases (C5_1-4, 
N9_1-4, N5_1-4), at resolutions 642 and 1282 • While the divergence does decrease with increased 
resolution, the differences between the ~ariations of the projection persist. (In fact N5_1 becomes 

more unstable at higher resolution.) An examination of all twelve cases indicates that plots of 
the solutions with relatively small divergence are comparable to Figure 3; plots of solutions with 
relatively larger divergence are comparable to Figures 4 through 6. It is evident that the divergence 
is a useful indicator of solution quality for problems such as this one for which an exact solution is 
not known. 

For the random initial vorticity problem, it appears that the only acceptable formulation of 

the approximate projection across all three discretizations is version (2). Version (2), however, is 
not without its drawbacks. As we will see analytically in the next section, the divergence of the 
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(a) Vorticity at t = 0. (b) Px at t = 0. 

(c) Vorticity at t = 10. (d) Px at t = 10. 

Figure 3: Vorticity and Px at t = 0 and t = 10 for the N9_2 case of the random initial vorticity 
calculation at resolution 642 . 
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(a) Vorticity at t = 10. 

(b) Px at t = 10. 

Figure 4: Vorticity and Px at t = 10 for the N9_1 case of the random initial vorticity calculation 
at resolution 642

. 
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(a) Vorticity at t = 10. 

(b) Px at t = 10. 

Figure 5: Vorticity and Px at t = 10 for the C5_3 case of t he random initial vorticity calculation 
at resolution 642 . 
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(a) Vorticity at t = 10. 

(b) Px at t = 10. 

Figure 6: Vorticity and Px at t = 10 for the N5A case of the random initial vorticity calculation 
at resolution 642 . 
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solution found with version (2) is typically larger than when version (1) is used, provided version 
(1) remains stable. To demonstrate this, we consider a very simple steady problem for which we 

know the exact solution. The initial data (and steady solution) are 

Uex = sin(y) , Vex = cos(x). 

To eliminate issues of predictor-projection coupling which will be discussed in Section 7, we here 
use the exact analytic solution to define the advective terms at each time step , i.e. we set Nn+% = 

t,J 
(cos( xi) cos(yj),- sin(xi )sin(yj)) where Xi= ih , Yj = jh with h the mesh spacing. All calculations 
are run with CFL = 0.9 and resolution 322 . 

Figure 8 shows the L2 error in u from time t = 0 to 150 for versions (1) and (2) with each 
approximate projection. The solid curves using version (1) are indistinguishable in this figure from 

the x-axis; the three remaining curves were computed with version (2) . Clearly the error grows 
steadily for version ( 2), while remaining essentially zero for version ( 1). 

While the difference between versions (1) and (2) is especially noticeable for a steady problem, 
analogous behavior is seen in the initial iteration of the algorithm which is used to define the initial 

pressure field. At the beginning of a calculation, the initial velocity field is projected once to enforce 
the divergence constraint. Then an iteration is performed to compute Gp-%. In each step of this 

iteration a full time step is taken; after the projection step the pressure field is updated, but the 
velocity is reset to its previous value. 

If version (1) or (3) of the approximate projection is used, then in the limit as the number of 

iterations becomes infinite, the initial pressure converges to the correct value (that which would be 
found with infinitely many iterations of an exact projection) . With versions (2) or (4) , however, 

because these versions are nonincremental in pressure, the pressure does not converge, regardless 
of the number of iterations. 

0.12 .------ - -----,-------.---- ----, 
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Figure 8: L 2 norm of the error in u from t = 0 to t = 150 from calculations of the steady problem. 
Curves using projection version (1) overlay the x-axis. 
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4 Temporal Analysis of Approximate -Projections 

The goal of this and the next section is to develop an analytical framework to explain the 

results of the computations presented in the previous section. The expressions presented by Rider 
[19] for the divergence of velocity suggest that version (1) should produce the lowest divergence, that 

versions (2) and (3) should produce similar results, and that version (4) should generate the highest 
divergence. These predictions hold true in some cases but do not fully explain the computations 

presented in the previous section or the computations in [19], specifically the lack of robustness of 
version (1) and the differences in behavior between versions (2) and (3). 

In order to understand the behavior of the different variations of approximate projections, for 
each version we express the velocity and pressure gradient after n time steps, un and Gpn-%, in 
terms of the initial data, U 0 and Gp-Yz, the advective updates at each time step, Ni+lfz, and the 
approximate projection operator, P. These expressions are derived by substituting the expression 
for U *,n+1 from (2.3) into the definitions of un+l for each version of the approximate projection 

defined in Section 3. Successive substitution provides the desired characterization of each version 
of the algorithm. The results for each version are summarized in Tables 1 and 2. 

The coefficients in the formula for un using version ( 1) are defined by the recursion relations 

with starting values Q1 = Q1 = P Q2 = 2P2 
- P Q2 = 2P2 Q3 = 4P3 - 3P2 and Q3 

Q f3 ) Q ) f3 ) Q f3 
4P3 - P 2 . Note that Q~ and Q~ are polynomials in P and that the coefficient of pn in each is 
2n- l. Note also that the sum of the coefficients in Q~ is one, and the sum of the coefficients in Q~ 
1s n . 

The coefficients in the formula for Gpn-Yz using version (1) are defined by the recursion relations 

Q~ = P(Q~-1)- (I- P)(Q~- 1) , Q~ = P(Q~-1 + Q~-1), 

with starting values QJ = -P and Q; = (I- P) . 
It is clear there is a tradeoff in choosing any one form of V . In the numerical results of the pre

vious section, version (1) gives the smallest divergence of velocity when it remains stable; however, 
it suffers from a lack of robustness. Version (4) , by contrast, defines the pressure gradient using 
only the most recent advection terms, as does an exact discrete projection, but produces very poor 
computational results. Version (2) appears to be robust and reliable but the velocity field , as seen 

in the steady example, can accumulate the imprint of the pressure gradient from previous times. 
To date, approximate projection methods have followed the lead of exact projection methods 

in using a single projection to define both the new velocity and pressure. Here, however, motivated 
by the problems with each form, we introduce the concept of separate projections for the velocity 
and pressure. We propose an approximate projection method in which a version (1) projection 
is used to define the new velocity field, and a version (4) projection is then used to define the 

new pressure gradient. We will call this version (5). If the second projection is solved to full 
precision, this doubles the computational work of the projection step. However, in our numerical 
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Version un= 

Exact UO- L P(6.t Nn+%-i) 

(1) un = Q~Uo- Q~(6.t Gp_lh)- :Li=l Q~(6.t Nn+lf2-i) 

(2) pnuo _ L pi(6.t Nn+lf2-i) 

(3) uo- :L pi(6.t Nn+%-i) - :L pi(6.t Gp-% ) 

(4) U 0 - :LP(6.t Nn+%-i) 

Table 1: un in terms of U 0 , Gp-%, and N . All sums are from i = 1 ton unless otherwise noted. 

Version 6.t Gpn-% = 

Exact -(I- P)(6.t Nn-%) 

(1) -6.t :L Q~Nn+%-i - 6.t QYGp-% 

(2) -(I- P)(6.t Nn-%) 
+ (I_ P):f>n-1 uo _ 2:i=z(pi-l _ pi)(6.t Nn+lh-i )) 

(3) pnap-% - (I- P) L pi-16_t Nn+%-i 

(4) -(I- P)(6.t Nn-lf2) 

Table 2: 6.t Gpn-% in terms of U 0 , Gp-%, and N . All sums are from i = 1 ton unless otherwise 
noted. 
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tests we have found that because the pressure from the first projection using version (1) is a good 
first guess for the pressure which would result from version (4) , one can algebraically reformulate 

the second projection to solve for the difference between these two pressures rather than for the 
new pressure itself. It is then only necessary to approximately solve (e.g. to require that the 

iterative solver reduce the residual by only one order of magnitude) the second equation, resulting 
in little additional computational work. This new version has been successfully used to model 
incompressible axisymmetric flow with swirl in [16]. 

The expressions for projection (5) corresponding to those in Tables 1 and 2 are 

n-1 
un = pnuo- pn(.6.t Gp-lfz) - P(.6.t Nn-lfz) - 2::.: pi(2P- I)(.6.t Nn-lfz-i), 

i=l 

Gpn-lfz =(I- P)(.6.t Nn-lf2 ) . 

We note here that version (5) is fully second-order accurate for smooth problems; on the trans
lating vortices problem the results are almost indistinguishable from those with version (2) . For 

the random initial vorticity problem the divergence is shown in Figure 9, contrasted only with the 
data from versions (1) and (2) . We see that the divergence for version (5) remains low in all cases; 
it is in fact always lower than that for version (2) , and version (5) lacks the instability of version 
(1) . For the simple steady problem, the curves for version (5) are indistinguishable from those for 
version ( 1). 

Before performing a more detailed analysis of the projection version, we note that the results 
for each version can be expressed in a general form as 

n 

un = Pn(P)U0 - .6-t l:.:ai(P)Nn+ lfz - i - .Bn(P)Gp-lfz, ( 4.1) 
i=l 

n 

.6-t Gpn-% = -.6-t (I- P)Nn-lfz- .6-t L ri(P)Nn+lfz-i + ln(P)U0 - .6-t On(P)Gp-lf2 , (4.2) 
i=2 

with the polynomial coefficients for each version and for an exact projection given in Table 3. 
Performing a complete error analysis for each of these approximate schemes is not tractable. 

Instead, to characterize the effect of the "approximateness" of the approximate projection in greater 
detail, we will use the formulae in (4.1)-(4.2) to compare the solution found using the approximate 
projection to the solution of the same problem found using the corresponding exact discrete pro
jection P . If we denote by (Un , Gpn- lfz) the solution with P and (Vn, Gqn- lfz) the solution with 

P , then 

n n 

un- vn = (pn(P)- P)U0 - .6-t L ai(P)N~+Yz-i + .6-t L PN~+Yz-i- .6-t .Bn(P)Gp-% 
i=l i=l 

and 
n 

-.6-t (I- P)N~- lfz + .6-t (I- P)N~-% - .6-t L ri(P)N~+lfz-i 
i=2 
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Figure 9: 12 norm of DU from t = 0 to 10 for the random initial vorticity problem at two different 
resolutions. Only approximate projection versions (1) , (2) and (5) are shown. 
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Version Pn O:i f3n /i 8n 

Exact 1 p 0 0 0 

(1) Q~ Q~ Q~ Q; QY 

(2) pn pi 0 pi-1- pi 0 

(3) 1 pt 2:::~1 pi pi- 1 - pi pn 

(4) 1 p 0 0 0 

(5) pn 2Pi+1- pi pn 0 0 

Table 3: Coefficients for each version of the approximate projection and for an exact projection. 

where Nu and Nv denote evaluation of the advective terms with (Un, Gpn-%) and (Vn, Gqn-%) , 
respectively. 

If we rewrite these expressions, adding and subtracting terms involving PN~+%-i to the equa

tions we obtain 

n n 

un- yn = (pn(P) - P)U0 - /}.t 2)ai(P) - P)N~+%-i- /}.t L P(N~+%-i- N~+%-i) 
i=1 i=1 

and 

-/}.t (P- P)N~-Y2 - b.t (I- P)(N~-%- N~-%) 
n 

-b.t L li(P)N~+%-i + /n(P)U0 - b.t 8n(P)Gp-%, 
i=2 

If we now take norms and use the fact that liP II= 1 and III- PII = 1 we obtain 

n 

IIUn- vnll :S ll(pn(P)- P)U0 II + i}.t L ll(ai(P)- P)N~+%-ill (4.3) 
i=1 
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n 

+~t L IIN~+%-i- N~+%-ill + ~t 11/Jn(P)Gp-% 11 
i=l 

and 

~t IIGpn-lfz- Gqn-%11 < ~t II(P- P)N~-% 11 + ~t liN~-%- N~-%11 + (4.4) 
n 

~t L llri(P)IN~+%-ill + llrn(P)IU0 II + ~t ll<>n(P)Gp-%11· 
i=2 

For the methods considered here N u depends on U and Gp smoothly, likewise N v depends on 

V and Gq smoothly, so we can assume IINu- Nvll terms are small and can be absorbed into the 
left hand side of the equation with the introduction of a constant multiplier C on the right hand 

side. With that assumption, summing ( 4.3) and ( 4.4) over n yields 

N 

L {IIUn- ynll 
n=l 

N 

+ ~t IIGpn-lfz- Gqn- lfz ll} :S C L {11Pn(P)- P)U0 II + 
n=l 

n 

~t L ll(ai (P)- P)N~+ lfz -ill + ~t 11/Jn(P)Gp- %1 1 + llrn(P)U0 II + 
i=l 

(4.5) 

From (4.5) we can exactly identify the polynomial expressions which contribute to the error due to 
the approximateness of the projection; these terms will be examined further in the next section. 

Before examining the spatial structure of the different approximate projection schemes, we note 
that the derivation presented here also provides a characterization of the divergence of the solution 
of the approximate projection solution. If we apply D to (4.1) we obtain 

n 

nun = Dpn(P)U0 - ~t L Dai (P)N~+Yz-i- ~t DfJn(P)Gp-% 
i= l 

Thus, the structure of the spatial operators described below also provides a characterization of the 
divergence. Furthermore, since P and P do not change discretely divergence-free fields, the error 
terms in the estimate ( 4.5) are discrete gradients. This explains the correspondence between the 
quality of the computational results and the behavior of the discrete divergence of the solution. 

5 Spatial Analysis of the Projection 

The temporal analysis of the previous section provides a basic framework for understanding the 
behavior of approximate projection schemes. The details of this behavior depend on the details of 
the spatial structure of the approximate projections. In this section we will analyze that behavior 

for the N5, N9 and C5 approximate projections. In particular, we will look at how well the 
polynomials of P that characterize the approximate projections approximate the corresponding 
exact discrete projection. 
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Before looking at the behavior of the approximate projections , however, we first need to char

acterize the structure of the corresponding exact discrete projection, I - G (DG)- 1D . As noted 
earlier , the difficulties associated with using these exact discrete projections arise from the (locally) 

decoupled stencils associated with DG. This local decoupling is related to the presence of elements 
in the kernel of G other than constants. In two dimensions , for the nodal scheme dim ker G = 2 

and for the cell-centered scheme dim ker G = 4. For each of these methods one of these elements 
corresponds to constants and the other modes are spurious. For the nodal scheme this additional 

mode corresponds to the Nyquist frequency in both directions. This mode is also in ker G for 

the cell-centered scheme, as well as vertical and horizontal "stripe" modes corresponding to the 
Nyquist frequency in one component and constant in the other. These modes can be seen in Figure 

5. 
To characterize the projections we will look at their Fourier behavior. After the Fourier trans

form , the projection has the form of a 2x2 matrix for each wave number. As noted above, discretely 
divergence-free vector fields are unchanged by both the exact discrete and the approximate pro
jections, thus both the exact discrete and approximate versions share an eigenvalue of 1 with a 
common eigenvector. To characterize the behavior we can then focus on the other eigenvalue, 

Amin · For P , Amin = 0 except for wave numbers corresponding to elements in ker G . In Figure 10 
we show Amin for the exact projection operator, P , and for the N9 , N5 and C5 approximate pro
jection operators, P . In Figures 10-14 the cent.er of each plot corresponds to the Nyquist frequency 
in both directions with constants at the corner . (The peak at constants has been suppressed.) 
The analogous characterization for the three-dimensional versions of these operators is presented 
in Appendix"B. 

In each case we see that Amin for the approximate projection operator has a smooth peak 
near the elements of ker G for the corresponding exact discrete projection. Thus , because of 
additional elements in ker G the cell-centered discretization broadens the range over which the 
approximation is a poor one. We also note that the eigenvalue structure of the five-point nodal 
projection is similar to that of the nine-point nodal only with a slight ly wider distribution. A key 
property of each discretization is that pn --+ P as n --+ oo. 

From the characterization of the approximate projection in Figure 10 we can already explain 
the poor performance of versions (3) and ( 4) of t he approximate projection method. In version ( 4) , 
a i (P) = P and so at each time step U accumulates a portion of the discrete gradient component 
of N , result ing in an error that builds over time. By contrast , for version (2) , ai (P) = pi, so that 
the contributions from any fixed time converge to the correct contribution as n increases , because 
p n--+ P . 

The difficulty with version (3) , on the other hand , is caused by a residual imprint of pressure as 

characterized by the f3n · Recall that for version (3) , f3n = l:i Pi. For each eigenvalue we can write 

P(G¢(~)) = >.(~) G¢(~ ) ; 0 < A < 1; 

then for version (3) 
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(a) Amin for C5. (b) Am-in for C_EX. 

(c) Amin for N9. (d) Amin for N_EX. 

(e) Amin for N5. (f) Amin for N_EX. 

Figure 10: Smallest eigenvalue Amin of the approximate and exact projections. 
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so that the pressure gradient terms in U that are annihilated by the exact discrete projection 

asymptote to a non-negligible error in U with an approximate projection. By contrast, we note 

that this type of term is absent for version (2) (i.e. f3n = 0) which is otherwise similar in structure 

to version ( 3) . 

To characterize the other versions of the approximate projection we look at the O:i in more 

detail. For each of the other three versions ( (1) , (2) and (5)) of the approximate projection, the 

lowest power of P in O:i increases with i . Furthermore, the coefficients in O:i sum to 1. Therefore, 

for each version o:i(P) -+ P as i -+ oo. To obtain a more detailed comparison we need to look at 

the behavior of the O:i for small i . 

For each version o:1 (P) = P which is described above and illustrated in Figure 10. For the 
next two terms in the expressions , for version (1) , o:z = 2P2 - P, 0:3 = 4P3 - 3P2 ; for version (2) , 
o:2 = P2 , o:3 = P3 ; and for version (5) , o:z = 2P2 - P, 0:3 = 2P3 - P2 . In Figure 11 we plot 0:2 

for C5_1, C5_2 and C5_5 , and N9_1, N9 _2 and N9 _5 . (The N5 results are similar to the N9 

results only somewhat wider.) Figure 12 shows the analogous results for 0:3 . 

For o:2 , we note that for versions (1) and (5) there is a narrower peak than for version (2) near 

the frequencies that are in ker G , with some small negative values at intermediate frequencies . 

Overall it is smaller in an L2 integral sense. A similar pattern is observed for the 0:3 's. For version 

(2), the peak is fairly broad but the values are between 0 and 1. For version (5) , the peak is 

narrow and there is a small region where the values are slightly negative P·min > - .04) . For 
version ( 1) , the peak near the ker G elements is sharpest but there are fairly large negative values 
(>-min = -.25) . Although version (1) is the smallest in an integral sense, the negative values can 

introduce perturbations into the solution which may be a contributing factor to the non-robustness 
of version ( 1) . 

There are two other potential sources for the behavior of version (1) . As with version (3), 

version (1) contains a residual contribution from the pressure gradient (i .e. f3n -=f 0) . For version 

(2) there is no such term; for version (5) this term is pn which goes to zero on the rarige of G 

as n -+ oo . For version (1) , this behavior is characterized by the behavior of the Q,e's defined in 

Section 5. In Figure 13 we plot the functions /32 , {33 and /34 for N9 . For comparison we also plot the 

corresponding functions for version (3) . Unlike the operators for version (3) which asymptotically 
converge to nonzero values, the operators described here do not converge to zero for any fixed 

frequency except those near elements in ker G. However, the peak value near elements in ker G is 
n for the f3n for version (1) , just as in version (3) but with a narrower peak. This growth in residual 

influence of Gp- % also has the potential for contribution to the non-robust behavior of version (1) . 
The final issue regarding the spatial structure associated with the approximate projection ver

sions concerns the error in Gpn- % associated with theN's. For all versions the leading error term 

looks like P - P, which we have already examined. For versions ( 4) and ( 5) there are no other terms. 

In Figure 14 we compare /2 ,/3 and /4 for versions (2) and (3) with the corresponding operators for 

version ( 1) , again for N9. Here we see that the operators corresponding to version ( 1) are larger in 

magnitude than t heir counterparts in versions (2) and (3) . They also attain non-negligible negative 

values at intermediate frequencies . 

To summarize the findings , we first note that the unacceptable performance of versions (3) 
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(a) a2 for C5_1, C5_5. (b) a2 for N 9_1, N9_5. 

(c) a2 for C5_2. (d) a2 for N 9_2. 

Figure 11: a2 for versions (1),(2) and (5) of the approximate projections. 
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(a) a3 for C5_1. (b) a3 for N9_1. 

(c) a3 for C5_2. (d) a3 for N9_2. 

(e) a 3 for C5_5. (f) a 3 for N9_5. 

Figure 12: a3 for versions (1 ),(2) and (5) of the approximate projections. 
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4 

(a) /32 for N9_1. (b) /32 for N9_3. 

(c) /33 for N9_1. (b) /33 for N9_3. 

(e) /34 for N9_1. (f) /34 for N9_3 . 

Figure 13: /32, /33, and /34 for the N9_1 and N9_3 approximate projections. 
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(a) 12 for N9_1. (b) 12 for N9_3. 

(c) 13 for N9_1. (d) 13 for N9_3. 

(e) 14 for N9_1. (f) 14 for N9_3 . 

Figure 14: 12, 13, and 1 4 for the N9_1 and N9_3 approximate project ions. 
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and ( 4) can be related to an imprint of the old pressure gradients and a failure to damp the 

gradient components of the advection terms , respectively. We have identified three features of 

version ( 1) which may contribute to its lack of robustness . The first is the oscillatory nature of 

the ai ; however, this is a relatively small effect and probably plays a negligible role in determining 

the overall behavior. The other two features , a growing imprint of the old pressure gradient on U 

given by the f3i's combined with the errors introduced into Gp from the advection terms specified 

by the ri 's provide a mechanism for feeding back oscillatory behavior into the solution. 

6 Advection-Projection Coupling 

As we can see from the numerical results and the analysis , the nature of the difficulties for 
versions ( 3) and ( 4) differs from that of version ( 1) . This is evident as well in further numerical 

testing. Here we perform two additional numerical experiments with the random initial vorticity 
problem. In the first we halve the timestep in each calculat ion by reducing the CFL number from 

0.9 to 0.45 to examine the effect on the solution. In the left column of Figure 15, for resolution 
642 , we see that the results from versions (3) and ( 4) are essentially unchanged but the results from 
versions (1 ) are markedly improved (i .e. lower divergence) relative to the results shown in Figure 7. 

Version (1) has also been rerun for resolution 1282 , with the same improvement . 

Our second experiment is to modify the predictor so that the coupling between the pressure 
gradient Gpn-% and the advective update term N n+% is reduced, by MAC-projecting the advected 

velocities as well as the advection velocities in the predictor step. This modification is described in 

more detail in Appendix A. The results for the same cases as above are shown in t he right column 
of Figure 15; here the results of versions (3) and ( 4) are worsened (in the sense that the divergence 

is larger) but the divergence from version (1) is again noticeably lower, again compared to Figure 
7. This experiment was run at CFL = 0.9. 

The results in this section suggest that the poor results obtained with versions (3) and ( 4) , and 

the acceptable results of versions (2) and (5) , are independent of the choice of advection scheme. 
By contrast , the behavior of version (1) for inviscid flow is intimately coupled to the details of the 
particular advection method. 

7 Conclusions and Future Work 

When adopting an approximate projection formulation in which the projection operator does 

not exactly enforce a discrete divergence condition on the velocity field , t here are several options 
for which vector field to project . In this paper we have explored these options computationally and 
developed an analytical framework that explains the computational results . The results show that 
projecting the velocity field rather than the velocity increment is necessary to produce acceptable 

results. Weals~ find that p_roj~cting •. ~~:+
1 

(versi
1
on (1))_ can produce a lo~e~ divergence in the 

computed solutiOn than proJectmg u [',t + Gpn- h (versiOn (2)) ; however, 1t 1s not as robus t as 
version (2) which always produces acceptable results . 
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Figure 15: 12 norm of DU from t = 0 to 10 with CFL = 0.45 (left column), or the alternate 
predictor (right column). 
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We have also introduced a new approximate projection formulation based on proj~cting u~:+
1 

to update un+l while projecting u•,n::-un + Gpn-% as an iterative correction to update p. The 

new formulation produces results similar to version (1) when version (1) is successful and exhibits 

the same robustness as version (2). 
In the next paper we will present the extension of the analysis to viscous flows. Although we 

have seen here that minor variations in the advection step can be exploited to obtain better results 
with version (1) , when viscosity is introduced the poor behavior of version (1) cannot be salvaged. 

Further issues and future work will include the extension of the analysis for variable density flows , 
adaptive mesh calculations with subcycling in time, and low Mach number flows with non-zero 

divergence constraints. 
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Appendix A: The Predictor / Corrector Step 

In this section we first describe the construction of the advective update N n+lf2 used in our 

original tests; then we discuss the modifications as discussed in Section 6. 
In the predictor we first extrapolate the normal velociti~s to cell faces at tn+lf2. For face ( i + lj2 , j) 

this gives 

-L,n+% _ n (b.x n b.t )( n,lim)·. b.t ( (-) ( )n-lj2) 
ui+lf2 ,j - ui,j + 2 - ui,j 2 ux 2,J + 2 - vuy i,j - Gxp i,j 

extrapolated from (i,j) , and 

-R,n+% _ n (b.x n b.t )( n lim) b.t ( (-) ( )n-%) 
ui+lf2,j - ui+l,j - 2 + ui+l,j2 ux' i+l,j + 2 - VUy i+l,j- Gxp i+l,j 

extrapolated from ( i + 1, j) . Here the first derivatives normal to the face (in this case u~,lim) are 
evaluated using a monotonicity-limited fourth-order slope approximation [6] (unless specified to use 
unlimited slopes), and the the transverse derivative terms (vuy in this case) are evaluated exactly 

as in [1]. G = ( Gx, Gy) is a discretization of the gradient operator. For a nodal pressure field, 

1 

4b.x (Pi+%,1+% + Pi+% ,J-% - Pi-% ,J+%- Pi-%,j-If2 ) , 

1 
4b.y (Pi+% ,J+% + Pi-lj2,J+% - Pi+lf2,j - lf2 - Pi-lf2,j-If2)· 

For a cell-centered pressure field, 

1 

2.6x (Pi+l,j - Pi-l ,j ) , 

1 
2.6x (pi,J+l - Pi,j-1)· 

A 1 £ 1 d t d. t l £ -L/R,n+% -F/B,n+% d -F/B,n+% na ogous ormu ae are use o pre 1c va ues or u. v . , v. ·+v , an v . 11 •-,2,] •,J 12 •,J-/2 

The normal velocity at each face is then determined by an upwinding procedure based on the 
states predicted from the cell centers on either side. 

We follow a similar procedure to construct ;un++
1

1~, . 
2,] t2 

In order to enforce the divergence-free condition on these edge-based velocities we now impose 

the MAC projection (see [4]). The equation 

DMAC (GMAC cpMAC) = D MAC (fJn+lf2) 
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is solved for ¢MAC, with homogeneous Neumann boundary conditions on all physical boundaries 
except for outflow, where ¢MAC is set to zero to enforce the "no tangential acceleration" criterion. 

Here 

( A-.MAC A-.MAC) 

(
GMACA,MAC)· . = '1-'i+1,j - '1-'i,j 

x '~-' ~+%,J b.x ' 
( A,MAC A,MAC) 

(
GMAC A,MAC). . = <f-'i,j+1 - '1-'i,j 

Y '~-' ~,J+% b.x 

The advection velocity uADV is then defined by 

ADV 
ui+%,j 

ADV 
vi,j+lj2 

un+%. _ (GM AC A-.M AC) 
~+%,J X <p l 

-vn+% _ (GMAC A,MAC) 
i,J+% y <p • 

At this point the tracing step from cell centers to edges is performed for both the normal and 

tangential velocity components exactly as above, except that the upwinding now depends on the 
MAC-projected advection velocity, i.e., 

'f ADV 0 1 u.+lt. . > 
~ t2,J 

' f ADV 0 1 u.+l/: . = 
~ 2,] 

'f ADV 0 1 u.+11: . < 
~ 2 ,] 

For the original advective term, we now define 

The modification of the predictor as described in Section 6 is the replacement of U by U = (u , v) 
in the above expression, where 

Then 

N ·· Z,J 

ADV 
ui,J+% 

- 1 ("'MAC A,MAC A,MAC A,MAC ) 
ui ,j+% - 4/:::.x '~-'i+1,j + <f-'i+1,j-1 - <f-'i-1,j - <f-'i-1,j-1 ' 

- 1 ("'MAC A,MAC A,MAC A,MAC ) 
vi+%,] - 4/:::.x '~-'i,j+l + <f-'i-1,j+l - '~-'i,j-1 - <f-'i-1,j-1 

ADV 
vi+1/2,j· 

( ADV U ADV U ) ( ADV U ADV U ) 
ui+%,j i+lf2,j - ui-%,j i-lf2,j + vi,j+lf2 i,J+% - vi,j-% i,j-lf2 

. b.x b.y 
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Appendix B : Approximate Projection Operators In Three Dimen
Sions 

In this appendix we provide a characterization of the extension of the three different spatial 
approximate projections considered above to three space dimensions . We will refer to the seven

point cell-centered discretization as C7, the 21-point nodal discretization as N21 , and the seven
point nodal discretization as N7. As before, the approximate projections do not alter discretely 

divergence-free vector fields . In three dimensions this means that the discrete projection operator is 

a 3 x 3 matrix for each frequency with two eigenvalues of 1. The other eigenvalue, Amin , represents 
the degree to which gradients are damped by the projection. In Figure 16 , we show two isosurfaces 
of this minimum eigenvalue for each discretization. As in the previous Fourier analysis pictures , the 
Nyquist frequency is in the center of the domain with constant modes appearing at the corners (with 

the corner spikes suppressed) . The first contour is the Amin = 0.5 surfaces . The region bounded by 
these surfaces extending toward the corners is the portion of the domain where Amin < 0.5. The 
second contour corresponds to Amin = .9. As in the two-dimensional case, this surface encloses 

the locus of nonconstant elements in ker G. For C7 there are 8 elements in ker G while for N7 
and N21 there is a one-dimensional family of elements. As a further characterization of these 

schemes, we can expand the smallest eigenvalue about the constant mode to obtain the behavior 
of the different approximations for low frequencies . In particular , for C7 we obtain 

for N21 we obtain 
>- . (k k k ) _ ( kr k~ + kr k~ + k~ k~) 

mtn 1 , z, 3 - 6(kr+k~+kD , 

and for N7 we obtain 
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(a) Amin = 0.5 for C7. (b) Amin = 0.9 for C7. 

(c) Amin = 0.5 for N21. (d) Amin = 0.9 for N21. 

(e) Amin = 0.5 for N7. (f) Amin = 0.9 for N7. 

Figure 16: Isosurfaces of the smallest eigenvalue, Amin, at values 0.5 and 0.9 of the 3D approximate 
projection operators. 
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