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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Abstract 

TOUGH2 is a widely used simulation package for solving groundwater flow related problems 
such as nuclear waste isolation, environmental remediation, and geothermal reservoir engineer­
ing. It solves a set of coupled mass and energy balance equations using a finite volume method. 
The parallel implementation first partitions the unstructured computational domain. For each 
time step, a set of coupled non-linear equations is solved with Newton iteration. In each New­
ton step, a Jacobian matrix is calculated and an ill-conditioned non-symmetric linear system is 
solved in parallel using a preconditioned iterative solver. Communication is required for conver­
gence tests and data exchange across partitioning borders. A real problem with 17,584 blocks 
and 43,815 connections indicates good scalability properties. From 2 to 128 processors on Cray 
T3E, the solution time is reduced from 7703 to 123 seconds. Improved parallel performance 
is expected for larger problems with 105 - 106 blocks in a Yucca Mountain nuclear waste site 
study. 

Keywords. Ground water flow, grid partitioning, iterative linear solvers, preconditioners. 

1 Introduction 

Groundwater flow related problems touch many important areas in today's society, such as nuclear 
waste isolation, environmental remediation, geothermal reservoir engineering. Because of the com­
plexity of geometry, composition, multiphase, and especially long tiine scales involved, numerical 
simulation play vital roles in the solutions of these problems. 

This contribution describes the ongoing development of a parallel version of the widely used 
TOUGH2 software package [4, 5] for numerical simulation of flow and transport in porous and 
fractured media. The contribution includes our experiences from the software development, de­
scriptions of algorithms and methods developed, and a presentation of the current status of the 
software, including parallel performance results on Cray T3E-900. 

The serial version of TOUGH2 (Transport Of Unsaturated Groundwater and Heat version 2) 
is now being used by over 150 organizations in more than 20 countries (see [6] for some examples). 
The major application areas include geothermal reservoir simulation, environmental remediation, 
and nuclear waste isolation. TOUGH2 is one of the official codes used in the US Department of 
Energy's civilian nuclear waste management for the evaluation of the Yucca Mountain site as a 
repository for nuclear wastes. In this context arises the largest and most demanding applications 
for TOUGH2 so far. LBNL is currently in charge of developing a 3D flow model of the Yucca 
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Mountain site, involving computational grids of 105 to 106 blocks, and several hundred thousand 
coupled equations of water and gas flow, heat transfer and radionuclide migration in subsurface 
[1]. Considerably larger and more difficult applications are anticipated in the near future, with the 
analysis of solute transport, with ever increasing demands on spatial resolution and a comprehensive 
description of complex geological, physical and chemical processes. 

2 The TOUGH2 Simulation 

The TOUGH2 simulation package solves mass and energy balance equations that describe fluid 
and heat flow in general multicomponent systems. The fundamental balance equations have the 
following form: 

!!._ { M(k)dV = f F(k). ndS + f q(k)dV, 
&lv k lv 

where the integration is over an arbitrary volume V, which is bounded by the surfaceS. Here M(k) 

denotes mass for the k-th component, (water, gas, heat, etc), F(k) is the flow through the surface, 
and q(k) is source or sink inside V. This is a general form. All flow and mass parameters can be 
arbitrary non-linear functions of the primary thermodynamic variables, such as density, pressure, 
saturation, etc. 

Given a computational geometry, space is discretized into many volume blocks. The integral 
on each block becomes a variable; this leads naturally to the finite volume method, resulting in the 
following ordinary differential equations: 

(k) 
dMn - __!_"'A F(k) (k) 

dt - v.; ~ nm nm + qn ' 
n m 

where Vn is the volume of the block n, and Anm is the interface area bordering between blocks 
n, m and Fnm is the flow between them. Note that flow terms usually contain spatial derivatives, 
which are replaced by simple difference between v~riables defined on blocks n, m and divided by 
the distances between the block centers. See Figure 1 for an illustration. · 

Figure 1: Space discretization and geometry data. 

Time is discretized as a firs.t order difference equation. Flow and source/sink terms on the right 
hand side are evaluated at t +!::it for numerical stability for the multi-phase problems. This lead 
to coupled nonlinear algebraic equations. 
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3 Computational Procedure 

The main solution procedures can be schematically outlined as the following loops: 

initialization and setup 
Time step advance 

Newton iteration 
Calculate the Jacobian matrix 
Linear equation solver 

end do 
end do 
output 

After reading data and setting up the problem, the time consuming parts are the three main loops 
(time step, Newton iteration, and the iterative linear solver). At each time step, the nonlinear 
discretized coupled algebraic equation is solved with the Newton method. Within each Newton 
iteration, the Jacobian matrix is first calculated by numerical differentiation. The implicit linear 
equation is then solved using a sparse linear solver with preconditioning. After several Newton 
iterations, the convergence is checked by a control parameter, which measures the residual in the 
Newton iterations. If the Newton step converges, the time will advance one more time step, and 
the process repeats until the pre-defined total time is reached. 

If the Newton procedure does not converge after a preset max-Newton-iteration, the current 
time step is reduced (usually by half) and the Newton procedure is tried for the reduced time step. 
If converged, the time will advance; otherwise, time step is further reduced and another round of 
Newton iteration follows. These procedure are repeated until convergence in the Newton step is 
reached. 

The system of linear equation is usually very ill-conditioned, and requires very robust solvers. 
The dynamically adjusted time step size is the key to overcome the combination of possible con- · 
vergence problems for the Newton iteration and the linear solver. For this highly dynamic system, 
the trajectory is very sensitive to variations in the convergence parameters. 

Computationally, the major part (about 65%) of the execution time is spent on solving the 
linear systems, and the second major part (about 30%) is the assembly of the Jacobian matrix. 

4 Designing the Parallel Implementation 

The aim of this work is to develop a parallel prototype of TOUGH2, and to demonstrate its ability 
to efficiently solve problems significantly larger than problems that have previously been solved 
using the serial version of the software. The problems should be larger both in the number of 
blocks and the number of equations per block. The target computer system for this prototype 
version of the parallel TOUGH2 is the 696 processor Cray T3E-900 at NERSC, Law~ence Berkeley 
National Laboratory. 

In the following sections, we give an overview of the design of the parallel algorithm and its 
implementation. 
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4.1 Grid Partitioning and Grid Block Reordering 

Given a finite domain as described in Section 2, we will in the following consider the dual mesh (or 
grid), obtained by representing each block (or volume element) by its centroid and by representing 
the interfaces between blocks by connections. (The nomenclature blocks and connections is used in 
consistency with the original TOUGH2 documentation [5].) The physical properties for of blocks 
and their interfaces are represented by data associated with the blocks and connections, respectively. 

In TOUGH2 the computational domain is defined by the set of all connections given as input 
data. From this information, an adjacency matrix is constructed, i.e., a matrix with a non-zero 
entry for each element (i,j) where there is a connection between blocks i and j. In the current 
implementation the value 1 is always used for non-zero elements, but different weights may be used. 
The adjacency matrix is stored in a compressed row format, called CSR format, which is a slight 
modification of the Harwell-Boeing format. 

The actual partitioning of the grid into p almost equal-size parts is performed using a multilevel 
p-way partitioning algorithm, implemented in the METIS software package [3]. The partitioning 
algorithm is designed to minimize the number of edges cut. 

After partitioning the grid on the processors, the blocks (or more specifically, the vector elements 
and matrix rows associated with the blocks) are reordered by each processor to a local ordering. 
The blocks for which a processor computes the results are denoted the update set of that processo~. 
The update set can be further partitioned into the internal set and the border set. The border set 
consist of blocks with an edge to a block assigned to another processor and the internal set consist 
of all other blocks in the update set. Blocks not included in the update set but needed (read only) 
during the computations are denoted the external set. 

Processor 1 

2 

Figure 2: A partitioning of the computational grid on 3 processors. 

Figure 2 illustrates how the blocks can be distributed over the processors. (The vertices of the 
graph represent blocks and the edges represent connections.) Table 1 shows how the blocks are 
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Table 1: Example of block distribution on the Update, Internal, Border, and External sets, using 
global indexing and an appropriate choice of local reordering. 

Update set External set 
Internal Border 

Processor 0 1, 2 3, 4 
Local ordering 1, 2 - 3, 4 

Processor 1 5, 6 7, 8, 9 
Local ordering 1, 2 3, 4, 5 

Processor 2 10,11 12, 13, 14 
Local ordering 1, 2 3, 4, 5 

7, 8, 12 
5, 6, 7 

3, 4, 13, 14 
6, 1, 8, 9 

4, 8, 9 
6, 1, 8 

classified in the update and the external sets and how the update sets are further divided in internal 
and border sets. 

In order to facilitate the communication of elements corresponding to border/external blocks, 
the local renumbering of the nodes is made in a particular way. All blocks in the update set precede 
the blocks in the external set, and in the update set, all internal blocks precede the border blocks. 
Finally, the external blocks are ordered internally with blocks assigned to a specific processor placed 
consecutively. One possible ordering is given as an example in Table 1. 

The consecutive ordering of external blocks that reside on each processor makes it possible to 
receive data for these blocks into appropriate vectors without use of buffers and with no need for 
further reordering, provided that the sending processor has access to the ordering information. 
However, it is not possible in general to order the border blocks so that transformations can be 
avoided when sending, basically because some blocks in the border set may have to be sent to more 
than one processor. 

4.2 Computing the Jacobian Matrix 

In the parallel algorithm, each processor is responsible for computing the rows of the Jacobian 
matrix that correspond to blocks in the processor's update set. All derivatives are computed nu­
merically. 

The Jacobian matrix is stored in the Distributed Variable Block Row format (DVBR) [2]. In 
this format all matrix blocks are stored row wise, with the diagonal blocks stored first in each block 
row. The scalar elements of each matrix block are stored in column major order. The use of dense 
matrix blocks enable use of dense linear algebra software, e.g., optimized level2 (and level3) BLAS 
for subproblems. The DVBR format also allows a variable number of equations per ·block. 

The computation of the elements in the Jacobian matrix is basically performed in two phases. 
The first phase consists of computations that relate to individual blocks. At the beginning of this 
phase, each processor already holds the information necessary to perform these calculations. The 
second phase ip.clude all computations involving interface quantities, i.e., calculations using variables 
corresponding to pairs of blocks. Before these computations can be performed, an exchange of 
relevant variables is required. For a number of variables, each processor needs to send elements 
corresponding to border blocks to appropriate processors, and it needs to receive the elements 
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corresponding to external blocks. 

4.3 Solving the Linear Systems 

The non-symmetric linear systems to be solved are generally very ill-conditioned and difficult to 
solve. Therefor the parallel implementation of TOUGH2 is made so that different iterative solvers 
and preconditioners easily can be tested. So far, most computational experiments have been made 
using the stabilized hi-conjugate gradient method (BICGSTAB), the squared conjugate gradient 
method (CGS), and GMRES in the Aztec software package [2], together with a number of different 
preconditioning techniques. 

As an illustration of the difficulties arising in these linear systems, we would like to mention a 
very small problem from the Yucca Mountain simulations mentioned in the Introduction. This non­
symmetric problem includes 45 blocks, 3 equations per block, and 64 connections .. When solving 
the linear system, the Jacobian matrix is of size 135 x 135 with 1557 non-zero elements: For the 
first Jacobian generated, i.e., the matrix involved in the first linear system to be solved, the largest 
and smallest singular values are 2.48 x 1032 and 2.27 x 10-12 , respectively, giving the condition 
number 1.1 x 1044 

By applying block Jacobi scaling, where each block row is multiplied by the inverse of its 3 x 3 
diagonal block, the condition number is significantly reduced. The scaling reduces the largest 
singular value to 7.69 x 103 and the smallest is increased to.9.83 x 10-5 , altogethe~ reducing the 
condition number to 7.8 x 107 . In the performance tests for a significantly larger problem presented 
in Section 5, this kind of scaling is applied before a non-overlapping Additive Schwarz procedure 
with incomplete L U factorization. 

5 Performance Analysis 

The parallel algorithms above have been implemented in Fortran using MPI communication prim­
itives. The code has been verified correct against the serial code. 

Performance tests for a real application problem have recently been performed. The problem 
consists of 17584 blocks, 3 components per block giving 3 equations per block, and 43815 connections 
between blocks. The Jacobian matrix in the linear systems to be solved for each Newton step is of 
size 52752 x 52752 with 946926 non-zero elements. This application normally requires a simulation of 
104 to 105 simulated years, which would require a significant execution time also with good parallel 
performance and a large number of processors. In order to investigate the parallel performance, 
we have therefore limited the simulation time to 10 years, which still is a significant· simulation. A 
much shorter simulation will of course give the initialization phase unproportionally large impact 
on the performance figures. We have therefore excluded this phase from the timings. 

The performance tests have been made using the 696 processor Cray T3E-900 at NERSC, 
Lawrence Berkeley National Laboratory. Execution times in and parallel speedup are presented for 
2, 4, 8, 16, 32, 64, and 128 processors in Figure 3 and Figure 4, respectively. Since the problem 
cannot be solved on one processor with the parallel code the speedup is normalized so that it 
optimally would be p on p processors. Such normalization would normally be done by computing the 
speedup compared to two processors and multiply that number by two. However, slight variations 
in the time discretization when solving the problem on different number of processors actually lead 
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to super-linear speedup for this test problem. For example, the performance on ~ processors is 
5.1 times better than on 2 processors because less work is performed (see number of time steps 
and number of Newton steps in Table 2 and the discussion that follows). Since this super-linear 
behavior follows directly from circumstances that cannot normally be expected we have chosen 
not to emphasize this phenomena. Instead we have normalized the speedup so that it is 8 on 8 
processors. In this way we ensure that the speedup is computed relative to the execution that 
required the smallest amount of work. For short, the speedup on p processors is obtained as the 
time on 8 processors multiplied by 8 and divided by time on p processors. 

The performance tests have been made using the BICGSTAB iterative solver with block diagonal 
scaling followed by a Additive Schwarz procedure with incomplete L U factorization. The stopping 
criteria used for the linear solver is ~~~~~~ :::; 10-4 , where r and b denote the residual and the right 
hand side, respectively. 

Table 2: Summary of iterations counts and execution times for varying number of processors. 
2 4 8 16 32 64 128 

#Time steps 104 144 94 104 94 104 94 

#Newton it./Time step 6.32 7.81 .. 6.35 6.16 6.34 6.12 6.44 
Total #Newton iterations 658 1125 597 641 596 636 605 

#Lin. solv. it.jNewton step 14.14 21.96 16.45 16.75 17.16 17.71 18.59 
#Lin. solv. it./Time step 89.5 . 171.6 104.5 103.3 108.8 108.3 119.6 
Total #Lin. solv. iterations 9305 24708 9820 10738 10228 11262 11244 

Time spent in Lin. solv. (sees) 5315 4552 940 470 230 131 82 
Time spent on other (sees) 2388 2064 563 310 148 81 41 
Total execution time (sees) 7703 6616 1502 780 378 212 123 

Table 2 shows the average number of Newton iterations per time step, and the average number 
of iterations in the linear solver per time step and per Newton step, as well as the total number of 
time steps, Newton iterations, and iterations in the linear solver. We recall that the linear system 
solve is the most time consuming operation and the computation of the Jacobian· matrix is the 
second largest time consumer. Both of these operations are done once for each Newton step .. 

We note that variations in the time discretization occur when the the problem is solved on 
different number of processors. This leads to variations both in the number of time steps needed 
and the number of Newton iterations required. Notably, the execution. on 4 processors requires 
significantly more work than the other. Similar behavior have been observed, for example, when 
using different linear solvers in the serial version of TOUGH2. For completeness we also report 
that the execution time for the original code is 7922 seconds. 

Figure 5 presents a breakup of the speedup in one part for the linear solver and one part for 
all other computations. Note that the results presented are for the total time spent on these parts, 
i.e., a different number of linear systems to be solved or a difference in the number of iterations 
required to solve a linear system do affect these numbers. Apparently, there are no big differences 
between the speedup for these two parts up to 64 processors, but for larger number of processors 
the speedup of the linear solver appears to be the limiting factor for the overall speedup. 
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6 Conclusions 

The performance results in Section 5 clearly demonstrate the implementation's ability to efficiently 
utilize up to 128 processors on the Cray T3E. The problems we are targeting in the near future 
are larger both in terms of number of blocks and number of equations per block. Moreover should 
the simulation time be significantly longer. With increased problem size we exp~ct to be able 
to efficiently use an even larger number of processors, and longer simulations should not directly 
affect the parallel performance. However, we still have to investigate numerical issues, e.g., con­
vergence properties, both for the linear solvers and the Newton iteration. Performance results for 
larger problems and results obtained by use of alternative linear solvers, preconditioners, and other­
parameter settings will also be presented. 
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