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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Chris H.Q. Ding and Yun He 
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Abstract 

We describe an efficient and scalable parallel I/0 strategy for writing out gigabytes of 
data generated hourly in the o~ean model simulations on massively parallel distributed
memory architectures. Working with Modular Ocean Model, using JJ-etCDF file system, 
and implemented on Cray T3E, the strategy speedup I/ 0 by a factor of 50 in the sequen- . 
tial case. In parallel case, on 8 PEs up to 256 PEs, our implementation writes out most 
model dynamic fields of about 1GB to a single netCDF file in 65 seconds, independent 
of the number of processors. The remap-and-write parallel strategy resolves the memory 
limitation problem and requires minimal collective I/0 capability of the file system. Sev
eral critical optimizations on memory management and file access are carried out which 
ensure this scalability and also speedup the numerical simulation due to improved memory 
management. 

1 lntrod uction 

Modeling ocean circulation and its influence on the global climate is a grand challenge in com
putational science. The ocean flow dynamics and physical processes involve a broad range 
of spatial and temporal scales, requiring decade-long integrations at fine resolutions. Recent 
advances in numerical ocean modeling has [1, 2, 3, 4, 8, 6, 7] dramatically increasing our under
standing of these processes. State-of-art massively parallel supercomputers provide gigabytes 
of memory and teraflop computations necessary to run these simulations. 

There are a number of critical issues regarding ocean model simulations on distributed
memory parallel computers, such as efficiency in the usage of cache-based processors, load 
balance due to irregular land contours and botton topography, scalability of the basic numerical 
algorithms. 

In this paper, we focus on another critical issue, the data I/0 in the ocean modeling. During 
the simulations, gigabytes of data are generated hourly, including snapshots of the 2D and 3D 
velocity fi<:lds, tracers. Effective and efficient I/0 strategy and implementations of handling 
this large a_mount of I/0 in MPP environment therefore become critical for the production 
simulations. 
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Figure 1: Data layout of the ocean model. Normal computations are carried out in latitudinal
slab decomposition, where latitude slices are split among processors; this is also consistent 
with sequential case. Note that a latitude slice contains words which are not contiguous in 
output file space. The horizontal-slab decomposition are used for parallel I/0, where entire 
fields on each processor are written out in one shot to a contiguous block in file space. The 
number of designated processors, D, involved in horizontal-slab distribution is flexible: D could 
be anywhere between 1 and the number o( vertical layers Nz, depending on memory and I/0 
channel considerations. 

The ocean model we study in this report is the Modular Ocean Model (MOM) (4, 5] devel
oped at Geophysical Fluid Dynamics Laboratory (GFDL) which is a three-dimensional general 
ocean circulation model, widely used in the oceanographic community to simulate ocean and 
ocean-related events. 

2 Model Description 

The ocean model solves the primitive equations governing large scale ocean circulation with 
_Boussinesq and hydrostatic approximations (1, 2, 3]. It uses finite difference scheme on the dis
creted domains. The dynamics split into a barotropic mode, involving depth-averaged column 
velocities (2D variables), and a baroclinic mode, deviating from barotropic mode and other 3D 
tracers. It uses a free surface formulation with an explicit solution method. 

The codes is written in Fortran, with about 80,000 lines in 350 subroutines. There are a 
large number of physical parameterization options. Currently it uses a !-dimensional (latitude 
dimension) decomposition for bothyectorization on vector architecture and parallelism on MPP · 
with message passing. 
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3 Memory Organization and Data 1/0 

A number of codes features make the data I/0 in the ocean model complex. The codes use a 
memory window scheme to slice through the complete data set stored in disk files. This out
of-core computing mode saves memory and allows codes running in memory-limited platforms, 
such as Cray T90 and workstations. On traditional Cray vectors, the files are stored on solid 
state disk lwhich is fast, the out-of-core mode works well. On distributed-memory computers 
where residence memory is plenty and can hold the entire data set, the memory window scheme 
is still kept and data are copied back and forth between the small memory window and the disk 
file which now sits in memory (called ramdisk forthis reason). This extensive memory copying 
poses a problem for writing 3D fields out efficiently and slows down the computing significantly. 

Figure 1 shows the data layout for the ocean model. For computational efficiency (vector
ization) reasons, data fields stored in computer memory are indexed as U(ix,iz,iy ), where ix,iy,iz 
refer to longitude, latitude, and depth, respectively. The latitude dimension is in outer loop for 
the convenience of vectorization and parallelization. On the other hand, the 3D fields output 
files require the arrays to be indexed as U(ix,iy,iz), because most analysis tools deal with this 
order. Furthermore, the out-of-core ramdisk file for implementing memory window has another 
indexing scheme convenient for slicing through data, but differs from the above two indexing 
orders. These three different storage orders cause some complexity in data output and also 
slow down the data transfer rates very significantly. 

A further complication is that MOM uses netCDF file system [9] for its data I/0. NetCDF 
is self-describing, portable, and flexible file system. It can read or write a local block from/to 
the file in a single call even though the data are not contiguous in file space. Its main problem is 
efficiency, and there is also lack of some important functionality in parallel environment. MOM 
uses a netCDF wrapper which is designed for single processor access. 

4 Sequential 1/0 with netCDF 

We start with a critical examination of the snapshot routine which writes out main 3D fields 
such as velocity, tracers, and 2D fields such as surface momentum and temperatures. In the 
existing codes, for each of the 3D field, the data is written out one latitude slice at a time, as 

for iy=1, Ny 
write entire 2D slice U(ix,iz,iy) with fixed latitude iy 

end do 

The necessary index change to conform to the U(ix,iy,iz) order is done inside the netCDF file 
system. Because each latitude slice is not contiguous in file space (see shaded area in Figure 
1), each netCDF write is in fact broken into Nz smaller writes. In fact, entire Nx x Ny x Nz 
words are split into Ny x Nz writes, each of length Nx words. Thus this mode of I/0 is quite 
inefficient. 

The new I/0 scheme proceeds as the following: (1) reshuffles the data in computer memory 
to the correct indexing order; (2) writes all latitudes in one shot. This new scheme eliminates 
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the large overhead associated with repeated disk access and reduces the I/0 time dramatically. 
For the 3° x 3° resolution case, the writing time is reduced from 54 seconds to 1.1 seconds, a 
factor of 50 speedup! 

This new sequential I/0 scheme indicates the overwhelming advantage to re-order the data 
outside the I/0 system calls. Its implication for the parallel I/0 is that we should reshuffle the 
data in memory, using communication network which has cOmmunication bandwidth typically 
10 times faster than I/0 bandwidth. To do this, the entire data fields must reside in memory. 
That is, an in-core computing mode is necessary. 
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Figure 2: Total CPU time on different number of processors for 0.5° resolution case with size 
722 x 258 x 40, with in-core and out-of-core modes. The in-core mode includes the optimizations 
described in the text. 

5 In-Core Computing mode 

The purpose of adding an "in-core" mode is two-folds: (a) to achieve a single uniform memory 
image so that I/0 can proceed much more efficiently as discussed before; (b) to increase the 
computational speed by eliminating redundant data copying between memory window and 
ramdisk (the out-of-core mode). Use of ramdisk simplifies the inter-processor communication 
on which the initial GFDL implementation is qased on. 

We develop an option in MOM to let entire data sets "in-core", i.e., essentially eliminates 
memory window entirely (in practical implementation, this is accomplished by opening the 
memory window to the maximum required and eliminating the ramdisk file). Now communi
cation of halo latitude slices is done directly between appropriate dynamic variable arrays on 
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neighboring processors, instead of between ramdisk arrays. 
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Figure 3: Speedup of total CPU time on different number of processors for 0.5° resolution case 
with size 722 x 258 x 40, with in-core and out-of-core modes. 

This in-core computing mode speeds up the baroclinic computation by about 40%, due to 
the elimination of redundant data copies. The communication time is also reduced as a result 
of improved memory access (the size of communicated data remain unchanged). It also makes 
other I/0 simpler and faster because now one has the entire data array conveniently available 
as they are updated, instead of storing in the ramdisk in a storage format dictated by the data 
slicing considerations. 

5.1 Optimizations 

Several optimizations are performed. One of them is the getunit()jrelunit() which are called 
every time step: open a file, write a few diagnostic numbers and close the file. In sequential 
computing case, this repeated "open/close" file operation is not a large overhead. However, in 
parallel environment, as numerical calculation parts are speeded up by a large factor ( rv55 on 
64 processors), this repeated file open/close remains a constant time and becomes a significant 
overhead. For the 3° x 3° resolution case, on 16 processors or more, it exceeds all other useful 
calculation/communication combined together. We corrected this significant overhead by in
serting a new "file-open-interval" to keep the file open for many time steps; close and reopen 
the file at the specified interval. This eliminates the overhead and speedup this part by a factor 
of 55! 
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Figure 4: Speedup for 2D and 3D fields using in-core mode for 0.5° resolution case with size 
722 x 258 x 40. 3D fields are prognostic variables such as velocities and tracers, mostly in 
baroclinic equations; 2D fields are those used in solving barotropic equations. The solid line 
indicates the ideal speedup, i.e., 100% scaling. 

5.2 Scaling Analysis 

Here we use a realistic model problem covers 0- 360°E, 77.8°8- ON, with 0.5° x 0.5° resolution 
at the equq,tor using isotropic grid. The model has a grid size of 722 x 258 x 40, using free 
surface formulation with an explicit solver. Timing for one simulated day ( dtts = dtuv = 1800 
sec, dtsf = 25 sec) is shown in Figure 2. The in-core version of MOM3 runs about 1.2 times 
faster than the out-of-core version (initial GFDL implementation). It also scales better (see 
Figure 3), because of the elimination of memory window and .related memory copies. Here we 
see some speedup points above the ideal curve; this is due to the assumption of the in-core 
version with 16 PEs has a perfect speedup of 16 (the problem size does not fit in less PEs). 

Baroclinic equation parts , 3D fields, generally scale up better than the barotropic equation 
solving (2D fields) as shown in Figure 4. The problem with barotropic scaling is due to the 
small size messages required in each iteration. In this 722 x 258 x 40 test case, the free surface 
equation solver time step size is 72 times smaller than the dynamics in baroclinic part, i.e., 
free surface explicit solver is iterated 72 times per dynamic time step. In a larger scale, fine 
resolution simulations, this timestep size ratio could 'increase to more than 100, the barotropic 
part will dominate the CPU time. The less than good scaling of barotropic part will potentially 
cause severe scaling problem of the large simulations. 

The times spent on communicating data among processors are shown in Figure 5. Com
munication times saturate as number of processors increase, as expected for a 1D domain 
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decomposition. The in-core version spends less time in communication because it avoids some 
of the memory copying. 
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Figure 5: Communication time for 3D fields for in-core mode and out-of-core mode in the 0.5° 
resolution case. 

6 Parallel 1/0 

Our strategy for parallel 1/0 on MPPs focuses on efficiency and portability, at the expense of 
extra software structures. This strategy uses a few designated processors. These designated 
PEs reserve some buffer area, get data from other processors, reorganize them if necessary, arid 
then write them out as contoguous blocks in parallel. With this approach, data files are written 
as if they are processed in sequential environment, irrespect of how many processors will access 
them. This stand-alone file approach has several major benefits: 

• It allows the output data files to be directly analyzed and visualized in any other work
station environments, without extra file conversions. 

• It makes restart design simple, since the file configuration is independent of the number 
of processors. 

• This in turn makes it adaptable to a changing environment. For example, a model sim
ulation may proceed for some time on 256 processors. Then, after a checkpoint, it can 
restart on 128 processors. 
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• It is portable to any other platform, since this approach uses only standard file interface, 
with the only requirement that multiple processors can write contiguous blocks into the 
same file in parallel. 

In this approach, we first do a global remapping of 3D distributed array to the horizontal-
. slab distribution (see Figure 1) on the D designated processors (these processors are part of 

the total P computing processors; they could also be extra dedicated processors for 1/0 alone, 
to overlap disk 1/0 with computation when extremely excessive 1/0 are required). Once a 3D 
field is remapped to the designated processors, they can be written out as contiguous blocks in 
a 1D array, which could be done very efficiently in most file systems on most architectures. 

The disadvantages of this approach are: 

• Data configuration must fit to the residence memories on these designated 1/0 processors. 
However, this limitation is unlikely to apply to the size of models used in decadal and 
century-long simulations. In actual implementations, we only need allocate the memory 
buffer for a single 3D array, and do 1/0 for one prognostic 3D array at a time, reuse the 
buffer for all 3D arrays. 

• Remapping 3D arrays require additional CPU time and demanding inter-processor com
munication network. Fortunately, in most MPP architectures, communication bandwidth 
is typically 10 times higher than 1/0 bandwidth, and an efficient remapping algorithm 
has been developed and implemented. So the remapping time is negligible (about 10%) 
compared to actual disk access time. 

Using the in-core computing mode, the data reside in the memory in the latitudinal-slab 
decomposition (see Figure 1), are most conveniently available for remapping into designated 
1/0 processors. The 1/0 module then repeats the following for each prognostic variables, one 
at a time: (a) remapping the 3D array to the 1/0 processors, and (b) writing them out using 
netCDF file system. We discuss these two steps in some detail next and give 1/0 performance 
results. 

6.1 3D Array Remapping 

A stand-alone module for remapping multi-dimensional array on distributed-memory computer 
is developed [10] for use in the 1/0 part. It remaps any 3D array in the latitudinal-slab 
decomposition to the horizontal slab distribution on the D designated 1/0 processors, to prepare 
for writing to disk file. The module uses a novel vacancy tracking approach to do in-place local 
data reshuffle to the correct indexing order, therefore eliminating the need for auxiliary array 
which must have the same size of the original data set. It combines this with a global block 
exchange algorithm, leading to an in-place global 3D array remapping module. This generic 
array remapping software can also be used in other grids-based climate models for polar filtering, 
spectral transforms, and 1/0 subsystems. 
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6.2 Parallel netCDF 

When a 3D array is of the horizontal distribution, we write it out to disk file using netCDF file 
system in parallel, i.e., all the D designated I/0 processors write the distributed 3D array to a 
single file as a 1D distributed array with contiguous blocks, each on each processor. 

A number of important issues of netCDF in parallel T3E environment, including unlimited 
dimension, use of $NETCDF _FFIOSPEC for I/0 control, and opening a global file by subset 
of processors were resolved by NERSC staff (11]. 

When properly setup, all major functionalities of netCDF in sequential environment also 
work in parallel environment. Different processors can write to different parts in the same 
file simultaneously, even with data block on different processors where each block goes to 
discontiguous locations in file space, such as the latitudinal slice shown in Figure 1. The data 
transfer rate in this case is very low, about 50-100 times slower than the case where data blocks 
are contiguous in file space, similar to that in the sequential environment we discussed earlier. 
This is one of the main reasons we decide to remapp the 3D array before writing out. 

Currently, MOM uses a netCDF wrapper that interfaces between netCDF and application 
codes. The wrapper provides many useful functions, but does not allow multiple processors to 
·output file. This forces data on multiple processors to be gathered onto a single processor and 
writing out from there. This approach has memory limitations and low I/0 efficiency. After 
many experiments with the wrapper, we decide to bypass it in this study. 

6.3 Snapshot 1/0 

Snapshot is the critical I/0 part in MOM. It writes out major dynamic 2D and 3D fields. We 
implement this part following the remap-write strategy discussed above. 

Two model resolutions are investigated. One is 0.25° resolution ·with problem sizes 1442 x 
514 x 40 and the snapshot output file size 969 MB. Another is 0.5° resolution with problem 
size 722 x 258 x 40 and snapshot file size 243 MB. In production computing, these output are 
written out every 1-4 wall clock hours, depending on the timestep and necessary observation · 
frequency. 

The results on T3E for snapshot I/0 are shown in Figure 6. The computing PEs range from 
4 to 256, and out of them, D = 4 PEs are chosen to be the designated I/0 processors. D = 4 
is chosen since it is the minimum number of designated processor required for the model sizes 
examined in this study. Smaller D would require buffer size that exceeds the available memory 
(the designated I/0 processors also hold all data required by a normal computing processor, in 
addition to the buffer for I/0 purpose). 

The total time here includes the file "open", file "close" time, remapping time and writing 
time, since this represents more realistic timing in production environment. From Figure 5, 
the total I/0 time remains constant with respect to total PEs, for both resolutions, indicating 
good scaling of the 1/0 strategy. For the 0.25° resolution with size 1442 x 514 x 40 case, the 
remapping time reduces from 8.4 sec on 32 PEs to 6.8 sec on 256 PEs, showing good scaling of 
the remapping algorithm. The pure disk access time should remain constant, because they are 
always done from the four 1/0 PEs, independent of total computing PEs. Thus the total I/0 
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Figure 6: Snapshot timing results for two model sizes, 0.25° resolution with 1442 x 514 x 40 
and 0.5° resolution with 722 x 258 x 40. Shown are the total 1/0 time including file "open", 
"close" and remapping, and the remapping time. 

time remains about 64 seconds. For the 0.5° resolution case, snapshot 1/0 shows very similar 
characteristics. These test runs indicate that the remap-write strategy is a good scalable 1/0 
approach and it meets the 1/0 requirement for the size of model problems expected in the 
commg years. 

7 Concluding Remarks 

In this report, 'We systematically examine the 1/0 problem in large scale fine resolution ocean 
simulation with MOM3. We first identify the difference in data indexing order in memory and 
in file space, and find the reshuffle-and-write increase the 1/0 speed by a factor of 50! We then 
develop an in-core computing option so that data are conveniently available for remapping to 
the final horizontal-slab distribution for writing out. The in-core mode also speedup the entire 
simulation. by about 40% because it avoids the data copying between memory window and 
ramdisk. After many experiments, we develop and implement a remap-and-write 1/0 strategy 
that resolves the indexing order difference and overcomes memory limitations. The test runs 
with two large realistic problem sizes show the total 1/0 time remains constant from 8 PEs 
up to 256 PEs, a good scaling property. The 1/0 approach is also portable to many different 
file systems and architectures because it only requires a file system able to write 1D array 
collectively to a single file in parallel. 

Although this 1/0 work is for MOM model, much of the lessons learned and strategies 
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developed could easily be applied to other ocean models, such as the Parallel Ocean Program. 
(POP)[8], Miami Isopycnic Ocean Model (MICOM)[6J, and other grids-based climate models. 
The remapping module and 1/0 module are available to public upon request (MOM codes are 
available to public at GFDL web site). The modules could be easily modified to accommodating 
2D domain decomposition, from the current 1D decomposition in MOM. For this purpose, the 
codes are written (in Fortran 90) as a stand-alone library-like style with modular programming 
techniques. 
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