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Abstract 

NONCOMMUTATIVE GEOMETRY IN M-THEORY AND 

CONFORMAL FIELD THEORY 

by 

Bogdan Morariu 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Bruno Zumino, Chair 

In the first part of the thesis I will investigate in the Matrix theory framework, 

the subgroup of dualities of the Discrete Light Cone Quantization of M-theory 

compactified on tori, which corresponds to T-duality in the auxiliary Type II 

string theory. After a review of matrix theory compactification leading to non­

commutative supersymmetric Yang-Mills gauge theory, I will present solutions 

for the fundamental and adjoint sections on a two-dimensional twisted quantum 

torus and generaliz~ to three-dimensional twisted quantum tori. After showing 

how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories 

on dual rioncommutative tori I will relate this to the mathematical concept of 

Morita equivalence of C* -algebras. As a furthure generalization, I consider ar-
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bitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the 

toroidally compactified Matrix theory corresponding to quantized electric fluxes 

on two and three tori. 

In the second part of the thesis I will present an application to conformal field 

theory involving quantum groups, another important example of a noncommuta­

tive space. First, I will give an introduction to Poisson-Lie groups and arrive at 

quantumgroups using the Feynman path integral. I will quantize the symplectic 

leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary repre­

sentations ofUq(su(2)). I discuss the *-structure of SU(2)* and give a detailed de­

scription of its leaves using various parametrizations. Then, I will introduce a new 

reality structure on the Heisenberg double of Funq(SL(N, C)) for q phase, which 

can be interpreted as the quantum phase space of a particle on the q-deformed 

mass-hyperboloid. I also present evidence that the above real form describes zero 

modes of certain non-compact WZNW-models. 
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Chapter 1 

Introduction and Outline 

String theory is the most promising candidate for a unified theory of grav­

ity with the other interactions already present in the standard model of particle 

physics. Five consistent string theories are known to exist in ten dimensions. One 

of them is an open unoriented superstring theory called Type I. There are two 

closed superstring theories called Type IIA and Type liB, depending on whether 

the GSO projection on left and right movers leads to a nonchiral or chiral space­

time theory. Finally there are two heterotic string theories, one with gauge group 

80(32) and one with gauge group E8 x E8 . Lower dimensional string theories 

can then be obtained by compactification on a small manifold. Due to the large 

number or resulting theories it seemed that one of the initial promising features 

of string theory, its uniqueness, was lost. Furthermore, some of these theories do 

not have a unique classical vacuum and perturbative corrections do not remove 

this degeneracy. 

Some hope existed that nonperturbative corrections would select a specific 

vacuum, perhaps the one describing our world. However, only a perturbative 

formulation of these string theories is available, and it seemed until recently that 

no real progress could be made without a full nonperturbative formulation of 
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string theory. Nevertheless, access to nonperturbative aspects of string theories 

was possible though an analysis of their low energy formulation as supergravity 

theories. 

A large number of nonperturbative supergravity solutions were found and used 

to access the strong coupling regime of string theory. This is possible in theories 

with extended supersymmetry by using the so called BPS states, which are states 

in small representations of the supersymmetry algebra. Since the dimension of 

these representations is an integer which cannot vary continuously, the states in 

these short multiplets cannot leave the representation as one changes continuous 

parameters, such as the coupling constant. Most importantly, for BPS states the 

supersymmetry algebra requires certain relations between the masses and charges 

be satisfied, and this allows one to know the masses of these states even at strong 

coupling. 

An important discovery due to Polchinski [58] was that the nonperturbative 

solutions of the low energy supergravity theories which carry Ramond-Ramond 

charges could be understood directly in the world sheet conformal field theory 

describing the string dynamics as hypersurfaces in space-time where strings can 

end, named Dirichlet branes or D-branes for short. 

The surprise came in 1995 when it was realized [77, 85] that most of the known 

string theories at strong coupling were not new, strange and hard to understand 

theories but in fact were described by other already known string theories. This 

relation between different string theories is known as string duality. Evidence for 
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these dualities can be obtained by trying to identify in one theory nonperturbative 

massive BPS states which when followed to strong coupling, become the light 

degrees of freedom of the theory, and can be identified as the fundamental degrees 

of freedom of the dual theory. All the known string theories were unified into a 

web of theories with each theory at strong coupling or small volume equivalent to 

another theory at weak coupling or large volume. The relation between large and 

small volume theories had been known since the late nineteen-eighthes as target 

space duality or T-duality. For example Type IIA and Type liB are T-dual to 

each other after toroidal compactification. A more complicated version of target 

space duality occurs for compactification on Calabi-Yau spaces and is known as 

mirror symmetry. A further unification discovered by Strominger [75] involves '•' 

theories compactified on Calabi-Yau manifolds of different topology. String theory ,,. .' 

can move continuously from one such theory to another using the the conifold 

transition. This is a mechanism involving ~assless black hole condensation. 

However not all the corners of this web were described by known string theories. 

In one particular corner describing the strong coupling dual of Type IIA string 

theory was an eleven dimensional theory whose low energy description was given 

by eleven dimensional supergravity. This is the theory with the largest allowed 

number of supercharges, but it is nonrenormalizable. It was conjectured that there 

exists a consistent eleven dimensional theory, called M-theory, such that its low 

energy is eleven dimensional supergravity. Sometimes the name M-theory is used 

to describe the whole web and sometimes only the strong coupling dual of the 
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Type IIA string. 

The main thrust of the first . part of this thesis is the study of the toroidal 

compactification of the discrete light cone quantization of M-theory in the presence 

of arbitrary moduli. The main mathematical ingredient in this study to which I 

will turn next is noncommutative geometry. The common thread throughout 

this thesis is the appearance of noncommutative spaces playing various roles in 

examples such as M-theory or conformal field theory. Yet it is not the familiar 

and venerable role of the algebra of observables of a quantum dynamical system. 

Noncommutative spaces have existed in physics ever since the creation of quan­

tum mechanics, where they first appeared as the quantum correspondent of the 

phase space of a classical system. More recently quantum spaces such as quan­

tum groups have played a role in describing generalized symmetries. In another 

important context, quantum spaces have appeared as quantizations not of the dy­

namical variables but of some auxiliary space such as the world volume coordinates 

of a field theory. Gauge theory on the noncommutative torus is such an example 

which has recently found a prominent role in the compactification of M-theory. 

Quantization of an auxiliary space has also been used as a regularization method. 

The low energy action of D-brane probes on orbifolds with torsion is another re­

cent example where noncommutative geometry plays a role. In these theories the 

auxiliary quantum spaces do not have a classical limit, which can only exist if we 

have a continuous parameter such as 1i which can be tuned to zero. 

Next I will present a brief introduction to the main ideas of noncommutative 
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geometry. A classic mathematical result of Gel'fand states that compact topologi-

cal spaces are in one-to-one correspondence with commutative C* -algebras. In one 

direction, to a topological space X, one can associate the algebra of continuous 

functions C(X). Conversely and rather nontrivially, the spectrum of a commuta-

tive C* -algebra is equivalent to a compact topological space. This important result 

allows for a dual description of topological spaces and brings powerful algebraic 

methods into the realm of topology. On the other hand, if one drops the commu-

tativity requirement, a C* -algebra A describes what is called by correspondence 

a quantum space. 

To illustrate, consider the algebra of functions on a two-torus C(T2
). An 

arbitrary element f of this algebra has the Fourier expansion 

f = L !k,tUfU~, (1.1) 
k,lEZ 

where Ui = eu; are the generators of this algebra. In general some restrictions are 

imposed on the c-number coefficients fk,l (such as they form a square-summable or 

rapidly decreasing sequence). Very importantly (1.1) is a global statement. In the 

opposite direction, if we know that all the algebra elements have the form (1.1) we 

immediately recognize that they can be identified with functions on a two-torus. 

Thus one can read the topological compact space from the commutative algebra. 

Since ai are local coordinates on the torus the generators Ui commute. Instead 

we can consider the algebra whose elements have the form (1.1) but with Ui's 
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satisfying 

U rr 21riOrr U 
ILI2 == e Ll2 1, (1.2) 

where (} is a real number. This algebra is known as the algebra of 'functions' on 

the noncommutative torus 

As (} goes to zero we obtain the algebra .of functions on the commutative torus. 

However we can endow this algebra with additional structure, making it into a 

Poisson algebra. For two elements !I and h of C(T2
) we define the following 

Poisson bracket 

. 1 - - aj ah 
{/, h} == hm .

0 
[f, h] == Cij -a -a . 

0-tO - 211"2 O"i O"j 
(1.3) 

Above j and h are elements of the algebra of the quantum torus with deformation 

parameter (} which reduce to f and h in the classical limit. 

This process can sometimes be reversed. Given a Poisson algebra we can try 

to construct a quantum algebra such that it reduces to the Poisson algebra in 

the classical limit. Using the same strategy as discussed above for the torus one 

can describe other spaces in commutative algebraic terms and then remove the 

commutativity requirement. One of the most interesting examples is given by 

Poisson-Lie groups and their noncommutative generalization, quantum groups .. 

While the quantum correspondent of a topological space is a C* -algebra, other 

spaces of classical geometry with additional structure can be described in differ-

ent terms. For example vector bundles can be equivalently described if we can 

characterize all their sections. As will be explained in some detail later, the set of 

sections of a vector bundle has the structure of a projective module over the alge-
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bra of functions on the base manifold. Then projective modules over a quantum 

algebra are the generalization of classical vector bundles. 

In the last two chapters, I will consider some applications of Poisson-Lie groups 

and their noncommutative correspondents, quantum groups. Quantum groups 

were introduced as a tool for studying deformations of lower dimensional quantum 

mechanical systems. It was also discovered that Poisson-Lie groups play a role in 

the study of their classical counterpart. What emerged was the notion of Poisson 

symmetry which I will briefly describe next. 

Let M be the phase space of a mechanical system with Hamiltonian H and 

G a Lie group acting on this phase space. The point x EM is mapped into g(x) . 

under the action of the group element g. Then for f E C(M) some arbitrary 

dynamical variable we can define a new function j E C ( G x M) by1 

J(g, x) = f(g(x)). 

The evolution of the system is described by the Poisson equation 

j = {f,H}M· 

The action of G is a symmetry of the dynamics if it commutes with the evo­

lution generated by the Hamiltonian H. Let VH be the Hamiltonian vector field 

associated to H, i.e. its action on functions is given by 

VHf= {f,H}. 

1 As I will discuss later, the translation of an action on a manifold into its dual correspondent 

on functions over that manifold is called a coaction. 
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One can lift the action of G from the phase space M to its tangent bundle T(M) 

vf = v/. 

Here v is the resulting vector field under the action by a yet unspecified group 

element. Then we have a symmetry if the Hamiltonian vector field is left invariant 

by this action 

(1.4) 

The standard textbook symmetry is given by a group action such that both 

the Hamiltonian and the Poisson bracket are left invariant 

H(g, x) = H(x), 

{_h, h}M = {Ji, fz}M. 

Then the proof of symmetry (1.4) immediately follows 

(1.5) 

(1.6) 

The first equality is just the definition of the lift, the third is implied by the 

invariance of the Hamiltonian (1.5) and the fourth by the invariance of the Poisson 

bracket (1.6). 

However a more general notion of symmetry emerges if one also endows the 

group G with a Poisson bracket {,}a. If the Poisson structure is compatible 

with the group operations the group is called a Poisson-Lie group. A detailed 

description of this will be given in Chapter 6. With these ingredients one can also 
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I ) 

define a Poisson bracket on G x M by the requiring that it satisfies 

{f1, /z}GxM 

{/I, fz}GxM 

{f1, /z}GxM 

{/I, fz}M, /I, fz E C(M), 

{/I, h}a, /I, fz E C(G), 

0, /I E C(M), fz E C(G). 

(1.7) 

This is the natural Poisson bracket on a cross product space. It reduces to the 

bracket on each factor for functions independent of the coordinates of the other 

factor, and vanishes between mixed coordinates. 

One can generalize the invariance (1.6) of the bracket {,} M under the group 

action. The action of the group is called a Poisson· action if it satisfies 

(1.8) 

for any f 1 , fz E C(M). Note that the condition (1.8) to have a Poisson action 

involves the bracket on the group and reduces to the standard invariant action (1.6) 

if we take the trivial bracket on the group {,}a = 0. 

If one has Poisson. in variance then the following sequence 

VHf= VHf= {[,H}M = {[,H}axM = {j,H}GxM = {f,H}M =VHf, 

shows that we still have a symmetry. It is usually called Poisson symmetry. In 

the third equality I used the fact that H is g independent and (1. 7), in the fourth 

equality the invariance of the Hamiltonian under the group action and in the fifth 

the fact that G has a Poisson action on M. 
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This has been extensively used in the study of one plus one dimensional inte­

grable models. It has also emerged as a hidden symmetry of the Wess-Zumino­

Novikov-Witten (WZNW) model. Upon quantization of these dynamical systems 

one has to simultaneously quantize the Poisson structure on the group and the 

resulting object is called a quantum group. One can then continue to use the· 

power of symmetry for examlpe to organize the physical states in representations 

of the quantum group . 

Quantum groups might also play a role in the AdS/CFT correspondence. Set 

forward by Maldacena, this states that string theory on Anti-de-Sitter multiplied 

by a compact manifold is equivalent to a conformal field theory on the boundary . 

of AdS. In the case of AdS3 x 8 3 the unitarity bound on the charges of chiral 

primary fields of any of the N = 2 superconformal subalgebras of the boundary 

theory is translated under the correspondence into a stringy exclusion principle 

of the quantum theory on AdS3 x 8 3
. A proposed explanation involves nonper­

turbative contributions which effectively transform AdS3 x 8 3 in their q-deformed 

counterparts where q is a root of unity and is determined by the central charge 

of the CFT theory on the boundary. If the Kaluza Klein modes for a scalar field 

are obtained by solving the wave equation on the q-deformed quantum space,2 

the number of multi-particle states is finite and agrees with the number of chiral 

primary operators of the CFT on the boundary. 

2 Both AdS3 and S 3 are group manifolds and one uses standard quantum groups to describe 

their quantization. 
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I would like to mention an important application of the Poisson bracket (1.3). It 

was used in (83] by de Wit, Hoppe and Nicolai to write the light-cone Hamiltonian 

of a toroidal membrane (83] in a form that closely resembles the Hamiltonian of the 

Matrix model (20, 32, 8]. The world volume theory of the membrane is a gauge 

theory with the group of area preserving diffeomorphisms as the gauge group. 

One can use the Poisson bracket (1.3) to express the variation of functions on the 

world volume of the membrane under diffeomorphisms generated by infinitesimal 

Hamiltonian vector fields i.e. whose components have the form vi = Cijoh/ oai. 
( 

Then 

of 
0 f = Vi Oai = {f, h} · 

If() is rational one can find finite dimensional representations of the algebra (1.2). 

Then finite dimensional matrices can be expanded as 

x = L: xklUfU~ (1.9) 
k,lEZn 

where now the sum is over a finite range. It was shown in [83] that one can 

regularize the membrane theory by quantizing the world volume Poisson bracket. 

This is done by expanding all the fields in the maximally supersymmetric Matrix 

model action using (1.9) and, in the large n limit, identifying the coefficients Xk1 

with the Fourier modes of the supercoordinates of a toroidal membrane. This was 

the first appearance of the Matrix model in relation to the eleven dimensional 

theory known today as M-theory. 

Banks, Fishier, Shenker and Susskind (BFSS) in (9] turned the relation between 
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the membrane and Matrix model upside-down. Instead of thinking of the Matrix 

model as an auxiliary theory used for regularization purposes, they conjectured 

that the large n Matrix model is M-theory. Membranes are then obtained as 

low energy excitations, but the Matrix model also describes a whole zoo of other 

states such as M5-branes, or after compactification to lower dimensions, strings 

and D-branes. 

1.1 Toroidal Compactification of the DLCQ of M-theory 

A further refinement of the BFSS conjecture was given by Susskind [76] who 

proposed that each momentum sector of the discrete light cone quantization 

(DLCQ) of M-theory is described by a maximally supersymmetric Matrix model 

with the momentum identified with the rank of the gauge group. The conjecture 

was further clarified by Sen and Seiberg [73, 69]. They used an infinite boost 

and a compen~ating rescaling to show that the DLCQ Hamiltonian of the orig­

inal M-theory where the light-cone variable is identified with period L is given 

by the Hamiltonian of an auxiliary M-theory compactified on a vanishingly small 

space-like circle of radius R. This is then equivalent to a weakly coupled Type IIA 

string theory, which will be referred to, following Sen [7 4], as the auxiliary Type 

II string theory. At the same time, the original light-cone momentum is mapped 

into Ramond-Ramond DO brane charge. The string coupling and string mass scale 
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are given by the R -t 0 limit of 

where Mp is the eleven dimensional Planck mass. 

In this limit as proposed by Witten [87], and discussed extensively in [26], the 

excited string states decouple and the dynamics of n DO branes is determined by 
c 

the maximally supersymmetric Matrix model [20, 32, 8]. 

Toroidal compactification of M-theory can be obtained by considering Matrix 

theory on the covering space of the torus and imposing a periodicity constraint on 

the dynamical variables [9, 78, 33]. The constrained system is formally equivalent 

to a U(n) super Yang-Mills (SYM) gauge theory on a dual torus. On the other 

hand, upon compactification on ad-dimensional torus Td, M-theory has additional 

moduli from the three form of eleven dimensional supergravity. Connes, Douglas 

and Schwarz [24], conjectured that these moduli correspond to the deformation 

parameters eij of a noncommutative super Yang-Mills (NCSYM) gauge theory. 

Further studies of this subject followed in [27, 37, 38, 17, 21, 46, 67, 7, 39, 13, 68, 

49, 52, 6]. 

In [24], where compactification on a two-torus was considered in some detail, 

it was suggested that the S£(2, Z) noncommutative duality group of the NCSYM 

gauge theory [60, 63, 64, 65, 66] corresponds to the T-duality in the DLCQ di-

rection and one of the space-like compact directions of M-theory. However later 

Rieffel and Schwarz [67] showed that NCSYM gauge theories on higher dimensional 
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tori have an SO(d, d IZ) duality, and conjectured that this is the realization, in 

the NCSYM theory, of the auxiliary Type II string theory T-duality. 

In general, as will be extensively discussed in the first part of this thesis, two 

NCSYM theories are dual to each other if there exists an element A of the duality 

group SO(d, d IZ) with the blo.ck decomposition3 

A= (
A B.) 
c v ' (1.10) 

such that their defining parameters are related as follows 

e (Ae + B)(ce + v)-I, (1.11) 

(jij (C8 + V)ik(CG + V)i1 Gk1, (1.12) 

-2 
9SYM y' I det(Ce + V)l g~yM, (1.13) 

ij S(A)ry, (1.14) 

x S(A)x. (1.15) 

Here S(A) denotes the Weyl spin or representation of A. The deformation 

parameter of the noncomrnutative torus 8 is a d-dimensional antisymmetric rna-

trix, Gii is the metric defining the torus of the NCSYM, and 9SYM is the gauge 

coupling constant. The integral chiral spinor 7J contains the Chern numbers of 

the bundle. For example, for compactification on a three torus, 7J contains the 

rank of the group and the magnetic fluxes, and for a four torus it also includes 

the instanton number. The chiral spinor x in (1.15) determines the parameters of 

3The SO(d, d IZ) subgroup of the T-duality group O(d, d jZ) is the subgroup that does not 

exchange Type IIA and liB string theories. 
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the Chern-Simon type terms which can be added to the NCSYM action. In the 

auxiliary Type IIA string theory x is closely related to the R-R moduli. 

The relation (1.11) was first written in [67]. Equation (1.14) appeared in [68] 

where S(A) was identified as a canonical transformation and was independently 

found in (14] and identified as a chiral spinortransforrp.ation. Equation (1.12) was 

implicit in (68] and was first written in [14] wher~ equation (1.13) was also derived. 

Finally, deriving (1.15) was the main thrust (16]. 

The first part of this thesis is an investigation of this duality conjecture and 

some of its consequences. In Chapter 2 an extension of the method used in [39, 52] 

will be employed to construct twisted bundles to the two and three-tori. Then 

I will explain in some detail how to solve the boundary conditions for sections 

in the fundamental and adjoint quantum bundle. Using the special form of the 

transition functions in the given gauge, I will find different equivalent forms of the 

general solution for fundamental sections. 

In Chapter 3, I will show explicitly how to construct an action of the dual­

ity group SO(d, d IZ) on NCSYM theories. Under these duality transformations 

the rank of the gauge group and the magnetic flux numbers transform together 

in a Weyl spinor representation, and the deformation parameters transform by 

fractionaltransformations. I will also obtain the transformation properties, under 

the duality group, of the gauge coupling and the metric. One can then directly 

compare these relations with the string theory T -duality predictions. I will then 

discuss the more abstract language of projective modules, as presented in [24] and 
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references therein, and give the explicit map between this formulation and the 

more elementary formulation in [39, 14]. I will also explain the notion of Morita 

equivalence [60, 24, 67, 68, 49] applied to our specific case4
. Finally I will end 

the chapter with a discussion the general theory of gauge transformations on the 

noncommutative torus and find an explicit gauge transformation that trivializes 

one of the transition functions. With trivial transition functions, T-duality trans:­

formations take the standard form, allowing us to interpret the expectation value 

of the gauge field as the location of the D-strings on the dual torus. 

In Chapter 4, I will include nonvanishing Chern-Simon couplings. The values 

of the Chern-Simon couplings are determined by the Ramond-Ramond moduli of 

the compactification. One finds perfect agreement between the transformation 

properties of the couplings derived from NCSYM or the auxiliary Type II string 

theory. 

In Chapter 5, I will study the BPS spectrum corresponding to electric fluxes 

of the noncommutative supersymmetric Yang-Mills· (NCSYM) gauge theory [22] 

compactified on a torus. This gives a description of the BPS spectrum of the 

DLCQ of M-theory compactified on a dual torus. Since the spectrum is invariant 

under the T-duality group O(d, d IZ), where d is the dimension of the compact­

ification torus, one can first calculate the spectrum in the simplest case which 

corresponds to a NCSYM gauge theory on a trivial bundle. Then one can use 

4 For an expanded coverage of noncommutative geometry see (23] and for a brief description 

see (12]. 
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a duality transformation to rewrite the result in terms of the defining parame­

ters of a dual theory on a nontrivial bundle. Alternatively one can also obtain 

this result directly by quantizing the free system of collective coordinates of the 

twisted U(n) theory. To obtain the spectrum one has to mod out gauge equivalent 

configurations and show that the zero modes of the gauge field live on a compact 

space, a torus. In the classical case one can find a global gauge transformation 

whose sole effect is a shift in the zero mode of the gauge field. Then the electric 

fluxes which are the conjugate variables are integrally quantized. However, for 

a nonvanishing deformation parameter the gauge transformation also results in 

a finite space translation [24, 41, 42, 15]. Then, just as for the electric charge 

of dyons [84], by a Witten-Olive type effect, the electric flux spectrum for states 

carrying momentum, contains an additional term proportional to the deformation 

parameter. The spectrum obtained is in agreement with the spectrum conjectured 

in the literature and obtained by imposing U-duality invariance. 

1.2 Path Integral Quantization of Poisson-Lie Groups and 

Reality Structures on Quantum Cotangent Bundles 

The Feynman path integral reveals in a geometric intuitive way the relation 

between classical and quantum dynamics. However there are few examples of path 

integral quantizations on compact phase spaces. These are interesting because 

they have finite dimensional H_ilbert spaces. The simplest example is a phase space 
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with the topology of a torus. A more interesting case is obtained by considering 

a phase space with the topology of the sphere s2. Quantization of this gives the 

unitary representations of the lie algebra su(2). A path integral quantization is 

described in [53, 1]. In Chapter 6, I will present a generalization of this result to 

the unitary representation ofUq(su(2)). 

Let G be a Lie group. On the vector space g* dual to the Lie algebra g of G 

there is a natural Poisson structure. In terms of linear coordinates ei and Ji;, the 

structure constants of the group, it has the form 

and it is known as the Lie-Kirillov-Kostant Poisson bracket. Its symplectic leaves 

are the orbits of the coadjoint action [47). The quantization of this bracket is the 

universal enveloping algebra U(g) which is the associative algebra with generators 

ei and relations 

Quantization o~ the coadjoint orbits of a Lie group G gives its unitary representa­

tions [47). Various methods were used to quantize these symplectic leaves including 

geometric quantization and the Feynman path integral [53, 1). Note that the vec­

tor space g* can be thought of as an abelian group. The above picture can be 

generalized to include Poisson brackets on non-abelian groups G* usually called 

the dual Poisson-Lie groups. This will be extensively discussed later. Quantiza­

tion of their symplectic leaves gives the unitary representations of the quantum 
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group Uq(g). This can be summarized in the following diagram 

Fun(G*) 

t 
Fun(g*) 

-+ Funq(G*) ~ Uq(g) 

t 
-+ U(g) 

The quantization axis is horizontal, with classical Poisson-Lie groups on the left 

and their quantizations on the right. The vertical axis corresponds to deformation 

of the abelian case to the non-abelian case. Note that the abelian case can be 

obtained from the non-abelian case by looking at an infinitesimal neighborhood of 

the unit of the group, and rescaling coordinates appropriately. I will refer to the 

lower part of the picture already discussed in [53, 1] as the trivial case and to the 

upper part as the Poisson case. 

Finally in Chapter 7, I will introduce a new reality structure on the quan-

tum cotangent bundle. Monodromy matrices representing the braid group [82], 

appearing in the WZNW-model, suggested that hidden quantum groups exist in 

these theories. Various approaches were used in an attempt to elucidate the origin · 

of these hidden quantum groups. In [2, 4, 31, 3] using a Minkowski space-time 

lattice regularization, it was shown by explicit construction that the monodromies 

of the chiral components of the WZNW-model with Lie group G and the local 

field satisfy the commutation relations of the q-deformed cotangent bundle T*Gq. 

However, an apparent contradiction existed [4, 3], since the deformation pa-

rameter in the WZNW-model must be root of unity q = exp(i1rjk +h), where k 

is the level of the affine-Lie algebra and his the dual Coxeter number, and this is 

incompatible with the compact form of the quantum group. 
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A solution to this problem was proposed in [5]. The main idea is to drop the 

strong requirement that the reality structure be compatible with quantum group 

comultiplication and only impose this requirement in the classical limit. Then a 

reality structure can be introduced, not on the quantum group itself, but rather 

on the quantum cotangent bundle. 

Once the requirement of the compatibility of the reality structure with the 

comultiplication is dropped, one can introduce more than one reality structure. 

In Chapter 7, I will introduce one such reality structure inspired by a particular 

type of non-compact WZNW -model. See for example [34] for a list of various 

circumstances under which this non-compact form occurs and also [25] where 

the non-compact form of appears as the Euclidean section of the model. These 

WZNW-models have the important property that the local field has the chiral 

decomposition g = hM where h is the chiral field valued in G. Thus g is a 

Hermitian positive defined matrix of unit determinant. I will show that 

is compatible with the algebra T*Gq and extends the above anti-involution to the 

whole algebra. I emphasize that the reality structure introduced here .is similar 

to the one discussed in [5] and is not related to the standard non-compact reality 

structure appearing in quantum groups for q phase, and which is compatible with 

comultiplication. 

For simplicity here I will not apply the reality structure directly in the WZNW-
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model, leaving this for a forthcoming paper, and instead I will just use it for the 

toy model of (3, 5], which essentially contains all the relevant degrees of freedom. 

These degrees of freedom are described by the same algebra as i~ the compact 

case but with a different reality structure. 
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Chapter 2 

Super Yang-Mills on the Noncommutative Torus 

In the first section I will review the standard toroidal Matrix compactification 

leading to a SYM gauge theory on the dual torus. Then I will present the conjec­

ture [24], that ·in the presence of nonvanishing NS antisymmetric moduli Bij, the 

translation generators implementing the quotient condition do not commute, such 

that Matrix compactification leads to a noncommutative super Yang-Mills gauge 

theory on a dual noncommutative torus. 

In Section 2.3, I will study adjoint quantum bundles on noncommutative tori 

of arbitrary dimension which admit a constant curvature which is not valued in 

the su(n) subalgebra and have transition functions of a special simple form. 

In Section 2.4 I will show how to expand the sections of the adjoint bundle of a 

U(n) gauge theory in terms of matrix valued functions on a dual noncommutative 

torus. The dual deformation parameter 8' lies on the same SO(d, d IZ) orbit as the 

original 8. I will perform most of the calculations on tori of arbitrary dimension, 

but later I will concentrate on the two and three-tori. 

In Section 2.5, I describe the quantum bundles corresponding to the two dimen­

sional compactification and rewrite some of the known two dimensional relations 

in a form that admits immediate generalization to higher dimensions. I will also 
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give the solution for arbitrary adjoint bundles over three dimensional tori. 

In Section 2.6, I will consider the noncommutative SYM action on a twisted 

quantum bundle after a brief description of the quantum integral. 

Finally in Appendix A I will prove a theorem showing that the chiral spinor 

representations of SO(d, d JZ) are integral, and also show that the spinor repre-

sentation of S0(3, 3JZ) is in fact S£(4, Z). 

2.1 Matrix Compactification 

In this section I will present a review of Matrix theory compactification. In the 

limit of large string mass the dynamics of n DO branes, in uncompactified space-

time, is determined by the maximally supersymmetric Matrix action [20, 32, 8], 

This action is obtained by dimensional reduCtion of the ten dimensional N = 1 

SYM gauge theory. Alternatively one could work with the IKKT functional [44] 

obtained by dimensionally reducing, in all directions including time, the Euclidean 

ten dimensional SYM action. 

The compactification of Matrix theory on a d-dimensional torus is obtained by 

considering an infinite number of DO branes living on Rd, the covering space of 

the torus, and then imposing the following quotient conditions [9, 78]. 

(2.1) 
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The last equation in (2.1) contains the quotient condition for fermions. Here I runs 

over the compact directions, and the e{ form a basis defining the compactification 

lattice. The U/s are unitary operators. One can define new matrix coordinates 

which obey the simpler quotient conditions 

In terms of the new variables the action takes the form 

DO 1 I ( . i .. 1 1 i k . l S =- dt Tr G· ·X X 1 + ---G··Gk1[X X ][X1 X]+ 
2gs 11 2 (2n) 2 11 

' ' 

. ~ _ka _ka + (2~ )2 ~ Gii [Xi, xa] [Xi' X a]+ 

(2~ )2 ~[X", X'][X", X') + fermions) , 

(2.2) 

(2.3) 

where I have introduced the metric Gii = E1 e{eJ. In (2.3), the trace over in:. 

finite dimensional matrices is formally divided by the infinite order the quotient 

group zd. 

The original solution of the quotient condition assumed that the translation 

operators commute 

The standard way to solve (2.2) is to introduce an auxiliary Hilbert space on which 

Xi's and Ui's act. In the simplest case this is taken to be the space of functions 
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on a d-dimensional torus taking values in en. Then if one lets the Ui's be the 

generators of the algebra of functions on the torus 

where ai are coordinates on the covering space of the torus, the Xi's satisfying (2.2) 

must be covariant derivatives 

(2.4) 

The partial derivative is with respect to ai, and Ai are n-dimensional hermitian 

matrices. The action (2.3) can be rewritten as a d-dimensional SYM action, by 

replacing the Xi's with covariant derivatives as above, and rewriting the trace over 

the infinite dimensional matrices as 

Here tr is an n-dimensional trace, and the new coordinates ai are to be integrated 

from zero to 21r. The action becomes 

sDo = (
27r)

2

-d · .. f dt f dda Jdet(Gii) tr ( GJLVG~p[DIL, D~][Dv, DP]-
4gsJdet(G2J) 

L:GJLv[DJL,Xa][Dv,xa] + L[Xa,Xb] [Xa,Xb] +fermions), 
a a<b 

where the scalar fields xa have been rescaled by a factor of 21r.I have written the 

action in standard form1 so that one can read off the SYM gauge coupling 

(2.5) 

1 Note that the positions of all the indices are switched. For example the metric has upper 

indices. This just reflects the performed T -duality under which the metric is replaced with the 
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Thus the gauge coupling g~YM equals the string coupling on the T-dual torus. 

The square root factor accounts for the expected dilaton shift under T-duality. 

Following [24] I will consider the general case when the unitary operators Ui do 

not commute. Consistency of the quotient conditions requires that the Ui's must 

commute up to a phase 

U·U· - e-21rie;iU-U· 
t J - . J t· {2.6) 

Connes, Douglas and Schwarz conjectured that the deformation paramet~rs 8 

correspond to certain moduli of the compactification of the DLCQ of M theory on 

tori. If 'Yij- represents a three cycle wrapped around the transversal directions xi 

and xi and the light cone direction x-, then 

where C is the antisymmetric three form of eleven dimensional supergravity. Writ-

ten in terms of the auxiliary type IIA string theory variables, 

where B is the NS two form. 

Next I will give a heuristic explanation of the noncommutativity of the transla-

tion generators (2.6). Consider for simplicity compa:ctification on T2 and assume 

that there is only one DO-brane. Then the covering space depicted in figure 2.1 

inverse metric. Another way to understand the index position is that T -duality is a canoni-

cal transformation which exchanges coordinates and momenta and therefore reverses the index 

structure. 
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contains an infinite number of T 2 cells labeled by two integers. The matrix element 

x;q is associated to the oriented string starting on the DO-brane at q = (q1 , q2) 

and ending on the DO-brane at p = (p1,p2 ). I will define the translation operators 

such that their matrix elements are given by 

(2.7) 

The translation generators then commute since each acts trivially in one subspace. 

Next consider the effect of turning on the modulus B = B 12dx1dx2 . Since the 

covering space is topologically trivial and B12 is constant one can eliminate it by 

a gauge transformation 

B' = B+dA, (2.8) 

where for example A = B12x2dx1 . Eliminating B comes at a price. One must 

modify the operators ui implementing the periodicity condition. 

Just as the wave function of a charged particle changes under electromagnetic 

gauge transformations 

the wave functional of strings w[r], where r is the curve where the string is located, 

must transform under the gauge transformation (2.8) as 

For the choice of A made above the wave functional of each string acquires the 
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Figure 2.1: The covering space of T 2 with one DO-brane per cell 

pha.Se exp( i /2n B 12 f x2 dx1
). The exponent is just the area under the string so 

the relative phase of strings related by a translation in the x1 direction vanishes. 

For the x 2 direction the relative phase is exp(2ni812 (p1 - ql)). This requires a 

redefinition of the translation generators 

(2.9) 

Then a direct computations shows that the U/s satisfy (2.6). 

In the noncommutative case it is convenient to introduce another set of trans-

lation operators ui which satisfy 

U U _ 21riei·u u 
i j - e 1 i i· (2.10) 

The U/s generate the algebra of functions on a quantum torus. I will denote this 

algebra, Ae. Also note that the U/s are the generators of A(-e)· An expanded 

discussion of this and other issues in noncommutative geometry can be found 
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in (23, 12). 

This algebra can be realized as a subalgebra of the quantum plane algebra, 

which is generated by ai satisfying 

Then one can realize the generators of Ae as 

U def iu; 
i = e . 

(2.11) 

To realize the Ui generators I will also introduce partial derivatives satisfying2 

Now one can write the Ui generators as 

U iu·-21r6· ·ai 
i = e • '1 • 

Note that both ai and ai act as translation generators on the a/s, and the exponent 

in the Ui's is just the linear combination that commutes with all the a/s. Thus 

For vanishing 8 one sees that Ui and Ui coincide. 

The simplest example of solutions of the quotient conditions (2.2) are quantum 

connections on trivial bundles 

(2.12) 

2 Just as in the classical case, one can also introduce quantum exterior forms dai, which 

anti-commute with each other and commute with all other variables. 
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In the noncommutative case t~e matrix elements of A1 are elements of Ae. Again 

using the representation (2.12) of Xi in the Matrix model action one obtains a 

NCSYM action [22). However I will postpone writing this action until I study 

more general solutions which are connections on nontrivial bundles. 

For the commutative case, matrix compactification on Td results in a SYM 

gauge theory in d + 1 dimensions on the dual torus. In the limit when the size of 

the original torus vanishes the dual torus becomes Rd, therefore one obtain the 

opposite of dimensional reduction. If one starts from a Euclidean 10-dimensional 

SYM and dimensionally reduces in all directions including the Euclidean time 

one obtains the IKKT [44) functional. Matrix compactification of one direction 

in the IKKT functional results in the finite temperature action of the original 

theory (2.3). 

2.2 Twisted Quantum Bundles on T2 

There exist more general solutions of the quotient condition (2.2) which are 

connections on twisted bundles. They correspond to compactification of the DLCQ 

of M-theory in the presence of transversely wrapped membranes. Again the solu­

tion is a sum of two terms, a constant curvature connection \7i and a fluctuating 

part 

(2.13) 
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Here the Z/s are n x n matrices with operator entries and, just like the Ui 's for the 

trivial bundle, commute with the Ui's, but now are sections of the twisted bundle 

whose exact form will be discussed shortly: However, while for the trivial bundle 

Ai, xa and the spinorial components of 'lj; are n x n matrix functions, in (2.13) 

Ai,xa and the components of 'lj; are one-dimensional functions but with matrix 

arguments. Later, this will allow us to establish a relationship between a SYMon 

a twisted U(n) bundle and one on a U(1) bundle. 

In this chapter we concentrate for simplicity on the two dimensional case. 

Following [39], up to a gauge transformation the constant curvature connection 

can be written as 

yri = al, yr2 = a2 - ifeii, 

where f is the constant field strength 

(2.14) 

Such a gauge field can only exist in a non-trivial bundle. One can introduce 

transition functions Oi such that the sections of the fundamental bundle satisfy 

the twisted boundary conditions 

Similarly the adjoint sections satisfy 

w(CI1 + 21r, ei2) = n1 (ei1, CI2) w(Cir, CI2) nl(CII, CI2)-I, 
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(2.16) 



Consistency of the transition functions of the bundle requires that 

(2.17) 

This relation is known in the mathematical literature as the cocycle condition. 

The covariant derivatives transform just as the adjoint sections 

A particular solution for the transition functions compatible with the constant 

curvature connection (2.14) and satisfying the cocycle condition is given by 

(2.18) 

where U, V are n x n unitary matrices satisfying 

UV = e-21rimfnvu. 

Using the representation given in [39] one has 

U 21rikmjn s: T7 J: 
kl = e Uk,!, V kl = Uk+l,l, 

where the subscripts are identified with period n. 

One can express the above matrices in terms of the standard 't Hooft matri-

ces [80] denoted here by U' and V' and satisfying 
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The relation is given by 

t; = e27rim/n u'm, V = V'. (2.19) 

The phase in (2.19) is due to the nonstandard definition of U used in (39]. This 

has certain advantages but similar phases will appear when comparing the results 

of (39] with similar results where the standard 't Hooft matrices were used. I 

also introduce a unitary matrix K which changes the representation so that V' is 

diagonal, and satisfies 

KU'K- 1 = V'-1, KV'K- 1 = U'. (2.20) 

Note that n is quantized since one is considering a U(n) gauge theory and m 

is quantized since the magnetic flux f through T2 is quantized 

m 
27r f = (}' n+m 

where(}= 8 12 . In M-theory m is the transversal membrane wrapping number. 

One can solve the boundary conditions (2.15) for the fundamental sections as 

in (39] generalizing a previous result form= 1 in the commutative case presented 

in (33]. Using the ordered exponential explained below, the general solution has 

the form 

~ ~ (m (a2 ) .. ) ~ (a2 nj) <I>k(a1,a2)=~~E- -+k+ns +J,'ta1 <P1 -+k+ns+- . 
sEZ j=1 n 27r 27r m 

The ordered exponential (39] is defined for two variables whose commutator is a 

e-n umber 
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The normalization is such that 

E( -B, A)E(A, B)= 1 

and it has the following desirable properties similar to the usual exponential 

E(A + c, B)= E(A, B)ecB, 

E(A, B +c) = ecA E(A, B). 

(2.21) 

The Ji functions are defined on the whole real axis and are unrestricted except for 

the behavior at infinity. They should be considered as vectors in a Hilbert space 

on which all the elements of the algebra are represented. 

Next I will explain in some detail how to obtain this result. First define 

The second boundary condition (2.15) implies that the definition of <Pis' consistent, 

i.e. k-independent. Using vn = 1 one also finds that ¢ is a periodic function in 

The other boundary condition gives 

It is convenient to separate out a factor to eliminate the above twist 

¢(a17 a2) = f(ai, d2)¢>(a1, a2) 
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and to require a simpler periodicity condition for ¢ 

Then the function f must satisfy 

This is satisfied exactly for 

where the ordered exponential defined above was used in the right hand side. One 

can Fourier transform ¢ in o-1 

¢(o-I, o-2) = L eipa! 1>p(o-2) 
pEZ 

and using the property (2.21) of the ordered exponential one obtains 

Let p = ms + j with j = 1, ... , m and s is an integer. Then the solution can be 

written as 

where 1>s,j ~ '<Pms+j· Periodicity in o-2 then implies </>s-l,j(o-2 + 21rn) = <Ps,j(a-2) 

so that using this recursively one has <Ps,j ( o-2) = <Po,j ( o-2 + 21rns). Finally after 

defining 'Ji(x) def <Po,j(21r(x- 1)) one obtains 
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This is the result mentioned above up to another redefinition 

While the solutions for the sections of the fundamental bundle given in (39] are 

suitable for showing the equivalence to the projective modules of (24] as will be 

discussed in Section 3.3, the appearance of the ordered exponential is somewhat 

inconvenient. Using the special form of the transition functions one can rewrite the 

solution in an equivalent but simpler form. The transition functions in this gauge 

do not contain a 1 and it is convenient to order all a 1 to the right in the solution. 

Using vn = 1 in the second condition (2.15) one can express all n components of <I> 

in terms of a single function with period 27rn in a 2 . After Fourier transforming in 

a2 and imposing both boundary conditions (2.15) one obtains the general solution 

<t>k(al, a 2) = :2:: e27ri(u2/2Tr+k)p/n e27ri(ul/27r-p/m)m/n <Pp(ai/21r _ pfm), 
pEZ 

where only m of the <PP functions are independent, since 

Using the same technique one can show that an arbitrary adjoint section has 

the following expansion 

'T'( ) " zsz-t '.!' 0"1, 0"2 = ~ Cst 1 2 · (2.22) 
s,tEZ 

Here c8 t are c-numbers and , 
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where b is an integer, such that one can find another integer a satisfying an-bm = 

1. For n and m relatively prime one can always find integer solutions to this 

equation. Again, let me emphasize that the Z/s commute with the Ui's. They are 

generators of the algebra of functions on a new quantum torus 

Z Z 2Trie'z z 
1 2 = e 2 1, 

where()' is obtainedby an S£(2, Z) fractional transformation from () 

()' = a()+ b . 
mO+n 

Now I will outline how to obtain this result. Note first that 

In the last equality I used the fact that un = 1, and the exponential formula to 

shift o-1 . Using both boundary conditions one has 

Next, expand the section as 

where 'Ill s,t is a n x n matrix and can be expanded as 

n+io n+jo 

'Ills t = "' "' cs t i 3·V'iU'i. ' L..t L...J ,,, (2.23) 
i=io j=jo 
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Here i 0 , j 0 are two arbitrary integers, allowing us to freely shift the summation 

limits assuming that Cs,t,i+n,j = C5 ,t,i,J+n = Cs,t,i,j· Then one can obtain further 

restrictions on the Cs,t,i,j coefficients using the boundary conditions (2.16). For ex-

ample using the first equation (2.16) and comparing like coefficients in the Fourier 

expansion one has 

From this and the similar relation obtained by imposing the second equation (2.16) 

one sees that c 5 ,t,i,j vanish unless ( s + mi) In = k and ( t + j) In :-- s for k and s two 

integers. These equations have multiple solutions. However, if ( i, j) and ( i', j') are 

two solutions then i- i' E nZ and j- j' E nZ. This ensures that only one term 

survives in the sum (2.23) over i and j. Choosing for later convenience i 0 = sb 

and j 0 = mbt one has 

n+sb n+mbt 
w(al, 0'2) = L eisul/(n+m())e-itu2/n L L Cs,t,i,j V'iUij . 

. s,tEZ i=sb j=mbt 

. Since n and m are relatively prime let a, b E Z such that an - bm = 1. Then 

k =as, l =at, i = bs, j = mbt 

is an integer solution inside the i and j summation range. Dropping the i, j indices 

since they are determined by s and t one has 

w(al, 0'2) = L Cs,t ( eiul/(n+m())V'br ( eiu2/nul-mb) -t' 

s,tEZ 

which is just (2.22) after an additional phase redefinition of cs,t to accommodate 

the phase difference between U and U'm. 
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2.3 Twisted Quantum Bundles on Tori 

In this section I will construct quantum U ( n) bundles on d-'dimensional non-

commutative tori which admit constant curvature connections with vanishing 

su(n) .curvature. This is done by finding explicit transition functions compati-

ble with such a connection. I will employ a method which is a straightforward 

generalization of [39, 52]. Using a gauge transformation the constant curvature 

connection can be brought into the form 

(2.24) 

where F is an antisymmetric matrix. This differs from the gauge used in the 

previous section, but is very convenient for the higher dimensional cases. Form 

now on it will be used through out the thesis unless otherwise stated. Define the 

constant curvature to be 

·rik · ["j nk] 
.r (0) = ~ v ' v ' 

Then, using the commutation relations (2.11) one can calculate 

Fco) = (2F + 27r F8F). 

In general, such a connection can only exist on a non-trivial bundle. One can 

introduce transition functions ni such that the connection satisfies the twisted 

boundary conditions 

(2.25) 

39 



One can try to find solutions for the transition functions of the form 

(2.26) 

where Pis an arbitrary constant d-dimensional matrix and the W/s are constant, 

unitary n-dimensional matrices. The boundary conditions (2.25) imply the fol-

lowing equivalent relations 

Note that P must be antisymmetric because of our gauge choice. Consistency of 

the transition functions of the bundle is the cocycle condition 

In our case it implies 

ur.w. _ e-2-rriMii fnw.ur. 
vv t J - J vv tl (2.27) 

where the antisymmetric matrix M is given by 

M = n(2P -. PGP). 

By taking the determinant of both sides of (2.27) one finds that M must have 

integer entries. In the classical case Mij corresponds to the value of the first 

Chern class on the ( ij) two-cycle of the torus. In the auxiliary Type IIA string 

theory, M is interpreted as D2 brane winding. This interpretation remains true 

in the quantum case. 
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Let q be the greatest common divisor of n and the nonvanishing entries of M 

q = gcd(n, Mij). 

Next one defines nand M which have relatively prime entries 

n=qn, M =qM. 

' 
It is conv,enient to consider Wi's which have block diagonal form with q identical 

' blocks along the diagonal 

( wi l 
W;= l ·. W; . 

Here Wi are ii-dimensional matrices. Alternatively one can write this in tensor 

product notation 

The transition functions are also block diagonal and can be written 

(2.28) 

To find explicit boundary conditions, following 't Hooft [81], one makes the ansatz 

(2.29) 

where ai and bi are integers and U and V are the clock and shift matrices [80, 81] 

TT _ 27l"i(k-1)/iii' lT _ i' k [-1 -
Ukl- e Uk,l, Vkl- Uk+l,l> , - , • • •, n, 

and the subscripts are identified with period n. They satisfy 
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Then (2.27) leads to the following relation 

(2.30) 

For two or three dimensional tori, one can find integers ai and bi such that (2.30) 

holds for arbitrary M, as will be shown in Section 2.5. In higher dimensional cases 

the ansatz is not sufficiently general to describe arbitrary bundles. In particular, 

one can always perform a change of lattice basis such that the only nonvanishing 

components of M are Md-l,d = - Md,d-I, while in general, an arbitrary antisym­

metric matrix can not be brought into such a form. Furthermore, for d > 3, even 

in the commutative case, generic bundles do not admit connections with vanish­

ing su(n) constant curvature. A more general construction could be obtained by 

allowing for an arbitrary constant curvature connection. 

2.4 Adjoint Sections on Twisted Bundles 

In this section I will analyze the structure of adjoint sections on twisted bun­

dles. The scalar and fermion fields are examples of such sections. I will also write 

the connection as a sum of a constant curvature connection '\7i, and a fluctuating 

part Ai 

Note that Ai is also an adjoint section. Since it is the difference between two 

connections it transforms covariantly under gauge transformations. It should not 

be confused with a gauge potential. Adjoint sections are n-dimensional matrices 
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with entries which are elements of the quantum plane algebra (2.11) and obey the 

twisted boundary conditions 

(2.31) 

Next I will try to find the general solution of (2.31) and write it in unconstrained 

form, reflecting the global properties of the bundle. First consider the simpler 

example of a U(n) NCSYM on a trivial bundle over a two-torus. Since ni = 1 

one has 

where Eab are n-dimensional matrices with one nonzero entry, (Eab)ij = t5ft5J, and 

iJ!f1bi2 are c-numbers. In other words, each matrix element of the adjoint section 

is an arbitrary function on the quantum torus. Foe a twisted U(n) bundle with 

magnetic flux m, such that n and m are relatively prime, one can show [24, 39, 52] 

that the adjoint sections have the expansion 

iJ! = L iJ!ili2Z~ 1 Z~\ 
i1 i2EZ 

where now the coefficients iJ!i1i 2 are c-numbers, and Zi are n-dimensional matrices 

with noncommutative entries satisfying 

Z Z 27riB'z z 
1 2 = e 2 1· 

Thus the Z/s satisfy the commutation relations of a generators of the quantum 

torus. This shows that the set of sections is isomorphic to the set of functions on 

a dual torus, and is very similar to the set of adjoint sections of a U(1) NCSYM 

43 



theory. For two and three dimensional adjoint bundles with arbitrary magnetic 

fluxes, I will show that the general solution takes the form 

d= 2,3. (2.32) 

Here Eab are q dimensional. 

Begin by writing W in tensor notation 

q 

w(ai) = L Eab ® -wab(ai), 
a,b=l 

where wab(ai) are ii-dimensional matrices with noncommutative entries. Imposing 

the boundary conditions (2.31) and using (2.28) one obtains 

Wab(a· + 2n81) = w · wab(a·) w-:- 1 
z z J z J 0 (2.33) 

A less restrictive but very convenient constraint is obtained by shifting ai by 2nii 

using (2.33) 

(2.34) 

In (2.34) all the matrix factors disappear since un = vn = 1. The ai depen-

dent exponential of (2.26) survives and acts like a translation operator due to the 

commutation relations (2.11). This implies the following periodicity relation 

(2.35) 

where 

Q-1 = 1- P8. 
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Next I will try to find solutions of the form 

i = 1. . . d. (2.36) 

Here Sj and ti are integers and the exponent was chosen so that it is compatible 

with the constraint (2.35) if the matrix N has integer entries. One can show that 

Zi is compatible with the boundary conditions (2.33) if 

(2.37) 

where ai and bi are defined by (2.30). In the next two sections I will consider 

in detail the two and three dimensional cases, and find ai, bi, Sj and ti such 

that (2.30) and (2.37) hold. Furthermore, for properly chosen integers ai, bi, si 

and ti, one can show that an arbitrary adjoint section can be expanded in terms 

of the Zi's as in (2.32). For a proof of this. statement in two dimensions see (52]. 

It is convenient to define another matrix which will be used shortly, 

(2.38) 

In the remainder of this section I will calculate the commutation relations 

satisfied by the Zi's and the constant curvature connection (2.24). Using their 

explicit form (2.36) one finds, after some matrix algebra, 

(2.39) 

where 

(2.40) 
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From (2.39) one can see that the algebra generated by the Zi's is the algebra of 

functions on the quantum torus with deformation parameters given by 8'. After 

some further matrix algebra and using the following identities, 

Q 1 + 21rFe, 

eQ , 
' I 

one can rewrite 8' as a fractional transformation 

e' =A( e) der (Ae + B)(ce + v)-1 . (2.41) 

Here 

A~ u ~ ), (2.42) 

and the d-dimensional block matrices are given by 

One can check that 

and thus A is an element of O(d, d IR), i.e. it satisfies 

ATJA=J, 

where 

(2.45) 
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In the two and three dimensional examples that will be discussed later, A is in fact 

an element of SO(d, d jZ). This is the subgroup with determinant one and integer 

valued entries in the basis where the metric is given by (2.45). The Weyl spinor 

representations of SO(d, d jZ) are also integral, that is the representation matrices 

have integer entries. This statement, which is implicit in papers discussing T­

duality of Type II string theory, will be proven in the Appendix A. Since the spinor 

representation of SO(d, d jZ) will be used extensively in the following sections, 

recall that the vector and spinor representations are related by 

(2.46) 

and the gamma matrices satisfy 

(2.47) 

Finally, one can show by direct calculation that the commutation relations of 

the constant curvature connection and Zi have the form 

(2.48) 

where there is no sum over j and H = (ii- Me)-1 N. Note that H can also be 

written in terms of 8 and some of the block components of A 

H-1 =C8+1J. (2.49) 

Finally, the following identities will be useful in later sections 



detH (qdet(Q)/n) 2
, (2.50) 

det(Q2
) 

(1 _ tr(~8))_2 . 

M 2rrnQ-1 F(o) Q-T, 

Mij Cijl 
. . k 

- M~JEijkQz. 

Note that with the exception of the last relation all the others are valid for tori of 

arbitrary dimension provided one works on the bundles discussed in Section 2.3. 

2.5 Two and Three Dimensional Solutions 

Although the twisted two dimensional ease has been discussed extensively in 

the literature [24, 7, 39, 52], I will review it here in a form that readily admits 

generalization to higher dimensional compactifications. I will then give a complete 

description of the three dimensional adjoint bundles. 

In the two dimensional case the antisymmetric matrices 8 and M have the 

form 

8= M= ( o e) ( o m) 
-e o ' -m o 

where (J is the deformation parameter and m is the magnetic flux, which is inter-

preted as the number of D2 branes wrapping the two-torus. 

One can verify that the integers 

(ai) = (m, 0), W) = (0, 1), 

where n = qn and m = qm, satisfy (2.30). Then choosing si = (0, 1) and ti = (b, 0), 

where b is an integer such that an- bm = 1, one has N = / 2 . One can now 
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use (2.38) and (2.43) to find 

(2.51) 

where c is a two dimensional matrix with the only nonvanishing entries given 

by c12 = -c21 = 1. Group elements of the form above are in an 8L(2, Z) sub-

group of 80(2, 2IZ). This subgroup is isomorphic with one of the Weyl spinor 

representations of 80(2, 2IZ). This feature is not generic for higher dimensional 

compactifications and reflects the fact that 80(2, 2IZ)"" 8L(2, Z) x SL(2, Z), so 

that it is not simple. 

The algebra of the Zi 's is then determined by 8' which is given by the fractional 

transformation (2.41). In two dimensions, the 80(2, 2IZ) fractional transforma-

tion (2.41) can also be written in the more familiar form, used in [24, 39], as a 

8L(2, Z) fractional transformation acting on () 

()' = a()+ b . 
fh(} + ii (2.52) 

One can also check that the other 8L(2, Z) subgroup, made of elements of the 

form 

(: 
acts trivially on 8. This subgroup is generalized to 8L(d, Z) in compactifications 

on a d-dimensional torus, and will play in important role later, but only for the 

two dimensional compactification it leaves e invariant. The Z/s then obey the 

following algebra 
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Z Z 21rio'z z 
1 2 = e 2 1· 

As will be shown shortly, the rank of the gauge group and the magnetic flux 

transform in an integral Weyl spinor representation of S0(2, 2jZ). Using the 

creation and annihilation operators introduced in the Appendix A one can write 

such a spinor as 

njO) + ma!a~jO). (2.53) 

Using (2.46) one can show that the spinor representation of (2.51) transforms the 

above state into qjO). In the Weyl basis one can write the action as 

(2.54) 

where 

In Section 3.1 I will show, employing the expansion of the adjoint section in terms 

of the Zi generators (2.32), how to rewrite the original U(n) NCSYM action on a 

twisted bundle as a U(q) NCSYM action on a trivial quantum bundle over a torus 

with deformation parameter 8'. The SL(2, Z) transformation, which relates the 

deformation parameters and the spinors (2.53) of these two NCSYM, can then be 

interpreted as a duality transformation inherited from T-duality of Type II string 

theory. This can be seen as follows. The rank and the bundle of the NCSYM 

theory determine the D brane charges in string theory. These charges transform 
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in a chiral spinor representation of the target space duality group [86]. Given nand 

m with greatest common divisor q, one can perform a T-duality transformation 

which takes the original D brane configuration into q DO branes. 

Of course the metric and antisymmetric tensor also transform under this dual-

ity, and in the proper limit, which I will explain in detail later, the antisymmetric 

tensor B transforms separately by fractional transformation just as in (2.41). Since 

the parameters eii of the NCSYM theory are identified with Bii, the background 

expectation value of the NS antisymmetric tensor of the compactified auxiliary 

string theory, the expected transformation under target space dualities is (2.41). 

Next we turn to the three dimensional case which will be solved by first per-

forming an SL(3, Z) transformation R to bring M in canonical form3 

where 
0 

0 

-m 

(2.55) 

(2.56) 

While it is always possible to find such a transformation, (2.55) does not define it 

uniquely. I will first find the solution corresponding to M 0 , and then obtain the 

general solution by using such an R. 

First note that M 0 corresponds to a background magnetic field with flux only 

through the (23) plane, which suggests that the solution should closely resemble 

3It is always possible to bring an antisymmetric matrix in canonical form using SL(3, R) but 

here one has to do this using an. integral matrix. 
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the two dimensional one. As before, 

(a~) = (0, m, 0), (b~) = (0, o, 1) 

satisfy (2.30). Similarly if one sets 

(s?) = (0, 0, 1), (t~) = (0, b, 0), (2.57) 

one can satisfy (2.37) with the N° matrix given by 

The diagonal entries of N° divided by n have the interpretation of wave numbers.· 

Thus one can see that twisting the boundary conditions allows for fractional wave 

numbers in the second and third directions. Using (2.57) one finds 

. (0 0 0 l L0 = 0 0 -b . 

0 b 0 

One can now use (2.43) to find the S0(3, 3IZ) matrix 

1 0 0 0 0 0 

0 a 0 0 0 b 

Ao = 
0 0 a 0 -b 0 

(2.58) 
0 0 0 1 0 0 

0 0 -m 0 n 0 

0 m 0 0 0 n 

Everything so far is just as in the two dimensional case. Note however that in 

general 8 will not be in canonical form, that is, it will not have a form similar 

to (2.56). 
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Now, write the general solution for an arbitrary Mas 

t .- to 
z- i' 

N=RN° 
' 

(2.59) 

Just as in the two dimensional case one finds, using (2.46), the Weyl spinor rep-

resentation matrices corresponding to (2.58) and (2.59) 

a -b 0 0 

so= -m n 0 0 

0 0 1 0 

0 0 0 1 

8=8° ( ~ ;T) 
The rank of the group and the magnetic flux matrix M define a state in the Weyl 

spinor Fock space 

Now one can check that S acts on this spin or as 

q n 

0 M23 
=S 

0 M31 
(2.60) 

0 Ml2 
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It will be convenient to denote the components of the spinor as 

1]= 

As will be shown 'later (2.60) can be used to relate the original theory to a U(q) 

theory on a trivial bundle. In Appendix A I will show that the Weyl spinor 

representation of S0(3, 3IZ) is in fact isomorphic to SL(4, Z). In this case, in the 

auxiliary Type IIA string theory, the DO and D2 branes form q bound states, and 

the transformation above corresponds to a T -duality transformation that maps 

the original D brane configuration into a q DO branes. 

2.6 Noncommutative Super Yang-Mills Action 

After discussing how to perform integration on a noncommutative torus one 

will be ready to write the noncommutative Super Yang-Mills action. In the 

classical· case the integral is a linear map that associates to a function its 

zero mode Fourier coefficient. Similarly for an element of Ae of the form 

I dd def ( )d a a = 2n aoo ... o. (2.61) 

One can check that this definition has all the desirable properties of the classical 

integral, such as linearity and translation invariance in ai. For definiteness, in the 

remainder of this section I will discuss the three dimensional case. 
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When twisted U(n) theories are considered, it was found in [24, 39] that the 

integral must be normalized in a particular way to find a duality invariant spec-

trum. The normalization can also be obtained directly as the Jacobian of a change 

of integration variables. Note that the integrand, which is the trace of an adjoint 

section, obeys the following periodicity 

Since trw(ui) does nothave periodicity 27f in O"i it can not be expanded in terms of 

I 
R is an arbitrary SL(3, Z) transformation. In the following sections I will take R 

to be the matrix that brings Minto canonical form (2.55). Then 

(2.62) 

where det(Q-1) is the Jacobian of the coordinate transformation, and the second 

integral can now be performed as discussed above, since the integrand has an 

expansion in terms of the Ui variables. Using the expansion (2.32) of w one 

obtains 
q J d3utrw(u) = (27r) 3 iildet(Q-1)1 L:wgg0 . 

a:=l 

The Super Yang-Mills action on a noncommutative three-torus is given by 

Su(n) = -i- Jdtjd3u Jdet(Qij) tr (~aij:PJi:PJj_ 
gSYM 2 

1 "k "k "l jl 
4GijGk1(P - F(0))(F1 

- F(o))+ (2.63) 

~ L:.Xa_ka- ~ LGij[Di,Xa][Di,Xa]+ 
a a 
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~ L:[Xa, Xb][Xa, Xb] + fermions) , 
a,b 

where pi = i [Di, Di] and F(/ = i [V'i, V'i]. I have subtracted the constant part 

of the field strength in the second line of equation (2.63). This is equivalent to 

adding a constant to the Lagrangian, or equivalently to the Hamiltonian, and has 

the effect of setting the vacuum energy to zero. The noncommutative pure gauge 

theory action was written first in [22] and the maximally supersymmetric U(n) 

NCSYM gauge theory action was written in t24, 68]. 

For the compactification of the auxiliary Type IIA string theory without 

wrapped D2 branes, the above action can be obtained directly from the Matrix 

action. One has to show that the trace over infinite dimensional matrices reduces 

to a finite- dimensional trace and an integral. A formal argument for the commu-

tative case was given in [78] and discussed in detail in [79]. The same argument 

extends to the noncommutative case. A brief argument was given in [24] showing 

how to extend this construction when there are D2 branes wrapped on the torus 

in the auxiliary Type IIA string theory, corresponding to magnetic fluxes in the 

NCSYM gauge theory. Here I will just make the assumption that the NCSYM 

action is independent of the D2 brane charges and that adding D2 branes only 

results in changing the quantum adjoint bundle. I will provide evidence for this 

in Section 3.2. 
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Chapter 3 

Dualities of the Matrix Model from T-Duality of 

the Type II String 

I 
In Section 3.1 I will start with the U(n) NCSYM action (2.63) on a twisted 

quantum bundle with magnetic fluxes M and deformation parameter 8, and show 

that after a sequence of field redefinitions it can be rewritten as a U(q) NCSYM 

action on a trivial bundle over a quantum torus with deformation parameter 8'. 

Then in Section 3.2 I will take the small a' and small compactification volume 

\ __ ; limit in the auxiliary Type IIA string theory and obtain the transformation prop-

erties of the metric, antisymmetric tensor and string coupling constant. These are 

then compared with the transformation in Section 3.1 using the standard relations 

between String theory and SYM gauge theory. 

Section 3.3 contains the dictionary between the physical language used in these 

constructions and the more abstract mathematical language of Connes and Rieffel. 

The last section contains some gauge equivalent formulations closely resembling 

standard constructions in the commutative case. 

3.1 80(3, 3jZ) Duality of Super Yang-Mills 

57 



Using the matrix H defined in (2.48) one can make the following constant 

curvature and field redefinitions 

In terms of the new variables the commutator of the constant curvature connection 

and the Z/s takes the simple form, 

and the curvature can be expressed as 

yiJ _ :FfJ + Hi Hj :F~ kl 
- (0) k l . 

\ 

One can now rewrite the action in terms of the hatted variables and perform the 

change of coordinates (2.62) 

su(n) = 
1 I dt I d3a J det(G'iJ) .!_ tr (!c' .. j:Oi j:OJ-

t2 - · 2 ZJ g SYM n 

~ L xa xa- ~ L G~lB\ xa][Dj, xa]+ 
a a 

~ L:[Xa, Xb][Xa, Xb] + fermions) . 
a,b 

I have introduced a new gauge coupling and metric given by 

(3.1) 

58 



(3.2) 

and used (2.50) to make these substitutions. 

Next I will introduce primed variables a~, Uf and partial derivatives {)'i satis-

fying 

U l def ia' 
i = e •, 

U'U' - 21riE>'. U'U' i i - e •1 i j· 

Comparing the algebra satisfied by Zi and Vi on one hand and Uf and a: on the 

other, one can see that all the commutation relations are the same except that the 

Vi's do not commute while the 8'i's do. The dynamical variables of the theory are 

the c~number coefficients appearing in the expansion (2.32) of the adjoint sections 

in terms of Z/s. Since in the action, the constant curvature covariant derivatives 

only appear in commutators with the Z/s and not with each other, substituting 

Uf and 8'i for Zi and yri leaves the dynamics invariant. A similar construction 

was also considered in [68]. The integral and trace of the U(n) theory can be 

translated to a U(q) integral using the definition of the integral (2.61) 

Making these substitutions one obtains the U(q) action 

Su(q) = -
1

- I dt I d3 a' J det(G'ii) tr (~a' .. :F'0i :F'0i-
g/2 q 2 2J 

SYM 
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~ z=xaxa- ~ LG~i[D'i,Xa][D'i, xa]+ 
a a 

·~ 2:[Xa, Xb][Xa, Xb] + fermions) , 4 . a,b 

where 

are the U(q) connection and curvature. This shows that the original U(n) theory 

is equivalent to a U(q) NCSYM theory with gauge coupling given by (3.1) and 

defined on a trivial adjoint bundle over a noncommutative torus with deformation 

parameter 8' and metric given by (3.2). 

In general two NCSYM theories are dual to each other if there exists an element 

A of 50(3, 3IZ) with Weyl spinor representation matrix S, such that their defining 

parameters are related as follows 

(3.3) 

n n 

1Vf23 M23 

=S 
1Vf31 M31 

{3.4) 

1Vfl2 Ml2 

(3.5) 

(3.6) 

where I used (2.49) in the last two equations. While 8 in (3.3) and the rank and 

magnetic flux numbers in (3.4) transform separately and the duality group action 
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can be seen explicitly, the transformation of the gauge coupling and the metric 

also depends on e. Note that ce + V satisfies a group property. If A3 = A2A1 

and 8' = A1(8) then 

(3.7) 

For a nonvanishing fi, the sign ambiguity that exists when one tries to associate 

to a 80(3, 3IZ) transformation its spinor representation matrix, can be removed 

by requiring that fi is positive. Strictly speaking, one should not consider duality 

transformations for which fi vanishes since in this case the description in terms of 

gauge theories becomes singular. 
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3.2 Target Space Duality 

Next I will show that the 50(3, 3IZ) duality discussed in the previous section 

is the realization in NCSYM gauge theories ofT-duality in the auxiliary Type IIA 

string theory. This relation is described by the following diagram. 

n, Mi1 U(n), Mi1 

IIA 
9s 

NCSYM 
9SYM 

~ 

Gij Gi1 

B·· t) ei1 = Bi1 

t. t 
q, M'i1 = 0 U(q), M'i1 = 0 

g~ I 

IIA NCSYM 9SYM 
~ 

G'. 
t) 

G'i1 

B~1 e~1 = B:1 

The right side of the diagram shows the equivalence described in Section (3.1). 

The horizontal arrows represent the Connes, Douglas and Schwarz conjecture [24]. 

The left side of the diagram contains the string coupling, D brane charges, and 

compactification moduli of the two auxiliary Type IIA string theories correspond-

ing to the NCSYM's on the right. The additional moduli corresponding to 

Ramond-Ramond backgrounds are beeing set to zero in this chapter and will be 

considered separately in Chapterrefchap4. Note that the NCSYM metric is the 

inverse ofthe Type IIA metric as indicated by the index position, the deformation 
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parameter equals the NS antisymmetric tensor, and the rank and magnetic flux 

numbers translate into DO brane number and D2 brane winding. Finally the SYM 

and string coupling are related by (2.5). 

For compactification on T 2
, the duality transformation (2.54) can be written 

as an S£(2, Z) mapping class group transformation conjugated by aT-duality in 

the x1 direction 1. The sequence of duality transformations is shown in figure 3.1. 

Under T-duality in the x1-direction the two DO-branes are mapped into Dl-strings 

wrapping the horizontal cycle and the D2-brane into a Dl string wrapping the 

oblique cycle. The T-dual torus is not rectangular for a nonvanishing 0. In fact the 

Dl-strings can be in a lower energy state obtained by minimizing their total length. 

This corresponds to the fact that the original DO and D2-branes form a bound 

state. Under the S£(2, Z) mapping class group transformation we can arrange the 

Dl-string along the horizontal axis of the torus. This is just a relabeling of the 

defining 1-cycle of the torus. Finally after another T-duality in the x1-direction 

we arrive at the final configuration which contains a single DO-branes and the final 

Ramond-Ramond modulus given by 0'. 

In the remainder of this section I will calculate the relation between the param­

eters of the two auxiliary Type IIA string theories. First I will describe how the 

metric, antisymmetric tensor and the string coupling transform under an arbitrary 

T-duality transformation, and then take the limit 

c/ ---+ 0, Gii ---+ 0, (3.8) 

1The T-duality in the x1-direction is an element of 0(2, 2JZ) of negative determinant. 
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;~==/ ==z-:t=/ -=====~/ 
n=2 in=l 

e 
T 

__ I - -c:::::::; 
-~~------~·--~·-----------~ 

! SL(2,Z) 

n'=l m'=O 8' 

Figure 3.1: The covering space of T 2 with one DO-brane per cell 

keeping ci_12Gij constant. This is the limit proposed by Seiberg and Sen [69, 73] 

and briefly discussed in the introduction. However, in this limit the auxiliary Type 

IIA string metric vanishes. Instead I will calculate directly the inverse metric of 

the NCSYM theory which, after including factors of a', is given by a'-2
Gij· 

Under the T-duality group SO(d, d JZ) the metric and NS antisymmetric ten-

sor2 transform together by fractional transformations [35] 

G' + B' = (A(G +B)+ B)(C(G +B)+ 'D)-1
. (3.9) 

Using the identification between 8 and B one obtains H-1 = CB +'D. Then, 

after some matrix algebra, one can write the symmetric and antisymmetric part 

2Hopefully there is no confusion between B, denoting the NS tensor, and !3 which is the upper 

right block of A. 
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of (3.9) as 

G' (3.10) 

B' (3.11) 

One derives this using the fact that HC is antisymmetric. This can be shown using 

(CB + D)-1 = (A- (AB + B)(CB + D)-1Cf, 

which follows from (2.44). Note that (3.10) and (3.11) have simple expansions in 

G. For an elementary T-duality in the x1 direction the string coupling constant 

transforms as 

, G-112 
9s = 9s u · (3.12) 

Taking the limit (3.8) in (3.11) one can see that the antisymmetric tensor itself 

transforms by fractional transformation3 

B' = (AB + B)(CB + D)-1
. (3.13) 

To find the duality transformation of the metric, I will reinstate factors of a' 

in (3.10) since the 80(3, 3IZ) transformations are defined to act on dimensionless 

fields. Now, take the limit (3.8) and to first order in the dimensionless metric 

(3.14) 

3 This is consistent with the fact that the action by fractional transformations preserves the 

antisymmetry of the matrices. 
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Making the identification B 

in (2.49). 

8, one recognizes above the H matrix defined·· 

Finally using (3.12), one can also calculate how the string coupling transforms 

under duality. It was shown in [67) that the SO(d, d IZ) group is generated by a 

set of simple elements. These are written explicitly in the Appendix A. For each 

of these generators one can check using (3.12) that the string coupling transforms 

as 

g~ = gs I det(CB + V)l-1
/

2
. (3.15) 

In fact (3.15) is true for an arbitrary transformation because CB + V satisfies the 

group property (3.7). 

Comparing the T-duality relations (3.13), (3.14) and (3.15) with the NCSYM 

duality relations (3.3), (3.5) and (3.6), using (2.5) to relate the string and gauge 

couplings, one sees that indeed the two dualities coincide. 

3.3 Projective Modules and Morita Equivalence 

A quantum vector bundle is a projective A-module E. First consider the clas­

sical commutative picture. The set E of global sections of a vector bundle over 

a base space X has the structure of a projective module over the algebra C(X). 

Having a module essentially means that one can add sections and can multiply 

them by functions. Not all modules over a commutative algebra are vector bun­

dles. For example the set of sections on a space consisting of a collection of fibers 
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of different dimensions over a base space also form a module. However, projective 

modules over the algebra of functions on a topological space are in one to one 

correspondence with vector bundles over that space. By definition a projective 

module is a direct summand in a free module. A free module £0 over an algebra A 

is a module isomorphic to a direct sum of a finite number of copies of the algebra 

Eo = A EB ... EB A. 

Trivial bundles correspond to free modules since the description of their sections 

in terms of components is global, and each component is an element of C(X). For 

every vector bundle one can find another one such that their direct sum is a trivial 

bundle. In dual language this implies that the module of sections E is projective 

£o=£EB£'. 

Again it is nontrivial to show the converse, that every projective module is iso­

morphic to the set of sections of some vector bundle. Finally projective modules 

over noncommutative algebras are the quantum version of vector bundles. 

In the noncommutative case one distinguishes between left and right projective 

modules. Multiplying fundamental sections from the right with elements of Ae 

preserves the boundary conditions (2.15) while multiplication on the left gives 

something that no longer is a global section. Thus the set of sections of the 

fundamental bundle form a right projective module over the Ae algebra which I 

will denote :F:. This is no longer true for the adjoint sections since in (2.16) the 

transition functions multiply from both the left and right. However one can check 
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that the adjoint are both left and right projective modules over the A( -e) algebra. 

Also the fundamental is a left projective modules over the A( -e) algebra. This is 

because the exponents of the ui 's satisfy 

(3.16) 

thus the U/s can be commuted over the transition functions in (2.15) and (2.16). 

Additionally, the fact that :F~m is both a left A(-e)-module and a right Ae-module 

can be understood as follows. Since [Ui, ail = 0 one also has 

where. I dropped the derivatives when there was nothing to their right. Let a be 

an element of A( -e) 

Thus multiplying on the left with a is equivalent to multiplying on the right with 

a<I> = <I>a, (3.17) 

arguments and with all the factors written in reversed order. 

In the remaining of this chapter I will only consider the two dimensional case 

and use the gauge (2.14). The construction in Chapter 2 is equivalent to the 

projective modules discussed in (24]. By solving the boundary conditions one goes 

from a local to a global description. Here I will present explicit formulae for this 
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equivalence. First one has to express the left actions on the fundamental sections 

as actions on the Hilbert space [39]. For example the action of the Zi generators 

is given by 

(z ;,) ( ) ;, ( 1) (z2:i,)
1
·(x) = e-2-rrijfme2-rrix/(n+mO):i,

1
.(x). 1'1' j X = 'l'j-a X- - ' 'I' 'I' 

m 

This can be written as 

where Vi and Wi are operators acting on the Hilbert space as 

These operators satisfy the following relations 

TT TT _ e-2-rri/(m(n+mO))TT TT w w _ e2-rrifmw W 
V1V2- V2V!, 12- 2 1, 

and can be used to express other operators acting in the Hilbert space. For example 

Now I will present the correspondence between [24] and the approach followed 

here4
• The two integers p and q and the angular variable Bcns labeling the pro-

jective module 1l~~os of [24]_, and Bcns can be expressed in terms of the quantities 

used here 

p = n, q = -m, Bcns = 812, B~ns = 8~2· 
4 We follow here the same notation as in [39, 52] except for an overall minus sign in the 

definition of 0. 
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Then :F8 m f',J 1-l~:!.m. The Hilbert space representation of [24] written in terms 
n, ' 

of the function f(s, k) with s E R and k E Z9 is linearly related to the J)k(x) 

representation 
m 

J;k(x) = "Kkl (S(-__!!L_)f)(x, l). L...J n+m8 
1=1 

Here K is an m x m representation changing matrix defined as in (2.20) but for 

m-dimensional 't Hooft matrices, and S>.. is the rescaling operator (S>..f)(x, k) = 

J(>..x, k) which can be expressed using the ordered exponential 

S>.. = >..E((>..- l)x, 8x)· 

Also, using lower case to distinguish them from our current notation which follows 

[39], the operators in [24) represented in the (/Jk(x) basis are given by 

v:n+m£1 V ~ T rn+mO W _ e21rinfmw.n W _ e21rifmw vo = 2 , 1 - v 1 , o - 2 , 1 - 1 

Z _ e27rifmz z _ e-21ria/mz-1 u _ e21rinjmu u _ e21rifmu 
0- 2, 1 - . 1 ' 0- 2, 1- 1· 

Next I will introduce the Morita equivalence of two algebras [60, 63, 67, 68), 

which can be used to describe a subgroup of the T..:duality group of the M-theory 

compactification in the language of noncominutative SYM gauge theory. 

Two C* -algebras A and A' are Morita equivalent if there exists a right A-

module £ such that the algebra End A£ is isomorphic to A'. Here End ,A£ denotes 

the set of endomorphisms of the A-module£. It consists of linear maps T on £ 

where linearity is not only with respect to c-numbers but also with respect to right 

multiplication by elements of A 

T(ci>f)=T(ci>)j, cl>E£, !EA. 
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An example of Morita equivalent algebras is Ae and Ae'. As discussed above, 

the projective module associated to the quantum fundamental bundle :F~ m is a 
' , 

right A8 -module. One can prove that EndAe:F~m is isomorphic to Ae'· Here I 

will just show that the two algebras have the same generators. Using (3.17) one 

has T(<I>a) = T(a<I>) and T(<I>)a = aT(¢>) and since Tis an endomorphism one 

obtains T(a<I>) =aT(¢>), which can also be written as [T, a] = 0. But the Z/s were 

found exactly by requiring that they commute with Ui 's so T E Ae'. 

The physical interpretation of Morita equivalence is that a U(n) SYM gauge 

theory on the twisted bundle with magnetic flux m is equivalent to a U(1) gauge 

theory on a dual quantum torus Ae'. This can be seen as a consequence of the 

discussion following equation (2.13). The gauge field components Ai, the scalar 

fields xa, and the components of e are not matrix valued, rather they are one-

dimensional. The final result is a matrix because the Zi 's are matrices. On the 

other hand, one can ignore the internal structure of the Zi's and just regard them 

as the generators of Ae', thus allowing us to reinterpret the original theory as a 

noncommutative U(1) gauge theory on the quantum torus Ae'· 

Since e is a continuous variable, one can interpolate continuously, through non-

commutative SYM theories, between two commutative SYM theories with gauge 

groups of different rank and appropriate magnetic fluxes. This SL(2, Z) duality 

subgroup has a nice geometric interpretation in the T-dual picture of [27] where 

it corresponds to a change of basis of the dual torus lattice [21]. 
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3.4 Gauge Transformations 

In this section I will consider a gauge equivalent formulation of the previous 

results closely following the treatment of Taylor in [79] of the corresponding com­

mutative case. In that paper a gauge transformation was considered so as to 

change the standard 't Hooft transition function into trivial transition function 

in the X 2 direction. When the transition functions are trivial T-duality has the 

standard form, i.e. the gauge field translates directly into the position of a D­

string on the dual torus. A similar gauge transformation can be performed in the 

noncommutative case. 

First let us consider a general gauge transformation g(<J1, <J2). Just as in the 

classical case the covariant derivatives transform as n; = g-1 Dig resulting in the 

following transformation for the gauge fields 

As a result the new transition functions are given by 

n~ (<J~, <J2) = g-1(<Jl + 21r, <J2)n1 (<J~,-(J2)g(<JI, <J2), 

n;(<JI, <J2) = 9-1(<JI, <J2 + 21r)n2(<J1, <J2)g(<J1, <J2). 

(3.18) 

(3.19) 

Again all this is just as in the classical case except that one has to take into account 

the noncommutativity of the <Ji 's. 

It will be useful to consider first the 8 = 0 commutative case. Then one knows 
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both the original gauge fields (2.14) and the transformed ones 

where Q = ~diag(O, 1, ... , n- 1), and I use primes for all variables in the new 

gauge. Than the differential equation for the gauge transformation is 

which can be integrated to give 

(3.20) 

where the integration constant K is the n x n matrix (2.20). It was fixed by 

requiring a trivial 0~ as given by (3.19). Using the gauge transformation (3.20) 

one can can now calculate both transition functions 

(3.21) 

where n = diag(O, ... , 0, 1, ... , 1), k = 1, ... , n with the first n- k entries van-

ishing and the last k equal to unity. 

Next I will discuss the noncommutative case. The first thing to notice is 

that the original quantum transition functions (2.18) are () independent and only 

contain the a 2 variable. Similarly the classical gauge transformation (3.20) only 

depends on a2 so that the classical computation of the new transition functions is 

also valid in the quantum case. Using (3.18) the new gauge fields are given by 

A'l = 0, A'2 = m al + n Q. 
n + mO 21r n + mO 
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Since (3.16) implies [Ui, g] = 0 one can see that the gauge transformation is 

compatible with the quotient conditions (2.2). One can use the gauge transforma-

tion to obtain the generators of the sections of the adjoint bundle 

The explicit formulae for the fundamental sections in the new gauge is 

;r..t ( ) '""' iu2 r (a1 k- nr) 
'J!k a1, a2 = £....., e Xk-nr -

2 
+ · 

rEZ . 7r m 

The Xs functions are defined over the real axis and must satisfy 

so that only m of them are independent. Again, note that since the transition 

functions only contain a 2 and all were ordered to the left of a 1 in the solution for 

the sections of the fundamental bundle, they have the same form in the noncom-

mutative and in the classical case. 
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Chapter 4 

Adding Ramond-Ramond Backgrounds 

For d ~ 2 besides the compactification metric there are additional moduli 

which, in terms of the auxiliary Type IIA string theory [73, 69], correspond to 

the 2-form of the NS-NS (Neveu Schwarz-Neveu Schwarz) sector and the R-R 

(Ramond-Ramond) forms. Next I will extend the result of Chapter 2 by allowing 

arbitrary R-R backgrounds. 

In Section 4.1 I will review the transformation properties of the R-R moduli 

under the duality group [11, 36, 29]. The dimensionally reduced action of Type 

IIA supergravity is invariant under the T:-duality group1 SO(d, d). By deriving -., 

the nonlinear sigma model which describes the scalar fields of the supergravity, 

one can extract the transformation properties of the R-R backgrounds under the 

duality group. In particular I will show that appropriately defined fields, which 

are combinations of the R-R forms and the NS-NS two-form, transform in a spinor 

representation of the duality group. 

In Section 4.2, I will identify the Chern-Simon parameters of the gauge the­

ory with the R-R moduli and then show that the duality transformations relating 

different NCSYM theories can be extended to include these terms. In the pro-

1The equations of motions are invariant under the full U-duality group Ed+l{d+l)·. 
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cess I will also obtain the transformation properties of the parameters and show 

that they coincide with the transformations expected from string theory and de­

rived in Section 4.1 using the dimensional reduction of 10-dimensional Type IIA 

supergravity. 

Finally in Appendix B I will present some results, used in the main text, 

regarding transformation properties under the T-duality group in the limit of 

small compactification volume and decoupling of string excitations. 

A similar proposal for the additional terms in the noncommutative action were 

made in [41]. 

4.1 Duality of Seven Dimensional Supergravity 

Type IIA superstring theory compactified on a d-dimensional torus is invari­

ant under the T-duality group SO(d, d IZ). The low energy supergravity effective 

action describing this compactification is in fact invariant under the continuous 

group SO(d, d). This action can be obtained directly from the 10-dimensional 

Type IIA supergravity by dimensional reduction. In this section I will derive the 

transformation properties of the R-R moduli under the discrete duality group. 

Since this is a subgroup. of the corresponding continuous group ~hich is a sym­

metry of the low energy 10-dimensional supergravity action, one can obtain these 

transformation properties by analyzing the symmetries of the the nonlinear sigma 

model which describes the dynamics of the scalars in the supergravity action. 

The NS-NS scalars are described locally by an O(d, d)/ O(d) x O(d) nonlinear 
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sigma model. Taking into account the T-duality group, the NS-NS nonlinear sigma 

model is in fact defined on 

O(d, d IZ) \ O(d, d) I O(d) X O(d). 

On the other hand simple counting arguments suggest that the R-R scalar fields 

transform in a chiral spinor representation of the duality group. This statement is 

almost correct except that the fields which transform in the spinor representation 

are some redefined fields involving not only the R-R fields but also the NS-NS two 

form. 

The 10-dimensional supergravity action written in terms of the string metric 

is given by 

S =I dlox..;g e-21/J (R + 4(\7¢>)2- _l_H2) 
2. 3! 

-I dlox..;g (-1-F2 + _l_F'2) 
2. 2! 2. 4! 

-~ I F(4) 1\ F(4) 1\ B + ... ' 

where I have not written the terms containing the fermionic fields. The first line 

contains only NS-NS fields while the second contains the kinetic terms of the R-R 

forms. The various field strengths are defined as follows 

H dB, 

F dA(1), 

F(4) dA(3), 

F' F(4) + A(l) 1\ dB, 
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where the subscript indicates the rank of the form. Note that R-R fields couple 

to the NS-NS fields through the metric and through the F'2 term, which depends 

on the antisymmetric NS-NS two-form. 

Next J will perform the dimensional reduction along coordinates xi for i 

1, 2, 3. The massless scalars from the NS sector can be organized in the symmetric 

matrix [72] 

( 
c-1 -G-1B ) 

M= 
BG-1 G - BG-1 B 

(4.1) 

Note that M is also an element of the group S0(3, 3). Using a result from Ap-

pendix B, one can obtain the Weyl spinor representation of M 

( 

det c- 112 

S(M) = det G-112 b 
det G-1

/
2 bT ) 

det G112 c-1 + det c-112 b bT ' 

where b = *B, and the star denotes the operator which transforms an antisym-

metric matrix into its dual column matrix. The star operator always dualizes only 

with respect to the compactified coordinates. 

One obtains additional scalars from the dimensional reduction of R-R forms. 

As. mentioned above these fields do not have simple transformation properties 

under the T-duality group but one can define the following odd rank forms 

(4.2) 

and organize them in a column matrix which, as will be seen shortly, transforms 
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in a chiral spinor representation of the duality group 

C123 
c1 

x= 
c2 
c3 

The other fields can also be organized in representations of the duality group 

such that the action obtained by dimensional reduction from 10-dimensional su­

pergravity is explicitly invariant. The six vectors obtained from the dimensional 

reduction of NS-NS fields transform in the fundamental representation while the 

7-dimensional dilaton and the 7-dimensional space-time metric and 2-form are sin­

glets. The four vectors obtained from the R-R forms transform in a chiral spinor 

representation and, after dualizing the 3-form, the rest of the bosonic fields form 

a chiral spinor of 2-forms. 

For our purpose, it will be enough to consider the nonlinear sigma model part 

of the action containing the kinetic terms of the scalar fields of the theory 

S = ~ J d7x .fg ( e-2
<I> gP.v tr (8p.M- 18vM) + gp.v Bp.xTS(M) Bvx) + ... , 

where §p.v and <I> are the 7-dimensional metric and dilaton, and I have not written 

the kinetic term for the dilaton. The nonlinear sigma model part of the action is 

written in a form that is explicitly invariant under S0(3, 3) and in fact the whole 

supergravity action could be written in invariant form. The duality transforma­

tions of the scalar fields are given by 

S(A)x. 
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To prove the invariance of the action I used S(AT) = S(Af. 

The main purpose of this section was to obtain the relations ( 4.2) which show 

how the fields x with simple transformations properties under the T-duality group 

are related to the R-R forms. 

4.2 T-duality of the Chern-Simon Type Terms 

In this section I will discuss how to modify the NCSYM action so that it de-

scribes the DLCQ of M-theory in the presence of arbitrary moduli. In the auxiliary 

Type IIA string theory the additional moduli are constant R-R backgrounds cor-

responding to generalized Wilson lines. Then I will show that the action which 

includes the new terms is also invariant under the duality group 50(3, 3IZ) and 

that the parameters of the new terms transform exactly as expected from string 

theory. 

First I will guess the form of these terms using our experience with the com-

mutative case which corresponds to a vanishing NS-NS background 2-form B. 

In this case the compactified Matrix model corresponding to n DO-branes is de-

scribed by a U(n) supersymmetric Yang-Mills theory. This is obtained by per-

forming a T-duality transformation along all the compact directions. However, 

for nonvanishing R-R moduli, the action contains an additional Chern-Simon type 

term [50, 10, 43, 40, 54) 

S = 
1 J tr (e2

7r:F "" A(k)) cs 4(2 )3 ~ ' 
~ k odd 

80 



where A(k) are the the T-dual R-R fields. Note also that under T-duality in all 

directions the dual of B also vanishes if B was zero. This is why only F appears 

in the exponent while in general one would also subtract the dual of B. 

Next, consider the effect of a nonvanishing Bon this action. If Iii represents a 

two cycle wrapped around directions xi and xi, then the deformation parameters 

are defined by 

eij = (2~)2 iij B. 

In the super Yang-Mills part of the action the only change required by a nonvanish­

ing B was to make the coordinates noncommutative with deformation parameter 

8. The metric and gauge coupling constant are the same as those obtained by 

T-duality from the Matrix model for a vanishing NS-NS 2-form. I emphasize that 

the metric of the NCSYM gauge theory is not the T -dual metric obtained by first 

taking the inverse of E = G + 8 and then extracting the symmetric part. The 

NCSYM metric Gii is just the inverse of the original metric. Thus one must dis­

tinguish between a T -duality in all directions and the noncommutative Fourier 

transformation relating the Matrix model and the N CSYM gauge theory. 

Let us explain why the NCSYM metric is 8 independent. To compactify the 

Matrix model on a torus I will first consider the Matrix model on the covering 

space and then impose a quotient condition. If the B modulus is nonvanishing, 

after going to the topologically trivial covering space, it can be gauged away. 

However this gauge transformation does not leave the wave functions of strings 

invariant and thus one must transform the translation operators implementing 
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the quotient condition. The new translation operators do not commute and their 

noncommutativity is measured by 8. 

Imposing the new quotient conditions on the Matrix action results directly in 

the NCSYM gauge theory. The only difference with the B = 0 case is that one has 

to use noncommutative Fourier transformations instead of the standard Fourier 

transformations when going from the Matrix model to the NCSYM gauge theory. 

This however does not result in a different metric and gauge coupling constant. 

The main point of this discussion was to show that one can trade a nonvanishing B 

field for noncommutative coordinates on the dual super Yang-Mills gauge theory. 

I will assume that the parameters of the Chern-Simon terms are also the same 

as for vanishing 8, except that the new terms are defined on a noncommutative 

torus. In particular for compactification on a three torus one has 

Just as in the commutative case these terms are topological, supersymmetric and 

gauge invariant. In this action 8 only appears through the noncommutativity of 

the coordinates and A(o) and A(2) are the T-dual R-R forms2 calculated as if the 

NS-NS 2-form vanishes 

A(o) = *A(3), A(2
) =- * A(l)· 

The 1-form R-R field A(l) has a lower index and should not be confused with 

2When I write the R-R forms in components I will drop the rank ofthe form as it is possible 

to identify the form from the position and number of indices. 
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the Yang-Mills gauge field Ai. With this distinction in mind I will write the 

action ( 4.4) in the dual Matrix theory language using the R-R backgrounds on the 

original torus 

where Tr is the formal trace over infinite dimensional matrices divided by the 

infinite order of the quotient group [78). It is convenient to write the action in 

component notation 

1 I I d3a ( ( -rOi .k 2-rOi .k ).) Scs = 2 dt (
2

1r )3 tr Eijk 27f .r- A1 + (27r) .r :F1 A , (4.5) 

where the magnetic and electric field strengths in the temporal gauge are 

In the original conjecture [9), the large N limit of Matrix theory describes the 

infinite momentum frame of M-theory. LargeN corresponds to a decompactifica-

tion of the light-cone direction and in this limit the 8 and A(l) can be set to zero. 

Note that in M-theory these moduli correspo1,1d to C-ii and 9-i and can be elimi-

nated by a gauge transformation and a reparametrization when x- is noncompact. 

In that case only the last term in ( 4.5) survives, the action becomes commutative 

and reduces to the action considered in [54, 55). 

The action ( 4.5) is invariant under the 80(3, 3jZ) duality group of the auxiliary 

string theory. Consider a Chern-Simon type action defined on a 7]-bundle. Here 

'f/ is a 80(3, 3jZ) spinor containing the rank of the group and the magnetic flux 

numbers. I will perform the same sequence of field redefinitions used in [14), 
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where it was shown explicitly for the case of vanishing R-R moduli, that the 

U(n) NCSYM action is equivalent to a U(q) NCSYM action on a trivial bundle, 

where q is the greatest common divisor of n and the magnetic fluxes M. Let 

H = (C8 + v)- 1 be the matrix defined in [14], where C and V are the lower block 

components of the S0(3, 3IZ) transformation relating the original NCSYM gauge 

theory to the theory on the trivial bundle with U(q) gauge group. Then one can 

make the following constant curvature connection and field redefinitions 

The curvature can be split into a constant term and a fluctuating piece 

(4.6) 

Using the matrices Q and R defined in [14] one can perform a change of integration 

variables & = aQR, which introduces a Jacobian factor 

(4.7) 

Making the substitutions (4.6), (4.7) and collecting similar terms one finds 

1 J I 3 q ( (.ro· .k .ro· ~.k )) · Scs = 
2

(
2

1r)2 dt d & -;:; tr £ijk .r~A' 1 + 27rJ" ~;:1 A' , 
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where 

qA' = (ndetQ-1 detH) A, 

A'ii- Hl d tQ-1 (Aii + 2 'T""'ii A) Eijk q - k Eijl n e 7r .r(o) . 

One can now rewrite the action in terms of new operators a~, fYi, and U', and a q 

dimensional trace. See [14] for a more detailed discussion of this substitution. 

Scs = 
1 f tr (2n F' 1\ A'(2

) + ~ 2n F' 1\ 2n F' 1\ A'(o)) . 
4(2n )3 q 2 

More generally the action is invariant under duality transformations if the 

Chern-Simon parameters are related as follows 

(4.8) 

where C and V are the lower block components of the S0(3, 3IZ) matrix relating 

the two theories, and the star operator is the duality operator acting only with 

respect to the compact coordinates. 

Next I will write the Chern-Simon parameters in term of the fields C discussed 

in Section 4.1 

(4.9) 

A(2
) = - * c(1)· (4.10) 

To obtain a compact form first define the column matrices u and v with compo-

nents 

1 "k -M1 G-·k- nC· 2 ~J ~' 
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If x transforms as a spinor, u and v are the block components of a S0(3, 3jZ) 

vector as shown in the Appendix (B.8). Then using the identities (2.50) listed in 

Chapter 2, the transformation ( 4.8) can be written as 

(4.11) 

(u- f>v) = (C8 + D)-T(u- 8v). (4.12) 

Comparing (4.11) and (4.12) with (B.6) and (B.4) in Appendix B one sees that 

the R-R fields must transform in a spinor representation of S0(3, 3jZ) 

x=S(A)x. 

Thus the duality transformations of all the parameters of the NCSYM, in-

eluding those of the Chern-Simon type terms, coincide with the transformation of 

, 
moduli of the Type IIA strings compactified on a torus in the limit of vanishing 

a' and Gij· 

Using the transformation properties of 9s?M and A(o) it follows that the com-

plex coupling 

- A(O) 47ri 
T- + 2 

9SYM 

also transforms simply under the T-duality group with the same 8 dependent 

factor appearing in ( 4.8). 

Finally note that the BPS spectrum corresponding to the electric fluxes ob-
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ta~ned in [15] is modified in the presence of nonvanishing R-R moduli 

(4.13) 

This result agrees with the small volume limit of the spectrum formula in [41] and 

reduces for vanishing eii to the result of [56, 55]. In [48] it was shown that shifts 

in the electric flux spectrum correspond to inequivalent geometric quantizations. 

These different quantizations are equivalent to the standard canonic;al quantization 

if one also includes topological terms in the action. 
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Chapter 5 

T-duality of the BPS Spectrum 

As shown in Chapter 2 the action of a U(n) NCSYM, with magnetic fluxes 

Mij, can be written as the action of a U(q) NCSYM on a trivial quantum bundle, 

where q is the greatest common divisor of n and Mij. Thus these two theories 

must have identical spectra. The action contains magnetic backgrounds which I 

chose as in (14] so that the vacuum energy vanishes. 

1 "k "k "l jl 
4.GijGk1(:P - F(o))(:P - Fco))+ (5.1) 

~ ~xaxa- ~ ~Gij[Di,xa][Dj,xa]+ 

~ 2]Xa, Xb][Xa, Xb] + fermions) . 
a,b 

All the equations in this chapter where dis unspecified, are valid for the two and 

three dimensional case, but some may have to be modified in higher dimensions. 

For simplicity I will consider the case when n and Mij are relatively prime. Then 

one can find a duality transformation A such that n = 1 and M = 0 as was shown 

in [14]. From this point on, when I discuss the U(n) theory I will use the the 

d-dimensional block matrices (2.42), with A the particular transformation that 

takes the U(n) theory into a U(1) theory. For example the constant background 
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field strength can be expressed in terms of the block components of A as 

(5.2) 

One can write the connection as a sum of a constant curvature U(1) connection 

Vila zero mode Alo)' and a fluctuating part Ai 

Note that Ai does not contain the zero mode. The Zi's are n-dimensional matrices 

which generate the algebra of adjoint sections. For example, in the two dimensional 

case one has [22, 24, 39, 52, 14] 

where U and V are the clock and shift matrices and Q is a two dimensional matrix 

which reduces to the identity in the commutative case. Substituting this in the 

action gives 

where the dots stand fo~ terms containing only A i. Thus classically the zero modes 

decouple, and the action is just that of a free particle 

where the mass matrix is given by 

. ·1 (211')d-2 Jdet(Gk1) 
M .. -In- -tr(M8)1 a .. %J - 2 2 %J' 

9SYM 
(5.3) 
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In the commutative case the first factor on the right hand side of (5.3) reduces ton 

and arises from taking the trace. The origin of this factor in the noncommutative 

case was discussed in [24, 14]. The corresponding Hamiltonian is then 1 

(5.4) 

where Mii is the inverse mass matrix and Ef0
) is the momentum conjugate to Ato) 

E(O)- 1 f) 
i - 27ri fJA(o) · 

Note that Ef0
) correspond to zero modes of the electric field. 

5.1 The U(l) BPS Spectrum 

Before calculating the spectrum of (5.4) directly, I will use the duality invari-

ance of the spectrum and obtain it by using the simpler dual U(l) theory. I will 

use primes for all the variables in the U(1) theory. In this case the mass matrix 

takes the form 

{5.5) 

Just as in the commutative U(l) supersymmetric gauge theory [85] the zero modes 

live on a torus. To see this consider the gauge transformations 

These gauge transformations are single valued and leave the trivial transition 

functions invariant. Under these gauge transformations the connection transforms 

1 This only includes the energy coming form the electric zero modes. 
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as 

For vanishing 8' the effect of these gauge transformations is just a shift of the 

zero mode and one has the following gauge equivalences A'(o) "'"' A'(o) + &J. Note 

that &~j) for j = 1, ... , d form a basis for a lattice L' and the configuration space 

is Rd / L'. The conjugate momenta are then quantized 

E~(o) = n' 
t p 

and the spectrum of zero modes is then given by 

However in the noncommutative case one can see that the above gauge transfor-

mations also produces a translation in the k direction proportional to 8jk. This 

results in a modification of the spectrum similar to the Witten-Olive effect [84]. 

Let as define the total momentum operator operators Pf such that 

{5.6) 

where W is an arbitrary field of the theory. The momentum P'i defined by {5.6) is 

not the standard gauge invariant total momentum but the difference between the 

two is the generator of a gauge transformation with the gauge parameter equal 

to the i-component of the gauge field. Thus on gauge invariant states the total 

momentum defined above and the gauge invariant momentum have the same effect. 
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The operator generating the gauge transformation is [41, 42] 

(5.7) 

Translation by an integral number of periods on a trivial bundle must leave the 

physical system invariant. The operators generating these translations are given 

by 

(5.8) 

The operators (5.7) and (5.8) act as the identity on physical states so one obtains 

the quantization 

E'_(O) + e'.kplk = n'. p'i = m'i 
J J J' ' 

where ni and mi are integers. The spectrum of zero modes is then given by 

This result has the following geometric interpretation. In the sectors of nonvan-

ishing momentum the wave function for the zero modes is not strictly speaking a 

function but rather a section on a twisted bundle over ~he torus Rd / L' with twists 

5.2 Dual U(n) BPS Spectrum 

Using the duality transformations (1.12) I can express the spectrum in terms 

of the U ( n) parameters 

(5.9) 
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. where I also performed a duality transformation on the quantum numbers [41, 42] 

(5.10) 

Next consider in more detail the two dimensional case. The parameters of the 

U(1) and U(n) NCSYM are related by the S0(2, 2jZ) transformati'on [14] 

( 
a/2 be ) 

A= -me nl2 ' 
(5.11) 

where e is a two dimensional matrix with the only nonvanishing entries given by 

e12 = -e21 = 1. In this case (C8 +'D)~= (n +Om) o; and the spectrum is 

where mi = eiimj. This result2 has the expected factor of In+ Om I in the denom-

inator. In the DLCQ formulation of M theory this factor is proportional to the 

kinetic momentum in the compact light-like direction and is expected to appear 

in the denominator of the DLCQ Hamiltonian. 

Next the spectrum is obtained directly in the U ( n) theory. I will do this in 

two ways. First, consider the generators of the adjoint algebra, the Z/s. These 

generators satisfy 

(5.12) 

2Expressed in terms of the string coupling constant of the auxiliary string theory the spectrum 
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Besides having the privileged role of generators for the sections of the adjoint 

bundle, the Zi's can also be used to perform gauge transformations since they are 

unitary. Next, rewrite (5.12) as 

(5.13) 

The right hand side of (5.13) gives the transformation of the transition functions 

under the Zi gauge transformation. One can see that, just as in the U(1) case 

where the gauge transformations Uf left the transition functions trivial, the Z/s 

leave the transition functions invariant. Following the same strategy as in the 

U(1) case, where I used the Uf to find the configuration space of the zero modes, 

I will use here Zi 

z1-
1 (V'i- iA~0)1- iAi(zk))Zi = 

yri- i(A(o)- ((ce + v)- 1 )~)1- iAi(e-211"iejkzk)· 

Note that again I have separated the zero mode of the gauge connection and I 

have used the identity [14] 

One can express the gauge transformed connection as 

(5.14) 

where I used 

(C8 + 1J)-1 = (A- 8'C)T 
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I 

and (5.2) to rewrite the extra shift in the zero mode. 

Next I will define the momentum operator by its action on the fields of the 

theory. For example on the gauge fields pi acts as 

(5.15) 

Note that pi also acts on the zero mode A~o)· This can be understood as follows. 

When defining the momentum there is a choice whether to include as part of the 

system the magnetic background J16). The standard gauge invariant momentum 

for which the momentum density is tr(Fij Ej) can be written as the sum of two 

terms. The first is just the momentum translating the part of the system that does 

not include the magnetic background and whose momentum density is tr( (Fij -

. Ftt))Ej)· The second term is an operator shifting the zero mode of the gauge 

field as in (5.15). Then our pi can be identified, up to the generator of a gauge 

transformation, with the total momentum that includes the magnetic background. 

Furthermore, one can identify, up to the generator of a gauge transformation, the 

first term on the right hand side of (5.15) as the action of the momentum operator 

that translates only the fluctuating part. As will be seen later it is the momentum 

whose density is tr(Fij Ej) that appears in the SO(d, d IZ) duality transformation. 

A convenient way of writing the action of pi on the gauge field is 

Then using (5.14) one sees that the quantum operator which implements the gauge 
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transformation above is given by 

(5.16) 

The momentum operator pi has integer eigenvalues since the space is a torus with 

lengths 21r. One can also see this by considering the operator 

-..) 

exp ( 27ri(Cii Efo) + (Cikeki + vii)Pi)) . (5.17) 

This acts trivially on every operator in the U(n) theory. In particular the combi-

nation of operators in the exponent has no effect on the zero mode. The condition 

that (5.16) and (5.17) should act as the identity on the physical Hilbert space is 

equivalent to the quantization 

m'i. 

Since the matrices A, l3, C, and 'D are the block components of an element of 

SO(d, diZ) this is equivalent to 

I 

where ni and mi are integers .. Using the Hamiltoniail (5.4) and the above quan-

tization the electric flux spectrum is 

(5.18) 
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which is identical to the result (5.9) obtained by duality. 

Finally I will present an alternative derivation of the spectrum using the gauge 

transformations exp(iai) where ai = e51Q1i and Q1i is a matrix defined in [14] and 

equals the identity for vanishing deformation parameter or magnetic background. 

This derivation is closely related to the derivation of the spectrum in [41, 42]. 

As discussed in [14] gauge invariant quantities such as the Lagrangian density 

have periodicity 27r in the ai variables. Then one can use [Ji = exp( iai) as a 

gauge transformation just as one used Uf in the U(1) theory. Note first that 

[Ji is a globally defined gauge transformation. It is convenient to write it as 

[Ji = Ui e2
7r

8 ;/\1i. Here Ui = eiu;-2
1r

8 ii&i and is the variable implementing the 

quotient condition [24]. The effect of this gauge transformation is 

-21re;. \7i (-ni ·Ai l ·Ai (Z ) ) 21re;. \7i . ~i e 3 v - z (o) - z k e 3 +z u 1. 

The operator implementing this gauge transformation in the Hilbert space is 

Again, on gauge invariant states this operator acts trivially and together with the 

quantization of the momentum results in the same spectrum (5.18) as using Zi. 

Note that the second method of deriving the U(n) spectrum is similar in spirit to 

the derivation of the U(1) spectrum. For example the gauge transformation is an 

element of the U(1) subgroup. However, the first derivation is instructive since it 

exhibits inside the U(n) theory the dual U(1) theory variables such as P'i and E:. 
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Chapter 6 

Path Integral Quantization of the Symplectic 

Leaves of the SU(2)* Poisson-Lie Group 

As briefly discussed in the introduction, in this chapter I will use the Feynman 

path integral to quantize the symplectic leaves of SU(2)*. In doing this I will 

follow closely the method used in [53). In fact, a strong parallel exists both at the 

classical and the quantum levels. Classically, the leaves coincide in the trivial and 

Poisson cases once expressed in terms of Darboux coordinates. Consequently, at 

the quantum level we have the same Hilbert space and the two quantum algebras 

are isomorphic. The path integral has the same form in the trivial and Pois­

son cases, but one has to insert different functions to obtain su(2) or Uq(su(2)) 

generators. 

In Section 6.1, I review some general Poisson-Lie theory mainly to fix the 

notation and to list some results used later in the chapter. The results in this 

section are given using complex coordinates. In Section 6.2, I describe the reality 

structures of SU(2), its dual and its double. I also give a detailed description of 

the symplectic leaves of SU(2)*. 

In Section 6.3, I describe Darboux coordinates, formulate the path integral 

and find the radius quantization condition using a quantization condition similar 
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to (53]. I also define the Hilbert space and obtain the matrix elements of diagonal 

operators. In Section 6.4, I study general matrix elements and show that they are 

representations of the quantum group algebra. In the last section I draw some 

conclusions and suggest how this work might be generalized. Finally, I will review 

the isomorphism of Funq(SU(2)*) and Uq(su(2)) and the derivation of the Poisson 

bracket on SU(2)* from Funq(SU(2)*) in Appendix C. 

6.1 Dual Pairs of Poisson-Lie Groups 

A Poisson-Lie Group (PLG) is a pair ( G, {, } ) where G is a Lie group and 

{,} is a Poisson bracket on G which is compatible with the group operations 

of multiplication and inversion (28]. The compatibility determines the Poisson 

structure at an arbitrary point from its values in the vicinity of the group unit. A 

PLG can be equivalently described as a Poisson Hopf algebra Fun(G) which is a 

commutative Hopf algebra with a compatible Poisson algebra. In what follows I 

will freely exchange these two dual descriptions. 

The Poisson bracket on the group determines a Lie algebra structure on the 

cotangent space g* of the Lie group. Let h1 and h2 be two functions on the group 

G. Then: 

defines a Lie algebra (g*, [, ]*). One can check that this definition is independent of 

the choice of functions used to represent cotangent vectors. Let { ei} be a basis of 
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g, { ei} its dual basis in g*, and fi~ and J~b the corresponding structure constants. 

The compatibility of the Poisson and group structures imposes restrictions on the 

two Lie algebras. In terms of the structure constants, they read 

f s J-ab jaj-sb + Jb ~-sa Jb ~-sa+ fa ~-sb 0 
ij s - is j is j - js i js i = · (6.1) 

In fact, similarly to a Lie group being determined up to some global features by 

its Lie algebra, a PLG is in one to one correspondence with a Lie bialgebra (LBA). 

This is a pair (g, g*) of Lie algebras dual as vector spaces whose structure constants 

satisfy (6.1). Note that the LBA structure is symmetric between g and g*, so to 

each LBA we can associate a pair of PLGs G and G*. 

An equivalent definition of aLBA is given in terms of the cocommutator 6 the 

dual of the [, ]* commutator 

6: g---+ /\2g, (6(x), ~ 1\ 'fJ) = (x, (~, 'fJ]*), x E g, ~' 'f} E g*. 

Jacobi for[,]* implies co-Jacobi (6 ® id) o 6 = 0. The compatibility condition (6.1) 

translates into the cocycle condition 

6([x, y]) = [~(x), 6(y)] + [6(x), ~(y)] 

where ~(x) = x ® 1 + 1 ® x and similarly for y. 

A quasi-triangular Lie bialgebra is a LBA such that there exists a r E g ® g 

which, for all x E g satisfies: 

1. 6(x) = [r, ~(x)]; 
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2. I= r + a(r) is adjoint inva~iant [I, ~(x)] = 0. Here a is the permutation 

operator; 

A factorizable Lie bialgebra is a quasi-triangular LBA such that I is non-

degenerate. One can use I to identify g and g*. The factorization refers to the 

fact that any x E g can be decomposed as x = x+ - x_. Here 

x+ = (r,~®id), x_ = -(r,id®~) 

for some ~ E g* satisfying x (I,~ ® id). Such a ~ always exists since I is 

non-degenerate. 

A PLG G is quasi-triangular if its tangent LBA g is quasi-triangular. Similarly 

a PLG is factorizable if its tangent LBA is factorizable. 

One can define two important Poisson brackets {, }± on a quasi-triangular 

LBA. 

{/, h }± = (r, V' f ® V'h) ± (r, Y''f ® Y''h) (6.2) 

where 

are the left and right gradients respectively. The {, } _ Poisson bracket makes 

G into a PLG. I will denote it simply by {, }. The other bracket {, }+ is also 

very important since it is non-degenerate almost everywhere and makes G into a 

symplectic manifold. 
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For every representation p one can explicitly write the Poisson relations for the 

matrix elements of T(x) = p(x) which are coordinates on the group as 

(6.3) 

where r + = (p® p)r and the subscript specifies the position in the tensor product. 

It is also useful to define r _ = -(p ® p)CJ(r). 

The standard example of a factorizable PLG is SL(N, C). In this case 

1 N-1 
r =- '"'(A-1)·· H· tO\ H· +'"'E .. tO\ E .. 2 .~ ZJ l '<Y J ~ lJ '<Y Jl 

z,J=1 z<J 

where A is the Cartan matrix, Hi are Cartan generators and Eij are generators 

which in the fundamental representation are represented by matrices with only one 

non-vanishing entry equal to one in the ij position. In this case we can give an 

explicit description of the dual group SL(N, C)* and its Poisson structure despite 

the fact that it is not quasi-triangular. Let SL(N, C)* be the group of pairs of 

upper and lower triangular matrices { (L +, L-)} where 

N 

IT ai = 1. (6.4) 
i=1 

The group multiplication is given by multiplying corresponding matrices within 

each pair. Using the same notation for matrix group elements and functions on 

the group, the Poisson brackets are: 
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(6.5) 

One can also define 

and the Poisson brackets above become 

(6.6) 

The derivation of this bracket from the quantum commutation relations is dis-

cussed in Appendix C. The map from ( L +, L-) to L is not one to one. It is a 

2N-l cover. Later we will define reality structures on this Poisson algebras. 

Now I will give a more detailed description of the SL(2, C) and S£(2, C)*. Let. 

The classical r-matrices can be written as 4 x 4 matrices 

1/4 0 0 0 -1/4 0 0 0 

0 -1/4 1 0 0 1/4 0 0 
r+ = ' 

r_ = 
0 0 -1/4 0 0 -1 1/4 0 

0 0 0 1/4 0 0 0 -1/4 

Using (6.3) after some algebra one obtains 

{a,b} ab/2, 

{a,c} ac/2, (6.7) 

{a, d} cd, 
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{b,c} 0, 

{b, d} bd/2, 

{c, d} cd/2. 

Similarly using (6.6) one obtains 

{a, ,B} a,B, 

{a,"(} (6.8) 

{a, o} 0, 

{,8,"(} a(a- o), 

{,B,o} a,B, 

A further decomposition of L + as a diagonal matrix and an upper diagonal 

matrix with unit entries on the diagonal, and of L- as a diagonal matrix and 

a lower diagonal matrix with unit entries on the diagonal, is possible. For the 

SL(2, C)* case, we have 

L + = ( a ~ ) ( 1 X+ ) ' L- = .( a-
1 

0 ) ( 1 0 ) . 
0 a 1 0 1 0 a -x- 1 

It corresponds to Gauss's decomposition of L 

L = ( 1 0) ( a2 

X- 1 0 
0 ) ( 1 X+ ) . 

a-2 0 1 

To every LBA (g, g*) we can associate a factorizable LBA called the double Lie 

bialgebra ( d, d*). First we define d = g + g*, i.e. the direct sum of vector spaces. 
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It 4as a natural bilinear form (, )d defined in terms of the dual pairing (,) of g and 

g* 

((x, ~), (y, TJ))d _ (x, TJ) + (y, ~), x, y E g, ~' TJ E g*. 

We define on d the unique Lie algebra such that: 

1. g and g* are subalgebras; 

2. the bilinear form (, )d determined by the dual pairing is adjoint invariant. 

On the basis of d given by { ei, ei} , the commutator [, ]d has the form 

[ei ei] = fij ek 
' d k ' 

[ i ] - Ji k f-j e , ej d - ik e - ik ek. 

Also d* _ g* E9 g , i.e. it is the direct sum of Lie algebras [ei, ej]d• = 0. The pair 

( d, d*) is a factorizable LBA with r d - ei @ ei E d@ d , thus it is a projector on the 

g factor. Note that sl(N, C) is almost the double of one of its Borel subalgebras1 . 

We can exponentiated to a Lie group D and {, }- will make it into a PGL. 

The simplest example of the above structure is obtained if we start from the 

trivial LBA (g, g*), i.e. g is a Lie algebra and g* its dual with the trivial commu-

tator. G is a Lie group with Lie algebra g and G* = g* is an abelian group. Dis 

the cotangent bundle T* G = G x g*. The {, } + bracket is the canonical Poisson 

1 It is the double of a Borel subalgebra divided by the Cartan subalgebra. 
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bracket on the cotangent bundle, and {, } _ is the Lie bracket on g* extended by 

left translations to the cotangent bundle. 

The double D of a factorizable PLG G can be described in more detail. D is 

isomorphic with G x G as a group2 . The groups G and G* are subgroups of D 

and are embedded as follows 

G c G x G, T-+ (T, T), 

Almost all elements (x, y) of the double can be written in factorized form 

(6.9) 

A pair of Poisson manifolds (P, P') is called a dual pair (51, 71] if there exists 

a symplectic manifoldS and two projections 1r and n' 

7r .../ 

p 

s 
":it n' 

P' 

such that the sets of functions which are pullbacks of functions on P and P' 

centralize each other 

{n*(f),n'*(f')}s = 0, 

An important theorem [51, 70] states that each symplectic leaf of P is obtained 

by projecting on P the preimage of an element a of P' 

n( n'-1 (a)), a E P'. 

2This is only true for complex groups. If G has a reality structure the double is obtain by 

imposing a reality structure on ac X ac where ac is the complexification of G. 
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The manifolds D/G and G \ D form a dual pair. The symplectic manifold is 

the double D of G with the {, } + bracket. The following projections 

11" / 

G\D 

D 

'\t 11"' 

D/G 

can be used to induce Poisson structures on D/G and G\D. Since Dis factorizable 

G* ~ G \D. Moreover the Poisson structure induced on G \ D from D coincides 

with the original Poisson structure on G*. Then the above theorem gives the 

symplectic leaves of G*. In particular if G is factorizable, 1!"
1 

( x, y) xy- 1 = a and 

the preimage of a has elements of the form (ay, y). Then 7r(x,.y) = y-1x = y- 1ay, 

thus the symplectic leaves are given by the orbits of the coadjoint action of G on 

G \D. This action is also known as the dressing action [70] 

G x (G\D) --7 G\D, (y,a) --7 y-1ay. 

6.2 Symplectic Leaves 

In the first part of this section, I will discuss the SL(N, C) case. So far, 

everything was complex. 'The simplest reality structure one can impose is to 

require everything to be real. We then obtain SL(N, R), its double, dual etc. 

However, we want to obtain SU(N). We start on the double with the reality 

structure 
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Since G and G* are subgroups, this induces the following reality structures 

(6.10) 

Once we impose (6.10) the dual group is no longer simply connected, since ai in 

(6.4) are real and non-zero. Define SU(N)* as the component connected to the 

unit element of the group. 

We can also describe SU(N)* in terms of Las the set of hermitian, positive definite 

matrices of determinant one. Then the map (L+,L-)---+ L = (L-)- 1L+ is one to 

one and the factorization is unique. 

For SU(2)* the reality structure is a= a, J = 6, ~ = 'Y· 

To summarize, the double of SU(N) is SL(N, C), and the factorization (6.9) 

can be written x = r- 1 L +, that is to say, any matrix of determinant one can 

be decomposed uniquely as the product of a special unitary matrix and an upper 

triangular matrix with real positive diagonal entries3 . 

In particular the double of SU(2) is the proper Lorentz group SL(2, C). It is 

interesting to note that the double of the trivial PLG SU(2), i.e. its cotangent 

bundle, is the proper homogeneous Galilean group. 

Using the two factorizations 

(x,y) = (T-1L+,r-1L-) = ((L+)-1T,(L-)-1T) 

3 Note that y is not independent' y = (xt)- 1 
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and the projections 1r(x, y) = y- 1x, 1r'(x, y) = xy- 1 we obtain the following form 

for the symplectic leaves 

where (i+, L-) E SU(2)* is fixed, and T parametrizes the leave. This is just the 

orbit of the right Poisson coadjoint action of SU(2) on SU(2)* 

L-+ r- 1LT .. 

It is convenient to use an exponential parametrization of L = ( L-) -l L + 

· ( n3 n_ ) L = exp(xwi) = cosh(r) + sinh(r) 
n+ -n3 

where a/s are the Pauli matrices, r 2 = Lixf and ni == xdr. Since tr(L) = 

2 cosh(r) is invariant under the coadjoint action we see that the symplectic leaves 

are spheres of radius r except for the r = 0 leaf, which is zero dimensional. In 

terms of the exponential parametrization, the Poisson algebra (6.8) becomes 

Since r is constant on symplectic leaves it must be central in the above Poisson 

algebra, which can be checked by direct computation. These Poisson spheres and 

their quantization were first studied in [57]. One can parametrize the radius r 

sphere using stereographic projection coordinates z, z 

x_ 
z= ' z= r- x3 
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After some straightforward algebra we obtain 

1 2 (zz- 1 ) {z,z}r=-(1+zz) _ +coth(r). 
2 zz + 1 

The right action of SU(2) on z by fractional transformations 

az- b 
z' = ~--

bz+a 

is a Poisson action i.e. a, b, c, d have non-trivial bracket given by (6.7). Since our 

path integral is formulated in real time, we do a Wick rotation and obtain the 

Minkowski Poisson bracket 

i 2 (zz- 1 ) {z, z }r = - (1 + zz) _ + coth(r) 
2 zz + 1 

(6.11) 

differing from the original one . by a phase factor. ) 

Using non-singular coordinates around the south pole w = -1/ z the Poisson 

bracket becomes 

i 2 ( ww- 1 ) {w,w}r=-(1+ww) - _ +coth(r) 
2 ww+1 

thus the Poisson structure is not ·north-south symmetric. The infinite r limit is 

singular at the south pole. This particular Poisson structure and its quantization 

was studied in [18, 19). 

The small r limit is dominated by the coth(r) term and 

{z,z}r ~ ~coth(r) (1 +zz)2
• (6.12) 

This is the standard Poisson bracket on a sphere of radius coth1
/
2 (r). The right 

action by fractional transformations on (6.12) leaves this Poisson bracket invariant. 

Thus the small radius symplectic leaves are almost rotationally invariant. 
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Next we obtain the symplectic form on the leaves. Let/, h be functions on the 

leaf; each f defines a vector field v 1 such that v f (h) = {f, h}. Then the symplectic 

form is defined by 

In local coordinates, the Poisson bracket and the symplectic form have the 

form 

and the two antisymmetric tensors satisfy 

In complex coordinates, this is simply pzznzz = 1, and gives 

n 2 dz Adz (zz- 1 ) -l no 
H = -- + coth(r) = ---~--

. i (1 + zz) 2 zz + 1 n3 + coth(r)' 

where no is the standard area 2-form on the unit sphere. 

6.3 Path Integral Quantization 

The path integral quantization of the Poisson algebra on the leaves of su(2)* 

was discussed in [53, 1]. Quantization of these leaves gives the unitary represen-

tations of SU(2). We will do the same for the symplectic leaves above and obtain 

the unitary representations of Uq(su(2)) algebra. This is in fact a Hopf algebra 

but we concentrate here on the algebra structure4
. 

4The coproduct and antipode of the £± generators are the same as in the classical Poisson-

Hopf algebra 
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Before starting the quantization we have to find canonical coordinates on the 

leaves. Note that 

no =sin() d() Ad¢= d(- cos(O)) Ad¢ 

thus (- cos(O), ¢) are Darboux coordinates on the standard 5 2 • Similarly 

0 = d[-ln(n3 + coth(r))] Ad¢ 

so we define 

[ 
n3 + coth(r) l . 

J = -ln ( 2 ( ) ) 
12 

= -ln [cosh(r) + smh(r) n3] 
coth r - 1 1 

where the denominator was fixed by the requirement that J spans a symmetric 

interval ( -r, r). We have n = dJ Ad¢ = d( J d¢) so we define the Poincare 1-form 

8 

8 = Jd¢+cd¢ 

where c is a constant to be fixed later. Thus the Poisson sphere of radius r is 

parametrized by J and ¢ as 

The Poisson algebra on any leaf can be quantized, but in general these quantum 

algebras will not have unitary representations. Unitarity leads to a quantization 

of the radius of the Poisson sphere. Before starting the Poisson case let us review 

two different quantization conditions used in [53, 1] for the trivial case. In [1] a 

geometric quantization condition similar to that used for the Dirac monopole or the 
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Wess-Zumino-Witten model was used to obtain the allowed values of the radius. 

The action must be continuous as the path crosses over the poles. Equivalently 

(6.13) 

where the integral is over an infinitesimal loop around the poles. However this 

condition was only used to determine the characters of the representations. Also 

note that, unlike the Dirac monopole where the action is a configuration space 

action, both in the trivial and the Poisson case one has a phase space action. 

However in [53] it was shown that in order to obtain the matrix elements of 

su(2) a non-trivial phase has to exist as the path crosses the poles. Requiring the 

correct matrix elements one obtains the quantization condition 

(6.14) 

This gives the same result as (6.13) for the Cartan generator and thus for' the 

characters. Here I will use (6.14) and show that we obtain the standard matrix 

elements of the quantum group generators. 

Imposing (6.14) at the north and south poles we obtain the quantization r = 

Nn/2 where N is a positive integer. For N odd one can set c = 0 but a non-zero 

cis required for even N. The simplest choice is c = n/2. We can write the two 

cases together as 

e = (J + Mn/2) d</J, M = o, 1. 

Next I list some of the functions on the Poisson sphere that I will quantize, 
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expressed in terms of Darboux variables J, ¢ 

(J (6.15) 

2 cosh(r) - e-J 

a 

The general structure of this functions is · 

O(J, ¢) = :F(J)eiP<I>, p = 0, ±1. 

Note also that 

tr(L) = 2 cosh(r) = 2 cosh (Nli/2) = qN + q-N, 

where we introduced q en/2 . Sincetr(L) only depends on r, it is central in the 

Poisson algebra and will be central in the quantum algebra. In fact tr(L) is the 

Casimir of Uq(su(2)). 

Next we discuss the Feynman path integral. Consider first for simplicity a 

Hamiltonian H(J), i.e. a function of J and not of¢. Wave functions are functions 

on sl (or periodic functions of ¢) and let I ¢) be a ¢ eigenvector. The propagator 

on sl can be expressed in terms of the propagator .on the covering space of sl' 

which is the real line by 

(¢' I e-kHT I ¢) = L (¢'+27m I e-kHT I ¢)o (6.16) 
nEZ 
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where formally 

(6.17) 

where ¢ is integrated over the whole real line and J over the ( -r, r) interval. 

To make sense of the formal expression we divide T into P intervals and let 

<Po=¢, </Jp = ¢'. Then 

(6.18) 

The ¢ integration can be performed leading to delta functions which allow us to 

do all but one of the J integrals. Then the propagator on S1 takes the form 

(¢' I e-ftHT I ¢) = 2.: {Nh/
2

. dJ e-i/hH(J)T eifh(J+c)(</>'+2·~rn)e-ifh(J+c)</> 
nEZ j -Nh/2 2n1i 

Using the Poisson resummation formula 

2.': e21rina = 2.': c5 (a _ k) 
nEZ kEZ 

we perform the last integral and obtain 

where Jk = 1i(k- M/2). The sum is over all integers k such that ( -N + M)/2 :::; 

k :::; (N + M)/2. We see that not all states propagate. We can make the path 

integral unitary by projecting out the states that do not propagate. Define the 

Hilbert space as the vector space spanned by the vectors 

I m) = J ~ ei(m+M/2)</> I ¢), . . 
m = -J, ... ,J 
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J 

Figure 6.1: The allowed values of J do not coincide with the North or South poles. 

where, according to angular momentum conventions, j is a half integer such that 

N = 2j + 1 . Note that the exponent is always an integer and N is the total 

number of states. As depicted in figure 6.1 the maximum value J = ±Nh/2 is 

not reached quantum mechanically. It differs from the results in [1] but agrees 

with [53] as previously mentioned. It was pointed out in [53] that this is similar 

to the non-zero ground state energy of the harmonic oscillator. 

6.4 Matrix Elements and the Quantum Algebra 

Since this is a phase space path integral some care must be taken when quan­

tizing functions which depend on canonically conjugate variables. The stan­

dard mid-point prescription for a function of the form .:T(J)if?(cp) is to write it 
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as .J(Ji)<P[(¢>i + l/>i-d/2] in the path integral. Thus for functions of the form 

0( J, ¢>) = F( J)eiP<P I will use F( Ji)eip(</J;+</J;-d/2 • To calculate the matrix elements 

of such an operator we insert it in the path integral (6.18) with H = 0 and take T 

infinitesimal. For the prescription above it is sufficient to consider only one time 

interval. The matrix elements are 

(¢>' I 0 I ¢>) = L I dJ ei/li(J+c)(<P'+2Trn-f/>) F(J)eip(<!J'+2Trn+<P)/2 = 
nEZ 2n1i 

where Jk = !i(k- M/2- p/2), and I used Poisson resummation before performing 

the J integral. Then the matrix elements in the {I m)} basis are given by 

(O)m'm = (m' I 0 I m) = F[(m'- p/2)1i] c5m'-p-m,o, m = -j, ... ,j. (6.19) 

Using the opposite mid-point prescription F[(Ji + Ji_1)/2]eipf/>; gives the same 

matrix elements. However in this case one has to consider at least two time 

intervals if working in the ¢> representation. This prescription is more convenient 

when working in the J representation. 

We can use (6.19) to calculate matrix elements of any function on SU(2)*. 

Mid-point prescription in the path integral results in a special ordering of the 

quantum operators, when expressed in terms of J and ¢>, called Weyl ordering. If 

one starts from the Gauss's decomposition, uses path integral to obtain the matrix 

elements of a and X± and then uses them to express £± as products of quantum 

matrices, we obtain the quantum commutation relations [30]. Using (6.19) we 
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obtain 

(a)m'm e-hm'/2 8 
m'-m,O (6.20) 

One can check by direct calculation that relations-(6.20) are representations of the 

algebra generated by a, X± with relations 

(6.21) 

where A= q- q-1
. Using this we define the quantum matrices L± as 

L + = ( a 0 . ) ( 1 X+ ) , 
0 a-1 0 1 

L- = ( a~' ~ )( -~- ~ ) . 

One· can use (6.21) to check that £± satisfies the quantum group commutations 

relations [28, 30, 88] 

(6.22) 

where the quantum matrices are given in the Appendix C. Alternatively, using 

the representations 

(6.23) 
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of the quantum L± in terms of Jimbo-Drinfeld generators discussed in Appendix C, 

the relations (6.21) are equivalent to 

(6.24) 

The Jimbo-Drinfeld generators of Uq(su(2)) can be obtained in the path inte-

gral by inserting 

H 1i-12J (6.25) 

Note that unlike a and X± the insertions above are already quantum. In addition 

while the functional dependence in terms of J and cp can be easily obtained from 

(6.23), the overall normalization of X± has been adjusted to give the standard 

result. The same kind of normalization adjustments are necessary if one tries 

to insert the matrix elements of L± directly into the path integral. This just · 

reflects ordering ambiguities of quantum operators. Alternatively one could get 

the standard result without any adjustments of normalization by using a non-

midpoint prescription. For example the off-diagonal element of L + equals ax+ 

with this specific ordering in the quantum case. Since the path integral gives 

time ordering we can obtain the desired quantum ordering by using the following 

prescription 

Note that I only used a mid-point prescription for X+ and not for a. The matrix 
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elements obtained using (6.19) are 

2mOm'-m,o, 

{2 coth[h(j + 1/2)]- 2 coth[h(m ± 1/2)]}1
/
2 Om'-m=fl,O· 

The generators of su(2) are obtained using 

H 2J, (6.26) 

In this case it is possible to write all generators without using 1i while in the 

deformed case a different rescaling for each generator is required to eliminate h. 

The matrix elements obtained using (6.19) 

(H)m1m 

(X±)m'm 

2hm Om' -m,O, 

are just the standard matrix elements'of the su(2) algebra 

6.5 Remarks 

In addition to trying to generalize the results in [53, 1] my goal in this chapter 

was to better understand the quantization (6.22) of the Poisson bracket (6.5). Any 

R± satisfying R± = 1 + hr ± + O(h2
) used in (6.22) would give the same Poisson 

bracket in the classical limit. The 0(1i2
) and higher order terms are fixed by 
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requiring that (6.22) are commutation relations of a Hopf algebra deformation of 

the original Poisson-Hopf algebra. It is natural then to ask what is the relation of 

this quantization to the quantization known as Weyl quantization. Of course this 

question could be answered using algebraic methods without appealing to path 

integrals. At least for the case of SU(2), I found that the functions X± and a 

appearing in the Gauss's decomposition play a special role. Their quantization 

using Weyl ordering gives the same commutation relations as in the quantum 

group quantization. It would be interesting to investigate if this result still holds 

for an arbitrary SU(N). 

It should be possible to generalize the path integral to arbitrary classical 

groups. The similarity between the trivial and the Poisson cases for SU(2) sug­

gests that a starting point could be the path integral quantization of the coadjoint 

orbits of classical groups discussed in [1 J. 

The existence of a non-trivial phase as the path crosses the poles discussed 

in [53] is present in the Poisson case too. The origin of this phase can be explained 

as follows. The coordinates <P and J are singular at the two poles. To analyze 

what happens as the trajectory passes over one of the poles one should introduce 

canonical variables which are regular there. In the new coordinates the action 

should vary smoothly as the trajectory crosses the pole. This would imply that 

in the <P and J coordinates the action would jump only if the change of variables 

in the path integral has a nontrivial Jacobian. Formally one does not expect this 

to happen since the change of variables is a canonical transformation. However if 
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one regularizes the path integral by introducing for example a time lattice, and 

carefully analyzes the change of variables, a nontrivial Jacobian is indeed found. 

Let us now compare the trivial and Poisson cases. The symplectic leaves in 

both cases are spheres parametrized by (z, z) in stereographic projection. The 

group SU(2) acts in the same way on the leaves in the two cases, i.e. by standard 

rotations of the spheres, but in the trivial case the bracket is invariant under the 

action, while in the Poisson case the action is only a Poisson action. However, 

once the symplectic form is expressed in Darboux coordinates ( J, cjJ) the leaves 

appear to be identical. As a consequence the path integral has the same form as 

in [53, 1], but since the transformation to the Darboux variables is non-trivial in 

the Poisson case, SU(2) acts in a complicated way on the leaves, and functions on 

SU(2)* have a complicated dependence on (J, ¢). Compare for example (6.25) and 

(6.26). Thus the same path integral generates different matrix elements because 

we insert different functions in the trivial and Poisson cases. This shows explicitly 

that on the same symplectic manifold one can implement both a trivial and a 

Poisson symmetry. The question of which is the actual symmetry of the system 

is a dynamical one, and can only be answered after we know the Hamiltonian. 

Finally, I conjecture that as in the SU(2) case, for an arbitrary classical group, 

the path integral has the same form in the trivial and Poisson cases. 
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Chapter 7 

Quantum Algebra of the Particle Moving on the 

q-Deformed Mass-Hyperboloid 

In this chapter I will introduce a reality structure inspired by the noncompact 

WZNW-model. In Section 7.1, contains a short review of the quantum algebra 

T*Gq. I discuss the commutation relations for operators generating both left and 

right translations, since both forms are necessary to define or to check the involu­

tions presented inthe next sections. Section 7.2 briefly covers the reality structure 

of (5]. In section 7.3, I pr~sent the main result of this chapter, a reality structure 

corresponding to a generalized mass-hyperboloid configuration space and its as­

sociated q-deformed phase space. In Section 7.4, I consider the simple quantum 

mechanical system of (5] and show its compatibility with the *-structure intro­

duced in the previous section. In the last Section I present some evidence for the 

relevance of this reality structure to the non-compact WZNW-model. 

7.1 Review of the Algebra on T*Gq 

In this section I present a brief review of the defining relations of the q-deformed 

cotangent bundle [3] also known as the Heisenberg double or as the smash prod-
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uct [88, 89]. The main purpose of this section is to fix the notation. I will follow 

closely the presentation in [5] where a more detailed exposition can be found. 

Let G be the Lie group SL(N, C), and sometimes for simplicity I will take 

G = SL(2, C). Most of the content of this chapter can be easily extended to 

arbitrary classical groups. Now consider the quantum R+ matrix associated to 

the Lie group G. This is a matrix depending on a parameter q and acting in 

the tensor product of two fundamental representations. For example the R+ of 

SL(2, C) is the following 4 x 4 matrix 

q 0 0 0 

R+ = q-112 
0 1 q- q-l 0 

0 0 1 0 

0 0 0 q 

It is convenient to also use the R_ matrix defined as . 

(7.1) 

where P is the permutation operator in the tensor space of the two fundamental 

representations 

P(a®b)=b@a. 

Next I will define the quantum algebra T*Gq, the quantum. deformation of the 

cotangent bundle. Let g and 0± be matrices acting in the fundamental represen­

tation of G. The 0± matrices are upper and lower triangular matrices. In addition 

the diagonal elements of 0+ equal those of 0:1
. T*Gq is the algebra generated by 

g and 0± and satisfying the following set of relations divided for convenience into 
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three groups 

(7.2) 

(7.3) 

(7.4) 

All the above relations are operator matrices acting in the tensor product of two 

fundamentals, and the superscript indicates on which factor the respective matrix 

acts. The R matrices without any superscript act in both spaces. One can show 

that the quantum determinant of the matrices g and n± is central and can be set 

equal to one " 

For the SL(N, C) groups these are all the relations, while for the other classical 

groups additional relations, for example orthogonality relations, have to be im-

posed. Note also that, unlike (7.2)(7.3), the relation (7.4) is not homogeneous in 

R± thus the normalization of R± is important. 

The above relations are n()t independent. For example the R_ relations can 
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be obtained from the R+ relations using (7.1) and 

(7.5) 

The subalgebra generated by the matrix elements of g with relations (7.2) is 

in fact a Hopf algebra denoted,Funq(G) and represents a deformation of the Hopf 

algebra offunction on the G Lie group [30]. Also, the subalgebra generated by n± 

with relations (7.3) is a quasitriangular Hopf algebra called the quantum universal 

enveloping algebra [28, 45, 30], and is denoted Uq(g) where the g in the brackets 

is the Lie algebra of the Lie group G. For example the coproduct of Funq(G) on 

the matrix elements of g is given by 

6(g) = g@g, (7.6) 

where the dot means multiplication in matrix space. Similarly the coproduct in 

Uq(g) on the matrix elements n± reads 

(7.7) 

On the other hand T*Gq is not a Hopf algebra. We emphasize this, since there is a 

related algebra, the Drinfeld double, which has the same generators but different 

mixed relations and is a Hopf algebra. 

The mixed relations (7.4) describe how to combine the above subalgebras into 

the larger algebra T*Gq. They appear as commutation relations in [3, 88, 89] but 

in an abstract form as the pairing of dual Hopf algebras they were already present 

in [30]. 
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One can relate the D± with the more traditional Drinfeld-Jimbo generators. 

For example for the SL(2, C) group we can write the matrix elements of D± as [30] 

(7.8) 

Using the R+ matrix above it can be shown by direct computations that the 

generators H, X± satisfy the Jimbo-Drinfeld relations [28, 45) 

(7.9) 

defining the universal enveloping algebra Uq(sl(2, C)). Similar relations also exist 

for higher rank groups [30] and can be thought of as connecting the Cartan-Weyl 

and Chevalley bases. 

It is also convenient to combine D± into a single matrix [59) 

(7.10) 

In terms of these generators all the relations (7.3) and (7.4) collapse to 

(7.11) 

These forms of the commutation relations are especially useful when we deal with 

the commutation relations only, but the coproduct of D cannot in general be given 

in an explicit form. 

The commutation relations (7.2)(7.11) are exactly those satisfied by the local 

field and the monodromy of the left (or right) chiral component of the affine 

current [2, 4, 31]. 
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. Following [5] we also introduce an equivalent description of the quantum alge-

bra using operators generating right translations. First let 

and then introduce a triangular decomposition of E into E± 

(7.12) 

similar to the decomposition of n into n±. One can check that the matrix elements 

of n and E commute. To make the picture more symmetric also introduce a new 

matrix h by 

h _ ~-1 -ln 
- LJ± g H±· 

Now we can use either pair (g, n) or (h, E) to describe the algebraT*Gq. 

The defining relations satisfied by h and E are [5] 

R±h1h2 h2 h1R± 

E~E!R± R±E!E~ 

E1E2R - - ± R E2E1 ± - -

E1E2R - + + R E2E1 + - -

E~E~R- R_E~E~ 

h1E2 + E!R_h1 

h1E~ E~R+h1 . 

One can check directly the consistency of (7.14) with the original relations. 
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7.2 Real Form for the q-Deformed Symmetric Top 

For a large number of applications the variable q is a phase. In this case the 

R± matrices satisfy 

(7.15) 

If we require a reality structure for g compatible with the Hopf algebra structure 

I.e. 

and use (7.15) we obtain a non-compact quantum group. For example if G = 

SL(N, C) we obtain Funq(SL(N, R)). 

However sometimes in the same application we are interested in the compact 

form of the group. This apparent contradiction can be resolved [5] by dropping the 

above requirement for a Hopf *-structure. Instead one defines an anti-involution 

on the larger algebra T*Gq 

n=r= 

h. 

(7.16) 

(7.17) 

It is straightforward [5] to check the compatibility of this anti-involution with 

the quantum algebra (7.2)(7.3)(7.4)(7.14). Note that (7.16) does not define a Hopf 

*-structure on Uq(g), and (7.17) does not close on Funq(G) since the definition of 

h includes generators of Uq(g). In the classical limit (7.17) reduces to gt = g-1 

and (7.16) becomes compatible with the coproduct. This is due to the fact that 

the coproduct is cocommutative atq = l. 
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7.3 Real Form for the q-Deformed Hyperboloid 

This section contains the main result of this chapter, an anti-involution on 

the deformed cotangent bundle when q is a phase. Like the anti-involution of the 

previous section, it does not originate from a Hopf *-structure on one of the Hopf 

subalgebras. The defining relations of the anti-involution are 

g 

"'-1 
.w'F . 

Alternatively the second relation can be written as 

(7.18) 

(7.19) 

(7.20) 

It is quite obvious that {7.18) is not compatible with the coproduct, i.e. g should 

not be considered a "group element". I _will not give a complete proof of the con-

sistency of the anti-involution with the algebra relations (7.2)(7.3)(7.4). Instead I 

will just give a sample computation leaving the rest for the interested reader. 

Applying the involution on the R+ relation (7.2) and using (7.15) we have 

Moving the R_ matrices to the other side and using (7.1) we obtain 

thus it is consistent with the algebra relations (7.2) to impose gt =g. 
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As another example, take the hermitian conjugate of the following relation 

(7.21) 

Using (7.19) we obtain 

which can be rewritten after multiplication by some inverse matrices as 

This is just one of the equations in (7.14). 

Similarly applying the above involution on the first relation in (7.4) we obtain 

This is equivalent using (7.1) and (7.5) to 

and after eliminating g using (7.13) we get 

Furthermore using (7.14) to commute the 2: matrices we have 
I 
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and since 0 and 'E commute with each other we finally obtain 

which is again one of the relations in (7.14). All the other relations can be checked 

in a similar fashion. 

Finally I will explain the terminology used in the title of this section. Consider 

first for simplicity the SL(2, C) case. In the undeformed case a 2 x 2 hermitian 

matrix of unit determinant defines the unit mass hyperboloid in Minkowski space. 

For simplicity I will only consider one connected component of the manifold, for 

example the future mass hyperboloid. For a general group G this can be achieved 

by restricting to positive definite matrices. In the deformed . case we consider 

Hermitian matrices g of unit quantum determinant. 

7.4 Quantum Mechanics on the q-Deformed Hyperboloid 

In [3] Alekseev and Faddeev showed that the T*Gq quantum algebra is a q-

deformation of the algebra of functions on the cotangent bundle of the Lie group 

G. In [5] they considered the following simple Lagrangian written in first order 

formalism 

(7.22) 

Here G is considered without specifying its real form. The Lagrangian has a chiral 

symmetry G x G 
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The second order form of the Lagrangian has the form of a non-linear sigma model 

in (0, 1) dimensions 

(7.23) 

The equations of motion 

g = wg, w = 0 

can be integrated to give the time evolution 

w(t) w(O) 

g(t) exp(wt) g(O). 

The real form corresponding to the compact group discussed in [5] is 

(7.24) 

For G = 8L(2, C), g becomes unitary and the Lagrangian (7.22) describes the 

classical dynamics of the symmetric top. Equivalently, it describes the motion 

on a constant curvature 83 . This can be seen using the chiral symmetry (7.4) of 

the Lagrangian, which under the conditions (7.24) is restricted to the 8U(2) x 

8U(2) rv 80(4) subgroup, or by direct computation of the metric in the kinetic 

term of (7.23). 

Instead, we consider the following reality structure 

(7.25) 

which, following the discussion at the end of the previous section, defines the phase 

space of a particle moving on the mass-hyperboloid. The reality structure (7.25) 
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requires ut = v- 1 thus restricting the chiral symmetry of the Lagrangian to one 

independent SL(2, C) subgroup which is simply the Lorentz group that leaves the 

mass hyperboloid invariant. The metric, on the hyperboloid is just the induced 

metric from Minkowski space, and again this can be obtained by direct computa­

tion or using the above invariance under the Lorentz group. 

One can check that the equations of motion preserve both reality struc­

tures (7.24) and (7.25). What we learn from this simple example is that one 

can find rather different physical systems that will have the same Poisson brackets 

and thus quantum algebras if their respective Lagrangians have the same form, 

differing only through their reality structures. 

In [5] a q-deformation of the above system was introduced. The· model has 

a discrete time dynamics, with the time labelled by an integer n. The following 

evolution equations 

O(n) 0(0) (7.26) 

were shown in [5] to preserve the quantum algebra (7.2)(7.3)(7.4) and in addition, 

the reality structure discussed in Section 7.2. 

I will now show that they also preserve the reality structure introduced in 

Section 7.3. Assuming that for n = 0 the reality structure is given by (7.18) 

and (7.20) 
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for arbitrary n we have 

Similarly we have for O(n) 

Thus the equations of motion (7.26) and the reality structure of the previous 

Section define the q-deformation of the dynamics of a particle on the unit mass 

hyperboloid. 

7.5 Lattice regularized WZNW-model 

I conclude by briefly applying the reality structure to the lattice regularized 

WZNW-model and checking its compatibility with periodic boundary conditions. 

Using the notation in [2] let the lattice have N points, and denote the local fields 

by gi, i = 1 ... N. For periodic boundary conditions we identify i and i + N. Let 

ML and MR be the monodromies of the left and right affine currents. The algebra 

satisfied by (g, ML, MR) is exactly the algebra ofT*Gq for the generators (g, n, I:). 

Here I used the remark of the previous Section that the compact and non-compact 

WZNW-models have the same algebra since their respective Lagrangians coincide. 

The monodromies can be used to relate the fields g0 and g N 

135 



If we require g6 = g0 , Ml = MR, which is just the reality structure of Section 7.3, 

we have 

t (M-l)t Mt M-1 M gN = R go L = L go R = g_N = gN. 

In the last step I used the lattice periodicity. Thus we see that the reality structure 

is compatible with periodic boundary conditions. 
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Appendix A 

Chiral Spinor Representations of SO(d, d !Z) 

In the first part of this appendix it will be shown that the Weyl spinor repre­

sentations of SO(d, d IZ) are integral, i.e. have matrix elements which are integers. 

In the final part, it is proven that for d = 3 the Weyl spinor representation is in 

fact isomorphic to SL(4, Z). 

The gamma matrices obeying (2.47), where the metric has the form (2.45), 

are already, up to normalization, the standard creation and annihilation operators 

used to generate the Fock space for Dirac spinors in the Weyl basis.· These are 

defined as 

lblletter/ and satisfy the canonical anti-commutation relations 

As usual, the Dirac spinor and vector representations are related through for­

mula (2.46) in the main text 

To prove that the Weyl spinor representations are integral I will use a theorem 

presented in [68] where it was shown that the whole group SO(d, d IZ) is generated 
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by a special subset of group elements. An explicit construction of the Weyl spinor 

representation matrices corresponding to the group elements in that subset is given 

and shown to be integral. The subset contains three types of elements. The first 

type are generators of the form 

( 
Id n )·, nT = -n . 
0 Id 

(A.1) 

The second type of generators forming a SL(d, Z) x Z2 subgroup have the form 

( 
R 

0 
) det R = ± 1. 

0 Rr-1 ' 
(A.2) 

These are the T-duality generators corresponding to a change of basis of the of 

the compactification lattice. 

The final generator is given by 

0 1 

0 1 

1 0 
(A.3) 

1 0 

It corresponds to T-duality along the x1 and x 2 coordinates. The full duality 

group is in fact O(d, d IZ) but here. I will only consider its restriction to SO(d, d IZ) 

which is the subgroup that does not exchange Type IIA and liB. The full T-

duality group is then obtained by adding to the above list one more generator 

corresponding to T-duality in a single direction. 

Using (2.46) one can check that the Dirac spinor representation corresponding 
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to the first type of generator (A.l) is 

(A.4) 

This has a finite expansion and is manifestly integer valued in the standard Fock 

space basis obtained by acting with the creation operators on a vacuum state. 

One can prove that the full SL(d, Z) group is generated by its SL(2, Z)ij sub-

groups acting on the xi and xi coordinates. One can use this to find the spinor rep-

resentation matrices corresponding to generators of the second type (A.2). Since 

each SL(2, Z)ij is generated by its Tii and Sij transformations, which in the (ij) 

subspace where i < j have the form 

it is enough to find the spinor matrices for these generators. The spinor represen-

tation of Iii is given by 

(A.5) 

The exponential (A.5) has a finite expansion and its matrix elements are integer 

valued. Similarly the spinor representation of Sii is given by 

7f t t exp(-(a ·a·- a·a ·)) 2 J t t J 0 

(A.6) 

Let us define A = a}ai - a! ai for fixed values of i and j. In terms of number 

operators Ni = a!ai we have A2
- -Ni- Ni + 2NiNj. Since Ni can be either zero 

or one, A2 is zero or minus one. The Fock space can be split into a direct sum 

of two subspaces, defined by the eigenvalues of A2 . On the subspace defined by 
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A2 = 0, one also has A = 0 and thus the spinor representation (A.6) reduces to 

the identity. On the subspace defined by A2 = -1, the exponential can be written 

as cos(7r/2) + Asin(7r/2) =A. On both subspaces, the representation matrix of 

the transformation is integer valued. A formula for the spinor representation of 

the Sii generators which is valid on both subspaces is given by, 1 +A+ A2• The 

second type of generator (A.2) also contains elements with det R = -1. A spinor 

transformation corresponding to such a generator is given by 

(A.7) 

Finally, the generator (A.3) has the spinor representation 

(A.8) 

It has a finite expansion given by (a1 - at)(a2 - a~), which can be obtained usipg 

((a1 - at)(a2 - a~)) 2 = -1, and in this form it is manifestly integral. 

Since the Fock space basis used splits into two subsets of definite chirality, it 

follows that the Weyl spinor representations of SO(d, d IZ) are also integral. 

In the remainder of the appendix it is shown that the Weyl spinor repre-

sentation of S0(3, 3IZ) is isomorphic to S£(4, Z). First note that for the Lie 

algebra corresponding to the continuous Lie groups we have the equivalence 

so(3, 3IR) ~ sl(4, R). The spinor representation of the first group is isomor-

phic to the fundamental of the second. Since in the first part of the appendix it 

was shown that the spinor representations are integral it is reasonable to expect 

that they form a subgroup of S£(4, Z). In fact I will show that they are isomorphic 

140 



to the whole SL(4, Z) group. 

One can represent the Weyl spinor state njO) + ~Mija!a}IO) as the column 

(A.9) 

Using operators of the form (A.5) and (A.6) one generates an SL(3, Z) subgroup 

of the form 

(A.lO) 

where R is the same matrix appearing in (A.2). I will now show that the Weyl 

spinor representation also contains SL(2, Zhi subgroups which act on the first and 

the i + 1 entries of the column spinor (A.9). These subgroups together with (A.10) 

generate the entire SL(4, Z) group. The T-duality generator (A.8), denoted below 

Let us also consider a transformation G given by 

G= 

1 0 0 0 

0 1 0 0 

0 0 a b 

0 0 c d 

ad- be= 1, 

which is an element of an SL(2, Z) subgroup of elements of the form (A.10). By 
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conjugating G with the T12 generator 

d c 0 0 

T1-:}GTl2 = b a 0 0 
(A.ll) 

0 0 1 0 

0 0 0 1 

one finds an SL(2, Zh2 transformation acting on the first and second entries. 

All the other SL(2, Zhi subgroups can be obtained by conjugating (A.ll) with 

elements of the form (A.10). Thus we have found Weyl spinor representations 

generating the entire S L( 4, Z) group~ In fact the representation is isomorphic to 

SL(4, Z) since all the spinor representation matrices (A.4), (A.5), (A.6), (A.7) and 

(A.8) are integral and have unit determinant. 
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Appendix B 

Duality Invariants at Small Compactification 

Volume 

This Appendix contains some mathematical results regarding the spinor rep-

resentation of the T-duality group and duality invariant quantities in the small 

volume limit. The group SO( d, d) is the group of 2d-dimensional matrices A sat-

isfying AJ AT = J where J is a matrix with the block form 

J=(~ ~)· 
It will be useful to know how to calculate the Weyl spinor representation matrix 

of an S0(3, 3) group element A with the block form 

First note that if A is invertible A has a block Gauss decomposition 

( 
1 0 ) ( A 0 ) ( 1 A-

1
B ) 

A= CA-1 1 0 A-T 0 1 ' 
(B.1) 

where one can show using the group relations that CA-1 and A-1B are antisym-

metric. This decomposition is in fact true for generic SO(d, d) matrices. Ford= 3 

one can give the explicit spinor representation matrices for each factor in (B) thus 
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obtaining the spinor representation of a generic S0(3, 3) matrix A 

S = ( 1 0) ( detA
112 

*(cA- 1
) 1 o 

(B.2) 

The star denotes the duality operator. When acting on antisymmetric 3-

dimensional square matrices it gives the dual column matrix. 

Invariants can be constructed using two column matrices transforming in the 

vector representation of SO(d, d IZ) and the symmetric SO(d, d IZ) matrix M 

In the limit when G goes to zero, using the block Gauss decomposition of M 

(B.3) 

and after identifying B with 8 one obtains the following invariant1 

(r- 8sfG-1(u- 8v). 

Using the transformation of G under the duality group (1.12) one can write the 

transformation of u - ev 

(u- f>v) = (C8 + V)-T(u- 8v). (~.4) 

The spinor representation matrix of M can be calculated using (B.2) 

S(M) = ( 1 0) ( detG-
112 

b 1 0 

1To obtain a finite result, one should insert appropriate factors of a' in (B.3) and also take 

a' to zero as discussed in the Introduction. 
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Then one can also form the invariants r{ S ( M) x using two chiral spinors 

Xo 'TJo 

X1 'T/1 
x= , TJ= 

X2 'T/2 

Xa 'T/3 

In the limit of vanishing G, the invariant becomes 

(B.5) 

From (B.5) one obtains the following transformation law 

One can also check the relations (B.4) and (B.6) directly using the transforma-

tions (1.11) of e. 

Given two chiral spinors x and 'TJ first write them as Dirac spinors 

Then using the same definition for ai and a! as in Appendix A one can form the 

S0(3, 3JZ) vector 

(B.7) 

where fJD = 1JtT. Here Tis a matrix acting on Dirac spinors and plays the same 

role as 'Yo when one forms barred spinors in Minkowski space. It is given by 

I Writing out all the spinor components in (B. 7) one has 

(B.8) 
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Then u- 8v transforms as in (B.4) under the duality group. Such an expression, 

involving two chiral spinors and e, is used in the main text. 
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Appendix C 

Dual Quantum Groups and Universal 

Enveloping Algebras 

Here we list some relations defining the quantum group Funq(SU(2)*) and 

discuss its relation to Uq(su(2)) [28, 30, 88]. We only discuss the algebra and 

ignore all other issues. The quantum group Funq(SU(2)*) is a factorizable quasi-

triangular Hopf algebra. rAs an algebra it is generated by triangular matrices L± 

satisfying quantum commutation relations 

(C.1) 

where 

q 0 0· 0 q-1 0 0 0 

R+ = q-112 
0 1 .-\ 0 , R_ = q1;2 

0 1 0 0 

0 0 1 0 0 -.-\ 1 0 

0 0 0 q 0 0 0 q-1 

The universal enveloping algebra Uq(su(2)) is a quasi-triangular Hopf algebra. It 

has generators H, X± which satisfy the Jimbo-Drinfeld relations 

(C.2) 
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In [30] it was shown that these two Hopf algebras are isomorphic. The isomorphism 

is given by 

+ L- = 
q-1/2 >.X ) ( q. H/2 0 ) 

qH/2 ' -ql/2 ).X_ q-H/2 . 
(C.3) 

As in the classical case we can define the matrix L = ( L-) -l L +. It satisfies the 

following equation: 

(C.4) 

.as can be checked using (6.22). 

In the Classical limit we definer± matrices by R± = 1 + hr ± + O(h2
). Then 

· and we obtain the following Poisson structure 

This is just the original Poisson bracket (6.6) which was the starting point for the 

path integral quantization. 
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