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Abstract 

We present an Sp(2n, R) duality invariant Born-Infeld U(1) 2n gauge 

theory with scalar fields. To implement this duality we had to intro

duce complex gauge fields and as a result -the rank of the duality 

group is only half as large as that of the corresponding Maxwell gauge 

theory with the same number of gauge fields. The latter is self-dual 

under Sp(4n, R), the largest allowed duality group. A special case 

appears for n = 1 when one can also write an S£(2, R) duality invari

ant Born-Infeld theory with a real gauge field. We also describe the 

supersymmetric version of the above construction. 
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The general theory of duality invariance of abelian gauge theory devel

oped in [1, 2] was inspired by the appearance of duality in extended su

pergravity theories [3, 4]. For a theory with M abelian gauge fields and 

appropriately chosen scalars the maximal duality group is Sp(2M, R). The 

only known example with an Sp(2M, R) duality symmetry, where the La

grangian is known in closed form is the Maxwell theory with M gauge fields 

and an M -dimensional symmetric matrix scalar field. 

Without scalar fields the theory is self-dual only under the maximal com

pact subgroup of the duality group. Noncompact duality transformations 

relate theories at different values of the coupling constants. The equations 

of motion derived from the Born-Infeld Lagrangian with a U ( 1) gauge group 

are invariant under a U(1) duality group just like pure electromagnetism [5]. 

Introduction of scalar fields [6, 7, 8, 9], as described by the general theory 

developed in [1], results in .an SL(2, R) duality invariant Born-Infeld the

ory. However, the proof of duality is complicated by the appearance of the 

square-root. 

In this paper, inspired by the use of auxiliary fields in [10, 11], we present 

an alternative form of the Born-Infeld action' with scalars. The new form, 

without a square-root, simplifies the proof of duality invariance. Further

more, using this form we exten<;l the Born-Infeld theory to include more than 

one abelian gauge field. However, these gauge fields must be complex. To 

obtain an Sp(2n, R) duality group, the gauge group must be U(1)2n. The 

n = 1 case is special in that both real and complex gauge fields are allowed. 

For a single real gauge field, we give both the formulation in terms of the aux

iliary fields and the square-root form obtained after eliminating the auxiliary 

fields. 

For the bosonic Born-Infeld with arbitrary n we have calculated the first 

few terms in the square-root expansion and based on these we conjecture th~ 
general form of the action without auxiliary fields. It involves a symmetrized 

trace. We also present an N = 1 supersymmetrization of the constructions 

described above. 
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We now briefly review the general theory of duality invariance of an 

abelian gauge theory developed in [1]. However, we assume the gauge fields 

are complex, i.e. we start with an even number of gauge fields and pair them 

into complex fields. Consider an arbitrary Lagrangian 

£ = £( pa, pa, </>i, </>~), 

where </>i are some scalar fields, pa are n complex field strengths, and pa 

their complex conjugate . We define the dual field G~v or rather its Hodge 

d 1 G- a - 1 capO' ua 11.v - 2c 1.wpu as 

- 8£ >oa 8£ 
G~v = 2 8Fa1J.v' G IJ.V = 2 8FaJ..W. 

The main result of the paper [1], and extended here to the case of complex 

gauge fields, was to find the ·general conditions such that the equations of 

motion derived from the Lagrangian £ are invariant under the infinitesimal 

transformations 

a(~) (~ ~)(~), (1) 

8¢i = ei( <t> ). 

In (1) we have combined the field strengths F and its dual G into a 2n

dimensional column vector, and ei are some unspecified transformations of 

the scalar fields. The equations of motion are invariant if the matrices A, B, 

C, and D are real and satisfy 

AT= -D, Br = B, cr = c, (2) 

and additionally the Lagrangian transforms as 

1 - - - -
8£ = 2(F BF + GCG), (3) 

where all the space-time indices are contracted and a transposition with 

respect to the gauge index a is used when necessary but is not explicitly 

written. 
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The finite form of the transformation (1) is given by 

(4) 

and must be an Sp(2n, R) transformation. This is the group of2n-dimensional 

matrices where the n-dimensional blocks a, b, c and d satisfy 

(5) 

Using 

a~ 1 +A, b ~ B, c ~ C, d ~ 1 + D, 

in (5) and keeping only linear terms we obtain the infinitesimal relations (2). 

One can check using (1) that the condition on the variation of the La

grangian (3) is equivalent to the invariance of the following combination 

. 1-- 1 ~ 
£--FG--FG 4 4 . (6) 

The linear combination (6) must therefore also be invariant under finite trans

formations. In the known examples for real gauge fields one can write the 

Lagrangian as a sum of two pieces, the first invariant under Sp(2n, R) and 

the second equal to i FG . . Similarly, for complex gauge fields there is an 

invariant piece and a piece equal to ~FG + ~FG. 
Now we are ready to describe the main result of this paper, a Born-Infeld 

Lagrangian with a U(1 )2n gauge group, written in terms of the auxiliary 

fields, which is Sp(2n, R) self-dual 

£ = Re [Tr (i(A- S)x- ~AXS2xt + iA(a- i(J))]. (7) 

Here the auxiliary fields A and x are arbitrary complex n-dimensional ma

trices, S is a complex symmetric matrix with a positive definite imaginary 

part, and a and (3 are hermitian matrices defined in terms of the complex 

gauge field strengths by 

aab = !. pa pb aab = !. ffa pb. 
2 ' fJ 2 
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We can write the scalar fields as 

where Si, ..\i and Xi are hermitian matrices. Note that since Sis symmetric 

the Si's are real symmetric. The Lagrangian (7) is invariant under a parity 

transformation, under which the fields transform as 

cl a, 

(3' -iJ, 
S' - -5, (8) 

x' x, 
A' -X. 

The duality transformations of the scalar fields are given by 

S' (aS+ b)(cS + dt 1
, 

(9) 

x' (c..\+ d)x(cS + df. 

For convenience we also give the following transformation properties derived 

from (9) 

(eX+ d)-T ..\2 (c..\ + dt 1
, 

(cS + d)xt(cX + df. 

Explicit use of the symmetry of S was used to obtain the first relation. 

(10) 

Note that one can require a matrix transforming by fractional transforma

tion of the symplectic group to be symmetric. However the transformation 

of xis inconsistent with requiring x to be symmetric. If we want consistent 

equations of motions derived from the Lagrangian (7) we cannot require a 
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symmetric A either. For n 2:: 2 this in turn is consistent with the transforma

tions of the gauge field strengths and their duals ( 4) only if we take complex 

gauge fields. 

The term Re [Tr (iA(a- i,B))] in the Born-Infeld Lagrangian (7) exactly 

cancels ~FG + ~FG in (6). This is similar to the Maxwell theory where 

the noninvariant term can be written as iFG. The first two terms in the 

Born-Infeld Lagrangian (7) are Sp(2n, R) invariant. To show the invariance 

it is convenient to use 
. 1 

Re [Tr ( -~AXS2xt)] = Tr ("2A2XS2xt) 

to rewrite the second term, and then use the transformations (9) and (10) to 

show the invariance of Tr (!A2xS2xt) and Tr (i(A- S)x). 
The equation of motion obtained by varying A is 

(11) 

Using this in (7) the coefficient of A vanishes and the Lagrangian simplifies 

to 

(12) 

For n = 1 we can solve explicitly the equation (11). It has two solutions 

and we chose 
1 - V1 + 2S2o: - S?,B2 

. 

X= 82 + ~,B, 
such that the kinetic term in the action has the correct sign. Using this 

in (12) we finally obtain 

(13) 

As mentioned before, for n = 1 we can also consider a single real gauge 

field. In this case we define a= ~F2 and ,B = ~FF. If .CBI is the standard 

Born-Infeld Lagrangian without scalar fields 

.CBI(F) = 1- Jdet(ry +F), 
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we can also write (7) as 

(14) 

As discussed in [9], this is the standard way of extending the self-duality 

group from its compact form to the maximally split noncompact duality 

group by introducing scalar fields. 

For arbitrary n the equation (11) implies 

X2 = f3 

and using this in (11) we obtain an equation for x1 

X1 = ~(x1S2X1 + if3S2X1 - ix1S2f3 + {382{3)- a. (15) 

This equation simplifies using, the following field redefinitions 

- 8 112 8 112 
X1 2 X1 2 , 

.-._ 
8 112 8 112 (16) a 2 a 2 , 

p si12f3Si 12. 

The hatted variables satisfy equation (15) with 82 = 1. Then X = 1 -Xi 
satisfies 

X 2 = 1 + 2a- P2 + i[P, X], (17) 

and the Lagrangian takes the form 

.C = n- Tr (X)+ Tr (81{3). 

We can solve the equation ( 17) as an expansion in powers of F 2 

X= L ~xm, 
m~Om. 

(18) 

where m counts the number of times F 2 appears in xm. One can show 

using ( 1 7) that xm satisfies the following recursion relation 

2Xm =-E (":)xi xm-j +Am+ im[P,xm-1
], 

j=1 J 
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where X 0 = 1, A1 = 2a, A 2 = -2fj and Am = 0 for m ~ 3. We have 

calculated up to the TrX6 term in the expansion for the trace of X using (18) 

and the result coincides with the symmetrized trace of the square root of 

1 + 2a- fj2 

Tr (X)= Trs J1 + 2a- fj2. (19) 

Here Trs denotes the symmetrized trace where symmetrization is with re

spect to a and fj. One has to first expand the square root, then symmetrize 

each monomial in the expansion, and finally take the trace. We conjecture 

that the relation (19) is true to all orders. Then the Born-Infeld Lagrangian 

takes the form 

(20) 

The appearance of only even ,powers of (J in the second term of (20) is due 

to the discrete symmetry (8). 

In general one also adds to (7) a nonlinear sigma model Lagrangian for 

the S field. A metric invariant under the transformations (9) is given by 

(21) 

which is a generalization of the metric on the Poincare upper half plane. 

Finally we briefly discuss the supersymmetric Born-lnfeld action. Using 

the superfields va = )2-(~a + iv;n and va = )2-(~a- il!;a) where v;_a and 

v; are vector superfields, we define 

Note that both wa and wa are chiral superfields. Let us also define 

We can construct the supersymmetric version of the Lagrangian (7) 
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HereS, >.and x are chiral superfields with the same symmetry properties as 

the corresponding bosonic fields. The bosonic fields Sand>. appearing in (7) 

are the lowest component of the superfields denoted by the same letter. The 

field X in the action (7) is the highest component of the superfield X· 

Just as in the bosonic case for n = 1 we can also consider a Lagrangian 

with a single real superfield. In this case one can integrate out the auxiliary 

superfields and obtain a supersymmetric version of (14) 

where 

For S = i this reduces to the supersymmetric Born-Infeld action described 

in [12, 13, 14]. In the case of weak fields the first term of (23) can be neglected 

and the Lagrangian is quadratic in the field strengths. Under these con

ditions the combined requirements of supersymmetry and self-duality have 

been used in [15] to constrain the form of the weak coupling limit of effective 

supergravity Lagrangians describing the low energy limit o~ string theory. 
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