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Approximate Projection Methods: Part I. Inviscid Analysis *

Ann S. Almgren, John B. Bell, and William Y. Crutchfield
Lawrence Berkeley National Laboratory, Berkeley, California

Abstract

The use of approximate projection methods for modeling low Mach number flows avoids many
of the numerical complications associated with exact projection methods, but introduces additional
design choices in developing a robust algorithm. In this paper we first explore these design choices in
the setting of inviscid incompressible flow using several computational examples. We then develop
a framework for analyzing the behavior of the different design variations and use that analysis
to explain the features observed in the computations. As part of this work we introduce a new

variation of the approximate projection algorithm that combines the advantages of several of the
previous versions.

1 Introduction

The term “projection methods” refers to a class of fractional step algorithms for modeling
unsteady low Mach number flows characterized by a divergence constraint on the velocity field. In
these methods an intermediate velocity field is constructed by advancing the momentum equations
in time without enforcing the constraint. In the next step of the algorithm this field is projected.
back onto the constraint.

Projection methods have been used for incompressible flow modeling for several decades, but
approximage projection methods have appeared only in the past few years. They have been numeri-
cally tested on a number of flows in two and three spatial dimensions, but adequate analysis of their
properties has been lacking to date. In this paper we provide an analytical basis for understanding
the behavior of approximate projection methods, and some of the design decisions that accompany
their use. .

For the purposes of this paper we will focus on inviscid, constant density flows, with numerical
examples in two dimensions. In the second paper in this series we will extend the analysis to the
modeling of viscous flows. The extension to variable density flows, and adaptive projection methods
with subcycling in time, will follow. '

*This work was supported by the Applied Mathematical Sciences Program of the DOE Office of Mathematics,
Information, and Computational Sciences, under contract DE-AC03-76SF00098.

fContact information: MS 50A-1148, LBNL, 1 Cyclotron Rd., Berkeley, CA 94720. ASAlmgren@lbl.gov,
JBBell@lbl.gov, WY Crutchfield@lbl.gov. '



In the original projection method developed by Chorin [5] and Temam [23] the projection step
of the algorithm is specified by defining discrete operators D and G, approximating divergence and
gradient, respectively, which are skew-adjoint; i.e., D = —GT. With this definition the discrete
projection, P = I — G(DG)!D (with boundary conditions implicitly defined by the the flow
problem), is a discrete orthogonal projection on the finite-dimensional space of vector fields defined
on the mesh. In Chorin’s formulation both pressure and velocity are specified at nodes and central
differences are used for the definition of D and G. This results in an expanded five-point stencil for
the discrete Laplacian, L = DG, which must be inverted to apply the projection. This expanded
stencil produces a local decoupling of the mesh points and leads to a 2%-dimensional kernel for
G where d is the dimension of the problem. Bell, Colella, and Glaz [3] use a discretization of
the projection based on a finite element method due to Fortin [7] which uses pressure defined
on cell centers with velocitiés_‘\given at nodes. This approach produces a more compact stencil
but also generates a local decoupling of the grid and dim ker G > 1. (For two dimensional
problems dim ker G = 2.) Bell, Colella and Howell [4] use a fully cell-centered analog of Chorin’s
algorithm. This scheme exhibits a local decoupling; however, in the presence of Dirichlet boundary
conditions, the cell-centered approximation eliminates the nonconstant elements in ker G. (For
periodic problems dim ker G = 2% as in the original Chorin algorithm.)

In the absence of boundaries the additional elements in ker G are not a problem for incompress-
ible flow modeling because the operator (DG)™! is applied to a vector field that lies in the range
of D. In the presence of boundaries, however, the nonconstant elements in the kernel introduce ad-
ditional, artificial compatibility constraints on the boundary of the physical domain. In addition,
for more complex low Mach number models, such as low Mach number combustion, a term that is
not in the range of the divergence operator is often added to the divergence constraint to represent
the expansion or contraction of the fluid due to additional physics. The presence of this additional
source term can result in marked oscillations in the solution, as noted by Lai [10] and Lai, Bell and
Colella [11]. An additional difficulty associated with the local decoupling is that the nonstandard
discretizations of DG require specialized iterative procedures that properly respect the stencil that
is used. (See [4, 8] for a discussion of such a procedure.) '

Almgren et al. [2] first introduced the notion of an approximate projection to circumvent
the numerical difficulties with exact discrete projections. Approximate projections are defined
by replacing the projection operator P by an approximation P=1I- G(L)™'D, where L is an
approximation to but not identically DG. The approximate projection methods discussed here
were designed to operate on cell-centered co-located velocities, to avoid any local decoupling of
the stencils, to provide a symmetric discretization of the potential flow inherent in inhomogeneous
boundary conditions, and to generate a linear system that fits the framework of conventional fast
iterative techniques (e.g. multigrid) for second-order elliptic equations.

The approximate projection introduced by Almgren et al. [2] defines pressure on nodes and uses
a finite element formulation with bilinear basis functions to derive a nine-point (in two dimensions)
stencil for the Laplacian operator. The finite element derivation gives a characterization of this
projection as an exact discrete projection onto an enriched space followed by an L2 projection onto
a subspace corresponding to piecewise constant velocity fields. This derivation provides an analytic



characterization of the effect of the “approximateness” and proves stability of the approximation.
A standard five-point nodal approximation to the Laplacian can also be used. This approxima-
tion can be constructed in a similar manner by specifying pressure to be piecewise linear on the
standard triangularization of a square mesh. The analogous three-dimensional seven-point nodal
discretization has been successfully used by Almgren et al. in [1], but lacks the finite element
derivation.

Lai [10] introduced a cell-centered approximate projection where pressure is defined at cell
centers and which uses a standard five-point centered-difference stencil for the Laplacian. The
stability of such a scheme was shown in [10]; this approximate projection has been used by Martin
[12] in an adaptive projection algorithm, and a variation of this (with the same L but a higher-order
D) by Minion [14] in an adaptive scheme. »

Approximate projections have also been successfully applied to more general low Mach number
flows arising in combustion (e.g.,[17, 18]) and atmospheric flow (e.g.,[21, 22]). However, in spite of
these successful applications, approximate projection algorithms are not without their own prob-
lems. Adopting an approximate projection approach introduces a number of design choices that are
not relevant for an exact discrete projection. When applied to “difficult” problems or to long-time
integrations, approximate projection algorithms can produce poor quality results. Rider discusses
some of these design choices for the five-point cell-centered scheme [19] and describes a collection
of filtering techniques to deal with artifacts he observes in numerical tests [20].

The goal of this paper is to develop an analytical framework to explain the performance of
different variations of approximate projection methods and to explore methods for improving their
behavior. In the next section we will give a brief overview of projection methods using an ex-
act projection; in Section 3 we introduce several different formulations of approximate projection
schemes. In the following two sections we present a temporal analysis of approximate projections,
then a spatial analysis of the three spéciﬁc approximate projections discussed here. In Section 6 we
discuss issues related to the coupling between the advection scheme and the choice of approximate
projection, and in Section 7 we present our conclusions and discussion.

2 Overview of Exact Projection Methods
In this paper we will consider constant density, inviscid, incompressible flow, governéd by
Ui+ (U-V)U+Vp=0, (2.1)

V-U=0, (2.2)

where (in two dimensions) U = (u,v) and p represent the velocity and pressure, respectively.

The projection method is a fractional step scheme for solving (2.1)-(2.2). In the advection step
we solve (2.1) without enforcing the constraint. In the projection step, we then apply a projection
to the intermediate velocity field to enforce the constraint. For the advection step we solve

U*,n+1 .

o tU-VUth =Gy (2.3)



for the intermediate velocity U*"*1, The pressure gradient is evaluated at "~ 72 and is treated as a
source term. For the computations presented here, the advection term, N™+% = [(U- V)U]"* %, is
approximated at time ¢+ to second-order in space and time using an explicit predictor-corrector
scheme described in Appendix A. (We note that the analysis presented later in the paper is ap-
plicable when other approaches are used to compute Nt Experiments with different options
in the predictor-corrector -scheme presented in section 6 are suggestive of the degree to which the
conclusions reached here are applicable to other ‘methods.)'

The velocity field U*™*!.is not, in general, divergence-free. " In the projection step of the
algorithm the intermediate velocity field can be decomposed into a discrete gradient of a scalar
potential and a discretely divergence-free vector field which correspond, respectively, to the new
pressure gradient and the new velocity, i.e., ‘

1 n+1
Untl = pUSH,

At Gp™th = At Gp" 4 (I - P)UH!

To apply the projection operator we solve DG¢ = DV for a scalar field ¢, where, in this case,
V = U*»"*l, We then define the divergence-free part of V, in this case U™, by V4 = V — Gé¢.
By construction DV 4 = 0; thus, U™*! exactly satisfies the discrete form of divergence constraint.

3 Approximate Projections

For an exact projection, V can take many forms, all of which lead to exactly the same solution
. (assuming an exact solution of the resulting Poisson equation). Two natural candidates for V are
the velocity itself or the update to velocity. One could also modify each of these by removing the
pressure gradient component of the update. Specifically, one might choose any of the following
(with the At scaling for convenience):

U*,n+l
*,n+1

2 VvV = UAt +Gp %
U*,n+1_U'n,

V = — -

. ) At
*n+l __ yn

(4 V = H.__M_U,,_Gp%l/z,

Then, after solving DG¢ = DV and setting Vg = V — G¢, the new velocity and pressure would
be defined, respectively, by

(1) U™ttt = At Vg, pn+1/2 = pn—1/2 + ¢
(2) Un+1 = At Vd, pn+1/2 — ¢
(3) U™ = U"+AtVy ph=pihig
(4) UM = U4+ ALV, pth=4¢
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For approximate projections the choice of V has a nontrivial effect on the solution. Because the
approximate projection operators are second-order accurate approximations to an exact projection,
the methods which result from each choice of V are all second-order accurate for smooth problems,
but not identical.

For the sake of clarity, we here introduce some notation for the different spatial and temporal
discretizations. We will refer to the approximate projection with the nine-point nodal discretization
of L as N9, that with the five-point nodal discretization of L as N5, and that with the five-point
cell-centered discretization of L as C5. In addition, for all results we will specify which version of
V is being projected; e.g., N9_3 will indicate the nine-point nodal scheme, version (3) of V. In the
published literature, Almgren et al. [1, 2] have presented results using N5_3 and N9_3; Martin
[12] used C5_2, and Minion [14] has used C5_4. Rider [19] presents extensive testing of C5_1-4
in conjunction with the development of filters to reduce numerical artifacts.

We also note here that for each of the approximate projection operators, P, there is a corre-
sponding exact discrete projection P = I — G(DG)™'D defined using the same D and G used
to define P. We will refer to the exact nodal projection as N_EX and the exact cell-centered
projection as C_EX. '

To demonstrate the second-order accuracy of the different versions of the approximate projec-

“tions, we preseht results from a time-periodic test case with diagonally translating vortices. The
initial data is

~u(z,y) = 1—2cos(z)sin(y)
v(z,y) = 1+ 2sin(z)cos(y)

on a square domain, 27 x 27. The exact solution to the Euler equations with this initial data is

Uer(T,y,t) = 1—2cos(z — t)sin(y — t),
Vez(Z,y,t) = 1+ 2sin(z —t)cos(y — t),
Pec(7,y,t) = —cos(2(z —t)) —sin(2(y —1)).

For each version of V and each approximate projection we present results at three different res-
olutions: 322, 642, and 1282. In all cases we use fourth-order unlimited slopes in the predictor.
The L? norms of the error in u and p, are shown in Figures 1 and 2, respectively. It is clear that
each method is second-order accurate; in addition, it is evident that there are differences between
the solutions resulting from the different forms of the projections, most noticeably C5_4. We will
explain these differences in the next two sections.

As demonstrated above, the difficulty with using approximate projections is not a question of
formal accuracy on smooth problems. Instead, problems tend to appear as a buildup of “noise”
during longer time integrations of more complex problems. To illustrate this behavior we present
results from each of the approximate projections run on on a more complex problem, namely the
inviscid dynamics of a random initial distribution of vorticity. A key feature of this problem is that
it contains substantially more high frequency content than the previous test case. The initial data
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for this problem are given by specifying a random stream function with spectral characteristics

defined by g

Y = T e
where w is a normally distributed random variable mapped into the complex domain with the
appropriate symmetries so that the inverse Fourier transform of 4 is a real function, 1. We then
define U? as the discrete curl of 4. The initial data for this problem are similar to the initial data
used to test the decay at high Reynolds number of the two-dimensional Navier-Stokes equations to
the sinh-Poisson mean field equations derived by Joyce and Montgomery [9]. This type of problem
has been studied extensively by a number of authors. (See the early work by McWilliams [13] and
other studies such as Montgomery et al. [15] and the references cited therein.) We note that the
key difference between the initial data we have constructed and the data used in the above studies
is that in those studies the kinetic energy scales like k=2 for large k, but here we are imposing a
more rapid decay for large k. This more rapid decay reduces the very high frequency components
of the solution so that the computations are less sensitive to the behavior of the advection scheme.
(Results similar to those presented here are also obtained with the richer spectrum but the anomalies
occur at higher resolution and longer time integrations, which are prohibitive for extensive testing.)

We examine the evolution of the solution from time ¢ = 0 to 10, over which time the initial
random vorticity essentially coalesces into two smooth patches of counter-rotating vorticity. In
Figure 3 we show raster plots of the vorticity and p; at t = 0 and ¢t = 10 on a 642 grid calculated
with N9_2. The domain is the unit square with doubly periodic boundary conditions, and all
calculations are run with CFL = 0.9. _

Several variations of the approximate projection produce poor results for this problem. In
particular, in Figures 4 through 6 we show the vorticity and p, at ¢ = 10 as calculated using N9_1,
C5_3, and N5_4, respectively. In Figure 4, checkerboarding (high frequency error in the solution)
is evident in the pressure gradient and to a lesser extent in the vorticity. Similarly, in Figure 5, high
frequency error is visible, though due to the cell-centered discretization the error appears more as
“striping” than checkerboarding in the vorticity. Figure 6 shows more coherently structured but
equally unphysical features in both the vorticity and pressure gradient.

In Figure 7 we plot the numerical divergence of velocity (calculated in each case with the
same D as the approximate projection used) as a function of time for all twelve cases (C5-1-4,
N9_1-4, N5_1-4), at resolutions 64% and 1282. While the divergence does decrease with increased
resolution, the differences between the variations of the projection persist. (In fact N5_1 becomes
more unstable at higher resolution.) An examination of all twelve cases indicates that plots of
the solutions with relatively small divergence are comparable to Figure 3; plots of solutions with
 relatively larger divergence are comparable to Figures 4 through 6. It is evident that the divergence
is a useful indicator of solution quality for problems such as this one for which an exact solution is
not known.

For the random initial vorticity problem, it appears that the only acceptable formulation of
the approximate projection across all three discretizations is version (2). Version (2), however, is
not without its drawbacks. As we will see analytically in the next section, the divergence of the



(c) Vorticity at ¢t = 10. (d) p; at t = 10.

Figure 3: Vorticity and p, at ¢ = 0 and ¢ = 10 for the N9_2 case of the random initial vorticity
calculation at resolution 642.



(a) Vorticity at ¢t = 10.

(b) pe ab £ =10.

Figure 4: Vorticity and p, at ¢t = 10 for the N9_1 case of the random initial vorticity calculation
at resolution 642.
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(b} ps at 1 = 10.

Figure 5: Vorticity and p; at ¢ = 10 for the C5_3 case of the random initial vorticity calculation
at resolution 642.
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solution found with version (2) is typically larger than when version (1) is used, provided version
(1) remains stable. To demonstrate this, we consider a very simple steady problem for which we
know the exact solution. The initial data (and steady solution) are

Ueg = SIN(Y), Ve = cos(z).

To eliminate issues of predictor-projection coupling which will be discussed in Section 7, we llrlere
=
(cos(z;) cos(y;), — sin(z;)sin(y;)) where z; = ih,y; = jh with h the mesh spacing. All calculations
are run with CFL = 0.9 and resolution 32°.

Figure 8 shows the L? error in u from time ¢t = 0 to 150 for versions (1) and (2) with each
approximate projection. The solid curves using version (1) are indistinguishable in this figure from
the z-axis; the three remaining curves were computed with version (2). Clearly the error grows

steadily for version (2), while remaining essentially zero for version (1).

use the exact analytic solution to define the advective terms at each time step, i.e. we set N

While the difference between versions (1) and (2) is especially noticeable for a steady problem,
analogous behavior is seen in the initial iteration of the algorithm which is used to define the initial
pressure field. At the beginning of a calculation, the initial velocity field is projected once to enforce
the divergence constraint. Then an iteration is performed to compute Gp~"2. In each step of this
iteration a full time step is taken; after the projection step the pressure field is updated, but the
velocity is reset to its previous value.

If version (1) or (3) of the approximate projection is used, then in the limit as the number of
iterations becomes infinite, the initial pressure converges to the correct value (that which would be
found with infinitely many iterations of an exact projection). With versions (2) or (4), however,
because these versions are nonincremental in pressure, the pressure does not converge, regardless
of the number of iterations.

0.12 I ‘
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VVVVVVVVV ce.t
0.10 - |
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0.08 | ~
:: 0.06 - ‘
=2
0.04 _
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Time
Figure 8: L2 norm of the error in u from ¢ = 0 to ¢ = 150 from calculations of the steady problem.
Curves using projection version (1) overlay the z-axis.
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4 Temporal Analysis of Approximate Projections

The goal of this and the next section is to develop an analytical framework to explain the
results of the computations presented in the previous section. The expressions presented by Rider
[19] for the divergence of velocity suggest that version (1) should produce the lowest divergence, that
versions (2) and (3) should produce similar results, and that version (4) should generate the highest
divergence. These predictions hold true in some cases but do not fully explain the computations
presented in the previous section or the computations in [19], specifically the lack of robustness of
version (1) and the differences in behavior between versions (2) and (3).

In order to understand the behavior of the different variations of approximate projections, for
each version we express the velocity and pressure gradient after n time steps, U™ and Gp”_l/z, in
terms of the initial data, U® and Gp~ ", the advective updates at each time step, N**72, and the
approximate projection operator, P. These expressions are derived by substituting the expression
for U™+ from (2.3) into the definitions of U™*! for each version of the approximate projection
defined in Section 3. Successive substitution provides the desired characterization of each version
of the algorithm. The results for each version are summarized in Tables 1 and 2.

The coefficients in the formula for U™ using version (1) are defined by the recursion relations

Q=PI -I-P)Q;™), Qp=PQI+Q5™,

with starting values QL = Qé =P, Q2 =2P%>-P, Q% = 2P?, Q3 = 4P? — 3P? and Q% =
4P3 — P2, Note that Q7 and Qj are polynomials in P and that the coefficient of P™ in each is
2"~ Note also that the sum of the coefficients in Qp is one, and the sum of the coefficients in Q’é
is n.

The coefficients in the formula for Gp™~72 using version (1) are defined by the recursion relations
Q}=P(Q) -I-P)Qf7), QF=P@Q;+Q;™,

with starting values Q} = —P and Q}Y = (I-P).

It is clear there is a tradeoff in choosing any one form of V. In the numerical results of the pre-
vious section, version (1) gives the smallest divergence of velocity when it remains stable; however,
it suffers from a lack of robustness. Version (4), by contrast, defines the pressure gradient using
only the most recent advection terms, as does an exact discrete projection, but produces very poor
computational results. Version (2) appears to be robust and reliable but the velocity field, as seen
in the steady example, can accumulate the imprint of the pressure gradient from previous times.

To date, approximate projection methods have followed the lead of exact projection methods
in using a single projection to define both the new velocity and pressure. Here, however, motivated
by the problems with each form, we introduce the concept of separate projections for the velocity
and pressure. We propose an approximate projection method in which a version (1) projection
is used to define the new velocity field, and a version (4) projection is then used to define the
new pressure gradient. We will call this version (5). If the second projection is solved to full
precision, this doubles the computational work of the projection step. However, in our numerical

15



Version Ur =

Exact U — ¥ P(At Nn+)

il U™ = Q"U° — Q7(At Gp—l/z — 7 Qi (At N+
P B 1=1 %a

(2) P Ul — b f’i(At Nn+1/2—i)
(3) UO - z IBZ(At Nn+1/2—i) _ an(At Gp__l/z)
(4) Ul — Ef’(At Nn+1/2—i)

Table 1: U™ in terms of U, Gp_1/2, and N. All sums are from ¢ = 1 to n unless otherwise noted.

Version At Gp 2 =
Exact —(I - P)(At N )
(1) ~At ¥ QINTETI_ AL QFGp~
(2) —(I - P)(At N )

+ (I - P)P U0 — Y1, (P! — PY) (At Nnth—1))

(3) :i‘;;nGrp_l/2 — (I - f)) E f)i—lAt Nn+1/2_i

(4) —(I-P)(At N*k)

Table 2: At Gp"_l/2 in terms of UY, Gp“1/2, and N. All sums are from 7 = 1 to n unless otherwise
noted.
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tests we have found that because the pressure from the first projection using version (1) is a good
first guess for the pressure which would result from version (4), one can algebraically reformulate
the second projection to solve for the difference between these two pressures rather than for the
new pressure itself. It is then only necessary to approximately solve (e.g. to require that the
iterative solver reduce the residual by only one order of magnitude) the second equation, resulting
in little additional computational work. This new version has been successfully used to model
incompressible axisymmetric flow with swirl in [16].
The expressions for projection (5) corresponding to those in Tables 1 and 2 are
n—1
U" = PU° - PM(At Gp~ %) — P(At N 4) — $™ Pi(2P — I)(At N"~ A7),
i=1

Gp" % = (I - P)(At N* %),

We note here that version (5) is fully second-order accurate for smooth problems; on the trans-
lating vortices problem the results are almost indistinguishable from those with version (2). For
the random initial vorticity problem the divergence is shown in Figure 9, contrasted only with the
data from versions (1) and (2). We see that the divergence for version (5) remains low in all cases;
it is in fact always lower than that for version (2), and version (5) lacks the instability of version
(1). For the simple steady problem, the curves for version (5) are indistinguishable from those for
version (1).

Before performing a more detailed analysis of the projection version, we note that the results
for each version can be expressed in a general form as

U" = ~ A% Za, P)N"t%—t _ g (P)Gp~ 7, (4.1)

At Gph = At (1- B)N" — At Zv P)N"TH 4+ 7n(P)U” — At 5,(P)Gp™ ", (42)

with the polynomial coefficients for each version and for an exact projection given in Table 3.
Performing a complete error analysis for each of these approximate schemes is not tractable.
Instead, to characterize the effect of the “approximateness” of the approximate projection in greater
detail, we will use the formulae in (4.1)-(4.2) to compare the solution found using the approximate
projection to the solution of the same problem found using the corresponding exact discrete pro-

jection P. If we denote by (U™, Gp" ") the solution with P and (V", G¢" ") the solution with
P, then

U -V = (0(B) - Atzaz B)NGE 4 A Y PNGE A g (B)Gp
i=1
and
At (Gt — G k) = —At (@ —P)NY % 4+ At (I - P)N" % — At Z%(P)N"”z .
=2

+9n (P)U° — At 6,(P)Gp™ 7,
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resolutions. Only approximate projection versions (1), (2) and (5) are shown.

18



Version Pn o; Bn Vi On,
Exact 1 P 0 0 0

(1) Qe Qi Q53 Q Q5
(2) P" P! 0 P-l-Pi| 0
(3) 1 pi n Pt | pi-l_pi| pn
(4) 1 P 0 0 0
(5) pr | 2Pl _Ppi| Ppn 0 0

Table 3: Coeflicients for each version of the approximate projection and for an exact projection.

where Ny and Ny denote evaluation of the advective terms with (U, Gp™~ %) and (V", Gg" ),
respectively.

If we rewrite these expressions, adding and subtracting terms involving PN,

tions we obtain

U -V = (pMB)-P)U° - At S (es(P) — P)NETA™ _ A ZP Nt
i=1
~At fa(P)Gp ™"
and
At (Gp" Tk — Gty = —At (P P)N" % — At (I - P)(N 2 - NI~
~At Z% NG 4y, (P)U° — At 5,(B)Gp
If we now take norms and use the fact that ||P|| =1 and ||I — P|| = 1 we obtain
= i ~ .
U™ = VP < I(0"(R) = PYUC|| + At 3 ||(es(P) — PYNGHAT|

n

i=l
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(4.3)



+AL ZIIN"” FoNTTETY| 4 A |8 (P)Gp Y|
=1

and
At[|Gp" R -G H| < AtI(P — PN+ At NG - NGTR + (44)
At Z I @)ING A7 + 1BV + At {6, (B) Gp .
For the methods considered here Ny depends on U and Gp smoothly, likewise Ny depends on
V and Ggq smoothly, so we can assume ||[Ny — Ny/|| terms are small and can be absorbed into the

left hand side of the equation with the introduction of a constant multiplier C' on the right hand
side. With that assumption, summing (4.3) and (4.4) over n yields

N N
S{IUT =V + At|GpE -G R <o 3 {10 (B) - P)UY| + (4.5)
n=1 n=1
n+Yh—1i
Atznaz P)NT7| 4+ At ||8.(B)Gp™ || + |7 (P)U°|| +

At 1|6, (B)Gp~ || + At ||(P - )Ny 2| + At ZH% ByNm ZH}
=2

From (4.5) we can exactly identify the polynomial expressions which contribute to the error due to
the approximateness of the projection; these terms will be examined further in the next section.

Before examining the spatial structure of the different approximate projection schemes, we note
that the derivation presented here also provides a characterization of the divergence of the solution
of the approximate projection solution. If we apply D to (4.1) we obtain

DU" = Dp*(P)U? — At ZDal P)NIT2™ _ At DB, (P)Gp
=1
Thus, the structure of the spatial operators described below also provides a characterization of the
divergence. Furthermore, since P and P do not change discretely divergence-free fields, the error
terms in the estimate (4.5) are discrete gradients. This explains the correspondence between the
quality of the computational results and the behavior of the discrete divergence of the solution.

5 Spatial Analysis of the Projection

The temporal analysis of the previous section provides a basic framework for understanding the
behavior of approximate projection schemes. The details of this behavior depend on the details of
the spatial structure of the approximate projections. In this section we will analyze that behavior
for the N5, N9 and C5 approximate projections. In particular, we will look at how well the
polynomials of P that characterize the approximate projections approximate the corresponding
exact discrete projection.
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Before looking at the behavior of the approximate projections, however, we first need to char-
acterize the structure of the corresponding exact discrete projection, I — G(DG) !D. As noted
earlier, the difficulties associated with using these exact discrete projections arise from the (locally)
decoupled stencils associated with DG. This local decoupling is related to the presence of elements
in the kernel of G other than constants. In two dimensions, for the nodal scheme dim ker G = 2
and for the cell-centered scheme dim ker G = 4. For each of these methods one of these elements
corresponds to constants and the other modes are spurious. For the nodal scheme this additional
mode corresponds to the Nyquist frequency in both directions. This mode is also in ker G for
the cell-centered scheme, as well as vertical and horizontal “stripe” modes corresponding to the
Nyquist frequency in one component and constant in the other. These modes can be seen in Figure
5.

To characterize the projections we will look at their Fourier behavior. After the Fourier trans-
form, the projection has the form of a 2x2 matrix for each wave number. As noted above, discretely
divergence-free vector fields are unchanged by both the exact discrete and the approximate pro-
jections, thus both the exact discrete and approximate versions share an eigenvalue of 1 with a
common eigenvector. To characterize the behavior we can then focus on the other eigenvalue,
Amin. For P, Apin = 0 except for wave numbers corresponding to elements in ker G. In Figure 10
we show A\, for the exact projection operator, P, and for the N9, N5 and C5 approximate pro-
jection operators, P.In Figures 10-14 the center of each plot corresponds to the Nyquist frequency
in both directions with constants at the corner. (The peak at constants has been suppressed.)
The analogous characterization for the three-dimensional versions of these operators is presented
in Appendix B.

In each case we see that A, for the approximate projection operator has a smooth peak
near the elements of ker G for the corresponding exact discrete projection. Thus, because of
additional elements in ker G the cell-centered discretization broadens the range over which the
approximation is a poor one. We also note that the eigenvalue structure of the five-point nodal
projection is similar to that of the nine-point nodal only with a slightly wider distribution. A key
property of each discretization is that P" 5 P as n — oo.

From the characterization of the approximate projection in Figure 10 we can already explain
the poor performance of versions (3) and (4) of the approximate projection method. In version (4),
ai(f’) = P and so at each time step U accumulates a portion of the discrete gradient component
of N, resulting in an error that builds over time. By contrast, for version (2), ai(f’) = P?, so that
the contributions from any fixed time converge to the correct contribution as n increases, because
P" 5 P,

The difficulty with version (3), on the other hand, is caused by a residual imprint of pressure as
characterized by the [3,. Recall that for version (3), B, = >, P*. For each eigenvalue we can write

P(Ge(€) = MOGH(); 0<A<T
then for version (3)

Ba(BIGE) = (B +B7 + .+ BYGHE) » 12 G(E),
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so that the pressure gradient terms in U that are annihilated by the exact discrete projection
asymptote to a non-negligible error in U with an approximate projection. By contrast, we note
that this type of term is absent for version (2) (i.e. 8, = 0) which is otherwise similar in structure
to version (3).

To characterize the other versions of the approximate projection we look at the «; in more
detail. For each of the other three versions ( (1), (2) and (5)) of the approximate projection, the
lowest power of P in o; increases with . Furthermore, the coefficients in «; sum to 1. Therefore,
for each version ai(f’) — P as ¢ — oo. To obtain a more detailed comparison we need to look at
the behavior of the «; for small 7.

For each version a1(15) = P which is described above and illustrated in Figure 10. For the
next two terms in the expressions, for version (1), ag = 2P2 — P, a3 = 4P — 3P?; for version (2),
as = P2 a3 = P3; and for version (5), az = 2P2 — P, a3 = 2P® — P2. In Figure 11 we plot ay
for C5.1, C5_2 and C5.5, and N9_1, N9_2 and N9_5. (The N5 results are similar to the N9
results only somewhat wider.) Figure 12 shows the analogous results for as.

For oy, we note that for versions (1) and (5) there is a narrower peak than for version (2) near
the frequencies that are in ker G, with some small negative values at intermediate frequencies.
Overall it is smaller in an L? integral sense. A similar pattern is observed for the a3’s. For version
(2), the peak is fairly broad but the values are between 0 and 1. For version (5), the peak is
narrow and there is a small region where the values are slightly negative (Amin > —.04). For
version (1), the peak near the ker G elements is sharpest but there are fairly large negative values
(Amin = —.25). Although version (1) is the smallest in an integral sense, the negative values can
introduce perturbations into the solution which may be a contributing factor to the non-robustness
of version (1).

There are two other potential sources for the behavior of version (1). As with version (3),
version (1) contains a residual contribution from the pressure gradient (i.e. B, # 0). For version
(2) there is no such term; for version (5) this term is P™ which goes to zero on the range of G
as n — oo. For version (1), this behavior is characterized by the behavior of the Qp’s defined in
Section 5. In Figure 13 we plot the functions S, 83 and 4 for N9. For comparison we also plot the
corresponding functions for version (3). Unlike the operators for version (3) which asymptotically
converge to nonzero values, the operators described here do not converge to zero for any fixed
frequency except those near elements in ker G. However, the peak value near elements in ker G is
n for the f,, for version (1), just as in version (3) but with a narrower peak. This growth in residual
influence of Gp~ " also has the potential for contribution to the non-robust behavior of version (1).

The final issue regarding the spatial structure associated with the approximate projection ver-
sions concerns the error in Gp™ 7 associated with the N’s. For all versions the leading error term
looks like P — P, which we have already examined. For versions (4) and (5) there are no other terms.
In Figure 14 we compare 3,3 and 74 for versions (2) and (3) with the corresponding operators for
version (1), again for N9. Here we see that the operators corresponding to version (1) are larger in
magnitude than their counterparts in versions (2) and (3). They also attain non-negligible negative
values at intermediate frequencies.

To summarize the findings, we first note that the unacceptable performance of versions (3)
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and (4) can be related to an imprint of the old pressure gradients and a failure to damp the
gradient components of the advection terms, respectively. We have identified three features of
version (1) which may contribute to its lack of robustness. The first is the oscillatory nature of
the «;; however, this is a relatively small effect and probably plays a negligible role in determining
the overall behavior. The other two features, a growing imprint of the old pressure gradient on U
given by the f;’s combined with the errors introduced into Gp from the advection terms specified
by the 7;’s provide a mechanism for feeding back oscillatory behavior into the solution.

6 Advection-Projection Coupling

As we can see from the numerical results and the analysis, the nature of the difficulties for
versions (3) and (4) differs from that of version (1). This is evident as well in further numerical
testing. Here we perform two additional numerical experiments with the random initial vorticity
problem. In the first we halve the timestep in each calculation by reducing the CFL number from
0.9 to 0.45 to examine the effect on the solution. In the left column of Figure 15, for resolution
642, we see that the results from versions (3) and (4) are essentially unchanged but the results from
versions (1) are markedly improved (i.e. lower divergence) relative to the results shown in Figure 7.
Version (1) has also been rerun for resolution 1282, with the same improvement.

Our second experiment is to modify the predictor so that the coupling between the pressure
gradient Gp"~ " and the advective update term N7 ig reduced, by MAC-projecting the advected
velocities as well as the advection velocities in the predictor step. This modification is described in
more detail in Appendix A. The results for the same cases as above are shown in the right column
of Figure 15; here the results of versions (3) and (4) are worsened (in the sense that the divergence
is larger) but the divergence from version (1) is again noticeably lower, again compared to Figure
7. This experiment was run at CFL = 0.9.

The results in this section suggest that the poor results obtained with versions (3) and (4), and
the acceptable results of versions (2) and (5), are independent of the choice of advection scheme.
By contrast, the behavior of version (1) for inviscid flow is intimately coupled to the details of the
particular advection method.

7 Conclusions and Future Work

When adopting an approximate projection formulation in which the projection operator does
not exactly enforce a discrete divergence condition on the velocity field, there are several options
for which vector field to project. In this paper we have explored these options computationally and
developed an analytical framework that explains the computational results. The results show that
projecting the velocity field rather than the velocity increment is necessary to produce acceptable
results. We also find that projecting 9—?—1 (version (1)) can produce a lower divergence in the
computed solution than projecting UX;

+ Gp" " (version (2)); however, it is not as robust as
version (2) which always produces acceptable results.
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We have also introduced a new approximate projection formulation based on projécting %ﬂﬂ
to update U™t while projecting W + G‘rp"”l/2 as an iterative correction to update p. The
new formulation produces results similar to version (1) when version (1) is successful and exhibits
the same robustness as version (2).

In the next paper we will present the extension of the analysis to viscous flows. Although we
have seen here that minor variations in the advection step can be exploited to obtain better results
with version (1), when viscosity is introduced the poor behavior of version (1) cannot be salvaged.
Further issues and future work will include the extension of the analysis for variable density flows,
adaptive mesh calculations with subcycling in time, and low Mach number flows with non-zero
divergence constraints.
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Appendix A: The Predictor / Corrector Step

In this section we first describe the construction of the advective update N™t% used in our
original tests; then we discuss the modifications as discussed in Section 6.

In the predictor we first extrapolate the normal velocities to cell faces at "2, For face (z+Yo,9)
this gives

~Ln+} Az At 3 At . _1
Bl =l + (G — ) (™) + - (- ()i — (Gap)iy )

extrapolated from (7, 7), and

~Rn+7 n Az n At At
i =

li oy ol
g = Ueplg (T + Ui+1,j—§‘)(ug’ i TERE T(_(Uuy)i-{—l,j - (Gzp)?ﬂ{;)
extrapolated from (i + 1, 7). Here the first derivatives normal to the face (in this case u™"™) are
evaluated using a monotonicity-limited fourth-order slope approximation [6] (unless specified to use

unlimited slopes), and the the transverse derivative terms (9uy in this case) are evaluated exactly
as in [1]. G = (G, Gy) is a discretization of the gradient operator. For a nodal pressure field,

i

(Gzp)ij = ZLA—m(pi+1/2,j+1/z + Pitth it — Pi-Ypjt¥y — Pi-Yp 1),
1

(Gyp)ij = 4Ay (Pi+1/2,j+1/2 1 Pi-Yoj+Y% — Pitlh,j—Y — pi—1/2,j—1/2)'

For a cell-centered pressure field,

1

(Gep)iyj = m(lh‘ﬂ,j — P14
il
Gyplij = iz Pij+1 — Pij-1).
Analogous formulae are used to predict values for ﬁf_/ 1/12 ’T’l/z, ~f](f1’/:+1/2, and ﬁf;_]_gf/:"u/z.

The normal velocity at each face is then determined by an upwinding procedure based on the
states predicted from the cell centers on either side.

. gbnth  if ghntr > 0 and GEmR + GRS 0
a?jl/f ;=40 if G+ < 0,aRn+% > 0 or Gt 4 gRAHE =0
afnth if gRnth < 0 and alnth 4 gRetR < 0
TS
We follow a similar procedure to construct v?;;r/f/z.

In order to enforce the divergence-free condition on these edge-based velocities we now impose
the MAC projection (see [4]). The equation

DMAC(gMAC¢MAC) s DMAC(['j-n—l-l/z)
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is solved for $MAC | with homogeneous Neumann boundary conditions on all physical boundaries
except for outflow, where ¢M4C is set to zero to enforce the “no tangential acceleration” criterion.

Here
gt _ gtk gt _ ot
DMAC (fn+hy = ittd  i—Yed | it Thi—th
Az Ay

amd GMAC — (DMACYT g4 that

(pMAC _ gMAC)
GMAC yMAC _ Ml .J
( z ¢ )i+1/2,j - Asp )

A
_ (Bi55T — 9157°)

i)j+1/2 - A.’E

(GZA//IAcd)MAC)

The advection velocity UAPY is then defined by

ADV  _  ~ntlh MAC | MAC
ui—{—l/z,j = i+1/2,j - (Gz ¢ )a
ADV  _  ~ntlh MAC ;MAC
Vigtth = Uijqy — (Gy ).

At this point the tracing step from cell centers to edges is performed for both the normal and
tangential velocity components exactly as above, except that the upwinding now depends on the
MAC-projected advection velocity, i.e.,

L : ADV
B U B B 1fui+1/27j>0
Uity = IZZ(UL + 8y if ufﬁ/zVJ =0
U~ it uflY . <0

For the original advective term, we now define

ADV 77 . . _ . ADV 77 ADV §7. . _ . ADV 7.
N, — (ui—l—l/g,jUH-l/zJ ui—l/z,jUz—l/z,J) & (”z‘,j+1/2Uz,J+1/z vi,j~—1/2U%J—1/2)
kg =

Az Ay

The modification of the predictor as described in Section 6 is the replacement of U by U = (@, )
in the above expression, where

B = uiDY,
Guivh = Tagrn — gz AT + OMAT - 440 - g4S ),
Bithi = Tt — pas (VAT + 9MAC,, — AT — gMgC )
Bugin = v

Then

ADV {7 . _ . ADV 77 ADV 77 . _ . ADV 77
(ui+l/2>jUz+1/2J ui—l/g,jUz_l/i!a]) + (vi,j+1/2U'Ly]+1/2 v’l:,j—l/2Uz,j_1/2)
Az Ay

Nij =
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Appendix B: Approximate Projection Operators in Three Dimen-
sions

In this appendix we provide a characterization of the extension of the three different spatial
approximate projections considered above to three space dimensions. We will refer to the seven-
point cell-centered discretization as C7, the 21-point nodal discretization as IN21, and the seven-
point nodal discretization as N7. As before, the approximate projections do not alter discretely
divergence-free vector fields. In three dimensions this means that the discrete projection operator is
a 3 x 3 matrix for each frequency with two eigenvalues of 1. The other eigenvalue, A.,;,, represents
the degree to which gradients are damped by the projection. In Figure 16, we show two isosurfaces
of this minimum eigenvalue for each discretization. As in the previous Fourier analysis pictures, the
Nyquist frequency is in the center of the domain with constant modes appearing at the corners (with
the corner spikes suppressed). The first contour is the A, = 0.5 surfaces. The region bounded by
these surfaces extending toward the corners is the portion of the domain where A,,;, < 0.5. The
second contour corresponds to Apin = -9. As in the two-dimensional case, this surface encloses
the locus of nonconstant elements in ker G. For C7 there are 8 elements in ker G while for N7
and N21 there is a one-dimensional family of elements. As a further characterization of these
schemes, we can expand the smallest eigenvalue about the constant mode to obtain the behavior
of the different approximations for low frequencies. In particular, for C7 we obtain

(kf + ki + k4?)
1 il

N (K14 Ko, kg) =
'rnm( 1y 72y 3) 2(k%+k%+k§)’

for N21 we obtain
k2k: + kik: + K3k2)

i, o ) = 6(kf + k3 +k3)

and for N7 we obtain
(kik3 + kTk3 + k3K3)

N (K1 o K. Ra) =
mzn( 1,2, 3) 2(k%+k%+k§)
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(e) Amin = 0.5 for N7. () Amin = 0.9 for N7.

Figure 16: Isosurfaces of the smallest eigenvalue, Apin, at values 0.5 and 0.9 of the 3D approximate
projection operators.
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