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Abstract 
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Kexing Jing 
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1 

In Part I, fission excitation functions of osmium isotopes 185
•
186

•
187

•
1890s pro­

duced in 3 He + 182•183•184•186W reactions, and of polonium isotopes 209
•
210

•
211

•
212Po 

produceq in 3 Hej4He + 206•
207

•208Pb reactions, were measured with high precision. 

These excitation functions have been analyzed in detail based upon the transition 

state formalism. The fission barriers, and shell effects for the corresponding nuclei 

are extracted from the detailed analyses. 

A novel approach has been developed to determine upper limits of the tran­

sient time of the fission process. The upper limits are constrained by the fission 

probabilities of neighboring isotopes. The upper limits for the transient time set 

with this new method are 15 x 10-21 sec and 25 x 10-21 sec for Os and Po compound 
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nuclei, respectively.· 

In Part II, we report on a search for evidence of the optical modulations in 

the energy spectra of alpha particles emitted from hot compound nuclei. The optical 

modulations are expected to arise from the a-particle interaction with the rest of 

the nucleus as the particle prepares to exit. Some evidence for the modulations has 

been observed in the alpha spectra measured in the 3He-induced reactions, 3He + 

nat Ag in particular. The identification of the modulations involves a technique that 

substracts the bulk statistical background from .the measured alpha spectra, in order 

for the modulations to become visible in the residuals. Due to insufficient knowledge 

of the background spectra, however, the presented evidence should only be regarded 

as preliminary and tentative. 



.. ··._ 

lll 

/ 

To YI 

;.·. 



IV 

Contents 

List of Figures Vl 

List of Tables lX 

I Fission Probabilities, Fission Barriers, and Shell Effects 1 

1 Introduction 2 
1.1 Transition State Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Extraction of Fission Barriers and Shell Effects from Fission Excitation 

Functions .............. . 
1.3 Scaling Laws in Fission Probabilities 
1.4 Transient Time of Fission Process 
1.5 First Chance Fission Probabilities 
1.6 Goals of the Project ....... . 

8 
15 
19 
22 
24 

2 Measurement of Fission Excitation Functions for Os and Po Isotopes 25 
2.1 Experiment . . . . . . 26 
2.2 Fission Cross Sections . . . . . . 30 

3 Fission Barriers and Shell Effects 41 
3.1 Formation Cross Sections of the Fissioning Nuclei . 42 
3.2 Fission Barriers . . . . . . . . . . . . . . . . . . . . 48 
3.3 Shell Effects . . . . . . . . . . . . . . . . . . . . . . 58 
3.4 Simultaneous Determination of the Fission Barrier and the Shell Effect . 67 
3.5 From Fission Cross Sections to Fusion Cross Sections . 83 
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 86 

4 Dynamic Fission Time Scale 
4.1 Method .......... . 
4.2 Upper Limits of Fission Transient Times for Os and Po Isotopes . 
4.3 Simulation of Transient Time Effects on Total Fission Probabilities 
4.4 Resetting the Decay Clock at Each Step in the Decay Chain . . . . 

88 
89 
92 
97 

101 



4.5 Fi:r:st Chance Fission Probabilities 
4.6 Summary . . . . . . . . . . . . . . 

II Particle Structure Functions 

5 Introduction 
5.1 Particle Structure Functions . 
5.2 Inverse Cross Section . . . . . . . . . . . . . . 
5.3 Shape Polarization and Evaporation Spectra. 

v 

102 
105 

106 

107 
108 
112 
113 

6 Measurement of Particle Spectra 117 

7 Tentative Evidence for Particle Structures in Alpha Spectra 123 
7.1 A Transition State Formalism for Evaporation Spectra . . . . . . 124 
7.2 Smooth Fit of Alpha Spectra, and Modulation in Residuals . . . 126 

7.2.1 Extracted parameters, and Systematics of Coulomb Barriers for 
Alpha Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

7.3 Orthogonal Polynomials Representation of Modulations in Alpha Spectra 141 
7.4 An Alternative Approach 150 
7.5 Conclusion . . . . . . . . 152 

Bibliography 153 

A Generalized Strutinski Smoothing Procedure 159 

B Orthogonal Polynomials Analysis and a C++ Code 163 
B.1 Generation of Orthogonal Polynomials for An Arbitrary Weight Function 164 
B.2 Orthogonal Polynomials Representation of Structural Modulations in 

Alpha-Particle Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
B.3 A C++ Code that Implements the Polynomials Analysis Procedure . . 167 



vi 

List of Figures 

1.1 Schematic illustration of how the level density is affected by the shell effects 
of a nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

1.2 Figure illustrating the effect of pairing on the level density . . . . . . . . . . 12 
1.3 The shell effects obtained from the fission excitation functions versus the 

corresponding values determined from the ground state masses . . . . . . . 14 
1.4 The scaling law in fission.probabilities . . . . . . . . . . . . . . . . . . . . . 18 
1.5 Schematic illustration of the transient time effects on the fission decay width 20 

2.1 A photograph of the experimental setup . . . . . . . . . . . . . . . . . . . . 28 
2.2 The fission excitation functions for four Os isotopes produced in the 3 He + 

W reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
2.3 The fission excitation functions for the Po isotopes produced in the 3 Hej4He 

+ Pb reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
2.4 The ratios of the fission cross sections d'j for the 3 Hej4He-induced fission 

on natpb as synthesized from data for individual isotopes and a f measured 
with a natural lead target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

2.5 The ratios of the fission cross sections a f for the 3 He-induced fission on 
natw as synthesized from data for individual isotopes and a f measured with 
a natural tungsten target . . . . . . . . . . . . . . . . . . . . 39 

3.1 Calculated fusion cross sections for the 3 He + 184W reaction. 44 
3.2 Calculated fusion cross sections for the 3 He + 207Pb reaction 45 
3.3 Calculated fusion cross sections for the 4 He + 207Pb reaction 46 
3.4 The fits to the fission excitation functions for the Os nuclei produced in the 

3 He + W reactions, with Bj and a f I an as free parameters . . . . . . . . . . 52 
3.5 The fits to the fission excitation functions for the Po nuclei produced in the 

3 He + Pb reactions, with Bj and a f I an as free para:rrieters . . . . . . . . . 53 
3.6 The fits to the fission excitation functions for the Po nuclei produced in the 

4 He + Pb reactions, with Bj and af I an as free parameters . . . . . . . . . 54 
3. 7 The fits to the fission excitation functions for the Os nuclei produced in the 

3He + W reactions, with b.~h~~~ and a f /an as free parameters . . . . . . . . 63 



vii 

3.8 The fits to the fission excitation functions for the Po nuclei produced in the 
3He + Pb reactions, with b..~h~~~ and a 1 I an as free parameters . . . . . . . . 64 

3.9 The fits to the fission excitation functions for the Po nuclei produced in the 
4He + · Pb reactions, with b..~h~~~ and a 1 I an as free parameters . . . . . . . . 65 

3.10 The fits to the fission excitation functions for the Po nuclei produced in the 
4He + Pb reactions, with Bj, b.;'h~t1 and a1lan as free parameters. . . . . . 70 

3.11 The fits to the fission excitation functions for the Po nuclei produced in the 
3He + Pb reactions, with Bj, b..~h~~~ and a 1 I an as free parameters . . . . . . 73 

3.12 The fits to the fission excitation functions for the Os nuclei produced in the 
3He + W reactions, with Bj, b..~h~~~ and allan as free parameters . . . . . . 77 

3.13 The fusion cross sections for the 3 He + Pb reactions obtained by comparing 
the fission cross sections of the same compound nudei produced in both the 
3 He- and 4 He-induced reactions, given the fusion cross sections for the 4 He 
entrance channels as the Bass model prediction . . . . . . . . . . . . . . . . 85 

4.1 The simplest assumption for the transient time effects on fission decay rate 90 
4.2 The upper limits of the transient times determined from the fission proba­

bilities of neighboring Os isotopes . . . . . . . . . . . . . . . . . . . . . . . . 94 
4.3 The upper limits of the transient times determined from the fission proba­

bilities of neighboring Po isotopes . . . . . . . . . . . . . . . . . . . . . . . . 95 
4.4 A comparison of the experimental total fission probabilities with the total 

fission probabilities calculated for a series of assumed transient times 100 

5.1 Schematic drawing of the states of a particle in a potential well . . . 109 
5.2 An optical model· calculation with reduced imaginary part of the optical 

potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
5.3 Normal modes at the saddle point, and the total potential energy and the 

Coulomb energy as a function of the shape CC'ordinate . . . . . . . . . . . . 114 

6.1 The energy spectrum of a-particles emitted from the 3 He + nat Agreaction 
at 65 MeV beam energy . . . . . . · . . . . . . . . . . . . . . . ·. . . . . . . . 121 

7.1 The fit with Equation 7.3 to the a-particle energy spectrum shown in Fig-
ure 6.1, and the percentage difference between the fit and the spectrum . . 128 

7.2 The fits with Equation 7.3 to the energy spectra of a-particles emitted from 
the 3 He + natAg reactions at 55, 65, 75, 85, 95, 110 MeV beam energies, 
and the percentage differences between the fits and the spectra . . . . . . . 130 

7.3 The fits with Equation 7.3 to the energy spectra of a-particles emitted from 
the 3 He + 197 Au reactions at 75, 85, 95, 110 MeV beam energies, and the 
percentage differences between the fits and the spectra . . . . . . . . . . . . 131 

7.4 The values of the Coulomb barrier V8oul' the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits to the 
a-particle energy spectra for the 3 He + nat Ag reactions . . . . . . . . . . . 135 



7.5 The values of the Coulomb barrier V8oul• the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits to the 

t . 1 t ~ th 3 H + 197A t" a-par ICe energy spec ra 10r e e u reac Ions .......... . 
7.6 The values of the Coulomb barrier V8oul• the temperature T of the residual 

nucleus and the amplification parameter p, extracted from the fits to the 
t . 1 t ~ th 3 H + 181 T t" a-par 1c e energy spec ra 10r e e a reac wns ........... . 

7.7 The values of the Coulomb barrier V8oul• the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits to the 
a-particle energy spectra for the 3 He + natcu reactions .......... . 

7.8 The systematics of the Coulomb barriers V8oul for a-particle evaporations . 
. 7.9 The extracted values of the amplification parameter pare plotted versus the 

atomic number ZeN of the nucleus from which a-particle is emitted 
7.10 The orthogonal polynomials representation of both the a-particle energy 

spectrum and the residual of the fit for the 3 He + natAg reaction at 65 MeV 
beam energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.11 The orthogonal polynomials representation of both the a-particle energy 
spectra and the residuals of the fits, for the 3 He + nat Ag reactions at 55, 65, 
75, 85, 95, 110 MeV beam energies . . . . . . . . . . . . . . . . . . . . . . . 

7.12 The strength Sn for a mode in the a-particle spectra corresponding to the 
nth order polynomial is plotted versus n for the 3 He + nat Ag reactions . . . 

7.13 The orthogonal polynomials representation of both the a-particle energy 
spectra and the residuals of the fits, for the 3 He + 197 Au reactions at 75, 
85, 95, 110 MeV beam energies ........................ . 

7.14 The strength Sn for a mode in the a-particle spectra corresponding to the 
nth order polynomial is plotted versus n for the 3 He + 197 Au reactions ... 

viii 

136 

137 

138 
139 

141 

144 

146 

147 

148 

149 



IX 

List of Tables 

2.1 Thicknesses and isotopic purities of the targets . . . . . . . . . . . . . . . . 26 
2.2 The measured fission cross sections a f for the Os isotopes produced in the 

3 He + W reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
2.3 The measured fission cross sections a f for the Po isotopes produced in the 

3He + Pb reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · . 35 
2.4 The measured fission cross sections a f for the Po isotopes produced in the 

4 He + Pb reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3.1 The values of Bj and a f I an for the Os and Po isotopes extracted from the 
fits with ~shell fixed with Moller's values . . . . . . . . . . . . . . . . . . . . 55 

3.2 The values of ~~h~1 and a f I an for the Os and Po isotopes extracted from 
the fits with the fission barriers Bj as a fixed parameter . . . . . . . . . . . 66 

3.3 The values of Bj, ~~h~1 and aJian, for the Po isotopes produced in the 4 He 
+ Pb reactions, obtained from the fits with all three as free parameters 71 

3.4 The values of Bj, ~~h~1 and ail an, for the Po isotopes produced in the 3 He 
+ Pb reactions, obtained from the fits with all three as free parameters 7 4 

3.5 The values of Bj, ~:1.~1 and aJian, for the Os isotopes produced in the 3 He 
+ W reactions, obtained from the fits with all three as free parameters . 78 



X 

Acknowledgements 

I want first to thank Professor Stanl~y Prussin, for taking me as his student, 

for his encouragements and his having confidence in me that made my school years 

a very pleasant experience. 

I am greatly indebted to Professor Luciano Moretto, for his guidance. His 

insights inspired the entire work. Without his insistence, the part II of this thesis 

would not have come to be. 

I owe special thanks to Dr. Gordon Wozniak, for his support and hospitality. 

I have learned a great deal from him, from his thoroughness, patience, and expertise. 

I also appreciate the financial support, provided through Moretto/Wozniak group, 

that facilitated my study in engineering. 

Dr. Thorsten Rubehn deserves special mention. He played a major role in 

the fission experiments. The fission excitation functions reported and analyzed in 

this thesis are largely his. He also performed the Optical model calculations. 

It has been a great pleasure to work with Dr. Larry Phair. His many helps 

are deeply appreciated. 

This work was supported by the Director, Office of the Energy Research, 

Office of High Energy and Nuclear Physics, of the US Department of Energy under 

Contract No. DE-AC03-76SF00098. 



Part I 

Fission Probabilities, 

Fission Barriers, 

and Shell Effects 

1 



2 

Chapter 1 

Introduction 

A nucleus behaves very much like a liquid drop. A hot nuclear droplet, 

heated through mechanisms such as compound nucleus formation, will cool itself 

by either evaporating light particles, or changing its shape and managing to split 

into two smaller droplets of complementary sizes. The latter process, called nuclear 

fission, is the main theme of this thesis. 

The most probable paths a nucleus may take on the way to fission pass 

over a saddle point in its potential energy surface. The rate for fission to occur is 

detei·mined at the saddle point and is controlled by its height. The fission barrier, 

defined as the saddle point height, thus plays a central role in understanding fission 

probabilities. The experimental studies of fission probabilities in turn provide us the 

means to determine the fission barrier. 

For a relatively heavy nucleus (lead or heavier) of low-to-moderate excitation 

energy, fission occurs nearly symmetrically and the two fission fragments are of more 



3 

or less equal size, making fission an apparently distinct process from light particle 

emission. The fission process, in this case, can be characterized approximately by a 

single fission barrier. 

In general, however, a nucleus can split into a pair of complementary frag­

ments of any mass asymmetry, ranging from very symmetric, such as in fission in its 

conventional sense, to very asymmetric such as in particle emission. The decay of 

hot nuclei in the mass region A"' 100 that gives rise to intermediate mass fragments 

(or complex fragments) exemplifies this general picture. Each mass or charge emis­

sion can be associated with a conditional saddle (or barrier) with the Constraint of 

a fixed mass asymmetry. The locus of all such conditional saddles defines the ridge 

line in the potential energy surface of a nucleus [More 75]. This ridge line controls 

the emission of complex fragments, and can be measured with techniques similar to 

those used to determine fission barriers. 

1.1 Transition State Formalism 

The fission rate is often calculated with transition state theory, which was 

first introduced into chemistry to estimate chemical reaction rates [Wign 38], and 

was subsequently applied by Bohr and Wheeler to calculate fission probabilities [Bohr 

39]. In this approach, the reaction rate is equated to the total flux of phase space tra­

jectories across a dividing surface (a hyperplane) normal to the reaction coordinate. 

This dividing surface, or the transition state, separates reactants from products, and 
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is conventionally located at a saddle point between the reactant and the product 

region in the potential energy surface of the reacting system. The transition state 

theory assumes that any phase space trajectory crossing the dividing surface will 

not find its way back and recross it. The transition titate rate is exact only if no 

trajectory of a given energy crosses the dividing surface more than once. Therefore 

the transition state location should be so chosen as to minimize the number of phase 

space trajectories doubling back across the dividing surface. 

In the case of fission, the reaction (fission) coordinate can be considered as 

the deformation coordinate at the saddle point. The fission process can be envisioned 

as the evolution of the shape of a nucleus from its ground state shape to the saddle 

point shape, and finally to the scission point where the two halves of the nucleus 

dissociate into two fission fragments. At the saddle point, the number of all configu­

rations the system can.possibly reach becomes minimum, due to the minimization of 

internal (thermal) energy available to the system.· In other words, the saddle point 

in the potential energy surface corresponds to a bottleneck in phase space. 

To determine the fission probability, we consider an ensemble of nuclei, all 

having excitation energies between E and E + dE. The number of nuclei will be 

chosen to be exactly equal to the number p( E) dE of levels in this energy interval, so 

that there is one nucleus in each state. Let A f ( =f f /1i) be the fission probability per 

unit time. Then the number of nuclei which fission per unit time will be p(E) dE·AJ = 

p(E) dE· (f f /1i ). This number will be equal to the number of nuclei in the transition 

state which pass outward over the fission barrier B1 per unit time. In a unit distance 
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in the direction of fission there will be (dpjh) Ps(E- Bf- c:) dE quantum states for 

which the momentum p and the kinetic energy E associated with fission have values 

in the intervals dp and de: = v dp, respectively. Here dpj h is the number of states 

corresponding to the phase space volume in a unit distance in the fission degree of 

freedom. Ps is the density of those levels of the compound nucleus in the transition 

state (the saddle) which arise from excitation of a:ll degrees of freedom other than 

the fission itself. At the initial time we have one nucleus in each of the quantum 

states, and consequently the number of fissions per unit time will be [Bohr 39] 

r 1 j vdp j 1 p(E) dE· T =dE h Ps(E- Bf- c)= dE Ps(E- Bf- c) de· h = dEN8 jh, 

(1.1) 

where Ns = j Ps(E- Bf- c) de: is the total number of levels in the transition state 

available with given excitation. Then we have 

(1.2) 

Expanding the logarithm of the level density Ps around (E- Bf ): Ps(E- Bf- c:) 

~ Ps(E- Bf) exp( -&[lnp8 (x)JI&xiE-'Bt · c:), and integrating over E, one obtains the 

approximate expression for the fission decay width 

(1.3) 

where Ts is the energy dependent nuclear temperature at the saddle point and 1/Ts = 

&[ln Ps(x )]/ &xiE-Br 

For the one dimensional case, in which the only degree of freedom treated 
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explicitly is the reaction coordinate, the decay width takes the form [More 74] 

(1.4) 

where T is temperature of the compound nucleus. The quantity liw is the oscillator 

phonon associated with the ground state minimum. In this simplest formulation, 

one can read the reaction rate in terms of its two factors: the frequency w which 

gives the free rate of assault on the barrier and the Boltzmann factor which gives 

the probability per assault of making it over the barrier. 

This simple and elegant formalism has been successful in many subfields of 

physics and chemistry, and has become the standard approach to interpret the exci-

tation functions of many physical and chemical processes which require overcoming 

a potential barrier. 

Recent literature, however, provides extensive claims for the failure of transi-

tion state rates to account for the amounts of pre-scission neutrons, charged particles, 

or 1-rays measured in relatively heavy fissioning systems. These claims prompted 

our attempts to justify the validity of the transition-state method, and/or to identify 

regimes in which deviations might be expected. Our attempt in this regard lead to 

the discovery of a universal scaling law in fission probabilities. 

The width for neutron emission which competes very effectively with fission 

and often dominates the decay process, can also be derived in a very simple form. 

The Weisskopf formalism [Weis 37] given in the following was derived by taking 

the transition state to be a spherical shell of unit thickness just outside the nuclear 
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surface 47r R2
• The number of quantum states which lie in the transition region and 

for which the neutron momentum lies in the range p top+ dp and in the solid angle 

dO will be 

(1.5) . 

where Bn is the neutron separation energy and p( E ~ Bn -c) is the level density of 

the residual nucleus after emission of a neutron with kinetic energy c. g' is the spin 

factor (g' = 2). We multiply this by the normal velocity vcosO = (dc:jdp)cosO and 

integrate over n, obtaining the phase space flux passing through the transition state 

( 1.6) 

where m denotes the neutron mass. This is the number of neutron emissions occur-

ring per unit time that is to be indentified with p(E)dE ·An= p(E)dE · (fn(n). 

Therefore we have for the probability of neutron emission, expressed in energy units, 

· 2mR2g' 1 j 
f n = n2 21rp(E) c: p(E- Bn- c:) de:. (1. 7) 

Expanding the logarithm of the level density p around (E- Bn): p(E- Bn - c:) 

~ p(E- Bn) exp(-8[lnp(x)]/8xiE-Bn ·c) and integrating over c:, one obtains the 

approximate expression for the neutron decay width 

(1.8) 

where Tn is the tempe~ature of the residual nucleus after neutron emission defined 
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More sophisticated formalisms such as the Hauser- Feshbach formalism [Haus 

52] could also be used to evaluate the neutron width. The Hauser-Feshbach formal-

isrri, however, necessarily introduces additional unknowns - the transmission coeffi-

cients Te which have to be calculated with specific models. The Weisskopf formalism, 

on the other hand, emphasizes phase space, and is therefore less model specific. In 

both the Weisskopf and the Hauser-Feshbach formalisms, the common (dominant) 

factor is the same, i.e., the level density of the residual nucleus afte! a neutron emis-

sion. For simplicity and transparency we choose to use the Weisskopf formalism in 

our analysis of the fission excitation functions. 

1.2 Extraction of Fission Barriers and Shell Effects from 

Fission Excitation Functions 

As can be seen m Eq. 1.3, the fission barrier B1 controls the fission de-

cay width, especially at low energies. Thus a detailed study of the experimentally 

measured fission cross sections as a function of excitation energy should allow us to 

determine the fission barriers. 

Taking into account the angular momentum a fissioning nucleus may have, 

the fission decay width can be rewritten as 

(1.9) 

where E: and E~s denote the rotational energy of the system at the saddle point 

and the energy of the rotating ground state relative to the non-rotating macroscopic 
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sphere. Accordingly, the width for neutron emission can be rewritten as 

(1.10) 

Using for simplicity the Fermi gas level density 

p(E) ex exp(2v'a£), (1.11) 

where a is the level density parameter, f f and f n can then be evaluated readily. In 

particular, by integrating directly Eqs. 1.2 & 1.7, one obtains for fJ/fn: 

(1.12) 

or more explicitly: 

(1.13) 

where a1 and an denote the level density parameter at the saddle and the level density 

parameter for the residual nucleus after neutron emission, respectively. 

For nuclei with strong shell effects (nuclei in the lead region, for example), 

however, the approximation p(E-Bn-E!s) ex exp (2)an(E- Bn- Er)) becomes a 

· poor one. The shell effects of a nucleus affect its level density in a rather complicated 

way at very low energies. At excitation energies of a few MeV or more above the 

shell effects ~sh·, however, the level density assumes its asymptotic form p(E) ex 

exp(2)an(E- ~sh)) [Rose 57, Huiz 72]. This is shown schematically in Fig. 1.1, 
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E 
Figure 1.1: The logarithm of the level density ln p is plotted, schematically, versus the 
internal excitation energy E, for a nucleus with shell effects ~sh· 

where the logarithm of the level density lnp(E) for a nucleus with shell effects ~sh is 

plotted versus the internal excitation energy E. For the daughter nucleus produced 

by neutron emission from a nucleus in the lead region, when the excitation energy 

of the daughter nucleus is greater than 15-20 MeV, the level density thus takes the 

asymptotic form: 

(1.14) 

where ~;h~~l is the ground state shell effect of the daughter nucleus after neutron 

emission. For the level density at the saddle point Ps, the problems should be far less 

serious. On the one hand, the large deformations at the saddle point imply small 
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shell effects. On the other hand, by its nature the saddle locates itself in between 

maxima and minima in the potential energy surface. 

The pairing effects of a nucleus also affect its level density, in a manner 

similar to that with which the shell effects affect the level density. In Fig. 1.2, the 

logarithm of the level density is plotted schematically versus the internal excitation 

energy for a nucleus of pairing condensation energy !:lEe. For an even-even nucleus, 

1 1 
!:lEe = 2g!:l6; and for an odd A nucleus, !:lEe = 2g!:l6 - t:lo, where tlo is the gap 

parameter and g is the density of doubly-degenerate single particle levels. At exci-

tation energies of a few MeV or more, the level density also assumes its asymptotic 

form [Sano 63, Eric 60]: 

p( E) ex exp ( 2J a (E ~ ~gt>.fi)), for even-even, (1.15) 

p(E) ex exp ( 2J a ( E-:- ~gt>.fi + !>.o)), for odd A. (1.16) 

For the level density at -the saddle point Ps, deviations due to pairing may 

also be expected at very low excitation energies. However, it should be safe to use: 

( 1.17) 

where Bj = B f + ~gst:l; for even-even nuclei and Bj = B f + ~gst:l; - f::ls for odd 

A nuclei. f::ls is the saddle gap parameter and gs is the density of doubly-degenerate 

single particle levels at the saddle. In other words, Bj represents the unpaired saddle 

energy. 

The correction for the pairing effects on the extracted fission barriers is not 

attempted in this thesis because of its great uncertainties. For a fissioning even-even 
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Figure 1.2: The logarithm of the level density ln p is plotted, schematically, versus the 
internal excitation energy E [Sana 63], for a nucleus with a pairing condensation energy 
flEe. For an even-even nucleus, flEe = !gfl6; and for an odd A nucleus, flEe = ~gfl6 -
flo, where flo is the gap parameter and g the density of doubly degenerate single particle 
levels. 

nucleus, the effect of the pairing on the extracted barriers may be estimated in the 

following· way: 

rJ ""r1 p(E- Ef- ~gs6;- E;) 

ftotal"" fn "'p(E- En- 6~~t- ~gn6;, + 6n- Efs) 

p(E- (Ej+ ~s(~gn6;-6n)) -E:) 
'""' n 

'""'. p(E- En- 6~~1 - Er) 
(1.18) 

where 6n is the gap parameter of the residual nucleus after neutron emission, and 9n 

is the density of doubly-degenerate single particle levels of the residual nucleus. Here 

all the level densities have been implicitly assumed to take the form of the Fermi gas 
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level density. Similarly, for an even Z but odd A fissioning nucleus, 

r
1 

r
1 

p(E- B1- ~gs6.; + 6.s- E:) 
--~-rv 

ftotal r n P( E- Bn- 6.:h~~l- ~gn6.;- EFS) 

p( E- ( Bj + ~s (~gn6.;)) - E:) 
,....... n ........ (1.19) 

In the above equations, the pairing effects at the saddle are incorporated into the 

effective fission barrier Bj. To correct for the pairing effects of the residual nucleus, 

the extracted barrier Bj should be shifted down by rv(Ts/Tn)6.Ec. This average 

should correspond to the excitation energy where the excitation functions are steep-

est. Thus it is expected that (Ts/Tn) ~ 1 and the correction should be of the order 

of "'1 MeV or less. 

Let O"f! be the angular momentum distribution of the fusion cross section. 

Then the fission cross section a f is: 

lma.x 

O"J = La"-PJ(£), (1.20) 
0 

where PJ(£) is the fission probability of the nucleus of angular momentum£ (fi) and 

Rmax is the maximum of angular momenta brought into the compound nucleus by 

the entrance channel reaction. For first chance fission, P1 ( £) = r 1 /f total ~ r Jlf n, 

where ftotal = r n + r 1 + · · · is the total decay width. Multichance fission can also 

be conveniently included in the expression for P1(£). 

Thus, by fitting the experimentally measured fission excitation functions 

with Eq. 1.20, using Bj and 6.:h~~1 as free parameters, one determines the values of 
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Figure 1.3: Shell effects .6.shell for daughter nuclei produced by neutron evaporation, ex­
tracted from fits to the fission excitation functions [More 95b], are plotted against the 
values determined from the ground state masses [Moll 93]. The diagonal line is to guide 
the eye. 
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the effective fission barrier Bj and the shell effect 6:h~~~ of the daughter nucleus after 

neutron emission. 

This new way of determining the shell effects, in contrast to the standard 

procedure [Moll 93, Myer 94, Myer 96], is completely local. It depends only on 

the properties of the nucleus under consideration. Shown in Fig. 1.3 are the shell 

effects extracted from fits to the fission excitation functions_ for fourteen nuclei in 

the lead region plotted against the corresponding values obtained as the difference 

. of the ground state mass and the corresponding liquid drop value [Moll 93]. The 

correlation between the shell effects extracted by this method and those obtained 

from the ground state masses is excellent. 

1.3 Scaling Laws in Fission Probabilities 

Let a-0 be the compound nucleus formation cross section. The transition 

state fission cross section can then be expressed as 

(1.21) 

This equation can be rewritten as: 

O"fr 27rp(E)- (E-B) 
total T - Ps f · 

O"o s 
(1.22) 

By evaluating the left hand side of this equation, we obtain, on the right hand side, 

the level density of the system at the saddle poin~. A new quantity Rf, called the 
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reduced fission probability, is naturally introduced: 

_ a1 21rp(E) 
Rj = -ftotal T · 

ao s 
(1.23) 

Thus the reduced fission probability is equal to the level density at the saddle point, 

(1.24) 

In general, the compound nucleus formed in a fusion reaction has a distri-

bution of angular momenta. The compound nucleus formation cross section is the 

sum of all partial fusion cross section ac with angular momentum£, 

lma.x 

a0 =Lac. 
0 

(1.25) 

In this general case, if the angular momenta of the fissioning nuclei are not too large, 

an equation similar to Eq. 1.22 may be written for the compound nucleus formed in 

a fusion reaction, to a first order approximation as 

(1.26) 

where (E:) and (E!s) are the average rotational energy of the fissioning nucleus at 

the saddle point and the average energy of the rotating ground state, respectively. 

Assuming a sharp cut-off at Rmax for the angular-momentum distribution, (E:) and 

(Er) can be evaluated as the rotational energy at the saddle and the energy of the 

rotating ground state corresponding to (£2
) = .e:nax/2, respectively. 

Using the Fermi gas level density, we obtain: 

(1.27) 
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Thus, plotting the logarithm of the reduced fission probability, ln(RJ), versus the 

square root of the internal excitation energy J E - Bj - (E;), we should obtain a 

straight line. 

The slope of the straight line given by Eq. 1.27 depends on the mass of the 

fissioning nudeus via the level density parameters an and a!. Taking out the mass 

dependence of the level density parameters, one obtains: 

a1 (E-Bj-(E;)). 
an 

(1.28) 

This equation should permit us to scale all the fission excitation functions onto a 

single universal straight line. 

In Fig. 1.4, the left-hand side of the equation 1.28 is plotted versus the 

square root of the internal excitation energy J E - Bj - (E;), for fourteen different 

compound nuclei in the lead region. All of these excitation functions reduce nicely 

to a single straight line. This scaling extends well over seven orders of magnitude in 

fission probabilities. The straight line, which is a linear fit to all but the lowest data 

points, passes through zero very closely, and its slope is nearly 45° indicating that 

the ratio a f /an is very close to unity. The universality of the scaling and the lack of 

deviation from a straight line over the entire energy range, except for the very lowest 

energies, indicates that the transition state formalism holds extremely well. 

The li:uear scaling laws are also observed by the mass-asymmetric fission 

probabilities of nuclei in the intermediate mass region, where over 90 different exci-

tation functions for complex fragments arising from mass-asymmetric fission of the 
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Figure 1.4: The quantity ln R 1 divided by 2ya;; versus the squate root of the intrinsic 
excitation energy over the saddle point for fission of the compound nuclei: 186•187•1880s, 
2o1Tl, 203,204,205,206,208pb, 208,210,211,212p0 , and 213 At [More 95b]. The ·straight line is a 

linear fit to all but lowest two or three data points. 
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compound nuclei 75 Br 90 •94 •98Mo and 110- 112In were shown to be scalable onto a l l 

" 
single universal straight line according to transition state predictions. More details 

on this work are given in the papers [Jing 99, More 95a]. 

1.4 Transient Time of Fission Process 

The evolution of a fissioning system, starting from an assumed spherical 

shape towards the fission saddle, and eventually to the scission point, has been 

studied extensively [Hils 92, Paul 94, Frob 97]. If the transient time that a nucleus 

takes to evolve from a ground state shape to the saddle point is longer than the 
I 

characteristic time for compound nucleus ( CN) decay (TeN = 'h/feN ~ 'h/(f f + r n) ), 

then fission probabilities are expected to be suppressed, and additional particles can 

be emitted, as compared to those predicted by transition state theory. This is shown 

schematically in Fig. 1.5, where the fission width is plotted versus time [Gran 83]. If 

a transient time TD is short as compared to the compound nucleus decay time TeN, 

the stationary Kramers current [Kram 40] (i.e., the transition state fission rate) is 

then expected. If a transient time is long as compared to TeN, then the fission width 

is necessarily surpressed. 

This transient time effect has been advocated as an explanation for the large 

number of prescission neutrons [Gavr 81, Holu 83, Hind 92, Fior 93], charged particles 

[Scha 84, Peas 88, Siwe 87], and electric dipole 1-rays [Paul 94, Thoe 87] observed in 

relatively heavy fissioning systems. Transient times as long as "'10-19 sec have been 
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Time (t) 
Figure 1.5: A schematic drawing illustrating the transient time effects on the fission decay 
width. 

inferred from the observed prescission particles [Hils 92, Newt 89], although more 

recent works [Char 97, Mort 97] indicate a shorter transient time. 

The fission time scales inferred from prescission particle emssion are the 

sum of the transient time discussed above and the time required for the nucleus to 

descend from the saddle to scission, since the prescission particles can be emitted 

either before the system reaches the fission saddle, or during the descent from the 

saddle to scission. Postsaddle times do not affect the fission probability. It is therefore 

necessary to distinguish between presaddle and postsaddle times. Efforts have been 

made to separate the presaddle and postsaddle time components by examining the 

differences in the mean kinetic energy of charged particles emitted pre- and post-
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saddle [Lest 93a, Lest 93b, Lest 91]. · However, the separation of presaddle and 

postsaddle particle emission is fraught with difficulties and ambiguities. 

Since only the transient time has a strong and direct bearing on the fission 

probability, the effects of a transient time on the fission probability and the mag­

nitude of the transient time may be determined more reliably from the measured 

fission probabilities rather than from other means such as particle emission, 

In Chapter 4, a new and straight-forward way to determine an upper limit 

of the transient time, set by the fission probabilities of neighboring isotopes, is pre­

sented. This novel approach, which does not involve measuring anything beyond the 

fission saddle, bypasses all of the difficulties associated with the separation of pre­

saddle and postsaddle particle emission. The new approach is applied to the fission 

excitation functions of neighboring Os and Po isotopes to extract an upper limit of 

the fission transient time. The upper limits for transient time determined with this 

approach are 15x10-21 , and 25x10-21 sec for isotopes of Os and Po, respectively. 

This is in apparent contradiction with a long fission time ( rv 10-19 sec) claimed in the 

literature [Hils 92, Newt 89] to explain the measured amounts of prescission neutrons 

or 1-rays in relatively heavy fissioning systems. The apparent contradiction may be 

reconciled when the distinction is made between the presaddle and the postsaddle 

times. That is, most, if not all, of the fission times determined from light parti~le 

emission is postsaddle. 



22 

1.5 First· Chance Fission Probabilities 

The scaling law presented in Section 1.3 is predicted by the transition state 

formalism for first chance fission probabilities, yet it is well observed by the total 

fission probabilities. This puzzling aspect of our observed empirical linear scaling 

has created much concern and anticipation regarding how first chance probabilities 

should behave. Based on calculations with a particular statistical code, the argument 

has been made that first chance fission may still be substantially supressed by the 

effects of a long transient time (10-19 sec) but the transient time effects are somehow 

made up with fission probabiFties for second and higher chance fission [Back 97]. 

However, the effects of a transient time as small as 30 x 1 o-21 sec on the fission 

probabilities of 210Po are so tremendous that the above argument could not possibly 

be accommodated [More 97 a]. This is especially so in the case of the mass-asymmetric 

fission of nuclei in the intermediate mass region such as 90
•94 •

98Mo, where first chance 

fission truly dominates throughout the excitation energy range up to 140 MeV. Due to 

the large conditio;nal fission barriers (Bz ""40 MeV), the fission excitation functions 

are very steep [Jing 99, More 95a]. The fissioning system can not afford losing energy 

through particle evaporations, since to lose energy before reaching the fission saddle 

by emitting a particle would greatly decrease the fission probability. First-chance 

fission, therefore, must dominate. 

For heavy fissioning systems (Pb or heavier), however, the fission barriers 

. are lower, and multichance fission may become pronounced at high energies. The 
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dominance of first chance fission is thus called into question. It is therefore of great 

interest to determine first chance fission probabilities empirically. Their very sensitiv­

ity to the transient time effects would also allow us to set more stringent constraints 

on the possible transient times. It is, however, very difficult, and even subjective, to 

sort out the first, second, and higher chances in the total fission probabilities. 

The difficulty comes with the uncertainties in the measured total fission 

probabilities Ph which are usually determined as the ratio of the fission cross section 

to the compound nucleus formation cross section. Although the fission cross sections 

can be measured very precisely, the formation cross sections are often estimated 

with models such as the Bass Model [Bass 74], the Extra-push Model [Swia 82], 

the Optical Model [Mad 78], etc., or just with the geometrical cross section. The 

estimated fusion cross sections are rather uncertain, and are generally overestimated 

at high energies, the very energy regime where the dominance of first chance fission 

is questioned and where the relative contribution of first chance to the total fissi_on 

probability is to be determined. An overestimation of the fusion cross sections would 

cause an underestimation in the total fission probabilities, and consequently, lead to 

an underestimation of the first chance fission probabilities. 

N atowitz et al. has used an old recipe to extract the first chance fission 

probability by comparing the total fission probabilities of neighboring isotopes [Nato 

90]. The subjective aspect of the recipe is rooted in its hidden assumption that either 

the decay clock be reset at each step on the decay chain or the fission transient time 

be otherwise zero, and therefore the second plus higher chance fission probability 
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may be equated to the total fission probability of the neighboring nucleus with one 

neutron less. This will be further discussed in Chapter 4. 

1.6 Goals of the Project 

In this thesis, a novel approach will be developed to determine upper limits 

of the fission transient time, which is set by the fission probabilities of neighbor-

ing isotopes. The approach will be applied to neighboring Os and Po isotopes to 

determine the upper limits of their fission transient times. 

For this purpose, the fission excitation functions for 185
•
186

•
187

•
1890s pro-

duced in the 3 He + 182•183•184 •184W reactions and the fission excitation functions ' . 

for 209 •210 •211 •212Po produced in the 3He and 4 He + 206•
207

•208Pb reactions, were mea-

sured with high precision. The details of the experiment and the measured fission 

excitation functions are given in Chapter 2. 

These fission excitation functions are .:1nalyzed in detail according to the 

statistical formalism presented in Section 1.2. The fission barriers, and shell effects 

for ~he corresponding nuclei are extracted from the detailed analyses. 
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Chapter 2 

Measurement of Fission Excitation 

Functions for Os and Po Isotopes 

In this chapter, the fission excitation ·functions of the compound nuclei 

185,186,187,1890s and 209,210,211,212p0 , produced in the reactions 3He + 182,183,184,186,natw, 

3He + 206,207,208,natpb, and 4He + 206,207,208,natpb, are presented. These fission excita­

tion functions were measured in experiments carried out at the 88-Inch Cyclotron of 

the Lawrence Berkeley National Laboratory. Through analysis of these data, one can 

determine some of the nuclear properties such as the fission barriers, the shell effects, 

etc., for the fissioning nuclei or their daughters produced by neutron emission. The 

high precision of the measurements also allows us to make detailed comparisons of 

the fission probabilities of these neighboring isotopes, and to set upper limits for the 

dynamic transient time of the fission process. 
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2.1 Experiment 

A variety of compound nuclei (Os and Po isotopes) was prepared by the 

3 He and 4He induced reactions on targets of W and Pb isotopes. 3 He beams of 

28 different energies between 21 MeV and 140 MeV, and 4He beams of 24 different 

energies between 32 and 118 MeV, were used to bombard the targets made from 

oxides of tungsten isotopes and made from metallic lead isotopes. The uncertainty 

in beam energies was about 0.3%. The thicknesses and isotopic enrichments of the 

targets used in the experiments are listed in Table 2.1. 

Table 2.1: The thicknesses and isotopic purities of the targets. 

Target Thickness (J.Lg/ em 2) Purity(%) 

206pb 555 ± 10 97.2 
207pb 560 ± 10 92.0 
208pb 500 ± 10 99.3 
nat ph 544 ± 10 100 
t82W03 330 ± 7 94.0 
ts3wo3 355 ± 8 82.5 
t84W03 341 ± 7 93.8 
ts6wo3 385 ± 8 97.3 
natwo3 363 ± 8 100 

Two large area Parallel Plate Avalanche Counters (PPACs), with an active 

area of 200x240 mm2 each, were used to detect the fission fragment pairs. Shown 

in Fig. 2.1 is a photograph of the experiment setup. The two PPACs were placed 

15 em from the target, and were mounted at 60° and 240° with respect to the beam 

axis, allowing for the detection of both fission fragments in coincidence. The self-

surporting targets (20 mm in diameter) were mounted on a target ladder. The target 
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was selected by moving the ladder up or down via remote control. The beams, which 

were focused on the target, entered the reaction chamber through the hole near the 

top of the picture. 

The PPAC's volume is divided by a cathode foil backed with 2 J-lm thick 

mylar foil. The cathode was operated at a voltage of -450 V. The readout of the 

cathode gives an amplitude and a timing signal, which is independent of position. 

Two signal wireplanes, one horizontal on one side of the cathode and one vertical on 

the other side, are mounted at a distance of 3 mm from the cathode. The 20 J-lm 

thick wires are separated by a distance of 1 mm. Groups of five wires are combined 

by a delay line, the readout of which provides the position of the fission fragment. 

An intrinsic position resolution of 3 mm vertically and 5 mm horizontally, allows 

for the measurement of the folding angle of a fission fragment pair. Fission events 

were characterized by a prompt relative time peak, large cathode amplitudes, and a 

back-to-back emission geometry in the center of mass. 

Each PPAC has an entrance window made of a stretched polypropylene foil 

( "'100 J-lg/cm2
) which separates the isobutane gas in the detector from the chamber 

vacuum. The PPACs were operated at a constant pressure of 3 torr of isobutane gas. 

With lead targets, beam intensities varied from 1 nA at the highest ene-

rigies to 30 nA at the lowest energies. The highest beam intensities were limited 

.. 

to minimize erosion of the lead targets. With tungsten targets, which were in the 

form of oxides, the beam intensities varied from 10 nA to 350 nA. For these targets, 

~ the highest beam intensities were limited by the brittleness and the poor thermal 
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Figure 2.1: A photograph of the experimental setup. 
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conductivity of the oxides. 

In order to minimize the time needed for beam tuning when changing the 

beam species and the energies, both the beam species, 3He and 4He, were accelerated 

at the same magnetic rigidity of the cyclotron. Thus, only the electrostatic elements 

had to be changed, and a significant decrease in cyclotron tuning time was achieved 

[Clar 90]. 

High voltage (8 kV) was applied to the target ladder to suppress delta elec­

trons from entering the PPACs, thus improving their signal/noise ratio. 

For increasing beam energy, the velocity of the compound nucleus increases 

m the laboratory frame, resulting in a decreased folding angle between a fission 

fragment pair. Since our detectors were mounted at fixed angles, and thedetection of 

both fission fragments in a fission event was required, the acceptance of our detector 

setup had a weak dependence on the beam energy. In our experiments, the geometric 

acceptance varied from 14% to 16% of 471", for beam energies from 140 and 21 MeV, 

respectively. 

To minimize systematic errors in our measurements, we required a precise 

determination of the thickness and homogeneity of our targets, which were isotopi­

cally enriched and commercially made [Micr 97]. Rutherford backscattering measure­

ments were thus performed. The thickness of the target foils was determined from 

the widths of the energy spectra of backscattered 4 He ions. To determine the overall 

homogeneity of the targets, we measured the target thickness at <1ifferent points on 

each target foil. The thickness fluctuations within the central 10 mm were found to 



30 

be small ( 1%). In our experiments, the diameter of the beam spot on the target was 

approximately 5 mm and the accuracy of the center focus was rv 1 mm. The target 

thicknesses determined by Rutherford backscattering agree well with the thicknesses 

determined by weighing [Rube 97]. 

Contamination from heavier elements is potentially another source of sys-

tematic uncertainties, especially at the lowest energies where even a very small quan-

tities of heavy contaminants could contribute substantially to the fission yield, be-

cause of their lower fission barriers. Fortunately, with targets isotopically enriched by 

mass separation, this source ofcontaminant was practically eliminated. No evidence 

for heavier contaminants was apparent in our measured fission excitation functions 

which are presented in the next section. Measurement of particle-induced x-ray 

emission also confirmed that the contaminant level was negligible [Rube 97]. 

2.2 Fission Cross Sections 

Fission cross sections a f were determined by using the expression 

(2.1) 

where n 1 is the number of the detected fission events; np is the number of incident 

3 Hej4He particles; and nt is the target thickness (atoms/cm2
). The quantity 1J is 

the inverse of the efficiency of detecting the fission fragment pairs, and is determined 

• by both the geometrical acceptance of the PPACs and the angular distribution of 

fission fragments. 1J depends not only on the angles of both the PPACs, due to 
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anisotropic angular distribution of the fission fragments, but also .depends weakly 

on the beam energy, due to the decreasing folding angle between the pair of fission 

fragments with increasing beam energy. The angular distribution u~) 
11

/ (;~) 
900 

of 

the fission fragments was taken to be 1/ sin() [Vand 73] in our determination of the 

factor "1· This should be reasonable, since the deviation of the angular distribution 

from 1/ sin() for non-zero projection of angular momentum on the symmetry axis 

occurs mostly at angles near 0° or 180°, where the geometrical weighting factor dD 

= sin ()d()dcfy is very small. 

The experimental fission excitation functions measured in this work for eight· 

different compound nuclei formed in ten different reactions, are shown in Figs. 2.2 & · 

2.3. These excitation functions are also tabulated in Tables 2.2, 2.3, and 2.4). The' 

errors given both in the figures and the tables are statistical errors only. The statis­

tical errors are smaller than 1% for the Po compound nuclei at excitation energies 

above 40 MeV, and the statistical errors are smaller than 2% for the Os compound 

nuclei at excitation energies above 50 MeV, as can be seen in the Figs. 2.2 & 2.3. 

Systematic errors arise mainly from the uncertainties in the target thicknesses, the 

beam current integration, and the uncertainties associated with the PPAC accep_­

tance. Overall, the systematic error, which is essentially the same for all reactions 

forming the neighboring compound nuclei, except for the uncertainties in the target 

thicknesses, is estimated to be "'4%. The excitation energy was calculated assuming 

a full momentum and mass transfer of the helium ions to the compound nucleus. 

Our measurements of the fission cross sections for several different isotopes 
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Figure 2.2: The fission excitation functions for osmium isotopes 185 •186•187•1890s produced 
in the reactions 3 He + 182 •183•184•186W. The lines are to guide the eyes. The statistical errors 
are shown when they exceed the size of the symbols. The number to the right of each legend 
indicates the factor by which the corresponding excitation function was multiplied, in order 
to separate it from its neighboring excitation functions for visual clarity. 
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Figure 2.3: Same as Fig. 2.2 for the fission excitation functions of the polonium isotopes 
209·210·211•212Po produced in the reactions 3He (full symbols) and 4He (open symbols) + 
206,207,208pb, 
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Table 2.2: The measured fission cross sections r7 J of the compound nuclei 185·186·187·1890s 
and natos produced in 3He + 182•183•184•186W & natw reactions. The errors given in the 
table include the statistical error only. 

Ebeam I f7J (mb) 

(MeV)j 1850s 1860s 1870s 1890s natos 

21.0 (8.6 ± 3.1) 10-6 (4.1 ± 1.6) 10-6 (6.0 ± 3.5) 10-6 

23.0 (2.2 ± 0.8) 10-5 (2.7 ± 0.8) 10-5 (1.5 ± 0.6) 10-5 (2.2 ± 2.2) 10-6 (2.0 ± 0.6) 10-5 

25.0 (1.0 ± 0.2) 10-4 (1.1 ± 0.2) 10-4 (5.4 ± 1.0) 10-5 (2.0 ± 0.8) 10-5 (1.0 ± 0.2) 10-4 

. 27.0 (2.9 ± 0.3) 10-4 (2.6 ± 0.3) 10-4 (1.3 ± 0.2) 10-4 (6.3 ± 1.0) 10-4 (2.2 ± 0.3) 10-4 

29.0 (1.0 ± 0.1) 10-3 (6.7 ± 0.5) 10-4 (3.8 ± 0.4) 10-4 (1.9 ± 0.2) 10-4 (5.4 ± 0.4) 10-4 

32.0 (3.0 ± 0.1) 10-3 (2.8 ± o.1) 10-3 (1.4 ± 0.1) 10-3 (6.2 ± o.5)1o-4 (1.9 ± o.1)1o-3 

35.0 (9.2 ± 0.3) 10-3 (7.2 ± 0.2) 10-3 ( 4.0 ± 0.2) 10-3 (1.8 ± 0.1) 10-3 (5.0 ± 0.2) 10-3 

37.5 (1.7 ± 0.2) 10-2 (1.2 ± 0.1) 10-2 (7.6 ± 0.6) 10-3 (9.7 ± 1.8) 10-3 

40.0 (3.5 ± 0.1) 10-2 (2.6 ± 0.1) 10-2 (1.5 ± .04) 10-2 (6.8 ± o.2) 10-3 (2.o ± .06) 10-2 

45.0 (8.9 ± o.2) 10-2 (7.3 ± 0.2) 10-2 ( 4.3 ± o.1)1o-2 (1.9 ± .05) 10-2 (5.4 ± o.1) 10-2 

50.0 0.204 ± 0.004 0.151 ± 0.004 (9.7±0.3)10-2- (4.5±0.1)10-2 0.115 ± 0.003 
55.0 0.407 ± 0.008 0.311 ± 0.006 0.206 ± 0.004 (9.5 ± 0.3) 10-2 0.244 ± 0.005 
60.0 0.725 ± 0.013 0.525 ± 0.009 0.352 ± 0.007 0.174 ± 0.004 0.401 ± 0.008 
65.0 1.17 ± 0.02 0.880 ± 0.018 0.605 ± 0.006 0.306 ± 0.006 0.684 ± 0.014 
70.0 1.69 ± 0.02 1.29 ± 0.02 0.901 ± 0.012 1.05 ± 0.01 
75.0 2.38 ± 0.03 1.83 ± 0.03 1.30 ± 0.02 0.678 ± 0.010 1.51 ± 0.02 
80.0 3.26 ± 0.03 2.58 ± 0.03 1.85 ± 0.02 2.10 ± 0.03 
85.0 4.51 ± 0.05 3.36 ± 0.05 2.56 ± 0.02 1.38 ± 0.02 2.84 ± 0.03 
90.0 5.41 ± 0.05 4.24 ± 0.04 3.10 ± 0.03 3.43 ± 0.03 
95.0 6.79 ± 0.07 5.26 ± 0.05 3.89 ± 0.04 2.18 ± 0.03 4.32 ± 0.04 
102.5 8.39 ± 0.10 6.51 ± 0.08 5.07 ± 0.07 2.92 ± 0.04 . 5.35 ± 0.07 
110.0 10.39 ± 0.10 8.40 ± 0.08 6.66 ± 0.06 3.95 ± 0.04 6.97 ± 0.07 
117.5 12.08 ± 0.17 10.27 ± 0.14 8.01 ± 0.12 4.78 ± 0.08 8.50 ± 0.12 
125.0 14.91± 0.15 12.02 ± 0.12 9.60 ± 0.10 5.99 ± 0.06 10.12 ± 0.10 
132.5 16.28 ± 0.20 13.26 ± 0.17 10.88 ± 0.16 7.06 ± 0.12 11.19 ± 0.15 
140.0 18.46 ± 0.18 15.49 ± 0.15 12.60 ± 0.13 8.09 ± 0.08 12.94 ± 0.13 
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Table 2.3: The measured fission cross sections a 1 of the compound nuclei 209•210•211Po and 
natpo produced in 3He + 206·207·208Pb & natpb reactions. The errors given in the table 
include the statistical error only. 

Ebeam I aJ(mb) 

(MeV) I 209p0 210p0 211 Po natp0 

21.0 (8.7 ± 0.9) 10-4 (5.4 ± 0.6) 10-4 (1.8 ± 0.4) 10-4 (5.6 ± o.9) 1o-4 

22.5 (1.0 ± .07) 10-2 (6.4 ± 0.5) 10.:...3 (2.1 ± 0.2) 10-3 (5.9 ± 0.4) 10-3 

24.0 (4.2 ± 0.1) 10-2 (2.5 ± 0.1) 10-2 (9.8 ± 0.5) 10-3 (2.2 ± 0.1) 10-2 

25.5 0.141 ± 0.004 (8.6 ± 0.3) 10-2 (3.9 ± 0.1) 10-2 (8.0 ± 0.3) 10-2 

27.0 0.307 ± 0.006 0.194 ± 0.004 (9.6 ± 0.2) 10-2 0.188 ± 0.004 
30.0 1.06 ± 0.01 0.741 ± 0.011 0.393 ± 0.007 0.719 ± 0.011 
35.0 4.32 ± 0.04 2.99 ± 0.03 1.80 ± 0.02 2.87 ± 0.03 T 

40.0 11.6 ± 0.1 8.20 ± 0.08 5.19 ± 0.05 7.89 ± 0.08 
45.0 21.7 ± 0.2 16.0 ± 0.2 10.4 ± 0.1 15.4 ± 0.2 
50.0 35.1 ± 0.3 26.4 ±0.2 18.1 ± 0.2 25.4 ± 0.2 
55.0 50.8 ± 0.4 39.3 ± 0.3 27.5 ± 0.3 37.7 ± 0.3 
60.0 69.4 ± 0.5 53.9 ± 0.4 39.7 ± 0.3 52.8 ± 0.4 
65.0 91.0 ± 0.6 . 72.7 ± 0.5 52.5 ± 0.4 69.4 ± 0.5 
70.0 115.9 ± 0.8 93.4 ± 0.8 68.7 ± 0.7 88.9 ± 0.8 
75.0 141.6 ± 0.9 115.7 ± 0.8 85.2 ± 0.8 110.4 ± 0.8 
80.0 168.7 ± 1.2 137.4 ± 1.1 104.3 ± 1.0 132.5 ± 1.1 
85.0 192.5 ± 1.3 158.4 ± 1.1 121.0 ± 1.1 152.3 ± 1.1 
90.0 216.7 ± 1.3 180.9 ± 1.2 139.0 ± 1.1 176.0 ± 1.2 
95.0 244.0 ± 1.8 205.1 ± 1.6 161.3 ± 1.5 197.8 ± 1.6 
100.0 266.2 ± 1.8 226.5 ± 1.7 . 176.6 ± 1.6 216.3 ± 1.7 
105.0 286.7 ± 1.9 247.9 ± 1.8 196.2 ± 1.7 237.7 ± 1.7 
110.0 311.1 ± 2.0 270.5 ± 1.8 214.4 ± 1.7 260.9 ± 1.8 
115.0 332.7 ± 2.0 286.9 ± 1.9 231.7 ± 1.8 281.0 ± 1.9 
120.0 350.1 ± 2.1 309.7 ± 2.0 249.6 ± 1.9 295.0 ± 2.0 
125.0 363.4 ± 2.2 323.6 ± 2.0 256.8 ± 1.9 310.2 ± 2.0 
130.0 384.3 ± 1.8 338.8 ± 1.7 280.7 ± 1.6 330.0 ± 1.7 
135.0 397.0 ± 2.3 355.0 ± 2.1 294.0 ± 2.1 345.4 ± 2.1 
140.0 416.0 ± 2.3 . 363.2 ± 2.2 304.1 ± 2.1 352.1 ± 2.1 
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Table 2.4: The measured fission cross sections a f of the compound nuclei 210•211 ·212Po and 
natpo produced in 4 He + 206•207·208Pb & natpb reactions. The errors given in the table 
include the statistical error only. 

Ebeam I af (mb) 

(MeV) I 210p0 211p0 212p0 natp0 

32.0 (7.1 ± 0.8) 10-4 (2.6 ± 0.6) 10-4 (1.3 ± 0.3) 10-4 (6.5 ± 0.8) 10-4 

33.5 ( 4.4 ± 0.2) 10-3 (2.1 ± 0.1) 10-3 ( 4.8 ± 0.6) 10-4 (2.6 ± 0.2) 10-3 

35.0 (2.0 ± 0.1) 10-2 (1.0 ± .05) 10-2 (3.1 ± 0.3) 10-3 (1.1 ± .06) 10-2 

38.0 0.151 ± 0.004 (8.4 ± 0.2) 10-2 (3.0 ± 0.1) 10-2 (8.7 ± 0.2) 10-2 

41.0 0.624 ± 0.010 0.368 ± 0.006 0.155 ± 0.003 0.344 ± 0.006 
45.0 2.45 ± 0.026 1.63 ± 0.02 0. 786 ± 0.011 1.49 ± 0.02 
49.0 5.83 ± 0.059 3.97 ± 0.04 2.32 ± 0.03 3.82 ± 0.04 
53.0 12.7 ± 0.1 8.99 ± 0.08 5.63 ± 0.06 8.66± 0.09 
56.8 21.2 ± 0.2 15.2 ± 0.2 9.66 ± 0.10 14.4 ± 0.2 
60.7 32.1 ± 0.3 24.1 ± 0.2 15.7 ± 0.2 23.0 ± 0.2 
64.4 45.8 ± 0.3 34.2 ± 0.3 23.2 ± 0.3 32.8 ± 0.3 
68.3 58.5 ± 0.4 45.0 ± 0.3 31.6 ± 0.3 44.0 ± 0.3 
72.1 77.0 ± 0.5 59.6 ± 0.4 41.7 ± 0.4 57.4 ± 0.4 
75.9 '97.6 ± 0.7 76.5 ± 0.6 55.2 ± 0.6 74.5 ± 0.6 
79.7 115.7 ± 0.9 91.8 ± 0.8 66.9 ± 0.7 89.8 ± 0.8 
83.6 143.3 ± 1.3 113.6 ± 1.0 83.9 ± 0.8 110.2 ± 1.0 
87.4 168.5 ± 1.5 136.7 ± 1.3 99.7± 1.0 128.7 ± 1.2 
91.2 191.7 ± 1.3 158.9 ± 1.1 117.8 ± 1.0 151.0 ± 1.2 
95.1 214.0 ± 1.6 175.3 ± 1.5 135.0 ± 1.4 171.4 ± 1.5 
98.9 241.7 ± 1.8 200.9 ± 1.5 153.0 ± 1.2 191.7 ± 1.6 
102.7 273.9 ± 1.9 226.1 ± 1.7 171.8 ± 1.6 219.0 ± 1.7 

/ 106.6 302.5 ± 2.0 248.2 ± 1.8 194.4 ± 1.7 238.8 ± 1.8 
113.0 344.7 ± 2.1 290.9 ± 1.9 228.8 ± 1.8 280.5 ± 1.9 
118.0 384.6 ± 2.3 333.4 ± 2.1 259.8 ± 1.9 319.9 ± 2.1 
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of the same element, and for a target of that element containing isotopes of known 

abundances (natural, for example), allow us to examine the self-consistency of the 

measurements. Shown in Fig. 2.4 are the ratios of the helium-induced fission cross 

section of natpb, as synthesized with the fission cross sections measured for the indi­

vidual lead isotopes, to the helium-induced fission cross section for natpb, as measured 

using a natural lead target. In synthesizing the helium-induced fission cross section of 

natpb from the helium-induced fission cross sections of the individual Pb isotopes, the 

cross section for 204 Pb, which was not measured in our experiments, was estimated 

from the cross sections for the 208Pb and 206Pb by extrapolation. This estimation 

should be sufficient for the purpose of synthesizing the overall cross section, since 

the abundance of 204Pb in natural lead is only 1.42%. The fact that the ratios are 

equal to unity within 3% over the entire energy range, verifies the high precision 

of our measurements. This ratio is very sensitive to isotopic purities of the targets, 

particularly the isotopic purity of 208Pb target, at low energies where the fission cross 

sections decreases substantially with increasing neutron numbers (see Tables 2.3 and 

2.4). Thus the observed ratios close to unity also verified that our 208Pb target was 

indeed isotopically very pure. 

The same consistency was also verified for the measured 3 He-induced fission 

cross sections of tungsten isotopes (see Fig. 2.5). 

For a given compound nucleus (210Po or 211 Po), the 4He-induced fission 

cross section at a given excitation energy is higher than the 3 He-induced fission cross 

section at the same excitation energy, as can be seen in Fig. 2.3. This is mainly 
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Figure 2.4: The ratios of the 3 Hej4He-induced fission cross sections of natural lead, as 
calculated from the fission cross sections measured for the individual lead isotopes, and the 
3 Hej4He-induced fission cross sections of natural lead, as measured using a natural lead 
target. Shown in the upper panel is the result for the 3 He-induced fission of lead eHe + 
nat,

206
•
207

•
208

Pb ); and shown in the lower panel is the result for the 4He-induced fission of 
lead (4He + nat,206,207,208pb ). 
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Figure 2.5: The ratios of the 3 He-induced fission cross sections of natural tungsten, as 
calculated from the fission cross sections measured for the individual tungsten isotopes 
eHe + 182•183•184•186W), and the 3 He-induced fission cross sections of natural tungsten, as 
measured using a natural tungsten target eHe + 11atW). 

due to the higher fusion cross sections of the 4 He-induced reactions (see Figs. _3.2 

and 3.3 in next chapter). The difference in the angular momentum of the compound 

nuclei formed by different entrance channels also plays a role, resulting in different 

branching ratios for fission due to differences in rotational energies. However, since 

the angular momenta of the compound nuclei formed in 3 Hej4He-induced reactions 

are generally small, the angular momentum effects on the fission probabilities are 

not expected to be significant. 

In an earlier experiment (Rube 96] we measured the fission excitation func-

tions for the compound nuclei 200Tl, 211 Po, and 212 At formed in the 3 He-induced 
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reactions on 197 Au, 208Pb, and 209Bi, respectively. The data from these measure­

ments are in excellent agreement with our current ones. 

Even earlier, during the period 1960-1970, the fission excitation functions 

of 208
•210•211 •212Po prod1,1ced in 4He-induced reactions on 204 •206•207•208Pb, and of other 

nuclei, were measured over the excitation energy range from 120 MeV down to an 

energy very close to the fission barriers [Khod 66]. These earlier data deviate from 

the current measurementsby up to 20% depending on the targets. The discrepancies 

are not well understood. However, the deviations are not significant. 
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Chapter 3 

Fission Barriers and Shell Effects 

The fission excitation functions presented in Chapter 2 can be interpreted 

and analyz~d according to the statistical formalism illustrated in Chapter 1.2. Several 

physical parameters, such as fission barriers, shell effects, etc., of the corresponding 

nuclei are contained in the fission excitation functions, and can therefore be deter­

mined from detailed analyses of these excitation functions. The standard analysis 

procedure is to fit the measured fission excitation functions with the statistical for­

malism, using the fission barriers, shell effects, etc., as free parameters in the fits. 

In this chapter, the measured fission excitation functions are analyzed and 

fitted with the statistical formalism, under various assumptions for the compound 

nucleus formation cross sections. The fission barriers and shell effects, etc., extracted 

from these fits are presented and discussed in the following. 
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3.1 Formation Cross Sections of the Fissioning Nuclei 

The fission probability of a compound nucleus can be calculated with the 

statistical formalism. However, to calculate the fission cross section, one needs to 

know the formation cross section of the fissioning compound nucleus (see Eq. 1.20). In 

the 3 Hej4He-induced fission, the formation cross section of the fissioning compound 

nucleus is the fusion cross section of the projectile and the target nucleus. The 

fusion process occurs over a range of impact parameters from head-on collision to 

the maximum impact parameter. The compound nucleus is, therefore, formed with 

a distribution of angular momenta. The maximum impact parameter, and thus the 
- -

maximum angular momentum €max, can be related directly to the total fusion cross 

section. Assuming a sharp spin cut-off at the maximum angular momentum €max, 

the angular momentum distribution of the fusio"~ cross section a-c becomes 

e = 0, 1, 2, ... '€max, (3.1) 

where ); is the reduced wave length (); =- n fp with p being the momentum of the 

incident particle in the center-of-mass frame). The total fusion cross section O"o is 

Cmax Cmax 

O"o = L O't = 7rA 2 L(2£ + 1) = 7rA2 (£max+ 1)2
. (3.2) 

0 0 

The angular momentum distribution of the fusion cross section a-c can also be pa-

rameterized using a Fermi distribution [Plic 83, Hass 85], to take into account a more 

realistic diffuseness of the distribution near Rmax 

1r/\2 (2£ + 1) 
0" c = ------,-------,--,-'---------'--------:-

1 + exp [(£- emax)/8£]' 
(3.3) 
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where 81! determines the diffuseness of the angular momentum distribution. 

The fusion cross sections for these reaction systems are, however, not well. 

known, and have to be estimated with theoretical models such as the Bass model 

[Bass 74], the Extra-push model [Swia 82], etc .. 

The Bass model [Bass 74] assumes a frozen shape of the colliding nuclei 

during their approach, and takes a conservative two-body potential which includes 

the effects of the finite range of nuclear forces. The Bass model assumes that fusion, 

or the transition from the entrance channel to the compound nucleus, occurs at the 

point of contact where the projectile and target densities in the overlap region add up 

. . 
to saturation density of nuclear matter. Energy and angular momentum dissipation 

by friction are considered in the limit of strong localization at the point of contact. 

The Extra-push model [Swia 82] considers the further time evolution of the 

system (either towards fusion or reseparation) after two nuclei have been brought 

into contact. The evolution is governed by the relative magnitudes of the repulsive 

electric forces and the cohesive nuclear forces. For light systems, for which the 

electric forces are small, the configuration of tangent nuclei is expected to evolve 

automatically towards fusion. For heavier nuclei, the electric repulsion may become 

so large that, starting from rest at contact, the system will reseparate. In this case, 

an additional energy - an extra push - is thus needed to achieve fusion. 

The fusion cross sections calculated with the Bass model and the Extra-

push model for the reactions 3 He + 184W, 3He + 207Pb and 4 He + 207Pb are shown 

in Figs. 3.1, 3.2 and 3.3. Also plotted in these figures are the reaction cross sections 
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Figure 3.1: The fusion cross sections a 0 predicted for the reaction 3 He + 184W by the 
Bass model [Bass 74] and the Extra-push model [Swia 82], plotted as a function of the 3He 
beam energy Ebeam· The excitation energy E of the resulting compound nucleus 187 Os is 
indicated on the top. The reaction cross section calculated with the Optical model [Macf 
78] is also given. 
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Figure 3.2: The fusion cross sections a0 predicted for the reaction 3He + 207Pb by the 
Bass model [Bass 74] and the Extra-push model [Swia 82], plotted as a function of the 3 He 
beam energy Ebeam· The excitation energy E of the resulting compound nucleus 210Po is 
indicated on the top. The reaction cross section calculated with the Optical model [Macf 
78] is also given. 
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Figure 3.3: The fusion cross sections a0 predicted for the reaction 4He + 207Pb by the 
Bass model [Bass 7 4) and the Extra-push model [Swia 82), plotted as a function of the 3 He 
beam energy Ebeam· The excitation energy E of the resulting compound nucleus 211 Po is 
indicated on the top. The reaction cross section calculated with the Optical model [Macf 
78] is also given. 
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predicted by the Optical model [Fesh 54, Mad 78]. The reaction cross section from 

the Optical model includes both the fusion cross section and the cross sections for 

direct reactions, and may thus be considered as an upper limit of the formation cross 

section of compound nucleus. 

Having estimated the fusion cross sections of the fissioning nuclei, we can 

now calculate the fissio~ cross sections with the statistical formalism. A fit of the 

calculated fission cross sections as a function of energy to the measured fission ex­

citation function should allow us to determine the effective fission barrier Bj, the 

ratio of the level density parameter at the saddle point to that of the ground state 

(a f /an), and the shell effect of the daughter nucleus after neutron emission 6.~h~}1 , by 

using these physical quantities as free parameters in the fitting procedure. 

As shown above, the uncertainty in the calculated fusion cross sections is 

quite substantial (see Figs. 3.1, 3.2 and 3.3). Presumably, the exponential dependence 

of the fission prohability on the square root of the internal excitation energy at the 

saddle point should be so dominant a factor that it may make this uncertainty 

rather irrelevant, if the fusion cross sections, however unce_rtain, depend on energy 

only weakly. However, in the cases where the fusion barriers of the entrance channel 

reactions are comparable to the fission barriers, such as in the He-induced fission in 

the lead region, the fusion cross sections may play a larger role in the determination 

of the fission cross sections. In these cases, some difficulties may be expected due 

to the uncertainty in the fusion cross sections. ·To find out what difficulties the 

uncertainty may cause, and to determine its effects on the extracted parameters, 
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we will proceed with our analysis in the following order: 1) fitting the excitation 

functions with ~;h~~l fixed with its nominal value from ref. [Moll 93], leaving Bj and 

a 1/ an as free parameters; 2) fitting the excitation functions with Bj fixed, leaving 

~~he1 and a Ji an as free parameters; 3) fitting the excitation functions with all three 

as free parameters. 

3.2 Fission Barriers 

As shown in Eqs. 1.9 and 1.10, the angular momentum dependence of r f 

and f n is taken into account by the addition of the rotational energy at the saddle 

E: and the energy of the rotating ground state E~s (which are not available for 

the internal excitation), to the fission barrier B1 and the neutron separation energy 

En, respectively. The rotational energy of the nucleus at the saddle point is E: = 

1i 2 f( f + 1) /28'saddle where S'saddle is the moment of inertia about the axis perpendicular 

to the symmetry axis of the nucleus at the saddle point. In this analysis S'saddle is 

calculated assuming a saddle configuration of two spheres separated by 2 fm. Since 

nt..dei in the lead region are spherical or very nearly so, the energy of the rotating 

ground state E~s is thus equal to the rotational energy of the ground state, E~s = 

1i 2f(f+ 1)/28'gs where S'gs is the moment of inertia of the ground state. In calculating 

S'saddle and S'gs, the radius of a nuclear sphere is taken to be R = 1.2A113 fm. 

The angular momentum f of a fissioning nucleus is determined by the prod­

uct of the projectile momentum and the impact parameter. The maximum angular 
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momentum Cmax, or the maximum impact parameter at which a projectile and a tar- . 

get nucleus can be brought to form a compound nucleus, are calculated with three 

different models - the Bass model [Bass 74], the Extra-push model [Swia 82], and 

the Optical model [Macf 78]. Cmax is related to the fusion cross section o-0 by Eq. 3.3, 

or by Eq. 3".2 assuming a sharp cut-off at Cmax inC distribution. In this analysis, the 

diffuseness parameter 8C is taken to be 1, implying a nearly sharp, spin cut-off. The 

fitting is insensitive to the specific value of 8£, since, for C < Cmax, variations of 8C 

from 0 to oo result only in changes of O"t by at most a factor of 2. 

The statistical formalism requires the use of a specific level-density expres­

sion in the widths r f and r n· It is mainly in the level densities that all of the physical 

information concerning the nucleus at the saddle point and the residual nucleus after 

neutron emission is contained. For the level density, we have used the approximate 

Fermi gas expression p(E) <X exp(2.;aB), where E is the thermal excitation energy 

of the system and a is the level density parameter. In the calculation of the fission 

cross section with Eq. 1.20, the branching ratio for fission P1(C). is r1 j(fn + r 1), 

where r 1 jr n can be evaluated with Eq. 1.12. The level densities p(E- En- Efs) 

and Ps(E- B1- E:) can in turn be evaluated with Eqs. 1.14 and 1.17, respectively. 

Multichance fission is expected to occur at high energies. To avoid com­

plications from possible multichance fission, we shall, for now, limit ourselves to fit 

only the low-energy portion of the excitation functions where the fission probability 

is most sensitive to the fission barrier B 1 and first chance fission is dominant. 

The low-energy portion of the fission excitation functions for the nuclei 
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185 •186•187•1890s produced in 3 He-induced reactions on the targets of 182
•
183

•184 •186W 

(see Table 2.2 and Fig. 2.2), and of the fission excitation functions for the nuclei 

209 •210 •211 •212Po produced in 3Hej4He-induced reactions on the targets of 206 •
207

•208Pb 

(see Table 2.3, 2.4 and Fig. 2.3), were therefore fitted with two free parameters: Bj 

- the effective fission barrier, and a f /an - the ratio of the level density parameter 

at the saddle point to that of the compound nucleus at the ground state. A level 

density parameter for the compound nucleus a = an = A/8 (MeV-1
) was assumed 

in the fitting. For the residual nucleus after neutron evaporation, an = (A - 1) /8 

(MeV-1 ). The nominal value of the shell effect for the residual nucleus after neutron 

emission 6ili~~1 , taken to be Ernie + ( Mexp - Mth) f~om ref. [Moll 93], and listed in 

Table 3.1, was used as a fixed input parameter. (In ref. [Moll 93], Ernie denotes (Mth 

- ML.D.sph) - the difference between the theoretical mass Mth and the mass of the 

liquid-drop sphere ML.O.sph· Thus, Ernie+ (Mexp- Mth) = (Mexp- ML.D.sph) where 

Mexp is the experimental mass. Throughout this thesis, the shell effects 6shell take 

the opposite sign of those in ref. [Moll 93], i.e., 6shell = (ML.D.sph- Mexp).) The 

energy range of the data points used in the fitting is indicated by EH, the highest 

excitation energy of the data points in the range, which was listed in Table 3.1. EH 

was chosen to be around 70 MeV, below which the sheer steepness of the excitation 

function implies undoubtedly the dominance of the first chance fission. 

Shown in Fig. 3.4 are the fission excitations of the nuclei 185
•
186

•
187

•
1890s 

produced in the 3 He + 182
•
183

•184 •
186W reactions, and the corresponding fits with three 

different assumptions, i.e., the Bass model [Bass 74], the Extra-push model [Swia 82] 
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and the Optical model [Macf 78], for the formation cross sections of the fissioning 

nuclei. These formation cross sections of 1870s from the reaction 3 He + 184W are 

presented in Fig. 3.1 in Section 3.1. The formation cross sections of 185
•
186

•
1890s from 

the reactions 3 He + 182
•
183

•
186W are taken to be the same as those of 1870s from 

the reaction 3 He + 184W at the same incident energy. In the data range where the 

fitting was attempted, all the fits are excellent, despite the substantial difference in 

the formation cross sections predicted by the different models. In Fig. 3.4, all the 

fitted lines were extended to the highest energy data point, using the parameters Bj 

and a 1 I an extracted from the fits. 

The extracted fission barriers Bj and a 1 I an are listed in Table 3.1. The 

extracted barriers are remarkably consistent, and very little affected by the large 

uncertainties in the formation cross sections predicted by the different models. The 

fission barriers extracted using the formation cross sections from the different models 

agree with each other within 0.5 MeV. For example, the extracted fission barriers for 

1870s are22.33, 21.86, and 21.99 MeV by using the formation cross sections from the 

Bass model [Bass 74], the Extra-push model [Swia 82] and the Optical model [Macf 

78], respectively. For other nuclei (1850s, 1860s and 1890s), one sees the same, or bet­

ter, agreement between the barriers extracted using different model calculations for 

the formation cross sections. Thus, given the shell effect of the residual nucleus after 

neutron emission, one is able to determine the fission barriers Bj to an uncertainty 

. of about 0.5 MeV, despite the large uncertainties in the formation cross sections of 

the fissioning nuclei. 
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Figure 3.4: The fission excitation functions for the nuclei 185•186•

187
•
1890s produced in 

the reactions 3 He + 182•183•184•186W, were fitted with the statistical formalism, with Bj 
and a f I an as two free parameters. The 'solid lines, the dotted lines and the dashed lines 
represent fits using the formation cross sections of the fissioning nuclei calculated by the 
Bass, the Extra-push and the Optical models, respectively. The fits were attempted for 
only the low energy portion of the fission excitation functions. The highest energy of the 
data segment used in the fitting is indicated by EH in Table 3.1. The fits were extended 
to the full range of the experimental data, using the extracted parameters ( Bj and a 1 I an) 
which are listed in Table 3.1. The number to the right of each legend indicates the factor 
by which the corresponding excitation function is multiplied for visual clarity. 
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Figure 3.6: The fission excitation functions for the nuclei 210 •211 •212Po produced in the 
reactions 4He + 206•207•208Pb, were fitted with the statistical formalism, with Bj and a 1 I an 
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fits using the formation cross sections of the fissioning nuclei calculated by the Bass, the 
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of the experimental data, using the extracted parameters ( Bj and a f I an) which are listed 
in Table 3.1. The number to the right of each legend indicates the factor by which the 
corresponding excitation function is multiplied for visual clarity. 
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Table 3.1: The values of Bj and a! fan extracted by fitting the low energy portion of the 
measured fission excitation functions. The data and the corresponding fits are shown in 
Figs. 3.4, 3.5 and 3.6. The fits were performed with three different assumptions for the 
formation cross sections of the fissioning compound nuclei (CN): the Bass, the Extra-push 
and the Optical models. an = A/8 (MeV-1 ) was assumed. ~FRbM (MeV) is the nominal 
shell effects of the daughter nucleus after neutron emission taken to be Ernie+ ( Mexp- Mth) 
in ref. [Moll 93] and used as a fixed parameter in the fitting. EH (MeV) indicates the highest 
excitation energy of the data points up to which the fits were attempted. 

Reaction CN 

21.43 ± 0.05 1.103 ± 0.002 8.4 Bass 
3He+182W 1850s 73.4 0.85 21.05 ± 0.04 1.078 ± 0.002 39.1 Extra-push 

21.17 ± 0.02 1.063 ± 0.001 30.2 Optical 

23.42 ± 0.05 1.095 ± 0.002 13.5 Bass 
3He+183W 1860s 75.5 1.18 23.04 ± 0.05 1.070 ± 0.002 32.9 Extra-push 

23.15 ± 0.05 1.054 ± 0.002 24.9 Optical 

22.33 ± 0.05 1.098 ± 0.002 6.1 Bass 
3He+184W 1870s 74.4 1.32 21.86 ± 0.05 1.070 ±.0.002 22.9 Extra-push 

21.99 ± 0.05 1.056 ± 0.002 17.5 Optical 

23.23 ± 0.06 1.090 ± 0.002 4.6 Bass 
3He+186w 1890s 75.4 1.87 22.72 ± 0.06 1.062 ± 0.002 6.3 Extra-push 

22.86 ± 0.06 1.048 ± 0.002 4.1 Optical 

21.80± 0.02 1.086 ± 0.001 24.3 Bass 
3He+206pb 209p0 66.6 . 9.06 22.00 ± 0.01 1.082 ± 0.001 209.1 Extra-push 

22.38 ± 0.02 1.075 ± 0.001 399.3 Optical 

23.72 ± 0.02 1.079 ± 0.001 19.2 Bass 
3He+207pb 21op0 67.6 10.31 23.88 ± 0.02 1.074±0.001 132.6 Extra-push 

24.10 ± 0.02 1.062 ± 0.001 183.9 Optical 

23.91 ± 0.02 1.077 ± 0.001 23.2 Bass 
4He+206pb 210p0 65.3 10.31 23.77 ± 0.01 1.063 ± 0.001 54.0 Extra-push 

24.04± 0.02 1.035 ± 0.001 27.3 Optical 

21.28 ± 0.02 1.081 ± 0.001 16.3 Bass 
3He+208pb 211p0 64.8 10.49 21.45 ± 0.02 1.077 ± 0.001 158.9 Extra-push 

21.65 ± 0.02 1.064 ± 0.001 185.1 Optical 

21.49 ± 0.02 1.082 ± 0.001 35.4 Bass 
4He+207pb 211p0 63.1 10.49 21.36 ± 0.01 1.068 ± 0.001 84.9 Extra-push 

21.61 ± 0.02 1.041 ± 0.001 41.9 Optical 

21.97 ± 0.01 1.070 ± 0.001 39.7 Bass 
4He+208pb 212p0 65.5 9.61 21.78 ± 0.02 1.053 ± 0.001 48.6 Extra-push 

22.11 ± 0.02 1.028 ± 0.001 39.2 Optical 
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The extracted values of a1lan lie between 1.0 and 1.1 in all cases, and appear 

to be the same for different isotopes. The large uncertainties in the formation cross 

sections seem to be well accommodated by slight variations in the extracted values of 

a 1 I an. Other than these observations, it may be premature, at this stage, to attach 

much more physical significance to the extracted values of a f I an. 

For all the systems studied, the x2 of the fit using the- formation cross 

sections ( a0 ) from the Bass model [Bass 74] is somewhat smaller than the fits to the 

same fission excitation function using a0 frorri the Extra-push model [Swia 82] or 

the Optical model [Mac£ 78] (see Table 3.1). This alone, of course, is not sufficient 

to indicate that the Bass model prediction for the fusion cross sections is better 

than the other models. However, there are indications that even the Bass model 

may overestimate the fusion cross sections [Stic 74], while the fusion cross sections 

predicted by the Bass model are already smaller than those predicted by the Extra­

push model and the Optical model. 

The fission excitation functions of the nuclei 209
•
210

•
211Po produced in the 

3 He + 206
•
207

•
208Pb reactions, and the corresponding fits with the three different 

assumptions for the formation cross sections of the fissioning nuclei, are shown in 

Fig. 3.5. The fission barriers B f and the ratio a f /an extracted from the fits are listed 

in Table 3.1. The formation cross sections of 210Po from the reaction 3He + 207Pb 

which are used in the fits and predicted by the Bass, the Extra-push and the Optical 

models, are shown in Fig. 3.2. As in the case of osmium isotopes, the formation 

cross sections of 209
•
211 Po from the reactions 3 He + 206

•
208Pb are taken to be the same 
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as those of 210Po from the reaction 3 He + 207Pb at the same incident energy. In 

the data range where the fitting was attempted, the fits using the formation cross 

sections from the Bass model are excellent for all three polonium nuclei (2°9
•
210

•
211 Po). 

The quality of the fits using the formation cross sections (O"o) from the Extra-push 

model and the Optical model are, however, not as good as the quality found in the 

fit with O"o from the Bass model. For all the three nuclei, the x2 of the fits using the 

formation cross sections from the Bass model [Bass 74] is substantially smaller than 

that of the fits using O"o from the Extra-push [Swia 82] or the Optical models [Mac£ 78] 

(see Table 3.1). Nevertheless, the fission barriers (Bj) extracted using the different 

formation cross sections are remarkably consistent, despite the large uncertainties in 

the formations cross sections, as seen in the cases of osmium isotopes. For different 

polonium isotopes, the extracted a f I an appears to be the same. 

The fission excitations of the nuclei 210
•
211

•
212Po produced m the 4 He + 

206
•
207

•208Pb reactions, and the corresponding fits with the same three assumptions for 

the formation cross sections of the fissioning nuclei, are shown in Fig. 3.6. The fission 

barriers Bj and the ratio a f I an extracted from the fits are also listed in Table 3.1. 

The formation cross sections of 211 Po from the reaction 4 He + 207Pb which are used 

in the fits and predicted 'by the Bass, the Extra-push and the Optical models, are 

shown in Fig. 3.3. The formation cross sections of 210
•
212Po from the reactions 4 He 

+ 206
•
208Pb are taktm to be the same as those of 211 Po from the reaction 4 He + 207Pb 

at the same incident energy. In the data range where the fitting was attempted, 

all the fits are excellent, despite the large differences in the formation cross sections 
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predicted by the different models. For all three nuclei (210•211 •
212Po ), the x2 values of 

the fits using the formation cross sections ( a0 ) from the different models are about 

the same (see Table 3.1). 

As in the cases of Os and Po nuclei produced in 3 He-induced reactions, the 

fission barriers (Bj) for Po nuclei produced in 4 He-induced reactions extracted using 

the different formation cross sections are consistent to within 0.3 MeV, despite the 

large differences in the formations cross sections. More remarkably (and to one's 

own satisfaction), the extracted fission barriers for the same nuclei (210Po or 211 Po) 

produced in different entrance channels eHej4He-induced) are consistent within 0.2 

MeV. Thus, we have found a simple and robust method to determine accurately the 

fission barriers from the fission excitatio~ functions, given the shell effects of the 

nuclei concerned. 

3.3 Shell Effects 

The shell effect of a nucleus is, conventionally, defined as the difference 

b~tween its ground state mass and the corresponding macJoscopic liquid-drop value. 

The standard procedure to determine the shell effect of a nucleus is, therefore, to 

develop a liquid-drop model of nuclei, and to take the difference between the ground 

state mass of the nucleus and the liquid-drop baseline. It is difficult, however, to 

establish a good liquid-drop baseline. Great efforts have been made to develop and 

improve the various liquid-drop models. As the models evolved, so did the derived 
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shell effects. Over the years, the values for the shell effects have changed quite 

substantially [Myer 65, Moll 93, Myer 94]. The shell effects given by the Finite 

Range Droplet Model (FRDM) by Moller et al [Moll 93, Myer 94] represent the 

culmination of over 30 years of effort. 

The standard procedure to determine shell effects is necessarily a global one, 

i.e., the shell effect of a nucleus depends on the properties of all the other nuclei. The 

parameters in a liquid-drop model are determined by fitting the liquid-drop model 

to the ground state masses of all the known nuclei across the nuclidic chart. The 

parameters are adjusted to achieve a best fit on a global basis, but the same fit may 

not be the best fit for ~local mass region. This may account, in part, for changes in 

the derived shell effects over the years. 

The shell effects affect the available phase space of an excited nucleus [Rose 

57, Huiz 72] (see discussion in Section 1.2). In particular, the shell effect ~~~~~ of 

the daughter nucleus produced by neutron evaporation goes, asymptotically, into the 

argumenVof the level density expression when the excitation energy is a few MeV 

above the shell effects (see Eq. 1.14). Consequently, the shell effect ~~he~! exerts great 

influence on the competition between fission and neutron emission, and together with 

the fission barrier B 1 determines the branching ratio of fission. Using ~~~~~ as a free 

parameter, the fit of the statistical formalism for the fission cross sections to the 

experimental fission excitation function should allow us to extract, independently 

and locally, the shell effect of the daughter nucleus produced by evaporation of a 

neutron from the fissioning nucleus. 
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In Section 3.2, it was shown that, using .6.:h~~~ taken from ref. [Moll 93] as a 

fixed parameter, the fits to the low-energy portion of the fission excitation function 

produced remarkably consistent fission barriers (Bj) of a fissioning nucleus, regardless 

of the substantial uncertainties in the formation cross sections of the nucleus. 

In this section, it will be demonstrated that, given the effective fission barrier 

Bj, one can extract, to a very small uncertainty, the shell effect of the residual nucleus 

I .. 

produced by neutron evaporation, by fitting the fission excitation function with the 

statistical formalism, using .6.~~~1 and a 1/ an as free parameters. For this purpose, the 

fits should also be limited to only the low-energy portion of the excitation function, 

in order to avoid complications from the possible involvement of multi chance fission. 

The fission barrier Bj to be used as a fixed parameter in the fitting can be 

either the nominal values calculated with the liquid drop models [Moll 93, Myer 94], 

or the experimental values. The experimental determination of the fission barriers is 

possible by measuring the fission excitation funcl;ions to very low energies. When the 

fission excitation functions are measured very close to the fission barriers, the true 

fission barriers may be determined, regardless of the uncertainties in the formation 

cross sections of the fissioning nuclei, and regardless of the fact that the relevant 

shell effects are yet to be determined. To measure the fission excitation functions 

very close to the fission barriers is difficult, due to the extremely small cross sections 

( <10-7 mb ), and requires a large amount of beam time. For quite a few nuclei 

produced in 4 He-induced reactions on the targets of 197 Au, 206 •207•208Pb, and 209Bi, 

great efforts have been undertaken to measure their fission excitation functions from 
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hundreds of mb (above 100 MeV in excitation energy) all the way down to fission 

cross sections of w-s mb, and from the measured fission excitation functions, their 

true fission barriers B1 have been determined [Khod 66, More 72a, More 74]. 

For the purpose of demonstrating the method by which the shell effect can 

be determined from the fission excitation function, the effective barriers Bj presented 

in the previous section are used instead as a fixed parameter. The values of Bj chosen 

for the fits are those extracted using the formation cross sections predicted by the 

Bass model. If the fissioning nuclei (210Po or 211 Po) are produced by the different 

entrance channels eHe- and 4 He-induced), the barriers determined from the 4 He­

induced fission excitation functions are then used. The Bj values used in the fitting 

are given in Table 3.2. 

Now a fit can be carried out readily with two free parameters: ~~1ef1 -

the shell effect of the residual nucleus produced by neutron emission, and a f /an -

the ratio of the level density parameter at the saddle point to that of the compound 

nucleus at its ground state configurations. As in Section 3.2, a level density parameter 

an= A/8 (MeV-1
) was assumed for the compound nuclei. The fits were also limited 

to the low-energy segment of the measured fission excitation function, to ensure the 

dominance of the first-chance fission. The energy range of the data points used in 

the fitting was chosen to be the same as that used in the fits in Section 3.2. The 

fission excitation functions and the corresponding fits for osmium isotopes produced 

in 3He-induced reactions, and for polonium isotopes produced in 3Hej4He-induced 

reactions, are shown in Figs. 3.7, 3.8 and 3.9, respectively. 
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These fits with ~:hei1 and affan as free parameters look similar to the fits 

using Bj and a f jan as free parameters. For nuclei 185
•
186

•
187

•
1890s produced in 3 He 

+ 182
•
183

•
184

•
186W reactions, in the data range where the fits were attempted, the fits 

shown in Fig. 3. 7 and the fits in Fig. 3.4 look almost identical. Only in the extensions 

of the fits to higher energies, can one discern some small differences. The same can be 

said for the nuclei 209 •210 •211Po produced in 3 He + 206
•
207

•
208Pb reactions (see Fig. 3.8 

and Fig. 3.5), and for the nuclei 210
•
211

•
212Po produced in 4 He + 206

•
207

•
208Pb reactions 

(see Fig. 3.9 and Fig. 3.6). 

The shell effects ~:h~fl and the a tf an values, extracted from the fits shown 

in Figs. 3. 7, 3.8 and 3.9, are listed in Table 3.2. The shell effects ~:h~t, extracted 

using the different formation cross sections, show excellent consistency, despite the 

large differences in the formation cross sections useO. in the fitting (see Figs. 3.1, 3.2 

and 3.3). The consistency is retained remarkably well for the same nuclei produced 

in different entrance channel reactions. For example, the shell effect for the nucleus 

209Po, extracted from the fission excitation function of the fissioning nucleus 210Po 

produced in 3 He + 207Pb reaction, are 10.56, 10.38, and 10.06 MeV with use of the 

formation cross sections from the Bass [Bass 7 4], the Extra-push [Swia 82], and the 

Optical models [Mad 78], respectively. The shell effect for the same nucleus (2°9Po ), 

extracted from the fission excitation function of the fissioning nucleus 210Po produced 

in 4 He + 206Pb reaction, are 10.31, 10.53, and 10.12 MeV by using the different 

formation cross sections, respectively. These values are consistent, to within 0.5 · 

MeV, which must be considered very good indeed, since they were extracted from the 
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Figure 3. 7: The fission excitation functions for the nuclei 185 •186•

187
•
1890s produced in the 

reactions 3 He + 182•183•184•186W were fitted with the statistical formalism with two free ' . ' 
·parameters: ~;1-;,1 and a! fan. The fission Barrier Bj listed in Table 3.2 was used as a 
fixed parameter. The solid lines, the dotted lines and the dashed lines represent fits using 
the formation cross sections of the fissioning nuclei calculated by the Bass, the Extra" push 
and the Optical models, respectively. The fits were attempted for only the low energy 
portion of the fission excitation functions. The highest energy of the data segment used in 
the fitting is indicated by EH in Table 3.2. The fits were extended to the full range of the 
experimental data, using the extracted parameters listed in Table 3.2. The number to the 
right of each legend' indicates the factor by which the corresponding excitation function is 
multiplied for visual clarity. 
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reactions 3 He + 206 •207•208Pb, were fitted with the statistical formalism, with two free 
parameters: ~:~~ and a f /an. The fission Barrier Bj listed in Table 3.2 was used as a 
fixed parameter. The solid lines, the dotted lines and the dashed lines represent fits using 
the formation cross sections of the fissioning .nuclei calculated by the Bass, the Extra-push 
and the Optical models, respectively. The fits were attempted for only the low energy 
portion of the fission excitation functions. The highest energy of the data segment used in 
the fitting is indicated by EH in Table 3.2. The fits were extended to the full range of the 
experimental data, using the extracted p~rameters listed in Table 3.2. The number to the 
right of each legend indicates the factor by which the corresponding excitation function is 
multiplied for visual clarity. 
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Figure 3.9: The fission excitation functions for the nuclei 210•211 •212Po produced in the 
reactions 4 He + 206•207•208Pb, were fitted with the statistical formalism, with two free 
parameters: ~'ili~}1 and aJfan. The fission Barrier Bj listed in Table 3.2 was used as a 
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the formation cross sections of the fissioning nuclei calculated by the Bass, the Extra-push 
and the Optical models, respectively. The fits were attempted for only the low energy 
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the fitting is indicated by EH in Table 3.2. The fits were extended to the full range of the 
experimental data, using the extracted parameters listed in Table 3.2. The number to the 
right of each legend indicates the factor by which the corresponding excitation function is 
multiplied for visual clarity. 
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Table 3.2: The shell effects ~~h~i1 of daughter nuclei produced by neutron emission from the 
fissioning nuclei, and the values of a! fan, were extracted by fitting the low energy portion 
of the measured excitation functions. For comparison, the nominal shell effects ~FRbM 
given in ref. [Moll 93] are also listed. The data and the corresponding fits are shown in 
Figs. 3. 7, 3.8 and 3.9. The fits were performed with three different assumptions for the 
formation cross sections of the fissioning compound nuclei (CN): the Bass, the Extra-push 
and the Optical models. an = A/8 (Me y-I) was assumed. Bj (MeV) are the effective 
fission barriers taken from Table 3.1 and used as a fixed parameter in the fitting. EH 
(MeV) indicates the highest excitation energy of the data points up to which the fits were 
attempted. 

Reaction CN 

0.86 ± 0.02 1.103 ± 0.001 8.4 Bass 
aHe+182w 1850s 73.4 21.43 0.85 1.46 ±0.02 1.075 ± 0.001 34.0 . Extra~push 

1.28 ± 0.07 1.060 ± 0.002 27.1 Optical 

1.18 ± 0.02 1.095 ± 0.001 13.5 Bass 
aHe+18aw 1860s 75.5 23.42 1.18 1.79 ± 0.07 1.066 ± 0.002 28.6 Extra-push 

1.61 ± 0.06 1.052 ± 0.002 22.5 Optical 

1.32 ± 0.02 1.098 ± 0.001 6.0 Bass 
aHe+184w 1870s 74.4 22.33 1.32 2.07 ± 0.07 1.066 ± 0.002 19.0 Extra-push 

1.86 ± 0.02 1.053 ± 0.001 15.1 Optical 

1.86 ± 0.03 1.091 ± 0.001 4.6 Bass 
aHe+186W 1890s 75.4 23.23 1.87 2.66 ± 0 . .02 1.058 ± 0.001 4.6 Extra-push 

2.44± 0.02 1.045 ± 0.001 3.1 Optical 

9.06 ± 0.03 . 1.086 ± 0.001 24.3 Bass 
aHe+206pb 209p0 66.6 21.80 9.06 8.80± 0.03 1.083 ± 0.001 222.9 Extra-push 

8.23 ± 0.03 1.080 ± 0.001 481.4 Optical 

10.56 ± 0.03 1.077 ± 0.001 18.9 Bass 
3He+207Pb 210 Po 67.6 23.91 10.31 10.38 ± 0.03 1.073 ± 0.001 130.2 Extra-push 

10.06 ± 0.03 1.063 ± 0.001 203.8 Optical 

10.31 ± 0.02 1.077 ± 0.001 23.2 Bass 
41Ie+206pb 210p0 65.3 23.91 10.31 10.53 ± 0.02 1.061 ± 0.001 46.4 Extra-push 

10.12 ± 0.02 1.036 ± 0.001 29.5 Optical 

10.79 ± 0.03 1.080 ± 0.001 14.4 Bass 
3He+2ospb 211 Po 64.8 21.49 10.49 10.57 ± 0.03 1.076 ± 0.001 155.4 Extra-push 

10.28 ± 0.03 1.065 ± 0.001 202.1 Optical 

10.49 ± 0.02 1.082 ± 0.001 35.4 Bass 
4He+207pb 211p0 63.1 21.49 10.49 10.71 ± 0.02 1.066 ± 0.001 73.0 Extra-push 

10.32 ± 0.02 1.042 ± 0.001 48.0 Optical 

9.61 ± 0.03 1.070 ± 0.001 39.7 Bass 
4He+208pb 212p0 65.5 21.97 9.61 9.87 ± 0.03 1.051 ± 0.001 46.2 Extra-push 

9.42 ± 0.03 1.029 ± 0.001 38.4 Optical 
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fission excitation functions for different reaction channels, and were extracted using 

substantially different formation cross section estimates. The same consistency, to 

within 0.8 MeV in general, is observed for all the other nuclei studied in this thesis 

(see Table 3.2). 

Thus, a new method has been established to determine, with very small 

uncertainty, the shell effect of the daughter nucleus produced by neutron emission 

from a fissioning nucleus, given the fission barrier. This new method, based on 

detailed analyses of the fission excitation functions, is totally independent of the 

standard procedure, and is completely local. It depends only on the properties of 

the nucleus under consideration. 

As observed in the previous section, the extracted values of a 1/ an lie between 

1.0 and 1.1, and a1/an appears to be the same for different isotopes. The large 

differences in the formation cross sections seem to be well accommodated by slight 

I 

variations in the extracted values of a1/an. 

3.4 Simultaneous Determination of the Fission Barrier and 

the Shell Effect 

In the previous sections, it has been shown that the fission barrier Bj can be 

very well determined gi-ven the shell effect ,6.:he~, and that the shell effect ,6.~h~~1 can 

be equally well determined given the fission barrier Bj, by fitting the experimental 

fission excitation function, regardless of the current inadequacy in the knowledge of 
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the formation cross sections of the fissioning nucleus. 

Naturally, one would like to determine the fission barrier Bj and the shell 

effect ~~het simultaneously, by using both of them and a!/ an as free parameters in 

the fit. Previously, we have fitted the fission excitation functions measured in 1970s 

for fourteen nuclei produced in 4 He-induced reactions [More 95b], with these three 

free parameters. The shell effects extracted from the fits correlate remarkably well 

with those determined from the ground state masses. The extracted effective fission 

1 
barriers Bj are consistent with the relationship Bj = Bf + 2"9~6 for even-even nuclei 

and Bj = Bf + ~g~5- ~0 for odd A nuclei for a value of ~0 "'0.7 MeV. 

These fits were performed not just for the low-energy portion of the measured 

fission excitation functions, but for the excitation functions from a few MeV above 

the fission barriers to the highest energy data point measured ("' 120 MeV). Although 

multichance fission is expected to occur at high energies, these fits, which included 

only first chance fission, were excellent across the whole range of energy where the 

fits were attempted. The scaling law, predicted by the transition state rate for first 

chance fission, was found to be well observed by the total fission probabilities. This 

puzzling aspect has created much concern and anticipation regarding how first chance 

fission probabilities should behave. The argument was thus made that first chance 

fission may be substantially suppressed by a transient time and that the effects of the 

transient time were somehow compensated by fission probabilities of higher chances 

[Back 97]. 

Here, as was done earlier in the two free parameter fits, the three free pa-
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rameter fit was performed for only the low-energy portion of the fission excitation 

functions, to ensure the dominance of first chance fission, thus avoiding the difficul­

ties associated with multichance fission. The three parameter fit, in principle, should 

allow us to determine Bj, llili~i1 , and ai/an, simultaneously, and perhaps, with good 

consistency as well. 

Shown in Fig. 3.10 are the fission excitation functions and the corresponding 

fits for polonium isotopes 210
•
211

•212Po produced in 4 He + 206•207•208Pb reactions. The 

fits were performed with the same three different assumptions for the formation cross 

sections of the fissoning nuclei: the Bass, the Extra-push and the Optical models. 

The formation cross sections given by these models were shown previously in Fig. 3.3. 

The energy range of the excitation functions in which the three parameter fits were 

attempted 'Yas chosen to be the same as in the two parameter fits (see Figs. 3.6 & 

3.9, and Tables 3.1 & 3.2). 

All fits shown in Fig. 3.10 are excellent in the energy range where the data 

were used in the fitting. Notice that the extensions to higher energies of the fits using 

the formation cross sections from the Bass and the Extra-push models agree well with 

the data points. The extensions of the fits using the formation cross sections from 

. the Optical model are all higher than the experimental data, as was the case in the 

two parameter fits. 

The fission barrier Bj, the shell effect of the daughter nucleus after neu­

tron emission ll~h~j1 , and a 1/ an, determined from these fits for the fissioning nuclei 

210
•
211

•
212Po, are listed in Table 3.3. Both the Bj and the ll~hei1 , extracted using 
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Figure 3.10: The fission excitation functions for the nuclei 210 •211 •212Po produced in the 
reactions 4 He + 206 •207•208Pb, were fitted with the statistical formalism, with Bj, 6.~h~1, 
and aJfan as the three free parameters. The solid lines, the dotted lines and the dashed 
lines represent fits using the formation cross sections of the fissioning nuclei calculated by 
the Bass, the Extra-push and the Optical models, respectively. The fits were attempted for 
only the low energy portion of the fission excitation functions. The highest energy of the 
data segment used in the fitting is indicated by EH in Table 3.3. The fits were extended 
to the full range of the experimental data, using the extracted parameters (Bj, 6.~h~~1 , and 
a 1/ an) which are listed in Table 3.3. The number to the right of each legend indicates the 
factor by which the corresponding excitation function is multiplied for visual clarity. 
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Table 3.3: The effective fission barriers Bj, the shell effects ~~~i1 of the residual nuclei 
after neutron emission, and the ratios aJfan, extracted for polonium isotopes produced 
in the 4He-induced reactions by fitting the low energy portion of the measured fission 
excitation functions. The data and the corresponding fits are shown in Fig. 3.10. The 
fits were performed with three different assumptions for the formation cross sections u0 of 
the fissioning compound nuclei (CN): the Bass, the Extra-push and the Optical models. 
an = A/8 (Me v-1) was assumed. EH (MeV) indicates the highest excitation energy of the 
data points up to which the fits were attempted. 

Reaction CN EH I B* f 
~n-1 

shell 
B* ~ n-1 f - shell aJfan x2 I CTo 

23.99 10.42 13.57 1.076 23.1 Bass 
4He+206pb 21op0 65.3 24.43 11.28 13.15 1.054 32.6 Extra-push 

24.16 10.49 13.67 1.033 26.8 Optical 

21.87 11.06 10.81 1.077 28.8 Bass 
4He+207pb 211p0 63.1 22.28 11.89. 10.39 1.055 39.3 Extra-push 

22.02 11.09 10.93 1.035 33.1 Optical 

21.77 9.33 12.44 1.071 39.0 Bass 
4He+208pb 212p0 65.5 22.24 10.24 12.00 1.049 45.0 Extra-push 

21.90 9.33 12.57 1.029 38.3 Optical 

different formation cross sections, show remarkable consistency, regardless of the 

substantial difference in the formation cross sections. The extracted barriers Bj are 

consistent within 0.5 MeV, and the extracted shell effects are consistent within 1.0 

MeV. For instance, for the nucleus 211 Po produced in the reaction 4He + 207Pb, 

the values for Bj are 21.87, 22.28, and 22.02 MeV, and tli.e values for ~~h~t are 

11.06, 11.89, 11.09 MeV, when extracted from the fits using formation cross sections 

predicted by the Bass, Extra-push, and Optical models, respectively. The large un-

certainties in the formation cross sections are found to be well accommodated with 

slight variations of a f /an. 

For nuclei 209•210•211Po produced in the 3 He-induced reactions on 206•207•208Pb, 
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however, the fission barriers Bj and the shell effects ~~h~~~ extracted from the three 

parameter fits are less consistent. The Bj, ~~h~~~ and a1/an extracted from the fits 

shown in Fig. 3.11, are listed in Table 3.4. The Bj and ~~het values extracted using 

the formation cross sections from the Bass model are consistent with those obtained 

in the two parameter fits, and also consistent with those obtained from data for 4 He­

induced fission. However, the corresponding values extracted using the formation 

cross sections from the Extra-push and Optical models are about 3 MeV higher than 

those obtained using the Bass model predictions. The origin of this discrepancy will 

become evident in the following discussion. 

The excitation functions for these 3 He-induced fission reactions and the cor­

responding fits using the three different assumptions for the formation cross sections, 

are shown in Fig. 3.11. The fits are all excellent in the energy range where the data 

points were used in the fitting. In comparison with the previous two parameter 

fits (shown in Figs. 3.5 and 3.8), the quality of the three parameter fits (shown in 

Fig. 3.11) using the formation cross sections from the Extra-push and Optical models 

improves considerably. This is more evident in the substantially smaller x2 than the 

corresponding x2 listed Tables 3.1 and 3.2. This improvement in th~ fitting quality 

is, of course, very natural, since the three parameter fits are more flexible than the 

two parameter fits. On the other hand, the improvement in the quality of the fit 

seems to come at the expense of the consistency in the extracted parameters. 

The fission excitation functions for the nuclei 185•186•187•1890s produced in 

the 3 He-induced reactions on W targets, and the corresponding three parameter 
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Figure 3.11: The fission excitation functions for the nuclei 209,210,211Po produced in the 
reactions 3 He + 206,207,208Pb, were fitted with the statistical formalism, with Bj, ~~h~i1 , 
and a 1 I an as the three free parameters. The solid lines, the dotted lines and the dashed 
lines represent fits using the formation cross sections of the fissioning nuclei calculated by 
the Bass, the Extra-push and the Optical models, respectively. The fits were attempted for 
only the low energy portion of the fission excitation functions. The highest energy of the 
data segment used in the fitting is indicated by EH in Table 3.4. The fits were extended 
to the full range of the experimental data, using the extracted parameters (Bj, ~~h~i1 , and 
a 1 I an) which are listed in Table 3.4. The number to the right of each legend indicates the 
factor by which the corresponding excitation function is multiplied ·for visual clarity. 
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Table 3.4: The effective fission barriers Bj, the shell effects ~~h~t of the residual nuclei 
after neutron emission, and the ratios a1/an, extracted for polonium isotopes produced 
in the 3He-induced reactions by fitting the low energy portion of the measured fission 
excitation functions. The data and the corresponding fits are shown in Fig. 3.11. The 
fits were performed with three different assumptions for the formation cross sections O"o of 
the fissioning compound nuclei (CN): the Bass, the Extra-push and the Optical models. 
an = A/8 (MeV-1) was assumed. EH (MeV) indicates the highest excitation energy of the 
data points up to which the fits were attempted. 

Reaction CN ~ n-1 B* - ~ n-1 a! fan 
shell f shell 

22.89 10.53 12.36 1.078 16.4 Bass 
3He+206pb 209p0 66.6 25.90 14.45 11.45 1.047 15.5 Extra-push 

25.87 14.23 11.64 1.032 9.2 Optical 

23.82 10.44 13.38 1.078 19.0 Bass 
3He+207pb 210p0 67.6 26.91 14.54 12.37 1.045 14.0 Extra-push 

26.69 14.06 12.63 1.032 9.0 Optical 

22.05 11.56 10.49 1.075 12.1 Bass 
3He+2ospb 211 Po 64.8 24.40 14.75 9.65 1.045 14.7 Extra-push 

24.29 14.42 9.87 1.031 7.0 Optical 

fits, are shown in Fig. 3.12. The fits, still usmg the same three assumptions for 

the formation cross sections, are all excellent in the energy range fitted. The Bj and 

~~h~fl values extracted using the different formation cross sections, however, lose their 

consistency. The values for Bj, ~~h.,f1 , and a! fan extracted from the three parameter 

fits. are listed in Table 3.5. One observes again that, the Bj and ~;h~fl extracted 

using the formation cross sections from the Bass model are consistent with those 

obtained in the two parameter fits. The Bj and ~~h~h extracted using the formation 

cross sections from the Extra-push and Optical models are, however, several MeV 

higher than those obtained using the formation cross sections from the Bass model. 

As observed previously in the two parameter fits, the a f /an values extracted 
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from the three parameter fits seem to be the same for all the nuclei under consider-

ation (see Tables 3.3, 3.4 and 3.5). 

Now the question is: why, in the case of the 4He-induced fission, the three 

parameter fits allow one to determine the fission barrier Bj and the shell effect ~~hefr, 

simultaneously and accurately, regardless of the large uncertainties in the formation 

cross sections of the fissioning nuclei, whereas in the case of the 3 He-induced fission 

the three parameter fits seem to be too flexible to give consistent values for Bj and 

A n-1? 
L..l.shell· 

The answer probably lies in the difference in the energy dependence of the 

formation cross sections of the 3He-induced fission and the 4He-induced fission. To 

form a fissioning nucleus, the entrance channel reaction must first overcome a fusion 

(Coulomb) barrier. The fusion barriers which both the entrance channel with 3He 

and the entrance channel with 4 He must overcome to form the same fissioning nuclei, 

are of the same magnitude, since the Coulomb repulsion depends only on the charge 

and geometry of the approaching projectile and the target. For helium induced 

reactions, the fusion barrier Brus (MeV) can be estimated with the semi-empirical 

formula [Park 91, Vaz 84]: 

2.88Ztarget 
Brus = ---1--:/c::-3----"----, 

1.18Atarget + 4.642 
(3.4) 

where Ztarget and Atarget are the atomic number and the mass of the target nucleus, 

respectively. With this equation, the fusion barrier for He + Pb is calculated to be 

20.3 MeV, and the fusion barrier for He + W to be 18.8 MeV. These fusion barriers 
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are similar to the fission barriers, which are to be determined for the nuclei formed in 

these reactions, and which are to be determined from the fission excitation functions 

measured in these reactions! This must be the origin of the difficulties. 

For 4 He-induced fusion reactions in the lead region, the Q values are gen­

erally smaller than zero by several MeV. For the compound nucleus to have an 

excitation energy above the fission harrier, the minimum energy of the incident 4He 

particle must be at least IQI MeV greater than the fission barrier. Thus the minimum 

4 He energy must be substantially larger than the fusion barrier. In this case, the 

energy dependence of the formation cross sections of the fissioning nuclei becomes 

insignificant, and the exact knowledge of the formation cross sections is less critical 

in determining the fission barriers from the measured fission excitation functions. 

For 4 He + 20
6·

207
•
207Pb ---t 

210
•
211

•
212Po reactions, the Q values are -5.41, 

-7.59, and -8.95 MeV, respectively. The minimum beam energy for which the 

fission cross sections were measured in this wor1:, is 32.0 MeV (see Table 2.4), far 

above the fusion barrier of 20.3 MeV. At a 4 He incident energy of 32.0 MeV the 

fissioning nuclei 210•211 •212Po have excitation energies of 25.98, 23.80, and 22.44 MeV, 

respectively, which are very close to the fission barriers of these nuclei. In fact, these 

lowest excitation energies are so close to the fission barriers, that one or two of the 

lowest energy data points had to be excluded in the fitting in order for the asymp­

totic expressions of the level densities (Eqs. 1.14 and 1.17) to be applicable. For 4He · 

+ 206,207 ,207pb ---t 
210•211 •212Po ---t fission, since the energies of the entrance channel 

were far above the fusion barriers in the whole range of the measured excitation 
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Figure 3.12: The fission excitation functions for the nuclei 185,186,187,1890s produced in the 
reactions 3 He + 182,183,184,186W, were fitted with the statistical formalism, with Bj, D.~h~f1 , 
and a f I an as the three free parameters. The solid lines, the dotted lines and the dashed 
lines represent fits using the formation cross sections of the fissioning nuclei calculated by 
the Bass, the Extra-push and the Optical models, respectively. The fits were attempted for 
only the low energy portion of the fission excitation functions. The highest energy of the 
data segment used in the fitting is indicated by EH in Table 3.5. The fits were extended 
to the full range of the experimental data, using the extracted parameters ( Bj, D.~h~fl, and 
a f I an) which are listed in Table 3.5. The number to the right of each legend indicates the 
factor by which the corresponding excitation function is multiplied for visual clarity. 
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Table 3.5: The effective fission barriers Bj, the shell effects ~:h~~~ of the residual nuclei 
after neutron emission, and the ratios a1/an, extracted for osmium isotopes produced 
in the 3He-induced reactions by fitting the low energy portion of the measured fission 
excitation functions. The data and the corresponding fits are shown in Fig. 3.12. The 
fits were performed with three different assumptions for the formation cross sections ao of 
the fissioning compound nuclei (CN): the Bass, the Extra-push and the Optical models. 
an = A/8 (MeV-1) was assumed. EH (MeV) indicates the highest excitation energy of the 
data points up to which the fits were attempted. 

Reaction CN 

3He+182W 1850s 73.4 

3He+183W 1860s 75.5 

3He+184W 1870s 74.4 

3He+186W 1890s 75.4 

20.91 
25.38 
25.00 

23.27 
26.22 
25.82 

21.96 
25.18 
25.28 

22.52 
25.65 
25.46 

~n-1 
shell 

0.04 
7.42 
6.64 

0.95 
6.00 
5.20 

0.76 
6.33 
6.26 

0.77 
6.27 
5.75 

B* A n-1 
f - Llshell 

20.87 
17.96 
18.36 

22.32 
20.22 
20.62 

21.20 
18.85 . 
19.02 

21.75 
19.38 
19.71 

1.108 
1.042 
1.031 

1.096 
1.044 
1.033 

1.101 
1.045 
1.030 

1.096 
1.041 
1.029 

9.7 Bass 
4.5 Extra-push 
4.2 Optical 

13.4 Bass 
10.7 Extra-push 
10.3 Optical 

6.0 Bass 
4.9 Extra-push 
4.3 Optical 

3.7 Bass 
0.4 Extra-push 
0.5 Optical 

functions, the energy dependence of the formation cross sections of 210·211 •212Po be-

comes insignificant. The fission barriers Bj and the shell effects ~'ili~~1 ) are the~efore 

expected to be well determined from the fission excitation functions, even given the 

large uncertainties in the formation cross sections. It is indeed so, as shown in this 

and the previous sections. 

For 3He-induced fusion reactions in the lead region, the Q val~es are, how-

ever, greater than zero by several MeV or more. Since the fusion barriers for these 

reactions are close to the fission barriers, the excitation energies of the fissioning 

nuclei, formed with 3He energies near the fusion- barrier, may still be far above the 
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corresponding fission barriers. In this case, on the one hand, it is not feasible, to mea­

sure the fission excitation functions very close to the fission barriers, and on the other 

hand, the fission cross sections depend increasingly on the formation cross sections 

as the incident energy approaches the fusion barriers. To determine fission barriers 

and shell effects accurately by fitting the 3 He-induced fission excitation functions, 

better knowledge of the formation cross sections is thus required. 

For reactions 3 He + 206•
207

•
208Pb ---+ 209

•
210

•
211 Po, the Q values are + 7.51, 

-f-8.43, and +5.62 MeV, respectively. The minimum 3 He energy for which the fission 

cross sections were measured in this work, was 21.0 MeV (see Table 2.3), barely 

enough to overcome the fusion barrier of 20.3 MeV. The incident 3 He particles of 

21.0 MeV resulted in excitation energies of the formed fissioning nuclei 209
•
210

•
211Po of 

28.21, 29.13, and 26.31 MeV, respectively, which are substantially above the fission 

barriers of these nuclei. At the lowest bombarding energies near the fusion barriers, 

the energy dependence of the fusion cross sections becomes significant. Thus both 

the formation cross sections and the properties ( Bj, ~:h~i1 , a f /an) of these fissioning 

nuclei are important in determining the fission cross sections. Since the formation 

cross sections are not well known, the fission barriers Bj and the shell effects ~:h~i1 

extracted from the fits using the different assumptions for the fusion cross sections 

may suffer, not surprisingly, from significant variations originating from uncertainties 

in the fusion cross sections. This explains the discrepancy in the values of Bj and 

~;!,~1 extracted using the different fusion cross sections (see Table 3.4). The fact 

that the Bj and ~ili~i1 extracted using the fusion cross sections from the Bass mode~ 
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are consistent with those obtained from the two parameter fits, may suggest that the I 
fusion cross sections predicted by the Bass model are closer to the correct values. 

For 3He + 182,183,184,186W ~ 185,186,187,1890s reactions, the Q values are even 

larger: +9.49, +11.57, +10.45, and +l1.41 MeV, respectively. The minimum 3He 

energy for which the fission cross sections were measured for these systems, was 21.0 

MeV (see Table 2.2), which is just above the fusion barrier of 18.8 MeV. At an 

incident energy of 21.0 MeV, the fissioning nuclei 185•186•187•1890s were formed with 

excitation energies of 30.15, 32.22, 3l.ll, and 32.07 MeV, respectively, which are 

far above the fission barriers of these nuclei. It is thus expected that the formation 

cross sections at the lowest energies play even a larger role in determining the fission 

cross sections than seen in the 3He + Pb reactions. The fission barriers Bj and 

the shell effects 6.~h~~ extracted from the fits using the different assumptions for the 

formation cross section may suffer, as in the case of the 3He-induced fission on Pb 

targets, substantial variations resulting from the lack of knowledge of the formation 

cross sections. This is evident in the large discrepancies in Bj and 6.~he~l extracted 

using the three different assumptions for the formation cross sections (see Table 3.5). 

Here again, the extracted Bj and 6.~h~~ using the formation cross sections from the 

Bass model are consistent with those obtained from the two parameter fits. 

At high energies, the following correlation presents itself (see Eqs. 1.12, 1.14 

and 1.17): 
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Ps ( E- ( Bj- tll~h~~~) - E;) 

Pn (E-Bn-Er) 

Ps ( E- (Bj- L'l~h~~~)- E;) 
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(3.5) 

In other words, at sufficiently high excitation energies (Ts ~ Tn), it is (Bj - L'l~h~i1 ), 

the difference between the fission barrier and the shell effect, that determines the 

fission probabilities. In the cases where Bj is similar to (En+ L'l~h~t), such as for the 

Po isotopes, Ts ~ Tn at moderate or even lower energies, and ( Bj - L'l~h~~1 ) is thus 

expected to be the relevant quantity in determining the fission probabilities over a 

relatively wide range of the excitation energies. The correlation presented in Eq. 3.5 

may cause problems when one tries to extract both the fission barriers and shell 

effects simultaneously from the fission excitation functions which are not measured 

sufficiently close to the fission barriers; 

As seen earlier, the minimum excitation energies of Os and Po nuclei pro-

duced in the 3 He-induced reactions are substantially greater than the corresponding 

fission barriers, due to the high fusion barriers and the large positive Q values. In 

such cases where the fission excitation functions were not measured sufficiently close 

to the fission barriers, the simultaneous extraction of the fission barriers Bj and the 

shell effects L'l~h~t may be difficult, since the fission probabilities are more sensitive 

to (Bj - L'l~h~~1 ) rather than Bj and L'l~h~h individually. This implies that, the x2 of 

the three parameter fits is rather flat in the three parameter space (Bj, L'll~i1 and 

affan) along a valley of roughly constant (Bj- L'l:h~~1 ). In fact, if one takes the Bj 

and L'l~~~~ from the best fit and shifts both parameters up or down by 1 - 2 MeV, the 
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fission excitation functions re-calculated with the shifted parameters look roughly 

the same as the original fit. It should not be surprising, then, that the process of 

minimization of x2 in the three parameter fits experiences some difficulties when 

trying to converge. I 
It is instructive to examine the values of (Bj- 6~h~f1 ) obtained by taking the 

difference of Bj and 6~h~f1 extracted from the three parameter fits. These values are 

listed in Tables 3.3, 3.4 and 3.5. Both the Bj and the 6;het values extracted using 

the different formation cross sections deviate quite substantially for the Os and Po 

isotopes produced in the 3He-induced reactions. The (Bj - 6~h~f1 ) values, however, 

are more or less consistent, in spite of the large difference in the formation cross 

sections used in the fitting (see Table 3.4 a~d 3.5). These (Bj - ~~h~t) values are 

also consistent with the corresponding values obtq,ined from the two parameter fits. 

The problem presented in Eq. 3.5 can be ameliorated, or may even be elim-

inated, by measuring the fission excitation functions closer to the fission barriers. 

This can be achieved for the 4 He-induced fission, taking advantage of the negative 

Q values of the entrance channel reactions. The large negative Q values of the 

-
4 He-induced reacti()ns on Pb targets not only allow the measurements of the fission 

excitation functions very close to the fission barriers, but also elevate the minimum 

4 He energy required to substantially above the fusion barriers, thus diminishing the 

role of the fusion cross sections. This is why we were able to determine, simultane-

ously and accurately, both Bj and 6:1~f1 for Po isotopes from the excitation functions 

of the 4He-induced fission, without good knowledge of the fusion cross sections (see 
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Table 3.3). 

When it becomes unachievable to measure the fission excitation functions 

very close to the fission barriers due to physical or technical reasons, the simultaneous 
) 

determination of both Bj and 6~h~i1 is difficult, and it may require good knowledge 
r • 

of the fusion cross sections which are not yet available. If one of the two parameters 

Bj and 6~h~i1 can be fixed somehow, the ambiguity presented by the difference (Bj-

6~h~i1 ) in Eq. 3.5 is thus eliminated, and the other parameter can then be determined 

unequivocally. This has been shown in Sections 3.2 and 3.3. 

3.5 From Fission Cross Sections to Fusion Cross Sections 

The fission probabilities of the compound nuclei of the same isotope but 

produced in different entrance channel reactions are expected to be, with a small 

correction for angular momentum effects, the.same at the same excitation energies. 

This provides a mean to compare the fusion cross sections of different entrance chan-

nels, given the fission cross sections. In particular, if both the fission excitation 

functions of the same nucleus but produced in two different entrance channels are 

known, then the fusion cross section of one entrance channel can be determined 

relative to the fusion cross section of the other channel. 

For nuclei 210Po and 211 Po, we have measured their fission excitation func-

tions with both the 3He- and 4He-induced fission. The fusion cross sections of the 

3 He-induced reactions can thus be extracted relative to the fusion cross sections of 
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the 4 He-induced reactions. The method is as follows. Let f7J, f7o and P1 be the fission 

cross section, the fusion cross section and the fission probability, respectively, for the 

same fissioning nucleus, then 

C71(3He,E) f7oeHe,E) P1eHe,E- (Er)) f7oeHe,E) 
e7J( 4He, E') ~ e70 ( 4 He, E') P1( 4He, E'- (E~)) ~. e7o( 4He, E')' (

3
·
6

) 

where E- (Er) = E'- (E~); E and E' are the excitation energies; (Er) and (E~) 

denote the average rotational energies. In Eq. 3.6, the different entrance channels 

eHe- and 4 He-induced) leading to the same fissioning nucleus are denoted explicitly. 

As seen in Section 3.4, for the compound nucleus (210Po or 211 Po) to be 

formed with the same excitation energy, the fusion reaction with 4 He requires beam 

energy greater by "'13.5 MeV than that the fusion reaction with 3He requires, due to 

the difference in the Q-values. For the excitation energy range over which the fission 

excitation functions were measured, the fusion reaction with 4 He always occurs at 

energies far above the fusion barrier, whereas the fusion reaction with 3 He may occur 

at energies very close to the fusion barrier. Therefore, the fusion cross section f7o 

for the 3 He-induced reaction near the fusion barrier where f7o changes rapidly with 

energy, can thus be deterimined relative to the fusion cross section for the 4 He-

induced reaction in the region where f7o depends on energy rather weakly. This 

makes it a worthwhile exercise to obtain in the prescribed manner the fusion cross 

sections for the 3 He-induced reactions, even though the reference cross sections- the 

fusion cross sections of the 4 He-induced reactions - are also not well known. 

Taking the fusion cross section for the 4 He-induced reaction to be the Bass 
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Figure 3.13: The fusion cross sections for the 3 He + Ph reactions obtained by comparing 
the fission cross sections of the same compound nuclei e10Po or 211 Po) produced in both 
the 3 He- and 4He-induced reactions, given the fusion cross sections for the 4 He entrance 
channels as the Bass model prediction. For comparison, the fusion cross section calculated 
with the Bass model for the 3He + 207Pb reaction is also shown. 
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model prediction (see Fig. 3.3), the fusion cross section for the 3He-induced reaction 

which leads to the same compound nucleus (210Po or 211 Po) can be obtained with 

Eq. 3.6. The results are shown in Fig. 3.13. For comparison, the fusion cross section 

calculated with the Bass model for the 3 He + 207Pb reaction is also shown. It is 

interesting to note that the fusion cross sections obtained this way are even lower 

than the Bass model prediction. 

3.6 Summary 

In this chapter, the fission excitation functions for the nuclei 185
•
186

•
187

•
1890s 

produced in the 3 He + 182•183•184 •186W reactions, for 209•
210

•
211Po produced in the 

3 He + 206
!
207•208Pb reactions, and for 210 •211 •

212Po produced in the 4 He + 206
•
207

•208Pb 

reactions, have been analyzed in detail based on the statistical formalism. The 

analysis aimed at an accurate determination of the effective fission barriers Bj, the 

shell effects ~~h~~l of the residual nuclei after evaporation of a neutron, and the ratio 

a f /an of the level density at the saddle point to that of the ground state. 

It was demonstrated that, in the case of the 210•211 •212Po isotopes formed 

in the 4 He-induced reactions, Bj and ~~h~~l can be determined from the fission ex­

citation functions, simultaneously and with high accuracy, regardless of the large 

uncertainties in the formation cross sections of these nuclei. This is possible because 

the large negative Q-values of the 4He-induced reactions allow the fission excitation 

functions to be measured very close to the fission barriers, with 4 He energies substan-
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tially above the fusion barriers, thus diminishing the importance of the formation 

cross sections in the fitting process. 

For nuclei formed in the 3 He-induced reactions, howeVer, the simultaneous 

determination of Bj and .6.~h~t requires better knowledge of the formation cross 

sections of the fissioning nuclei than is now available. The large fusion barriers 

and the large positive Q values of the 3 He-induced reactions on Pb and W targets 

make it impossible to measure the fission excitation functions sufficiently close to 

the fission barriers. This allows, on the one hand, for the correlation represented 

by Eq. 3.5 to set in, and on the other hand, pushes the minimum 3 He energy very 

close to the fusion barriers, thus leaving way for the fusion cross sections to play a 

larger role in determining the fission cross sections. The attempt to simultaneously 

determine Bj and .6.~~t therefore produced inconsistent results. However, if one of 

the parameters (Bj or .6.~h~i1 ) can be fixed somehow, the other parameter can then 

be determined consistently from the fission excitation functions, even in the face of 

large uncertainties in the formation cross sections. 

The extracted a f /an values, which lie between 1.0 and 1.1, seem to be the 

same for all the nuclei under study. This result, if confirmed with a larger set of 

experimental data, may be of fundamental significance to statistical physics. Its 

theoretical implications are yet to be explored. 
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Chapter 4 

Dynamic Fission Time Scale 

The precisely measured fission excitation functions for neighboring Os and 

Po isotopes presented in the previous chapter should contain information on the effect 

of a possible transient time on the fission process, since a transient time longer than 

the characteristic time for fission should necessarily reduce the fission probabilities. 

A detailed comparison of the fission probabilities of neighboring isotopes should 

reveal the transient time effect and may allow us to determine its magnitude. In 

this chapter, a new and straight-forward way to determine the upper limit of the 

transient time will be developed. This novel approach bypasses all of the difficulties 

associated with the separation of the presaddle and postsaddle particle emission. The 

upper limits for the transient time set with this new method are -15 x 10-21 sec and 

25 x 10-21 sec for, respectively, the neighboring Os and Po compound nuclei produced 

in 3 He-induced reactions. 
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4.1 Method 

We begin by taking the simplest assumption for transient time effects on the · 

fission decay width, as shown in Fig. 4.1: that no fission occurs during a transient 

time Tn, and that fission assumes the transition state width beyond Tn. Then, the 

fission decay width fj with transient time effects can be written as 

rj = r)=) r= ((t)N(t)AeNdt = rj=)1= N(t)d(-t-), (4.1) 
lo TD TeN 

where ((t) = 0 (t < Tn) and ((t) = 1 (t ~ Tn); TD is the transient time; N(t) is 

the number of the remaining compound nuclei at time t ( star:ting with 1 compound 

nucleus at t = 0); AeN is the total decay constant of the compound nucleus and 

TeN = 1/ AeN is the compound nucleus lifetime, without transient time effects; rj=) 

denotes the expected fission width without the transient time effects, or the transition 

state fission width.· In the following we will use A's ( T 's) to refer implicitly the 

corresponding decay (time) constants without transient time effects unless indicated 

otherwise, since the transient time effects on fission rates have been nicely taken care 

of by the step function ((t). 

Now consider a decay chain starting from the compound nucleus (Z, A) with 

excitation energy E: 

(Z,A,E) 

1 fission 

n 
---+ (Z,A -1,E- 6.E1) 

1 fission 

n 
---+ 

1 fission 

n 
---+ 

( 4.2) 

where t:..Ei ( i = 1, 2, · · ·) denotes the average energy loss through the evaporation of 

the ith neutron. t:..Ei can be estimated as (Bn + 2T)i with Ti being the temperature 
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r~oo) (Transition State Width) 
1- -

Time (t) 
Figure 4.1: Transient time effects on the fission decay rate are taken to be a step function. 
TD denotes an assumed transient time. -

of the residual nucleus after ith neutron emission and Bn being the corresponding 

neutron separation energy. 2Ti is the average energy of evaporated neutrons of a 

Maxwellian energy distribution. To simplify the picture, angular momentum effects 

are not included. This neglect may be justified in the case of light charged particle 

induced fission where the angular momentum involved is generally small. Let An, 

AJ, AcN(=>.n+AJ) be the neutron, fission and total decay constants of the nucleus 

(Z, A, E), respectively;>.~, >.j, >.~N be the neutron, fission and total decay constants 

of the nucleus (Z, A-1, E-~E1 ), respectively; and>.~, >.'j >.~N be the neutron, fission 

and total decay constants of the nucleus ( Z, A- 2, E-~E1 -~E2 ), respectively. The 

inverse of these decay constants defines the corresponding characteristic times: Tn, TJ, 

TeN, <, rj, rbN, r:, rj, r~N· Let PJ(A, Z, E) be the expected fission probability for 

the compound nucleus (Z, A) with excitation energy E in the limit that no transient 
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time effects are present. Let us further assume that the decay clock is not reset at 

each step in the decay chain. Given a transient time TD, the observed total fission 

probability PJ(Z, A, E) can be written as 

Pj ( Z, A, E) = prt + prd + prd + ... ' ( 4.3) 

where 

plst = p (Z A E) e-TD/Tn 

f f ' ' ' 

In this equation, prt, prd and prd represent the first, second, and third chance 

fission probabilities expected for the nucleus ( Z, A, E), with a transient time TD, 

respectively. The neutron and fission decay constants can be estimated with Eqs. 1.9 

and 1.10. P1(Z, A, E); P1(Z, A- 1, E- !::J.E1), p;rd, and- TD are, however, unknown. 

The non-reset of the decay clock after neutron emission should be a reason-

able assumption, as can be seen in the following. Let V ( s) be the potential energy 

surface with. s designating the shape or deformation coordinates of a nucleus. The 

probability distribution p( s) of the compound nucleus as a function of shape s can 

be written as 

p(s) ex p(E- V(s)), (4.4) 

where p(E- V( s)) is the level density at the corresponding shape s. The probability 

distribution p' of the residual nucleus after neutron emission should be 

p(E- V(s)- En) 
p' ex p( s) · f n ( s) ex p( E - V ( s)) · p( E _ V ( 

8
)) 

~ p(E -'((s)). e-Bn/T. ( 4.5) 
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In other words, the residual nucleus retains the same probability distribution profile 

as the mother nucleus has (Eq. 4.4). The assumption that the decay clock is not 

reset after neutron emission is thus more or less justified. 

While Eq. 4.3 looks hopelessly insoluble, it does provide clues to an upper 

limit of fission transient time Tv. When PJ( Z, A, E) is specified, there exists a 

maximum value of Tv for which Eq. 4.3 can be satisified. Taking the experimental 

value PJ(Z, A- 2, E- ~E1 - ~E2 ) as the upper limit o~ ?;rd, and replacing Ptd 

in Eq. 4.3 with this upper limit, and replacing PJ(Z, A- 1, E- ~E1 ) with the the 

' 
experimental value PJ(Z, A -1, E- ~E1 ), the resulting equation can then be solved 

for anupper limit of Tv. One must keep in mind, of course, that Pf E [0, 1]. 

4.2 Upper Limits of Fission Transient Times for Os and Po 

Isotopes 

The experimental fission probability can be determined as the ratio of the 

fission cross section a f and the compound nucleus formation cross section a0 • We 

have measured with high precision the fission cross sections for several Os and Po 

isotopes, and presented in chapter 2.2 the experimental data in Figs. 2.2 & 2.3 and 

Tables 2.2, 2.3 & 2.4. 

The compound nucleus formation cross sections or the fusion cross sections 

for these reaction systems are, however, not known, and have to be estimated with 

certain theoretical models such as the Bass model [Bass 74], the Extra-Push model 
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[Swia 82], etc.. The fusion cross sections calculated with the Bass model and the 

Extra-push model for the reactions 3 He + 184W, 3 He + 207Pb and 4 He + 207Pb are 

shown in Figs. 3.1, 3.2 and 3.3. Also plotted in these figures are the reaction cross 

sections predicted by the optical model [Macf 78]. 

In the following analysis, we choose the fusion cross sections predicted by 

the Bass model to determine the fission probabilities. The reason for this choice will 

be discussed later on. The fission probabilities P} ( Z, A, E) of different isotopes at 

different excitation energies can then be calculated accordingly as a f / a0 . 

We now try to solve for upper limits for the transient time TD, for both the 

Os isotopes and the Po isotopes, in two ways: 1) by setting PJ( Z, A, E) = 1. This 

will obviously result in very relaxed upper limits of TD; 2) by setting PJ(Z, A, E) = 

P}(Z, A, E). This should result in more stringent, and perhaps more proper, upper 

limits of TD. 

In Fig. 4.2 we show the presaddle transient time upper limits derived for Os 

isotopes in the prescribed ways plotted against the excitation energy of 1870s. One 

sees that the upper limit obtained by setting P1(Z, A, E) = P}(Z, A, E) does not 

change substantially as the energy changes. The very relaxed upper limit derived by 

setting PJ(Z, A, E) = 1, on the other hand, increases as the lifetime of the compound 

nucleus increases (decreasing in energy). However, the upper limits derived both ways 

converge at the highest excitation energies where the compound nucleus lifetime is 

short. The upper limit of the transient time can therefore be set at 15 x 10-21 sec. 

The upper limits for the transient times for Po isotopes are plotted against 
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Figure 4.2: The upper limits of the transient times determined from the fission probabilities 
of neighboring isotopes 185•186•1870s produced in 3 He+ W reactions are plotted at different 
excitation energies. The abscissa represents the excitation energy of 187 Os. The very 
relaxed upper limits (open symbol) are obtained by assuming PJ(Z, A, E)= 1, and the more 
proper upper limits (solid symbol) are obtained by assuming PJ( Z, A, E) = Pj( Z, A, E). 
See text. 
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Figure 4.3: The upper limits of the transient times determined from the fission probabilities_ 
of neighboring isotopes 209•210•211Po produced in 3 He+Pb reactions are plotted at different 
excitation energies. The abscissa represents the excitation energy of 211 Po. The very 
relaxed upper limits (open symbol) are obtained by assuming PJ(A, E)= 1, and the more 
proper upper limits (solid symbol) are obtained by assuming Pj(A, E) = P}(A, E). See 

text: 
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the excitation energy of 211 Po in Fig. 4.3. As in the case of Os, the very relaxed 

upper limit derived by setting P1(Z, A, E) = 1 and the upper limit obtained by 

setting P1(Z, A, E) = P}(Z, A, E) converge at about 25x 10-21 sec at the highest 

excitation energies. For Po isotopes, the transient upper limit can then be set at 

25 x 10-21 sec. 

The approach presented above is sensitive when the lifetimes of the com­

pound nuclei under consideration are sufficiently short. If the lifetimes of the nuclei 

are too long, the upper limit set this way may become so relaxed as to be irrelevant, 

as can be seen in Fig. 4.3 for P'o. 

This approach also hinges on the assumption that the observed total fission 

probability (all chances included) P}(Z, A- 2, E- ~E1 - ~E2 ) can be taken as the 

upper limit of prd+· · ·. While this assumption may not be logically sound, it is most 

likely the case, and justifiable at the energy regime where transient time effects on 

fission probability are expected to be very small for nucleus (Z, A-2, E-~E1 -~E2 ). 

For example, when E(1870s) < 80 MeV, rcN(1850s, E- ~E1 - ~E2 ) > 38x 10-21 

sec and rv < lOx 10-21 sec (see Fig. 4.2), whereas P}(1850s, E- ~E1 - ~E2 ) < 16% 

of P}(1870s, E). In this case the assumption is clearly justified. 

The fusion cross sections do (see Fig. 3.1, 3.2 and 3.3), which are calculated 

with the Bass model (Bass 74] and used to determine the total fission probability 

P} in the current analysis, represent a major uncertainty. There is little direct 

experimental evidence in the energy regime of particular interest to this work ( > 70 

MeV) that can be used for us to judge the correctness of the Bass Model calculations. 
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If the actual fusion cross sections are lower than the Bass predictions, which is likely 

[Stic 7 4], the resulting upper limit of TD would become smaller. If the actual fusion 

cross sections are higher than the Bass predictions, the resulting upper limit of TD · 

would be more relaxed. In the low-energy regime ( <60 MeV), however, the given 

upper limits, which remain very small in the case of Os (see Fig. 4.2), hold regardless 

of the uncertainties in the fusion cross sections £70 • 

4.3 Simulation of Transient Time Effects on Total Fission 

Probabilities 

It may be instructive to calculate the total fission probabilities of all chances 

(up to the point where all of the excitation energy has been exhausted) as a func­

tion of both the initial excitation energy E and an assumed transient time TD, and 

compare the calculated total fission probabilities with the experimental values. A cal­

culation of this nature should help either to further our insight on possible transient 

times or to justify some of the previous assumptions. 

To perform such a calculation, a scheme to follo-.v the decay process and 

calculate multichance fission probabilities must be developed. It turns out that such 

a scheme can be implemented rather simply, as follows: 

Consider the decay chain Eq. 4.2. Let N0 (t), N1(t), N2(i), · · ·, Ni(t), ···,be 

the numbers of nuclei (Z, A), (Z, A- 1), (Z, A- 2), · · ·, (Z, A- i), ···,respectively, 

at timet (starting with 1 compound nucleus at t = 0: N0 (0) = 1, N1 (0) = 0, N2 (0) 
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= 0, · · · ). Assuming a step function for the transient time effect, for an assumed 

transient time Tv, the number of nuclei ( Z, A- i) must satisfy the balance equations: 

dNi(t) 
A(i-1)N· (t)-A(i)N·(t) (t :::; TV) (4.6) 

dt n t-1 n t ' 

dNi(t) 
A(i-1)N· (t)- A(i) N·(t) (t 2: Tv) (4.7) 

dt n t-1 CN t ' 

where A~- 1 ) and_\~) are the neutron decay constants of the nuclei (Z, A- i + 1) and 

(Z, A- i), respectively; Ag~ is the total decay constant of the nucleus (Z, A- i), 

and Ag~ = A~i) + AJi) with AJi) being the fission decay constant. 

The solution of the above equations is straightforward: 

j=i 
Ni(t) - L a· · exp(- A (j) t) t,J n ' j = 0,1,2,···,i, (t :::; TV) ( 4.8) 

. j=O 
A(i-1)a. 1 . 

a·. n _t- ,J j = 0, 1, 2,. ·_·, i- 1, t,] -
A(i) A(j)' 

n - n 

j=i-1 
a·. - - 2::: ai,j' t,t 

j=O 

ao,o = 1.0; 

J=t 
Ni(t) (j) j = 0,1,2,···,i, (t 2: TV) (4.9) - L bi,j exp( -AcN t), 

j=O 
\ (i-l)b 

b . . = An i-1,j · · tJ C) (), J =0,1,2,···,z-1, 
, \ t \ J 

/\CN- /\CN 
j=i-1 

- (i) [ (j) ] bi,i - exp(AcN Tv) Ni(Tv)- L bi,j exp( -AcN Tv) , 
]=0 

This solution, so written as above, also provides the algorithm to follow the decay 

chain 4.2 until all the excitation energy is exhausted. 

With the solution Ni(t) (i=0,1,2,· ··)in hand, the total fission probabilities 
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PJ can be simply calculated as 

( 4.10) 

where Tg~ = 1/ ,\g~; the fission decay constants ,\ ji) and the total decay constants 

,\g~ can be estimated with Eqs. 1.9 and 1.10. 

Now we calculate the total fission probability for the nucleus 1870s, given a 

transient time TD· The fission barriers Bj and the level density parameters of the 

nuclei 1870s, 186-0s, 1850s used to estimate the corresponding ,\j's, are from the fits to. 

the low-energy portion (~75 MeV) of the corresponding fission excitation functions 

using the fusion cross sections· from the Bass model. Both the fission excitation 

functions and the corresponding fits are shown in Fig. 3.4. The Bj and a f /an values 

extracted from the fits are listed in Table 3.1. an is taken to be A/8 (MeV-1 
). For 

isotopes lighter than 1850s in the decay chain Eq. 4.2, aJian was taken to be the 

same as that for 1850s, and Bj was taken to be the corresponding liquid drop barrier 

corrected for. shell effects. The shell effects of all the nuclei involved are taken to 
fl 

be the nominal values from Moller et al. [Moll 93], some of which are listed in the 

column ~FRbM of Table 3.1. The results of this calculation for a series of assumed 

transient times are shown in Fig. 4.4. A comparison of the calculated total fission 

probability with the corresponding experimental value indicates that the transient 

time TD is not larger thah 30 x 10-21 sec. 

There are two major deficiencies in this calculation. First, the decay scheme 

does not include decay channels such as p, a, · · ·, emissions. This over simplistic 
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Figure 4.4: Calculated total fission probabilities (solid lines) as a furiction of excitation 
energy for a series of assumed transient time rv ranging (0- lOO)x 10-21 sec, for compound 
nucleus 187 Os. The experimental total fission probabilities (solid symbols), determined as 
the ratios of the fission cross sections to the fusion cross sections predicted with the Bass 
Model, are also shown. A comparison of the calculated total fission probabilities with the 
corresponding experimental values indicates that rv is smaller than 30x 10-21 sec. See 
text. 
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decay scheme tends to result in a substantial overestimation of the fission proba­

bilities for higher chance fission, and consequently requires a larger transient time 

to lower the calculated total fission probability to its corresponding experimental 

value. Second, while the fit to only the low-energy portion of the excitation function 

results i~ an accurate fission barrier B1, the same fit tends to give too large a value 

of a1/an ("'-' 1.09 in the cases of 1870s, 1860s, 1850s). This very large value of a1/an 

tends to greatly overestimate the fission probabilities, and consequently requires a 

significantly larger transient time to lower the calculated total fission probability. 

Both of the deficiencies reinforce the conclusion that the result from the above sim­

ple calculation, i.e., the transient time can not be larger than 30 x 1 o-21 sec, is very 

conservative. 

4.4 Resetting the Decay Clock at Each Step in the Decay 

Chain 

If the decay clock is assumed to reset at each step in the decay chain, Eq. 4.3 

shoutd be rewritten as 

Pj(Z, A, E)= prt + (1- prt) Pj + (1- prt) (1 - Pj) Pf' + · · ·, (4.11) 

where 

Pj = PJ(Z, A- 1, E- f::.£1 ) e-rDf'r~, 

Pf' = PJ(Z, A- 2, E- f::.E1- t:.£2 ) e-rDJr::. 
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Solving this equation in the same ways as discussed in Section 4.1 gives more stringent 

upper limits for the transient time, for both Os and Po isotopes. For example, for 

osmium isotopes with 1870s at the highest excitation energy of 148 MeV, taking 

P1(Z, A, E) and P1(Z, A -1, E- ~E1 ) to be the measured values PJ(l870s, E) and 

PJ(1860s, E - ~E1 ), repectively, and taking (1 - prt)(1 - Pj)Pj' + · · · to be the 

measured value PJ(l850s, E- ~E1 - ~E2 ), solving Eq. 4.11 gives an upper limit of 

11 x 10-21 sec for the transient time Tv. In the same way, for polonium produced in 

3 He-induced fission with 2l1Po at the highest excitation energy of 144 MeV, assuming 

the "resetting?' of decay clock leads to an upper limit of 23 x 10-21 sec for Tv. 

4.5 First Chance Fission Probabilitie·s 

Assuming that either the decay clock is reset after each step in the decay 

chain, or that the fission transient time is zero, Equation 4.3 can be rewritten as 

P}(A, Z, E) = P}st + (1 - P}st) P}(A- 1, Z, E- ~EI), 

PJ(A- 1, Z, E- ~E1) = prd + (1- prd) prd + · · ·, 

(4.12) 

where PJ(A- 1, Z, E- ~E1 ) is the total fission probability of the nucleus (A- 1, Z) 

with excitation energy E- ~E1 . Since both P}(A, Z, E) and P}(A -1, Z, E- ~E1) 

can be determined experimentally, the first chance fission probabilities prt can thus 

be obtained, given the above assumptions. The assumption of the zero transient time 

or resetting of the decay clock, is rather subjective, however, since the justification 

may be otherwise, as seen in Section 4.1. 
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Nevertheless, it is of great interest to determine empirically the first chance 

fission probabilities, since the first chance fission p~obabilities are expected to be very 

sensitive to, and therefore may reveal, transient time effects. Rearranging Eq. 4.12, 

one obtains: 

plst _ P}(A, Z, E)- P}(A -), Z, E- flE1) 
f- 1-P}(A-1,Z,E-f1El) . 

(4.13) 

This is the recipe used by Natowitz et al. [Nato 90] to extract the first chance fission 

probabilities. 
. .. 

The first chance fission probability obtained with Eq. 4.13 is, unfortunately, '! 

sensitive to the errors in both P}(A, Z, E) and P}(A -1, Z, E- flE1), since the errors 

get amplified by taking the difference of the total fission probabilities of neighboring 

isotopes. The total fission probabilities P}(A, Z, E) and P}(A- 1, Z, E- flE1) can 

be determined as the ratio of the fission cross section and the formation cross section 

of the fissioning nucleus. While the fission cross sections presented in this work were 

measured very precisely, the formation cross sections are much less well known. One 

has to resort to the theoretical models to calculate the formation cross sections for the 

fissioning nuclei. As shown in Section 3.1, the formation cross sections calculated 

with the Bass model [Bass 74], the Extra-push model [Swia 82], and the Optical 

model [Macf 78], differ quite substantially. The uncertainties in these formation 

cross sections result in large errors for the total fission probabilities. 

However, an examination of where the errors for the calculated fusion cross 

sections may lie, should indicate where the resulting first chance fission probabili-

ties may err, and therefore provide guidance on how the first chance probabilities 
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extracted with Eq. 4.13 are to be interpreted. In Fig. 3.1, the reaction cross sections 

calculated with the Optical mod~l [Mad 78], and the fusion cross sections predicted 

by both the Extra-push model [Swia 82] and the Bass model [Bass74], for the reac­

tion 3 He + 184W -+ 1870s, were shown. The large differences in the formation cross 

sections predicted by different models are an example of how uncertain these for­

mation cross sections can be. Furthermore, there are few experimental data on the 

fusion cross sections at energies above 70 MeV. Notice that the Bass model predicts 

the lowest fusion cross section among the above mentioned models at energies above 

70 MeV. There are indications, however, that even the Bass model may overestimate 

the fusion cross sections at high energy [Stic 74]. The fusion cross sections from the 

Bass model were chosen in the analysis presented in the previous sections of this 

chapter. At high energies, the resulting total fission probabilities are most likely 

underestimated, and underestimated even more as the energy gets higher. The first 

chance fission probabilities obtained with these underestimated total fission prob­

abilities are, therefore, likely to be the lower limits of the true first chance fission 

probabilities. 

Although it may .still be worthwhile to extract the first chance fission proba­

bilities, keeping in mind that the extracted first chance fission probabilities would be 

the lower limits, due to the large uncertainties in the experimental total fission prob­

abilities, it is better to defer this effort until more accurate formation cross sections 

of the fissioning nuclei become available. 
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4.6 Summary 

In summary, we have found a new and straight forward way to determine t~e 

upper limit of the transient time of fissioning systems, set by the fission probabilities 

of neighboring isotopes. The upper limit of the transient time is set at 15 x 10-21 sec 

for Os isotopes, and at 25 x 10-21 sec for Po isotopes. We then conclude that most, 

if not all, of the transient time as determined from excess amounts of prescission 

particle emissions, is, therefore, postsaddle. 
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Part· II 

Particle Structure Functions 
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Chapter 5 

Introduction 

In Part I, we have studied the nuclear decay process at one extreme- nu­

clear fission. Through the detailed analysis of the experimental fission excitation 

functions, we have obtained with good accuracy some of the nuclear properties such 

as fission barriers, shell effects, etc.. The fission probabilities, even at the highest 

excitation energies studied, were found to be interpretable based on the transition 

state formalism, without invoking some of the heavily advertised theoretical effects 

such as nuclear viscosity. A novel approach has also been developed to determine an 

upper limit of the fission transient time. 

It's only natural to look next at the nuclear decay process at the other ex­

treme- light particle evaporation. An experiment was thus proposed and performed 

·to study the excitation fuiJ.ctions of light charged particles emitted from compound 

nuclei formed in 3 He-induced reactions. A comparison of the me~sured excitation 

functions against the transition state predictions should provide us another check on 
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the validity of the transition state formalism. Of particular interest are the ratios of 

the emission cross sections of the particles of the same charge but of different mass, 

such as pjdjt, 3 Hej4Hej6He, etc., since, by taking the ratio, some common factors, 

such as the formation cross sections which are not well known, can be divided out. 

Soon after the experiment was carried out, however, all our attention was 

drawn to the study of new physics- the existence of complex particles as independent 

particles inside the nucleus, and their stuctures. The particle spectra obtained from 

this experiment lent themselves to our search in them for structural modulations 

similar to those expected from optical potentials. The original physics goal has thus 

been put aside, and the attention will not return to it as far as this thesis is concerned. 

I now turn to this new subject. 

5.1 Particle Structure Functions 

The existence of complex particles in a ·nucleus may be compared to that of 

a solute molecule in a solvent. The effect of the solvent on a solute molecule varies 

from a modest modification of its properties to full dissociation. Particles (a, d, t, 

etc.) inside a nucleus can be seen as solutes in the nuclear solvent. Their existence 

as independent particles in the nuclear medium relates directly to the question of the 

extent to which the total nuclear wave function is factorizable into the product of 

the wave function of the particle and that of the residual nucleus. Qualitatively one 

can expect that tightly bound particles such as an a particle may have more than a 
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fleeting existence in the nucleus, certainly much longer than that of weakly bound 

particles such as the deuteron. 

The interaction of the particles with the nuclear medium can be studied 

through their evaporation from compound nuclei. Suppose that a complex particle 

pre-exists in a compound nucleus before it is emitted. As the particle is segregated 

from a compound nucleus state and prepares to exit, it senses its environment. This 

environment could be a mean field, like the shell/ optical model potential, or a local 

polarization field. This should result in states which acquire a width through their·: 

coupling with the continuum and the remaining many-body degrees of freedom. A. 

strength function should arise which modulates the spectrum of the emitted particles. 

This is illustrated qualitatively in Fig. 5.1 [More 97b]. The states inside and above the 
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Figure 5.1: Schematic drawing of the states of a particle in pote11tial well [More 97b]. 
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well are the states of the particle in the nucleus, which, in the case of a proton, tend 

to be the shell model states well below the barrier and the optical model resonances 

in the continuum above the barrier. 

An optical resonance is illustrated in Fig. 5.2, where the reaction cross sec­

tion (top panel) calculated with ari optical model [Fesh 54, Macf 78] using an optical 

potential for 4 He+ 208Pb reaction is shown. In this calculation the potential has been 

modified so that the imaginary part is only 30% of its normal value in order to en­

hance the resonance structure. In an effort to isolate this structure the cross section 

has been fitted with a smooth "background" which has been substracted out (bottom 

panel). 

The optical modulations illustrated in Figs. 5.1 and 5.2 should superimpose 

on the bulk of the evaporation spectrum determined by phase space, and may become 

observable in evaporation spectraof very high statistical quality. Since the particle to 

be emitted is in a hot nucleus whose excitation energy is under experimental control, 

the strength function obtained from the modulation of the spectrum refers to that 

specific excitation energy or temperature. It is thus possible to study the modulation 

not only for a variety of particles, but also for different te1Ilperatures. 

In this part, I will present some tentative evidence for the optical modula­

tions in spectra of a particles evaporated from indium compound nuclei produced 

in the reaction 3 He+natAg at bombarding energies ranging from 55 to 110 MeV. I 

will also present the orthogonal polynomial analysis, an approach which has been 

developed to represent the modulations in the measured a-spectra as a combination 
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of orthogonal modes. This approach IS potentially applicable to a wide range of 

problems. 

5.2 Inverse Cross Section 

Another way of looking at the presumed particle structures is to consider 

the standard expression for the evaporation spectrum. Detailed balance between the 

compound nucleus states a and the final states b requires that 

(5.1) 

where f a-+b and fb-+a are the direct and the inverse decay widths, and Pa, Pb are 

the corresponding phase space volumes .. The inverse width is formally expressed in 

terms of the "inverse" cross section ( O'inv): 

r _ t: O'invV 
b-+a - n V , 

where v is the velocity of the particle, and V is a normalization space volume. 

(5.2) 

The combination of Eq. 5.1 and Eq. 5.2 gives the decay width differential in 

the particle kinetic energy (E): 

r( t:) dt: ex O'inv E p(E- B-E) de:, (5.3) 

where B is the particle binding energy. A first order expansion of the log of the level 

density in the kinetic energy of the particle gives the transparent form: 

(5.4) 
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Thus the spectrum is the product of a structure factor, namely the "inverse" 

cross section, and of a phase space factor. Removal of the latter should leave the 

former with its potentially interesting modulations. 

5.3 Shape Polarization and Evap'oration Spectra 

In order to exit from a nucleus, a charged particle must overcome the 

Coulomb barrier. If the nucleus deforms in the direction of emission, the Coulomb 

barrier decreases. Let us consider a configuration formed by the emitted particle 

just in contact with the residual nucleus. Now we deform the residual nucleus always 

keeping the light particle in contact, and we plot the total energy as a function of 

deformation. The total energy has a minimum at some finite prolate deformation. 

This is the location of the saddle point, as shown in Fig. 5.3 [More 75, More 87]. 

The unbound mode, or reaction coordinate, is the distance between cen­

troids. A particle crossing over the saddle point with zero kinetic energy acquires a 

kinetic energy at infinity smaller than the Coulomb barrier associated with a spherical 

configuration. This is not subbarrier emission, in the sense that it is not associated 

with quantum barrier penetration. 

Thermal fluctuations along this deformation coordinate Z lead to large fluc­

tuations in the Coulomb interaction energy, as shown in Fig. 5.3. While the total 

potential energy Vr has a minimum at some prolate deformation, the fragment­

fragment Coulomb interaction Vcoul is a monotonically decreasing function of defor-
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Saddle Point and Normal Modes 

il decoy mode: 
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Figure 5.3: Top: Normal modes at the saddle point. Bottom: Total potential energy VT 
and Coulomb energy Vcoui as a function of the deformation coordinate Z [More 97b).·' 
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mation coordinate. 

Therefore one can expand the total potential energy and the Coulomb in-

teraction energy about the saddle point along the deformation coordinate Z ( Z = 0 

at the saddle): 

(5.5) 

Now, if the shape is allowed to fluctuate involving an energy of the order of the 

temperature T (see Fig. 5.3), one obtains a corresponding fluctuation of the Coulomb 

energy: 

· fc2: G 
~ Vcout = 2y k T == 2y pT. (5.6) 

The parameter p ( =c2 
/ k) is called the amplification parameter. A degree of freedom 

with such a general structure is called an amplifying mode. 

When the potential energies vary almost exclusively from the Coulomb en-

ergy, we have non-amplifying modes. For instance, the oscillation of a particle about 

the tip of the prolate core can be considered a non-amplifying modes (see Fig. 5.3). 

As the particle rolls away from the tip, the Coulomb energy increases because of the 

decreasing distance between the particle and the residual, while the surface energy 

of the system changes only in higher order and can be considered approximately 

constant [More 75]. 

More quantitative considerations lead to an expression for the kinetic energy 

spectrum of the particle [More~ 75]: 

P(t) ex e-x/Terfc (p~), 
2 pT I 

(5.7) 
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where X= t- vgoui· 

We see immediately that, by using a formula like Eq. 5.7 to fit experimental 

spectra, we can obtain information on the shape polarization associated with particle 

emiSSIOn. 

Equation 5. 7 can be easily generalized to include a number of amplifying 

arid non-amplifying degrees of freedom at the saddle [More 75], and to include the 

quantum barrier penetration [More 87]. A slightly more sophisticated formula, which 

incorporates one decay mode, one amplifying mode, and the barrier penetration, has 

been developed by Moretto and Bowman [More 87]. The formula will be given in 

Chapter 7 (see Eq. 7.1). It will be shown that this formula can represent alpha 

evaporation spectra to a remarkable precision. 
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Chapter 6 

Measurement of Particle Spectra 

In this chapter, the exp~riment to measure the energy spectra of the light 

charged particles (p, d, t, 3 He, a, etc.) emitted from the reactions 3He + 197Au, 

181Ta, nat Ag, natcu, 27 Al and 12 C, will be described. The experiment was orginally 

proposed to study the excitation functions of the light charged particles emitted from 

the compound nuclei formed in these 3 He-induced reactions. The particle spectra ob­

tained from this experiment with high statistical quality, however, lent themselves to 

our search for evidence of the existence of complex particles as independent particles 

inside a nucleus, and their associated structures. 

The experiment was carried out at the 88-Inch, Cyclotron of the Lawrence 

Berkeley National Laboratory. 3 He beams of energies 55.0, 65.0, 75.0, 85.0, 95.0, 

110.0, 125.0, 140.0 MeV were used to bo~bard targets made of 197 Au, 181Ta, nat Ag, 

natcu, 27 Al and 12 C. The thicknesses of the targets were 1.99, 2.10, 1.55, 1.55, 1.56 

and 0.413 mg/ cm2
, respectively. The uncertainty in the beam energies was 0.3%. 
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Two position-sensitive !lE-E quad telescopes were used to detect the par­

ticles emitted in the reactions. Each quad unit 'consisted of four separate gas-silicon 

telescopes, and covered 25° in plane and 5° out-of-plane. The active area of each 

telescope subtended 5° x 5° and the separation between adjacen~ telescopes was 1.8°. 

The gas ionization detectors served as tlE detectors, and were operated at a pressure 

of 51 torr of isobutane gas. TheE-detector in each telescope unit was a 45x45 mm2 

square (5 mm thick) silicon detector with, on the front, strips of low-resistivity ma­

terial separated by gaps of high-resistivity material to determine and self-calibrate 

the position [Keho 92, Walt 90]. Using these telescopes, the energy, the atomic num­

ber (and the mass number for light charged particles), the in-plane and out-of-plane 

angles could all be determined for each particle that traversed the tlE detector and 

stopped in the E-detector. The out-of-plane angle of the incident particle was deter­

mined from the ion drift time in the gas ionization detector. The in-plane angle was 

determined from a resistive division of the energy signal from the silicon detector. 

Operating at different pressure or with different gas, these same quad units 

of telescopes have been used previously to detect intermediate mass fragments from 

boron all the way up to fragments as heavy as the projectiles in the reverse kinematics 

reactions [Jing 99, Deli 91, Char 90, Han 89]. 

In this experiment, the detectors were placed at backward angles, with one 

quad unit on each side of the beam. Relative to the direction of beam, the centers 

of the eight telescopes were at 116.1°, 122.9°, 129.8°, 136.6°, 143.9°, 150.7°, 157.5°, 

164.4 o, respectively. 
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The particle species were identified from the measured f}.E and E-values. 

The particle species up to beryllium were resolved both in charge and mass. 

·The energy calibration of theE and f}.E detectors was performed using the 

method illustrated in ref. [McMa 86]. Calibration points were obtained with beams 

of 20.0 MeV alpha, and 20.6 MeV Ht1 (equivalent of 10.3 MeV proton). These beams 

were back scattered into the detectors by the Au target. Alpha-particles of energy 

6.118 MeV from 252Cf were also used to provide a calibration point at low energy. 

The energy loss of the calibration particles in the gas section was measured from the 

difference between the energies deposited in the E detector with and without gas 

in the ion chamber. Corrections were made for energy losses in the mylar entrance 

windo:v of the ionization chamber and in a Au absorber used for suppressing electrons 

and X-rays. Corrections were also made for the energy loss iii the Au target. The 

energy calibrations are accurate to ±1 %. 

The out-of-plane position was calibrated with a mask, consisting of a matrix 

of 2 mm holes separated by 4. 73 mm, which could be lowered into position remotely. 

The in-plane position was self-calibrated [Keho 92]. The typical position resolution 

obtained was ±0.2°. 

The beam charge was collected in a Faraday cup and integrated with a 

charge-integration module. The integrated charge gives the number of the incident 

projectiles. Although this information was not used in the current search for the op­

tical modulations in the measured particle spectra, it will allow for the determination 

of the absolute cross sections of the particles later on. 
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For complete fusion reactions, the velocity of the formed compound nucleus 

VcN is equal to the center-of-mass ( C.M.) velocity. In this case, the velocity and the 

kinetic energy in the lab frame of the measured particles can be readily transformed 

into the velocity and the kinetic energy in the source frame (i.e., the center-of-mass 

frame in complete fusion). The velocity and energy spectra of the particles both 

in the source frame and in the lab frame can be accumulated at the same time, 

event-by-event, in the offline analysis. 

At high beam energies, incomplete fusion may set in and contribute substan­

tially. The velocities of the nuclei formed in incomplete fusion depend on momentum 

transfer, and are different from those of the nuclei formed in complete fusion where 

complete momentum transfer occurs. In light particle eHe) induced reacti~ms on 

heavy targets (nat Ag, ... ) , the velocity of the source from which a particle is emitted 

is smaller for incomplete fusion than for complete fusion. Thus, in the presence of 

incomplete fusion, using the center-of-mass velocity to transform the velocity and 

energy of emitted particles from the lab frame to the source frame may cause dis­

tortion of the spectra in the source frame. At 90°, the velocity of a particle in the 

source frame is the same as the velocity in the lab frame. The tranformation does 

nothing and therefore no distortion is expected. As a particle is emitted increasingly 

backwards, the source velocity plays an increasing role in the transformation of the 

velocity and energy between the two reference frames. At the most backward an­

gle (180°), the velocity of a particle in the source frame is equal to the sum of the 

particle's velocity in the lab frame and the source velocity. Thus, at angle 180°, the. 
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Figure 6.1: The center-of-mass energy spectrum of alpha particles emitted from the 3 He + 
nat Ag reaction at 65 MeV beam energy. 
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velocity and kinetic energy spectra should appear harder due to the distortion by 

the transformation from the lab frame to the source frame using the center-of-mass 

velocity as the source velocity, if incomplete fusion contributes substantially. In other 

words, in the presence of incomplete fusion, the spectra in the C.M. frame should 

show a gradual (apparent) hardening from 90° to 180°. Conversely, an apparent 

hardening of the spectra with increasing angle in the C.M. frame should indicate the 

presence of incomplete fusion. 

For the 3He + nat Ag reaction at energies of 110 MeV or lower, no such 

apparent hardening of the C.M. spectra was evident as observing angle increased, in­

dicating a dominance of complete fusion. At energies of 125 MeV or higher, however, 

an apparent hardening of the C.M. spectra with increasing observing angle became 

discernible, indicating a presence of incomplete fusion at these higher energies. 

In this thesis, only the C.M. energy spectra of a-particles emitted from 

nuclei formed in these 3 He-induced reactions at beam energies below 110 MeV are 

presented. These spectra were measured w1th high statistical quality. As an example, 

the C.M. energy spectrum of a-particles emitted from 3He + nat Ag reaction at 65 

MeV beam energy is shown in Fig. 6.1. This composite spectrum was generated by 

summing together the C.M. energy spectra from several individual telescopes. Other 

spectra will be shown in the next chapter as the analysis proceeds. 
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Chapter 7 

Tentative Evidence for Particle 

Structures in Alpha Spectra 

In this chapter, the high-statistics evaporation spectra of alpha particles 

emitted from the reactions 3He + natAg and 197 Au at bombarding energies of 55 to 

110 MeV are analyzed, in order to determine whether physical modulations similar 

to those expected from optical potentials are present. 

The optical modulations can not only arise from a volume potential well, as 

illustrated in Chapter 5.1, but may also arise from a potential barrier which a par­

ticle on its way out encounters near the nuclear surface. Although the transmission 

coefficient for an inverted real parabolic potential is smooth by Hill-Wheeler formula 

[Hill 53], the transmission coefficient in general, for a square barrier for example, 

oscillates with the energy of a penetrating particle. 

We will search for evidence of these optical modulations in the measured 
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alpha energy spectra. The plan is to fit the alpha spectra with a smooth function, 

and to search the residuals for modulations. The functional form chosen for the fit 

should be smooth, and represent adequately the bulk evaporation spectra that arises 

solely from the avaiiable phase space plus the barrier penetration, thus leaving in the 

residuals the structural modulations intact. 

Standard expressions for the evaporation spectra do not provide adequate 

fits since they do not incorporate thermal shape fluctuations, quantum barrier pene­

tration, etc .. A transition state formalism, which incorporates both the shape polar­

izations and the barrier penetration, however, is found to fit the measured spectra 

remarkably well. This formalism, developed by Moretto and Bowman (More 87], is 

given in the following. 

7.1 A Transition State Formalism for Evaporation Spectra 

Moretto has developed a transition state formalism, which includes shape 

polarizations (see Eq. 5.7) [More 75], for kinetic energy spectra of evaporated parti­

cles. Eq. 5. 7 can be generalized to include a number of amplifying and non-amplifying 

degrees of freedom (modes) at the saddle. He has also generalized the formalism to 

include quantum barrier penetration. With inclusion of one decay mode, one ampli­

fying mode, and the barrier penetration, his formula for evaporation spectra P( E) is 

written as follows [More 87]: 

P(c) ex e-x/T { erf((2VJoul + p)f2Jiii')- erf((p- 2x)/2jiii') 



+le-(p-2x)2/4pT[ e(p-2x-"tpT)2/4pT( 1 + erf((p- 2x -[pT)/2{if)) 

-e(p-2x+"'PT)2 f4pT ( erf ( (2V3oul + p + [pT) /2{ii') 
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- erf((p- 2x + [pT)/2{if)) J }, (7.1) 

where x = E- VJoul and E is the kinetic energy of evaporated particle; VJoul is the 

Coulomb barrier; T is the temporature of the residual nucleus; p the amplification 

parameter, and 1 a parameter representing the barrier penetrability. In develop-

ing the above formula, the barrier penetration probability FBP has been chosen for 

simplicity as the form: 

1 'YX 
F BP (E) = 2 e 1 , ( x < 0); (7.2) 

This function and its first derivative are continuous at x = 0, and has the qualitative 

features of penetration and reflection expected for a penetrability function. 

In the case where the temperature T is low and the Coulomb barrier VJoul 

is large (for a particles, for example), erf((2VJoul + p)/2ViJT) = 1, and erf((2VJoul + 

p + [pT)/2.JPT) = 1. _Taking advantage of these facts, Eq. 7.1 can be rewritten as: 

P(E) ex e-x/T{ erfc((p-2x)/2{ii') 

+le-(p-2x)2f4pT[ e(p-2x-"tpT)2/4pTerfc( -(p- 2x -[pT)/2{ii') 

-e(p-Zx+"'PT)
2

f 4pT erfc( (p- 2x + [pT)/2{if)] }· (7.3) 

Notice that Equations 7.1 and 7.3 do not contain any polynomial of 2nd order or 

higher in E, and the (complementary) error functions and the exponentials are all 

smooth functions. 
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The complementary error function erfc in Eq. 7.3 can be readily calculated 

with fractional error everywhere less than 1.2x10-7 [Pres 92]: 

ln(erfc(lxl)) = ln(t)- x 2
- 1.26551223 + t x (1.00002368 

+ t X (0.37409196 + t X (0.09678418 + t X ( -0.18628806 

+ t X (0.27886807 + t X ( -1.13520398 + t X (1.48851587 

+ t X ( -0.82215223 + t X 0.17087277)))))))), 

where t = l.O · and 
1.0 + 0.5lxl' 

{

. exp ( ln( erfc( x))), 
erfc(x) = 

2.0- exp(ln(erfc( -x))), 

X> O· - ' 

X< 0. 

(7.4) 

(7.5) 

Equation 7.3 is found to be .able to fit the measured alpha spectra to a 

remarkable precision. This is shown in the following section. 

7.2 Smooth Fit of Alpha Spectra, and Modulation in 

Residuals 

Now we fit the energy spectra of alpha particles evaporated from nuclei 

formed in 3 He+natAg reactions with Equation 7.3. The fit will be performed for the 

spectra in the energy range from 10 to 24 MeV. The high-energy tail above 24 MeV is 

excluded in the fitting to avoid the involvement of pre-equilibrium particle emission, 

which is not considered in Eq .. 7.3. The cut-off point at 24 MeV was determined 

empirically. The spectra below 10 MeV is also cut off due to possible contributions 
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from light contaminants on the surface of the target. The shape of a-particle energy 

spectra for possible light contaminants such as carbon and oxygen should look similar 

to those for 3He+natAg, but are narrower and peaked at lower energies. The relative 

contributions from possible light contaminants may be estimated by the relative 

counts at energies below the evaporation peak ( rv6 MeV for 3He+nat Ag reactions, 

see Fig. 6.1) of the measured energy spectra. 

Shown in the lower panel of Fig. 7.1 are the measured alpha-particle spec-

trum and the fit for 3 He + natAg reaction at the beam energy of 65 MeV. The quality 

of the fit is remarkable. The exceedingly good quality of the fit indicates that, on the 

one hand, (the bulk of) the evaporation spectrum is indeed statistical, and that, on 

the other hand, the shape fluctuations at the saddle point are very well accounted 

for by Eq. 7.3. The high quality of the fit should also allow for an accurate determi-

nation of the amplification parameter p, and the Coulomb barrier Vc?oul for a-particle 

evaporation. 

The percentage difference between the experimental data and the fit is shown 

in the upper panel of Fig. 7.1. The residual of the fit is of the order of 1% throughout 

•. 

the energy range, which shows the goodness of the fitting function. The residual 

shows a statistically significant modulation with an amplitude of about 1.5%. 

The alpha-particle spectra and the corresponding fits with Eq. 7.3 for 3 He 

+ natAg reactions at other bombarding energies ranging from 55 to 110 MeV are 

shown in the lower panel of each sextant in Fig. 7.2. The percentage residuals of the 

fits are also shown in Fig. 7.2, in the upper panel of each sextant. All the fits are 
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Figure 7.1: Lower panel: The experimentally measured C.M. a energy spectrum ( •) from 
3 He+natAg reaction at 65 MeV beam energy, and the fit (-) with Eq. 7.3. Upper panel: 
The percentage difference between the experimental data and the fit shown in the lower 
panel. The error bars represent the statistical errors of the experimental data. 
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excellent, with residuals on the order of only 1%. All the residuals show a statistically 

significant modulation with an amplitude of about 1.5% which repeats itself both in 

amplitude and phase at all bombarding energies. 

Several questions immediately come to mind. Is the modulation physical, as 

those expected for optical potentials? Could it be the results of instrumental effects, 

like modulations introduced by departures from linearity of ADCs, amplification 

electronics, detectors, etc.? Or could it be a fitting problem associated with the 

rigidity or modulations in the fitting function? 

Instrumental effects have been ruled out. The modulation is observed in sev­

eral independent detector-electronics chains. The modulation and the alpha-spectra 

themselves shown in Fig. 7.2 have also been confirmed in follow-up experiments us­

ing different detectors, ADCs, different gains, and different chains of amplification 

electronics. 

The question regarding the fitting function is a more difficult one. The 

fitting function Eq. 7.3 is non polynomial, thus it does not introduce the modulation 

we see. From a close inspection it is clear that it is the data that wrap themselves 

around the fitting function, not vice-versa. 

But what if there is a slight mismatch between a smooth fitting function 

and a true statistical evaporation spectrum which is also smooth? There seems no 

easy and clear-cut answer to this question. 

Before we can answer this question, let us look now at the spectra of alpha­

particles emitted from nuclei formed in another 3 He-induced reaction, 3 He + 197 Au. 
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Figure 7.2: Lower panels: The experimentally measured C.M. a energy spectra ( o) from 
the 3 He + nat Ag reactions at 55, 65, 75, 85, 95, 110 MeV beam energies, and the corre­
sponding fits (-) with Eq. 7.3. Upper panels: The percentage differences between the 
experimental data and the fits with Eq. 7.3 shown in the lower panels. The error bars 
represent the statistical errors of the experimental data. 
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Figure 7.3: Lower panels: The experimentally measured C.M. a energy spectra ( o) from 
the 3 He + 197 Au reactions at 75, 85, 95, 110 MeV beam energies, and the corresponding 
fits(-) with Eq. 7.3. Upper panels: The percentage differences between the experimental 
data and the fits with Eq. 7.3 shown in the lower panels. The error bars represent the 
statistical errors of the experimental data. 
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Shown in the lower panels of sextants in Fig. 7.3 are the alpha-spectra and 

the corresponding fits with Eq. 7.3 for 3 He + 197 Au reactions at bombarding energies 

of 75, 85, 95, 110 MeV, respectively. As in the case of 3He + natAg reaction, the low 

energy part of the spectra was excluded in the fits because of possible contributions 

from light surface contaminants, and the high-energy tail of the measured spectra 

was also excluded because Eq. 7.3 does not consider pre-equilibrium emission. Due 

to the substantially higher Coulomb barrier for a-particle emission, the a-particle 

emission probability is much smaller in the 3 He + 197 Au reaction than in the 3 He 

+ nat Ag reaction. The low emission probability, on the one hand, leaves way for 

pre-equilibrium emission to play a larger role in the high~energy tail of the measured 

spectra, and on the other hand, elevates the relative importance of the contributions 

to the low-energy part of the spectra by light surface contaminants. Thus the data 

range used in the fits was even more limited than in the case of 3 He + nat Ag reaction. 

The quality of the fits is excellent. Theo residuals of the fits are of the order 

of 1%. The percentage residuals of the fits are shown in Fig. 7.3, in the upper panels 

of sextants. The residuals also show a modulation somewhat similar to that observed 

in Fig. 7.2 for 3 He + nat Ag reaction. But, the periodicity of the modulation seen in 

the spectra from the 3 He + nat Ag reaction, seems lost, and the modulation seems 

to decrease in magnitude as energy increases, perhaps due to the more limited data 

( 

range. 

The alpha-spectra from the 3 He + 181Ta and natcu reactions are not shown. 

The results for 3 He + 181 Ta reaction look similar to those for the 3He + 197 Au 

I 



133 

reaction. Both Ta and Cu targets are more susceptible to surface contamination 

from oxidation. Thus the low-energy part of the alpha-spectra obtained for the 

reactions with these targets has contributions from light surface contaminants such 

as carbon and oxygen. For 3He + natcu reaction, the center-of-mass velocities are 

high except at the lowest bombarding energies. The presence of incomplete fusion 

at high bombarding energies therefore makes the C.M. energy spectra different from 

the energy spectra in the frame of emitting sources. However, the alpha-spectra 

from the 3 He + natcu reaction at the lowest bombarding energies (55, 65 & 75 MeV) 

should allow us to extract with good accuracy the Coulomb barrier Vc?oul and the 

amplification parameter p for the Ga nucleus formed in the reaction. The a-particle 

energy spectra from the 3 He + 181 Ta reaction at intermediate bombarding energies 

(75, 85, 95 & 110 MeV), where the alpha-emission probability is relatively high, thus 

diminishing the contributions from light surface contaminants, should aiso allow us 

to extract the Coulomb barrier V3ow and the amplification parameter p for the Re 

nucleus. The extracted values. for these parameters are presented in the following 

section. 

7.2.1 Extracted parameters, and Systematics of Coulomb Barriers for 

Alpha Evaporation 

The high quality of the fits shown in Fig. 7.1, 7.2 and 7.3 indicates that the 

formalism represented by Eq. 7.3 can well account for the underlying physical process 

of alpha evapo.ration. That is: a) particle evaporation is governed by phase space; b) 
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the thermal shape fluctuations at the saddle lead to a distribution of configurations 

- thus a distribution of Coulomb barriers - at which a particle is emitted. The 

latter can be well described by the Coulomb barrier V3our at the saddle and the 

amplification parameter p. The hjgh quality of the fits using Eq. 7.3 thus allows for 

an accurate determination of vgoul' p, and the temperature T of the residual nucleus 

produced by particle emission. 

The values for V3our' p, and T extracted from the fits shown in Fig. 7.2 for 

nuclei formed in the 3He + nat Ag reactions, are shown in Fig. 7 .4, as a function of 

bombarding energies. In the energies range from 55 to 110 MeV, the values for V3oul 

are constant, indicating virtually the same saddle shapes in this energy range. The 

amplification parameter p also remains roughly constant. The temperature T of the 

residual nucleus increases slowly as energy increases, as expected. 

The values for V3our' p, and T obtained from the fits shown in Fig. 7.3 for 

nuclei formed in the 3 He + 197 Au reactions, are shown in Fig. 7.5. The extracted 

values for these parameters for nuclei formed in the 3He + 181 Ta and natCu are 

shown in Figs. 7.6 and 7. 7., repectively. In the explored energy range, the Coulomb 

barriers vgoul for these systems do not change with energy, as observed in Fig. 7.4 for 

3 He + nat Ag. One also observes approximately constant values for the amplification 

parameter p over the energy range explored. The values for the temperature T 

increase slowly with energy, but decrease, also slowly, with increasing size of the 

nucleus. 

The Coulomb barriers V3our at the saddle for alpha evaporation, obtained 
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Figure 7.4: The values of the Coulomb barrier V8oul' the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits shown in the lower 
panels of sextants in Fig. 7.2 for nuclei formed in the 3 He + nat Ag reactions, are plotted 
against bombarding energy. The error bars are smaller than the size of symbols. 
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Figure 7.5: The values of the Coulomb barrier V8oul' the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits shown in the lower 
panels of quadrants in Fig. 7.3 for nuclei formed in the 3 He + 197 Au reactions, are plotted 
against bombarding energy. The error bars are smaller than the size of symbols. 
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Figure 7.6: The values of the Coulomb barrier V8oul' the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits using Eq. 7.3 to the 
measured a-particle spectra for nuclei formed in the 3 He + 181Ta reactions, are plotted 
against bombarding energy. The error bars are smaller than the size of symbols. 
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Figure 7. 7: The values of the Coulomb barrier V8oul' the temperature T of the residual 
nucleus and the amplification parameter p, extracted from the fits using Eq. 7.3 to the 
measured a-particle spectra for nuclei formed in the 3He + natcu reactions, are plotted 
against bombarding energy. The error bars are smaller than the size of symbols. 
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Figure 7.8: The extracted values of the Coulomb barriers V8oui for a-particle evaporation 
are plotted versus the atomic number ZeN of the nucleus from which a-particle is emitted. 
The solid line is the systematic of V8oui established with the data points shown. The dashed 
line is the systematic of the Coulomb barriers for alpha evaporation given by Parker et al. 
[Park 91]. 

for a range of nuclei (Ga, In, Re, Tl) produced in the 3 He + Cu, Ag, Ta, Au 

reactions, provide a systematic of V8oui as a function of the atomic number and 

the geometrical size of nucleus. This systematic is shown as the solid line in Fig. 7.8 

where the Coulomb barrier V8ou! for alpha evaporation is plotted against the atomic 

number ZeN of the cornpouud nucleus from which the alpha particle is emitted. The 

systematic is well represented by the equation: 

v;o _ 2.88 (ZeN - 2) ( ) 
eoul - 1.370 (AeN - 4)1/3 + 4.537 MeV ' 

(7.6) 
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where AcN is the mass number of the compound nucleus. Also shown in Fig. 7.8 as 

the dashed line is the systematic of Parker et al. [Park 91] for Coulomb barriers for 

alpha-particle evaporation. The evaporation barriers from the Parker's systematic 

are slightly lower than ours. The compound nuclei, whose alpha evaporation barriers 

were determined and used to establish the Parker's systematic, were prepared in 

heavy-ion reactions, and have therefore average angular momenta substantially larger 

than for the compound nuclei produced in the 3 He-induced reactions. Large angular 

momenta may result in deformed compound nuclei and thus reduced evaporation 

barriers. The difference between the Parker's systematic and ours may also lie in 

the fact that, while our Coulomb barrier is for the saddle configuration, Parker's is 

averaged over the thermal shape fluctuations. 

It should be interesting to see how the amplification parameter p changes 

with the size of compound nucleus. In Fig. 7.9, the values for p are plotted against 

the atomic number of the nucleus from which the a-particle is emitted. One observes 

a gradual increase of p as an emitting nucleus becomes larger. This seems natural, 

since the larger the nucleus, the more Coulomb energy associated with it. No effort 

has been made yet, however, to understand the detailed systematic features of p. 

The extracted values for the penetrability parameter 1 are 20.3, 23.9, 15.0, 

14.2, 16.9, 14.9 for the 3 He + nat Ag reactions at 55, 65, 75, 85, 95, 110 MeV bom­

barding energies, respectively. For 3 He + 197 Au reactions at the beam energies 75, 

85, 95, 110 MeV, the extracted values for 1 are 35.1, 14.4, 15.4, 14.4, respectively. 

The 1 values obtained from the fits for alpha emission from the 3 He + natcu & 181 Ta 
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Figure 7.9: The extracted values of the amplification parameter p are plotted versus the 
atomic number ZeN of the nucleus from which a-particle is emitted. 

reactions are also high, all above 12.6. These large values for 1 indicate that con-

tributions from the quantum barrier penetration are negligible at thes~ excitation 

energies [More 87]. 

7.3 Orthogonal Polynomials Representation of Modulations 

in Alpha Spectra 

As shown in Section 7.2, the fits with Eq. 7.3 indeed represent very well 

the spectral shape of the a-energy spectra from reactions 3 He + nat Ag and other 

reactions at the various excitation energies. Moreover, Eq. 7.3 is a smooth function. 
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The residuals of the fits show statistically significant modulations which, in the case 

of 3 He + nat Ag reaction in particular, repeat themselves both in amplitude and 

phase at all bombarding energies. The goodness of the fits with Eq. 7.3 is, however, 

a posteriori knowledge. We do not know a priori that Eq. 7.3 should work so well. 

Therefore, one still needs to seek further assurance that the modulations 

observed in the residuals are indeed physical resonances. This assurance turns out 

· to be quite difficult to obtain. 

To a lesser extent, one can try to quantitatively ·describe and extract in-

formation on the modulations observed in the alpha spectra, perhaps in the hope 

that some clue may become evident. For this purpose, we have devised an analyti-

cal procedure based upon orthogonal polynomials. We write down the experimental 

spectrum F( E) as a linear combination of orthogonal polynomials Pn (E) 

(7.7) 

where S(E) is a suitably chosen weight function that generates the polynomials Pn(E); 

en is the coefficient which can be considered as the amplitude of a spectral mode 

corresponding to the nth order polynomial Pn (E). The orthogonality condition is 

(7.8) 

The choice of S (E) is dictated by the desire to concentrate the bulk of the 

spectral shape into the single coefficient Co· The modulations then appear in the 

higher-order coefficients, hopefully in only one or two. This goal can be achieved 
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by choosing for S(E) the form given by Eq. 7.3 with parameters obtained from the 

least squares fit. This guarantees that Co will take up the bulk of the spectrum. The 

amplitudes Cn can be obtained from the dot product of the experimental spectrum 

with the nth polynomial 

(7.9) 

and the corresponding strength sn can be defined as 

(7.10) 

By definition we have I: sn = 1. 

For the given weight function S(E), the existence of the polynomials Pn(E) 

that satisfy the orthogonality condition Eq. 7.8 can be proved. The proof, and the 

procedure that is used to generate the polynomials Pn(E), can be found in textbooks, 

ref. [Sans 59] for example. 

A C++ computer code has thus been developed to implement this analytical 

procedure. The details of the implementation and the code are given in Appendix B. 

Now we can apply the procedure to the experimental spectra shown in Section 7.2. 

The results of this analysis for the alpha spectrum for the 3 He + nat Ag 

reaction at 65 MeV bombarding energy is shown in Fig. 7.10. The weight function 

S( E) is chosen to be the fit shown in Fig. 7.1. Shown in the lower panel in Fig. 7.10 are 

the measured alpha spectrum and the linear combination of the orthogonal functions 

(Eq. 7. 7) up to the lOth order. This linear combination of the orthogonal functions 

indeed represents the spectrum in all its details. The percentage residuals of the 
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Figure 7.10: Lower panel: The measured C.M. a-particle energy spectra ( o) and the 
linear combination of the orthogonal functions (Eq. 7.7) (solid lines), for the 3He + natAg 
reaction at 65 MeV beam energy. The inserted figure shows the strength s~ of the nth 

order as defined in Eq .. 7.10 plotted against the order n. Upper panel: The dots are 
the percentage difference between the experimental data and the fit with Eq. 7.3. The 
error bars represent the statistical errors of the experimental data. The solid line is the 
percentage difference between the combination of the orthogonal functions and the fit. 
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fit, and the percentage difference between the linear combination of the orthogonal 

functions and the fit, are plotted in the upper panel of the figure. The nearly perfect 

.. 
match between the two percentage differences shows also the excellent quality of the 

polynomials representation. The strength sn as defined in Eq. 7.10 is plotted against 

the order n in the insert inside the lower panel. We see that indeed c0 ( s0 ~ 1) 

takes up the bulk of the·spectrum, and that only a few of the coefficients Cn of small 

magnitude suffice to exhaust the modulation. 

Shown in the lower panels of sextants in Fig. 7.11 are the measured center-

of-mass a-energy spectra and the linear combination of th.e orthogonal functions, 

for the 3 He + nat Ag reactions at bombarding energies of 55, 65, 75, 85, 95, and 

110 MeV. The weight functions are chosen to be the corresponding fits shown in 

Fig. 7.2. Plotted in the upper panels of sextants are the percentage residuals of the 

fits, and the percentage differences between the linear combination of the orthogonal 

functions and the fits. We see that both the spectra and the residuals of the fits are 

excellently represented by a combination of the orthogonal functions. In Fig. 7.12 the 

stre~gth sn is plotted against the order n. At all bomdarding energies, the oth order 

amplitudes c0 take up the bulk of the spectra ( sn ~ 1 ), and only a few coefficients 

Cn of small ·magnitude suffice to exhaust the modulations. The amplitudes for the 

5th order ( c5 ) seem to stand out and retain approximately the same magnitude for 

all bombarding energies. 

For the C.M. a-energy spectra from the 3 He + 197 Au reactions at 75, 85, 

95, and 110 MeV bombarding energies, the linear combination of the orthogonal 
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Figure 7.11: Lower panels: The measured C.M. a-particle energy spectra ( o) and the linear 
combination of the orthogonal functions (Eq. 7.7) (solid lines), for the 3 He + natAg at six 
different bombarding energies. Upper panels: The dots are the percentage differences 
between the experimental data and the fits with Eq. 7.3. The error bars represent the 
s~atistical errors of the experimental data. The solid ·lines are the percentage differences 
between the combination of the orthogonal functions and the fits. 
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Figure 7.12: The strength sn of the nth order as defined in Eq. 7.10 is plotted against the 
order n, for the 3 He + natAg reactions at 55, 65, 75, 85, 95, and 110 MeV bombarding 
energies. 
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Figure 7.13: Lower panels: The measured C.M. a-particle energy spectra ( o) and the linear 
combination of the orthogonal functions (Eq. 7.7) (solid lines), for the 3 He + 197 Au at four 
different bombarding energies. Upper panels: The dots are the percentage differences 
between the experimental data and the fits with Eq. 7.3. The error bars represent the 
statistical errors of the experimental data. The solid lines are the percentage differences 
between the combination of the orthogonal functions and the fits. 
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functions also represents very well both the spectra and the residuals of the fits, as 

shown in Fig. 7.13. The corresponding strength Sn is plotted versus the order n in 

Fig. 7.14. As expected, the strength So for the oth order is approximately equal to 1, 

and only a few coefficients Cn of small magnitude suffice to exhaust the residuals of 

the fits. 

The orthogonal polynomials analysis presented above provides us a way to 

quantitatively describe both the measured spectra and the observed modulations in 

the spectra (see Fig. 7.11). It also allows us to extract information on the strength of 

a mode represented by a polynomial of certain order n, although at this stage what 

physical meaning that may be attached to the polynomials is unclear. In general, 

analysis schemes of this sort should be useful to pick up signals in noisy environments. 

7.4 An Alternative Approach 

Although the orthogonal polynomials analysis works excellently in describ­

ing quantitatively both the measured spectra and the observed modulations, it falls 

short of convincing us that the observed modulations are really physical. To believe . 

the modulations observed in the residuals of the fits still requires the assumption 

that the fits truthfully represent the unmodulated spectral shape. 

It becomes clear that new ways to identify structrual modulations without 

relying on a fit with certain spectral shape must be developed. 

One alternative approach is to use a smoothing procedure, which retains 
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the long-range variations but removes the short-range modulations, to provide t?e 

unmodulated background spectral shape. Strutinski has developed a procedure based 

on a Gaussian smoothing function, to obtain smoothed shell model level densities 

[Stru 67]. The Strutinski procedure has also been generalized to retain higher-order 

(up to the 7th order) variations in the smoothed shell model level densities [Nils 

69, Tsan 69, More 72b]. Using the generalized Strutinski procedure, the smoothed 

spectrum Fs(E) can be written as: 

(7.11) 

where F( E) is the original spectrum to be smoothed; ~ is the width of the Gaussian 

smoothing function. The function fk is chosen in such a way that the smoothed 

spectrum retains the long-range variations up to a fixed order. Choosing the function 

fk as [Nils 69, Tsan 69, More 72b]: 

(7.12) 

I 

where u = E ~ E, and H 2n are the Hermite polynomials of even order, the smoothed 

spectrum then retains the long-rarige variations up to the (2k + l)th order (see Ap-

pendix A). 

This smoothing procedure works excellently to obtain long-range features. 

However, in the current case, this smoothing procedure does not help, since the width 

of the modulation is comparable to the feature scale of the spectra. The modulation 

either gets no chance to stand out (with small O, or entangles with spectrai shape 

itself (with large 0. 
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7.5 Conclusion 

The search for evidence for the existence of complex particles as independent 

particles inside a nucleus is still an ongoing effort. Tentative evidence is presented 

in this part for structural modulations of alpha particles similar to those expected 

for optical potentials. The presented structural modulations were observed in the 

residuals of the fits to the measured alpha spectra with a smooth spectral shape. The 

spectral shape used in the fitting is shown to represent alpha spectra to an excellent 

precision, although this is not sufficient to convince one that the modulations, which 

appear in the residuals of the fits, are a measure of a-particle resonances in a potential 

well. 

An analysis procedure based on orthogonal polynomials has been developed, 

to quantitatively describe the residuals of the fits. This procedure allows one to 

extract information on the strength of a mode represented by a polynomial of a 

certain order. However, the physical meaning of the polynomials, which are generated 

by using the spectral shape as their weight function, is unclear. 

It seems still a long way to reach definite conclusi~ns regarding the physi­

cal reality of the observed modulations, thus the existence of complex particles as 

independent particles inside a nucleus. 
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Appendix A 

, Generalized Strutinski Smoothing 

Procedure 

Using the generalized Strutinski smoothing procedure [Nils 69, Tsan 69, 

More 72b], the smoothed function Fs(x) can be written as: 

where F( X) is a function to be smoothed, and e is the width of the Gaussian smooth­

ing function. The correction function ]k ( u = x' ~ x) is so chosen that the smoothed 

function retains the iong range variations up to a fixed order. In the following it will 

be demonstrated that, choosing ]k to be [More 72b] 

(A.2) 

where k is a positive integer and H2n( u) are the Hermite polynomials of even order, 

the smoothed function Fs( x) retains the long range variations up to the (2k + l)th 

~. 

; 
'· 
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order. Equivalently, it is to show that, for m = 0, 1, 2, · · ·, (2k + 1 ), 

(A.3) 

First, it is easily verified that, form = 0, 1, · · ·, (2k + 1), Equation A.3 is 

valid if k = 0, 1, 2, 3 (see also refs. [Nils 69, Tsan 69]). 

Now, given that, form= 0, 1, 2, · · ·, (2k- 1), 
I , 

(A.4) 

we show that Eq. A.3 is valid form= 0, 1, 2, · · ·, (2k + 1). Notice that, form = 0, 

1 2 . . . (2k - 1) 
' ' ' ' 

(A.5) 

where the orthogonality condition of the Hermite polynomials 

n-=fm, 
(A.6) 

n=m, 

has been used. Thus, for m = 2k- 1 in particular, Eq. A.5 becomes 

2k-l 1!
00

(1: )2k-l(~(-1)nH()) ( 2)d X = ;;; c, u + X . ~ -22n 1 2n u exp -u u . 
y 7r -oo n=O n. 

(A.7) 
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Next we show that Eq. A.3 is valid form= 2k and 2k + 1. By Eq. A.7, 

(A.8) 

where the identity 

(k2:1), (A.9) 

has been used. The proof of this identity will be given later. In the same way, 

x2k+1 = fox (2k + 1) x2k dx 

= ~ joo [ r (2k + 1) (eu + x)2kdx] ( t ( ~:)~ H2n(u)) exp( -u2
) du 

y7r -oo lo n=O 2 n. 

= ~~oo (eu+x) 2k+l(t (~:)~ H2n(u)) exp(-u2)du 
V 7r -oo n=O 2 n. 

- -
1
-joo (eu)2k+l(t (~:)~ H 2n(u)) exp(-u2)du 

VK -oo n=O 2 n. 

1 oo ( k ( 1)n ) 
= ;-;;; J ( eu + X )

2
k+l L 2~n ' H2n ( u) exp( -u

2
) du' 

Y 7r -oo n=O n. 
(A.10) 

where 

(A.ll) 

since the integrand is an odd function. 
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Now the proof of Eq. A.9 is given to finish the proof of Eq. A.3. It is easily 

verified that Eq. A.9 is true for k = 1 and 2. We show in the following that Eq. A.9 

holds for any k (k 2: 1). Notice that u2
k-

2 can always be expressed as 

k-1 

u2k-2 = L anH2n(u), 
n=O 

(A.12) 

where an are the coefficients properly chosen to make the identity. Thus, by using 

the recurrence formula of the Hermite polynomials 

Hn+1(u) + 2uHn(u) + 2nHn-1(u) = 0, (A.13) 

one gets 

k-1 

4u2k = 4u2u2k- 2 = 4u2 L an H2n(u) 
n=O 

(A.14) 

k-1 + L an(H2n+2(u) + (8n + 2)H2n(u) + 8n(2n- 1)H2n-2(u)). 
n=1 

Therefore, 

I: 4u
2k(E ~~:~; H2n(u)) exp(-u

2
)du 

=I: ao(H2(u) + 2Ho(u)) (E ~~:~; H2n(u)) exp( -u
2
) du 

+I:[}; an(H2n+2(u) + (8n + 2)H2n(u) + 8n(2n -1)-fl2n-2(u))] 

( 

k ( -1 )n ) E 22nn! H2n(u) exp( -u
2
) du 

= 0, (A.15) 

where the integrals are readily evaluated by using the orthogonality equation A.6. 

QED. 
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Appendix B 

Orthogonal Polynomials Analysis 

and a C++ Code 

A system of polynomials Pn ( x): 

(n- 0 1 2 · · ·) - ''' ' 
(B.l) 

is called orthogonal on the interval [a, b] with respect to the weight function w(x), if 

l b { 0, a w(x)Pn(x)Pm(x)dx = 
hn, 

n=J m, 
(B.2) 

n=m. 

The weight function w( x) ( w( x) ~ 0, x E [a, b]) determines the system Pn ( x) up to a 

constant factor in each polynomial. The specification of these factors is referred to as 

standardization. The usual way to standardise is called normalization by specifying 

One example of orthogonal polynomials is the Legendre polynomials where 
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w(x) = 1, x E [-1, 1]. The Legendre polynomials are widely used to represent the 

angular distributions of products in nuclear reactions. 

Another example of orthogonal polynomials is the Hermite polynomials 

where w(x) = exp( -x 2
), x E [-oo, oo]. The Hermite polynomials can be used to 

represent the wave functions of a harmonic oscillator. 

B.l Generation of Orthogonal Polynomials for An Arbitrary 

Weight Function 

Given a weight function w(x) defined in [a, b] that the following integrals 

(called moments) exist and are finite 

(n=0,1,2,···), (B.3) 

and that a 0 > 0, then it is· possible to construct in a unique way, apart from the 

sign, a sequence of orthogonal polynomials Pn ( x) with respect to the weight function 

w(x) in [a, b]. This is shown as follows [Sans 59]. 

If we let 

then 

<I>o(x) = 1; 1 = 1b w(x)a~ dx, 1/a6 = ao; 

1b w(x)[x- D1] dx = 0; 

1/ai = 1b w(x)<I>i(x) dx. 

(B.4) 

(B.5) 
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To construct the successive polynomials <I> 2 , <I> 3 , · · ·, we notice that for any constants 

Jln, Vn the polynomial 

(n ~ 2) 

has its first coefficient equal to one and is orthogonal to <1> 0 , <1> 1 , 

orthogonality to <I>n_ 2 with respect to w( x) implies 

1b xw(x)<I>n-I(x)<I>n-2(x) dx = Vn 1b w(x)<I>;_2(x) dx, 

the orthogonality to <I>n-l with respect to w( x) implies 

1b xw( x )<1>;_1 ( x) dx = Jln 1b w( x )<1>;_ 1 ( x) dx, 

and the normalization of anw112(x)<I>n(x) in [a, b] implies 

a; 1b w(x)<I>;(x) dx = 1. 

(B.6) 

<I>n-3· The 

(B.7) 

(B.S) 

(B.9) 

Thus we have the procedure to generate a complete set of orthogonal polynomials 

with respect to the given weight function w( x ). 

B.2 Orthogonal Polynomials Representation of Structural 

Modulations in Alpha-Particle Spectra 

We observe that, in our experimentally measured alpha-particle spectra (see 

Fig. 7.1, for example), the structural modulations of small magnitudes superimpose 

on the overall smooth background represented by the fits S(E) using Eq. 7.3. Choos­

ing the weight function to be w( E) = 5 2 (E), the corresponding set of orthogonal 
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polynomials Pn (E) can be generated which satisfies the orthogonality condition: 

(B.lO) 

Then the experimental spectrum F( E) can be written as a linear combination of 

orthogonal functions S(E)Pn(E) 

F( E) = LenS( E)Pn( E), (B.ll) 
n· 

where Cn is the coefficient which ·can be considered as the amplitude of a spectral 

mode corresponding to the nth order polynomial Pn (E). 

The. choice of S2 (E) as the weight function guarantees that the coefficient c0 

ofthe zero-th order will take up the bulk of the spectrum, and the modulations then 

appear in the higher order coefficients, hopefully in only one or two. The amplitutes 

Cn can be obtained from the dot product of the experimental spectrum F( E) with 

the nth order orthogonal function S(E)Pn(E) 

(B.12) 

and the corresponding strength sn can be defined as 

(B.l3) 

By definition we have I:: sn = 1. 

This analysis procedure based on the orthogonal polynomials should allow 

us to quantitatively describe the modulations in the measured alpha spectra, and 

extract information such as the strength associated with a spectral mode represented 

by the polynomial of the order n. 



B.3 A C++ Code that Implements the Polynomials 

Analysis Procedure 
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A computer code in C++ has been developed to implement the analysis 

procedure illustrated above. The C++ code package consists of the following four 

object classes: 

• Orth W eightD: Delared in the head file DrthWeightD. h. This class estab­

lishes the weight function. It has utility functions that return the values of 

w(x), w112(x), and other properties such as the parameters the weight func­

tion requires. The class also provides utilities to reset some of its parameters. 

Its inline member functions are implemented in the head file DrthWeightD. h. 

Other member functions are implemented in the file DrthWeightD. cxx. 

• OrthPolyD: Declared in the head file DrthPolyD. h. OrthPolyD is a subclass 

of the class OrthWeightD, and inherits all the properties of OrthWeightD. 

The class OrthPolyD establishes the system of the orthogonal polynomials, 

with resper-t to the weight function inherited from OrthWeightD, up to a 

specified maximum order MaxN_. It has utilities to reset the boundaries of the 

variable domain [a, b] and the maximum order, and reestablish the polyno­

mials upon the resetting of [a, b] and/or MaxN_. Its inline member functions 

are implemented in the head file DrthPolyD. h. Other member functions are 

implemented in the file DrthPolyD. cxx. 
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• SpectrumlD: Declared ip. the head file Spectrurn1D. h. This class establishes 

the object of one dimensional spectrum which is to be analyzed. It has utility 

functions that return the values of many aspects of the spectrum properties, 

such as the counts in a specified channel, the integrated counts in a specified 

spectrum window, etc .. It has the structure in place for expansion into a full 

fledged analysis package for one dimensional spectrum, although the full im­

plementation has not been made. For the current analysis, a member function 

providing access to the spectrum data suffices. The inline member functions 

are implemented in the head file Spectrurn1D. h. Other member functions and 

non-member functions are implemented in the file Spectrurn1D. cxx. 

• M odeAmplitudes: Declared in the head file ModeArnpli tudes .h. This is the 

class object in which the orthogonal polynomials analysis is carried out. 

M odeAmplitudes is a subclass of both the class OrthPoly D and the class 

SpectrumlD, and inherits all the properties of OrthPolyD and SpectrumlD. 

Its inline member functions are implemented in the head file ModeArnplitudes .h. 

Other member functions are implemented in the file ModeArnpli tudes. cxx. 

The head files, OrthWeightD. h, OrthPolyD. h, Spectrurn1D. h, and ModeArnpli tudes. h, 

should reside in a directory called ORTHPOL Y /include, where ORTHPOLY is a symbolic 

link pointing to the parent directory of include. 

The following is a main program (function) which puts everything together, 

to perform the orthogonal polynomials analysis on the alpha energy spectrum from 
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the 3 He + nat Ag reaction at 65 MeV beam energy. It serves as a sample illustrating 

how the classes are to be used. 

!!********************** start of file: Ag65.cc ************************** 
//To perform the polynomials anaylsis on spectrum in the file Ag65.dat. 
#include <iostream.h> 
#include <stdio.h> 
#include <math.h> 
#include "ORTHPDLY/include/DrthWeightD.h" 
#include "DRTHPOLY/include/DrthPolyD.h" 
#include "ORTHPOLY/include/Spectrum1D.h" 
#include "ORTHPDLY/include/ModeAmplitudes.h" 
char *StrCat(const char *• canst char*); 

int main() { 
int MaxDrder = 10; //the analysis is done up.to order MaxDrder;~ 
double LimitLow = 10.0; //the energy range of the spectrum to be 
double LimitHigh = 25.0; //analysed [LimitLow,LimitHigh]; 
char fnameSpc[] = "Ag65.dat"; //the file that contains spectrum data; 
canst char fname[] = "Ag65"; //prefix for output file names; 

double wpara[] = { 0.20854e+6, 12.423, 2.8737, 1.6870, 23.944 }; 
//values for (statistics, Vcoul, T, p, gamma) from fit with Eq.23; 

DrthWeightD w(wpara[O], wpara[1], wpara[2], wpara[3], wpara[4]); 
//declare and establish the weight object w of class DrthWeightD; 

DrthPolyD Pn(w,LimitLow,LimitHigh,MaxDrder); 
//declare and establish the polynomial object Pn of class DrthPolyD; 
//Pn of variable domain [LimitLow,LimitHigh] is established ~ith w 
//up to the order MaxOrder; 

//now read in the spectrum: 
float st, en, bi; 
float *sp =new float[4096]; 
int nch; 
void getSpectrum(char *fname, float &st, float &en, float &bi, 

int &nch, float *sp); 
getSpectrum(fnameSpc, st, en, bi, nch, sp); 
Spectrum1D s(st, en, bi, sp); 

//declare and establish the spectrum object s of class Spectrum1D; 
delete [] sp; //sp is no longer needed; release the space; 

//now the polynomials analysis: 
ModeAmplitudes An(s,Pn,LimitLow,LimitHigh,MaxOrder); 



//declare the object An of class ModeAmplitudes; An is established 
//with both sand Pn. in the domain [LimitLow,LimitHigh]. and up to 
//the order MaxOrder; 

//print out the results to files: 
//original fit; 
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FILE *Pfit = fopen(StrCat(fname,".fit"),"w+"); 
FILE *Psum = fopen(StrCat(fname," .sum") ."w+''); 
FILE *Pdif = fopen(StrCat(fname,".dif"),"w+"); 
FILE *Pdel = fopen(StrCat(fname,".del"),"w+"); 
FILE *Pstr = fopen(StrCat(fname,".str"),"w+"); 

//sum of orth functions 
//diff. btw sum & fit; 
//diff. btw data & fit; 
//strength vs order n; 

double x; 
for(x = An.LowBoundary(); 

} 

x <= An.HighBoundary(); x += ((double) An.BinSize())/4.0) { 
//print out the calculated quantities for each bin of reduced width; 
double sqrtw = An.SqrtWeight(x); //the original fit; 
double sum = 0.0; //combination of orth functions; 
for (int i=O; i<=An.MaxOrder(); i++) { 

sum += An.ModeAmp(i) * An.Polynomial(x,i) * sqrtw; 
} 

fprintf(Pfit, "'l.f 'l.f\n". x. sqrtw); 
fprintf(Psum. "'l.f 'l.f\n", X, sum); 
fprintf(Pdif, "'l.f 'l.f\n", x. 100.0*(sum - sqrtw)/sqrtw); 

for(x = An.LowBoundary()+0.5*An.BinSize(); 

} 

x < An.HighBoundary(); x += An.BinSize()) { 
double sqrtw = An.SqrtWeight(x); 
double del = 100.0*(An.Counts(x) - sqrtw)/sqrtw; 
double err= 100.0/sqrt(An.Counts(x)); 
fprintf(Pdel, "'l.f 'l.f 'l.f\n", x. del, err); 

double IntF2 = An.IntegralOfSquaredSpec(); 
for (int i=O; i<=An.MaxOrder(); i++) { 

} 

double strength = An.ModeAmp2(i)*An.PolyConstNorm(i)/IntF2; 
fprintf(Pstr, "'l.d 'l.g\n", i, strength); 

fclose(Pfit); 
fclose(Psum); 
fclose(Pdif); 
fclose(Pdel); 
fclose(Pstr); 



return 0; 
} 

#include <string.h> 
char *StrCat(const char *s1, const char *s2) { 

char *S = new char[strlen(s1)+strlen(s2)+1]; 
char *sptr = S; 

} 

while ((*sptr++ = *s1++) !='\0') 
sptr--; 
while ((*sptr++ = *s2++) !='\0') 
return S; 

void getSpectrum(char *fname, float &st, float &en, float &bi, 

171 

int &nch, float *sp) { 

} 

float Energy; 
FILE *fp = fopen(fname,"r"); 
int i = 0; 
while ( fscanf (fp, "'l.f'l.f", &Energy, (sp+i)) ! = EOF ) { 

if (i==O) st = Energy; 
i++; 

} 

nch= i; 
en = Energy; 
bi = (en- st)/((float) (nch -1)); 
st -= 0.5*bi; 
en += 0.5*bi; 
fclose(fp); 

!!***********************end of file: Ag65.cc *************************** 
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The source code of the four object classes is given below. It consists of the 

following files: 

• class ModeAmplitudes: ModeAmplitudes.h, ModeAmplitudes.cxx 

• class OrthPolyD: OrthPolyD. h, OrthPolyD. cxx 

• class OrthWeightD: OrthWeightD .h, OrthWeightD. cxx 

• class SpectrumlD: Spectrum1D.h, Spectrum1D.cxx 

!!******************** 
class ModeAmplitudes 
public: 

start of file: ModeAmplitudes.h ******************* 
public Spectrum1D, public OrthPolyD { 

ModeAmplitudes(); 
ModeAmplitudes(const 
ModeAmplitudes(const 
ModeAmplitudes(const 

//constructors: 
Spectrum1D& s, 
Spectrum1D& s, 
Sp~ctrum1D& s, 

const 
const 
const 

OrthPolyD& p); 
OrthPolyD& p, 
OrthPolyD& p, 

int n); 
double a, 

double b); 
ModeAmplitudes(const Spectrum1D& s, const OrthPolyD& p, 

ModeAmplitudes(const ModeAmplitudes&); 
-ModeAmplitudes(); //destructor 

inline int MaxModeNum() const; 
inline double LowBoundary() const; 
inline double HighBoundary() const; 
inline double ModeAmp(int n) const; 
inline double ModeAmp2(int n) const; 

double IntegralOfSquaredSpec() const; 
void setMaxModeNumber(int n); 
void setAmplitudeOfAllModes(); 
//void setAmplitudeOfNthMode(int n); 

double a, double b, int n); 
//construct by copying 

I /not implemented 

private: 

}; 

int MaxModeNum_; 
double* PtrToModeAmplitudes_; 
void copy(const ModeAmplitudes&); 

//<= MaxOrder of DrthPolyD; 

!!************************** inline functions **************************** 
inline int ModeAmplitudes::MaxModeNum() const {return MaxModeNum_;} 
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inline double ModeAmplitudes: :LowBoundary() const {return Low_a(); } 
inline double ModeAmplitudes: :HighBoundary() const {return High_b(); } 

inline double ModeAmplitudes::ModeAmp(int n) const { 
if ( n < 0 ) { 

} 

cout << "Error: Moden < 0;" << endl; 
return 0.0; 

} else if ( n > MaxModeNum_ ) { 
cout << "Amplitude for mode " << n << " is not available;" << endl; 
return 0.0; 

} else { 
return PtrToModeAmplitudes_[n]; 

} 

inline double ModeAmplitudes: :ModeAmp2(int n) const { 
if ( n .< 0 ) { 

} 

cout << "Error: Moden < 0;" << endl; 
return 0.0; 

} else if ( n > MaxModeNum_ ) { 
cout <<"Amplitude**2 for mode "<< n <<" is not available;"<< endl; 
return 0.0; 

} else { 
return ModeAmp(n)*ModeAmp(n); 

} 

!!********************end of file: ModeAmplitudes.h ********************* 

!!******************* start of file: ModeAmplitudes.cxx ****************** 
#include <iostream.h> 
#include <math.h> 
#include "ORTHPOLY/include/OrthWeightD.h" 
#include "ORTHPOLY/include/OrthPolyD.h" 
#include "ORTHPOLY/include/Spectrum1D.h" 
#include "ORTHPOLY/include/ModeAmplitudes.h" 

ModeAmplitudes: :ModeAmplitudes() : Spectrum1D(), OrthPolyD() { 
MaxModeNum_ = 0; 
PtrToModeAmplitudes_ =new double[MaxModeNum_+1]; 

} 

ModeAmplitudes: :ModeAmplitudes(const Spectrum1D& s, const OrthPolyD& p) 
Spectrum1D(s), OrthPolyD(p) { 

float a= StartOfSpec(); 



} 

float b = EndOfSpec(); 
setSpectrumWindow(a. b); 
if ( a < b ) { 

setLirnit(a. b); 
} else if ( a > b ) { 

setLirnit(b. a); 
} 

MaxModeNum_ = 0; 
PtrToModeArnplitudes_ =new double[MaxModeNum_+1]; 
setArnplitudeOfAllModes(); 

ModeArnplitudes: :ModeArnplitudes(const Spectrum1D&: s. const OrthPolyD&: p. 
int n) : Spectrum1D(s), OrthPolyD(p) { 

} 

float a = StartOfSpec (); 
float b = EndOfSpec(); 
setSpectrumWindow(a, b); 
if ( a < b ) { 

setLirnit(a, b); 
} else if ( a > b ) { 

setLirnit(b, a); 
} 

if ( n < 0 ) { 

MaxModeNum_ = 0; 
} else if ( n > MaxOrder() ) 

MaxModeNum_ = MaxOrder(); 
} else { 

MaxModeNum_ = n; 
} 

{ 

PtrToModeArnplitudes_ =new double[MaxModeNum_+1]; 
setArnplitudeOfAllModes(); 
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ModeArnplitudes::ModeArnplitudes(const Spectrum1D&: s, const OrthPolyD&: p, 
double a, double b) : Spectrum1D(s), OrthPolyD(p) { 

setSpectrumWindow(a, b); 
if ( a < b ) { 

setLirnit(a, b); 
} else if ( a > b ) { 

setLirnit(b, a); 
} 

MaxModei>Ium_ = 0; 
PtrToModeArnplitudes_ = new double[MaxModeNum_+1]; 
setArnplitudeOfAllModes(); 

I 



175 

} 

ModeAmplitudes::ModeAmplitudes(const Spectrum1D& s, const OrthPolyD& p, 
double a, double b, int n) : Spectrum1D(s), OrthPolyD(p) { 

setSpectrumWindow(a, b); 

} 

if ( a < b. ) { 
setLimit(a, b); 

} else if ( a > b ) { 
setLimit(b, a); 

} 

if ( n < 0 ) { 

MaxModeNum_ = 0; 
} else if ( n > MaxOrder() ) 

MaxModeNum_ = MaxOrder(); 
} else { 

MaxModeNum_ = n; 
} 

{ 

PtrToModeAmplitudes_ =new double[MaxModeNum_+1]; 
setAmplitudeOfAllModes(); 

ModeAmplitudes::ModeAmplitudes(const ModeAmplitudes& m) : 

} 

Spectrum1D((Spectrum1D) m), OrthPolyD((OrthPolyD) m) { 
MaxModeNum_ = m.MaxModeNum_; 
PtrToModeAmplitudes_ =new double[MaxModeNum_+1]; 
copy (m); 

ModeAmpli tudes: : -ModeAmpli tudes () { delete [] PtrToModeAmplitudes_; } 

void ModeAmplitudes::copy(const ModeAmplitudes& m) { 
double *P = PtrToModeAmplitudes_ + MaxModeNum_ +1; 
double *q = rit.PtrToModeAmplitudes_ + MaxModeNum_ +1; 
while (p > PtrToModeAmplitudes_) *--p = *--q; 

} 

void ModeAmplitudes::setMaxModeNumber(int n) { 
if ( n < 0 I I n > MaxOrder() ) { 

cout <<"Error in-routine setMaxModeNumber: n < 0 "; 
cout << "or n > MaxOrder of OrthPolyD" << endl; 

} else if ( n == MaxModeNum_ ) { 
} else { 

double *Pma =new double[n+1]; 
double *P• *q; 



} 

} 

if ( n < MaxModeNum_ ) { /In < MaxModeNum_; 
p = Pma + n +1; 
q = PtrToModeAmplitudes_ + n +1; 
while (q > PtrToModeAmplitudes_) *--p = *--q; 
delete [] PtrToModeAmplitudes_; 
PtrToModeAmplitudes_ = Pma; 
MaxModeNum_ = n; 

} else { /In > MaxModeNum_; 

} 

p = Pma + MaxModeNum_ +1; 
q = PtrToModeAmplitudes_ + MaxModeNum_ +1; 
while (q > PtrToModeAmplitudes_) *--p = *--q; 
delete [] PtrToModeAmplitudes_; 
PtrToModeAmplitudes_ = Pma; 
for (int i=MaxModeNum_; i<=n; i++) setAmplitudeOfNthMode(i); 
MaxModeNum_ = n; 
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void ModeAmplitudes::setAmplitudeOfAllModes() { 
for (int i=O; i<=MaxModeNum_; i++) setAmplitudeOfNthMode(i); 

} 

void ModeAmplitudes::setAmplitudeOfNthMode(int n) { 
if ( n < 0 I I n > MaxOrder() ) { 

} 

cout << "Error in routine setAmplitudesOfNthOrder: n < 0 "; 
cout << "or n > MaxOrder of DrthPolyD" << endl; 
return; 

int ndata = (int) floor((double) //number of channels in window; 
( (WindowRight()-WindowLeft()+0.01*BinSize())/BinSize() )); 

doJble *pX =new double[ndata+1]; 
double *PY =new double[ndata+1]; 

float halfBin = 0.5*BinSize(); 
int i = 0; 
if (BinSize() > 0.0) { 

for (float x = WindowLeft(); x < WindowRight(); x += BinSize()) { 
i++; 
pX[i] = (double) (x+halfBin); 
pY[i] = log((double) Counts(x+halfBin)); 

} 

} else if (BinSize() < 0.0) { 
for (float x = WindowLeft(); x > WindowRight(); x += BinSize()) { 

I 
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"i++; 
pX[i] = (double) (x+halfBin); 
pY[i] = log((double) Counts(x+halfBin)); 

} 

} 

int NumOfSubBin = 16; //shoulbe be 2-M; 
double H = fabs((double) BinSize())/((double) NumOfSubBin); 
double sum = 0.0; 
int iBin = 0; //nearest left spectrum bin index (1,2, ... ,ndata) 
int K = 4; 
int iH = 0; 

double aa, bb; //integration limit; 
if (BinSize() > 0.0) { 

aa =(double) WindowLeft(); 
bb =(double) WindowRight(); 

} else if (BinSize() < 0.0) { 

aa = (double) WindowRight (); 
bb =(double) ·windowLeft(); 

} else { 

} 
return; 

double y, dy, deltaX; 
for (double x = aa; x <= (bb+O.OOOHH); x +=H) { 

if (iBin == 0) { 

deltaX = pX[2]- pX[1]; 
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX; 
if (iH == NumOfSubBin/2) { 

iBin++; 
iH = 1; 

} else { 
iH++; 

} 

} else if (iBin == 1) { 
deltaX = pX[2]- pX[1]; 
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX; 
if (iH == NumOfSubBin) { 

iBin++; 
iH = 1; 

} else { 
iH++; 

} 



} 
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} else if (iBin == ndata-1) { 
deltaX = pX[ndata] - pX[ndata-1]; 
y = pY[ndata] * (x-pX[ndata-1])/deltaX 

+ pY[ndata-1]* (pX[ndata]-x)/deltaX; 
if (iH == NumOfSubBin) { 

iBin++; 
iH = 1; 

} else { 
iH++; 

} 

} else if (iBin >= ndata) { 
deltaX = pX[ndata] - pX[ndata-1]; 
y = pY[ndata] * (x-pX[ndata-1])/deltaX 

+ pY[ndata-1]* (pX[ndata]-x)/deltaX; 
} else { 

} 

double XX_l = (pX[iBin]-pX[iBin-1]) * 
(pX[iBin+1]-pX[iBin-1])*(pX[iBin+2]-pX[iBin-1]); 

double XX_O = (pX[iBin-1]-pX[iBin]) * 
(pX[iBin+l]-pX[iBin]) * (pX[iBin+2]-pX[iBin]); 

double XX_1p = (pX[iBin-1]-pX[iBin+1]) * 
(pX[iBin]-pX[iBin+1]) * (pX[iBin+2]-pX[iBin+1]); 

'double XX_2p = (pX[iBin-1]-pX[iBin+2]) * 
(pX[iBint-pX[iBin+2]) * (pX[iBin+1]-pX[iBin+2]); 

y = pY[iBin-1]*(pX[iBin]-x)*(pX[iBin+1]-x)*(pX[iBin+2]-x)/XX_1 
+pY[iBin]*(pX[iBin-1]-x)*(pX[i8in+1]-x)*(pX[iBin+2]-x)/XX_O 
+pY[iBin+1]*(pX[iBin-1]-x)*(pX[iBin]-x)*(pX[iBin+2]-x)/XX_1p 
+pY[iBin+2]*(pX[iBin-1]-x)*(pX[iBin]-x)*(pX[iBin+1]-x)/XX_2p; 

if (iH == NumOfSubBin) { 
iBin++; 
iH = 1; 

} else { 
iH++; 

} 

sum+= exp(y) * Polynomial(x, n) * SqrtWeight(x); 

x = WindowLeft(); 
deltaX = pX[2]- pX[1]; 
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX; 
sum-= 0.5 * exp(y) * Polynomial(x, n) * SqrtWeight(x); 
x = WindowRight(); 
deltaX = pX[ndata] - pX[ndata-1]; 
y = pY[ndata] * (x-pX[ndata-1])/deltaX 



} 

+ pY[ndata-1]* (pX[ndata]-x)/deltaX; 
sum-= 0.5 * exp(y) * Polynomial(x, n) * SqrtWeight(x); 
sum *= H; 

PtrToModeAmplitudes_[n] = sum/PolyConstNorm(n); 
delete [] pX; 
delete [] pY; 
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double ModeAmplitudes::IntegralOfSquaredSpec() const { 
int ndata = (int) floor((double) //number of channels in window; 

((WindowRight() -WindowLeft() +0.1*BinSize())/BinSize())); 
double *pX =new, double[ndata+1]; 
double *pY =new double[ndata+1]; 

float half Bin = 0. 5*BinSize 0; 
int i = 0; 
if (BinSize() > 0.0) { 

for (float x = WindowLeft(); x < WindowRight(); x += BinSize()) { 
i++; 
pX[i] =(double) (x+halfBin); 
pY[i] = log((double) Counts(x+halfBin)); 

} 

} else if (BinSize() < 0.0) { 
for (float x = WindowLeft(); x > WindowRight(); x += BinSize()) { 

i++; 
pX[i] =(double) (x+halfBin); 
pY[i] = log((double) Counts(x+halfBin));· 

}· 

} 

int NumOfSubBin = 16; //shoul be be 2~M; 
double H = fabs((double) BinSize())/((double) NumOfSubBin); 
double sum = 0.0; 
int iBin = 0; 
int K = 4; 
int iH = 0; 

·//nearest left spectrum bin index (1,2, ... ,ndata) 

double aa, bb; 1/lntegration limit; 
if (BinSize() > 0.0) { 

aa = (doub1e) WindowLeft(); 
bb =(double) WindowRight(); 

} else if (BinSize() < 0.0) { 
aa =(double) WindowRight(); 



bb = (double) Windo~Left(); 
} else { 

} 
return 0.0; 

double y, dy, deltaX; 
for (double x = aa; x <= (bb+0.1*H); x +=H) { 

if (iBin == 0) { 
deltaX = pX[2]- pX[1]; 
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX; 
if (iH == NumOfSubBin/2) { 

iBin++; 
iH = 1; 

} else { 
iH++; 

} 

} else if (iBin == 1) { 
deltaX = pX[2]- pX[1]; 
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX; 
if (iH == NumDfSubBin) { 

iBin++; 
iH = 1; 

} else { 
iH++; 

} 

} else if (iBin == ndata-1) { · 
deltaX = pX[ndata]- pX[ndata-1]; 
y = pY[ndata] * (x-pX[ndata-1])/deltaX 

+ pY[ndata-1]* (pX[ndata]-x)/deltaX; 
if (iH == NumOfSubBin) { 

iBin++; 
iH = 1; 

} else { 
iH++; 

} 

} else if (iBin >= ndata) { 
"deltaX = pX[ndata] - pX[ndata-1]; 
y = pY[ndata] * (x-pX[ndata-1])/deltaX 

+ pY[ndata-1]* (pX[ndata]-x)/deltaX; 
} else { 

double XX_1 = (pX[iBin]-pX[iBin-1]) * 
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(pX[iBin+1]-pX[iBin-1])* (pX[iBin+2]-pX[iBin-1]); 
double XX_O = (pX[iBin-1]-pX[iBin]) * 

(pX[iBin+1]-pX[iBin]) * (pX[iBin+2]-pX[iBin]); 



} 
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double XX_1p = (pX[iBin-1]-pX[iBin+!]) * 
(pX[iBin]-pX[iBin+1]) * (pX[iBin+2]-pX[iBin+1~); 

double XX_2p = (pX[iBin-1]-pX[iBin+2]) * 

} 

} 

(pX[iBin]-pX[iBin+2]) * (pX[iBin+1]-pX[iBin+2]); 
y = pY[iBin-1]*(pX[iBin]-x)*(pX[iBin+1]-x)*(pX[iBin+2]-x)/XX_1 

+ pY[iBin]*(pX[iBin-1]-x)*(pX[iBin+1]-x)*(pX[iBin+2]-x)/XX_O 
+ p~[iBin+1]*(pX[iBin-1]-x)*(pX[iBin]-x)*(pX[iBin+2]-x)/XX_1p 
+pY[iBirt+2]*(pX[iBin-1]-x)*(pX[iBin]-x)*(pX[iBin+1]-x)/XX_2p; 

if (iH == NumOfSubBin) { 
iBin++; 
.iH = 1; 

} else { 
iH++; 

} 

sum+= exp(2.0*y); 

x = WindowLeft(); 
deltaX = pX[2] - pX[1]; 
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX; 
sum-= 0.5 * exp(2.0*y); 
x = WindowRight(); 
deltaX = pX[ndata] - pX[ndata-1]; 
y = pY[ndata] * (x-pX[ndata-1])/deltaX 

+ pY[ndata-1]* (pX[ndata]-x)/deltaX; 
sum-= 0.5 * exp(2.0*y); 
sum *= H; 

delete [] pX; 
delete [] pY; 
return~ sum; 

/!********************end of file: ModeAmplitudes.cxx ******************* 

!!**********************start of file: OrthPolyD.h ********************** 
class OrthPolyD : public OrthWeightD { 
public: 

OrthPolyD () ; 
OrthPolyD(OrthWeightD &w, double a, double b, int n); 
OrthPolyD(OrthWeightD &w, float a, float b, int n); 
OrthPolyD(const OrthPolyD &p); 
-orthPolyD(); //destructor 



double Moments(int n); 
double Polynomial(double x, int n) const; 
double Polynomial(float x, int n) const; 

//CurOrder_ reset ton; 
//CurDrder_ not reset; 
//CurDrder_ not reset; 

inline OrthPolyD& operator= (const OrthPolyD &p); 
inline double Low_a() const; 
inline double High_b() const; 
inline int MaxOrder() const; 
inline int CurOrder() const; 
inline double PolyConstC(int n) const; 
inline double PolyConstLambda(int n) const; 
inline double PolyConstNorm(int n) const; 

void setLimit(double a, double b); 
void setLimit(float a, float b); 
void setMaxDrder(int n); 
void setCurrentOrder(int n); 

//Constants updated; 
//Constants updated; 
//Constants updated; 
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private: 
double 
int 

Low_a_, High_b_; 
MaxN_; 

//define the range of the poly; 
//up to MaxN_ th order; 

}; 

int 
double* 
double* 
double* 

CurOrder_; 
PtrToPolyConstC_; 
PtrToPolyConstLambda_; 
PtrToPolyConstNorm_; 

void copy(const DrthPolyD& p); 
void setConstantsOfNthOrder(int n); 
void setConstantsDfAllDrder(); 

double FuncForNthMoment(double x) const; 
double FuncForConstCn(double x) const; 
double FuncForConstLn(double x) const; 
double FuncForConstNorm(double x) const; 

//just an integer holder; 

//update the constants; 
//update the constants; 

typedef double (OrthPolyD::*DPDfuncPtr)(double); //establish interface; 
double Trapzd(OPDfuncPtr, double a, double b, int n); 
double Qsimp(DPDfuncPtr); 

!!******************* implement inline functions ************************* 
inline double OrthPolyD::Low_a() const {return Low_a_; } 
inline double DrthPolyD::High_b() const {return High_b_; } 
inline int OrthPolyD: : MaxOrder () const { rat urn MaxN_; } . 
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inline int OrthPolyD::CurOrder() canst {return CurOrder_;} 

inline double OrthPolyD::PolyConstC(int n) canst { 
if ( n < 0 ) { 

} 

cout << "Error: Order n < 0." << endl; 
return 0.0; 

} else if ( n > MaxN_ ) { 
cout << "Poly Constants for order " << .n << '' are not available."; 
cout << endl; 
return 0.0; 

} else { 
return PtrToPolyConstC_[n]; 

} 

inline double OrthPolyD::PolyConstLambda(int n) canst { 
if ( n < 0 ) { 

} 

cout << "Error: Order n < 0." << endl; 
return 0.0; 

} else if ( n > MaxN_ ) { 
cout << "Poly Constants for order" << n << " are not available."; 
cout << endl; 
return 0.0; 

} else { 
return PtrToPolyConstLambda_[n]; 

} 

inline double OrthPolyD::PolyConstNorm(int n) canst { 
if ( n < 0 ) { 

} 

cout << "Error: Order n < 0." << endl; 
return 0.0; 

} else if ( n > MaxN_ ) { 
cout << "Poly Constants for order" << n << " are not available."; 
cout << endl; 
return 0.0; 

} else { 
return PtrToPolyConstNorm_[n]; 

} 

!!***********************assignment operator*************************** 
inline OrthPolyD& OrthPolyD: :operator= (canst OrthPolyD &rhs) { 

if ( *this != rhs ) { //not to assign to itself. 



} 

} 

(OrthWeightD) *this = (OrthWeightD) rhs; //copy OrthWeghtD; 
Loll_a_ 
High_b_ 

= rhs.Low_a_; 
= rhs.High_b_; 

CurOrder_ = rhs.CurOrder_; 
if (MaxN_ != rhs.MaxN_) { 

delete [] PtrToPolyConstC_; 
delete [].PtrToPolyConstLambda_; 
delete [] PtrToPolyConstNorm_; 
MaxN_ = rhs.MaxN_; 
PtrtoPolyConstC_ = nell 
PtrToPolyConstLambda_ = nell 
PtrToPolyConstNorm_ 

} 

copy(rhs); 

= new 

double[MaxN_+1]; 
double[MaxN_+1]; 
double[MaxN_+1]; 

return *this; 
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!!***********************end of file: OrthPolyD.h *********************** 

/!********************** start of file: OrthPolyD.cxx ******************** 
#include <iostream.h> 
#include <rnath.h> 
#include "ORTHPOLY/include/OrthWeightD.h" 
#include "ORTHPOLY/include/OrthPolyD.h" 

!!**********************constructors: ******************************* 
OrthPolyD::OrthPolyD() OrthWeightD() { 

} 

Low_a_ = 0.0; 
High_b_ = 0.0; 
MaxN_ = 0; 
CurOrder_ = 0; 

=new double[MaxN_+1]; 
new double[MaxN_+1]; 

PtrToPolyConstC_ 
PtrToPolyConstLambda_ = 
PtrToPolyConstNorrn_ =new double[MaxN_+1]; 

OrthPolyD::OrthPolyD(OrthWeightD &ll, double a, double b, int n) : 
OrthWeightD(w) { 

if (a <= b) { 
Loll_a_ = a; 
High_b_ = b· 

' 
} else { 

Low_a_ = b; 
High_b_ = a· 

' 



} 

MaxN_ = (n > 0) ? n : 0; 

CurOrder_ = 0; 
.PtrToPolyConstC_ =new double[MaxN_+1]; 
PtrToPolyConstLambda_ = new double[MaxN_+1]; 
PtrToPolyConstNorm_ =new double[MaxN_+1]; 
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if (Low_a_ < High_b_) setConstantsOfAllOrder(); //set poly constants; 
} 

OrthPolyD: :OrthPolyD(OrthWeightD &w, float a, float b, int n) : 

} 

if (a <= b) { 
Low_a_ = (double) a· 

' 
High_b_ = (double) b; 

} else { 
Low_a_ = (double) b· 

' 
High_b_ = (double) a; 

} 

MaxN_ = (n > 0) ? n : O· 
' 

CurOrder_ = 0; 
PtrToPolyConstC_ = new double[MaxN_+1]; 
PtrToPolyConstLambda_ =new double[MaxN_+1]; 
PtrToPolyConstNorm_ =new double[MaxN_+1]; 
if (Low_a_ < High_b_) setConstantsOfAllOrder(); 

OrthWeightD(w) { 

//set poly constants; 

OrthPolyD::OrthPolyD(const Orth:olyD &p) OrthWeightD((OrthWeightD) p) { 

} 

Low_a_ = p.Low_a_; 
High_b~ = p.High_b_; 
MaxN_ = p.MaxN_; 
CurOrder_ = p.CurOrder_; 
PtrToPolyConstC_ =new double[MaxN_+1]; 
PtrToPolyConstLambda_ =new double[MaxN_+1]; 
PtrToPolyConstNorm_ =new double[MaxN_+1]; 
copy(p); 

!!****************destructor **************************** 
OrthPolyD::-orthPolyD() { 

delete [] PtrToPolyConstC_; 
delete [] PtrToPolyConstLambda_; 
delete [] PtrToPolyConstNorm_; 

} 



!!**************** copy function************************** 
void DrthPolyD::copy(const DrthPolyD& ·plynm) { 

} 

double *P• *q; 

p = PtrToPolyConstC_ + MaxN_ +1; 
q = plynm.PtrToPolyConstC_ + MaxN_ +1; 
while (p > PtrToPolyConstC_) *--p = *--q; 

p = PtrToPolyConstLambda_. + MaxN_ +1; 
q = plynm.PtrToPolyConstLambda_ + MaxN_ +1; 
while (p > PtrToPolyConstLambda_) *--p = *--q; 

p = PtrToPolyConstNorm_ + MaxN_ +1; 
q = plynm.PtrToPolyConstNorm_ + MaxN_ +1; 
while (p > PtrToPolyConstNorm_) *--p = *--q; 

void DrthPolyD: :setCurrentDrder(int n) { 
if ( n < 0 ) { 

} 

cout << " Sorry, can't set current order less than 0." << endl; 
return; 

} else if ( n > MaxN_ ) { 
cout << " Sorry, can't set current order larger than MaxDrder."; 
cout << endl; 
return; 

} else { 
CurDrder_ = n; 

} 

void OrthPolyD::setLimit(double a, double b) { 
if ( b < a ) { 

double temp = a; 
a = b; 
b = temp; 

} else if ( a == b ) { 
cout << "Error in routine setLimit:" << endl; 

I /swap a and b; 

cout << "Constants can't be set for b = a" << endl; 
return; 

} 
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if ( Low_a_ -- a && High_b_ -- b ) return; 
Low_a_ = a; 

//no change in limit; 

High_b_ = b; 
setConstantsOfAllDrder(); //set poly constants; 



} 

void DrthPolyD::setLimit(float a, float b) { 
setLimit((double) a, (double) b); 

} 

void DrthPolyD::setMaxOrder(int n) { 
if (MaxN_ == n) return; 
if (n < 0) { 

//Constants updated; 

cout << " Error in routine setMaxDrder: n < 0" << endl; 
return; 

} 
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double *pC =new double[n+1]; 
double *pL = new double[n+1]; 
double *pN =new double[n+1]; 

//allocate memory for the constants; 

double *p, *q; 
if (MaxN_ > n) { 

p = pC + n +1; 
q = PtrToPolyConstC_ + n +1; 

//copy constants for up to nth order; 

while (q > PtrToPolyConstC_) *--p = *--q; 

p = pL + n +1; 
q = PtrToPolyConstLambda_ + n +1; 
while (q > PtrToPolyConstLambda_) *--p = *--q; 

p = pN + n +1; 
q = PtrToPolyConstNorm_ + n +1; 
while (q > PtrToPolyConstNorm_) *--p = *--q; 

delete [] PtrToPolyConstC_; //Might this be done automatically 
delete [] PtrToPolyConstLambda_; //by invoking the destructor? 
delete [] PtrToPolyConstNorm_; 
PtrToPolyConstC_ = pC; 
PtrToPolyConstLambda_ = pL; 
PtrToPolyConstNorm_ = pN; 
MaxN_ = n; 
return; 

} else if (MaxN_ < n) { · 
if (MaxN_ <= 1) { 

delete [] PtrToPolyConstC_; 
delete [] PtrToPolyConstLambda_; 
delete [] PtrToPolyConstNorm_; 
PtrToPolyConstC_ = pC; 



} 
} 

PtrToPolyConstLambda_ = pL; 
PtrToPolyConstNorm_ = pN; 
MaxN_ = n; 
if (Lo~_a_ < High_b_) setConstantsOfAllOrder(); 
return; 

} else { //copy the existing poly constants; 
p = pC + MaxN_ +1; 
q = PtrToPolyConstC_ + MaxN_ +1; 
~hile (q > PtrToPolyConstC_) *--p = *--q; 

p = pL + MaxN_ +1; 
q = PtrToPolyConstLambda_ + MaxN_ +1; 
~hile (q > PtrToPolyConstLambda_) *--p = *--q; 

p . = pN + MaxN _ + 1; 

q = PtrToPolyConstNorm_ + MaxN_ +1; 
~hile (q > PtrToPolyConstNorm_) *--p = *--q; 

delete [] PtrToPolyConstC_; 
delete [] PtrToPolyConstLambda_; 
delete [] PtrToPolyConstNorm_; 
PtrToPolyConstC_ = pC; 
PtrToPolyConstLambda_ = pL; 
PtrToPolyConstNorm_ = pN; 
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if (Lo~_a_ < High_b_) { 
int oldMaxN_ = MaxN_; 

//set constants for higher order; 

} 

} 
} 

MaxN_ = n; 
for (int i = oldMaxN_+1; i <= MaxN_; i++) 

setConstantsOfNthOrder(i); 
return; 

else { 

MaxN_ = n· 
' 

return; 

void OrthPolyD: :setConstantsOfAllOrder() { 
//to generate and set all of the poly constants; 
for (int i=O; i <= MaxN_; i++) setConstantsOfNthOrder(i); 

} 
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void OrthPolyD: :setConstantsOfNthOrder(int n) { 

} 

//to generate and set the poly constants of the nth order, provided that 
//the constants of the (n-1)th and less order are known; 
if ( n < 0 ) { 

cout << "Error in routine setConstantsOfNthOrder: n < 0 " << endl; 
return; 

} else if ( n > MaxN_ ) { 

} 

cout << 11 Sorry, can't set constants for n > MaxOrder (=" << MaxN_; 
cout << ")." << endl; 
return; 

OPDfuncPtr ForCn 
OPDfuncPtr ForLn 
OPDfuncPtr ForNorm 
if ( n == 0) { 

= OrthPolyD: :FuncForConstCn; 
= OrthPolyD: :FuncForConstLn; 
= OrthPolyD::FuncForConstNorm; 

0.0; 
setCurrentOrder(O); 
PtrToPolyConstLambda_[O] = 
PtrToPolyConstC_[O] 
PtrToPolyConstNorm_[O] 

= 0.0; 
= Qsimp(ForNorm); 

} else if ( n == 1) { 
setCurrent0rder(1); 
PtrToPolyConstLambda_[1] = 0.0; 
PtrToPolyConstC_[1] = Qsimp(ForCn) I PtrToPolyConstNorm_[O]; 
PtrToPolyConstNorm_[1] = Qsimp(ForNorm); 

} else { 

} 

setCurrentOrder(n); 
PtrToPolyConstLambda_[n] = Qsimp(ForLn) I PtrToPolyConstNorm_[n-2]; 
PtrToPolyConstC_[n] = Qsimp(ForCn) I PtrToPolyConstNorm_[n-1]; 
PtrToPolyConstNorm_[n] = Qsimp(ForNorm); 

return; 

double OrthPolyD::Moments(int n) { 
if(n<O){ 

cout << "Error: Order n < 0. 11 << endl; 
return 0.0; 

} else if ( n > MaxN_ ) { 
cout << "Sorry, can't compute Moments for n > MaxOrder (=" <<MaxN_; 
cout << ")." << endl; 
return 0.0; 

} else { 
OPDfuncPtr ForNthM = OrthPolyD: :FuncForNthMoment; 

//To establish interface; 



} 

} 

setCurrentOrder(n); 
return Qsimp(ForNthM); 

!!****************Core functions: ********************** 
double DrthPolyD::Polynomial(double x, int n) const { 

if (n > MaxN_) { 

} 

cout << "Error in routine Polynomial:" << endl; 
cout << "Order n should not ·exceed the maximum = " << MaxDrder(); 
cout << endl; 
return.O.O; 

if (n < 0) { 

} 

cout << "Error in routine Polynomial: n < 0" << eridl; 
return 0.0; 

if (n == 0) { 

return 1.0; 
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} else if ( n == 1) { 
return x-PolyConstC(1); 

} else { 
//return x- Moments(1)/Moments(O); 

return (x-PolyConstC(n))*Polynomial(x,n-1) 
- PolyConstLambda(n)*Polynomial(x,n-2); 

} 

} 

double DrthPolyD::Polynomial(float x, int n) const { 
return Polynomial( (double) x, n); 

} 

double DrthPolyD::FuncForNthMoment(double x) const { 
double XToNthPo~er(double, int); 
return XToNthPo~er(x,CurDrder())*Weight(x); 

} 

double XToNthPo~er(double x, int n) { 
if ( n == 0) { 

return 1.0; 
} else { 

return x*XToNthPo~er(x,n-1); 
} 

} 

-
double DrthPolyD::FuncForConstCn(double x) const { 

//For n-th moment; 

//For Constant Cn; 



} 

double temp= Polynomial(x,CurOrder()-1); 
return X*Weight(x)*temp*temp; 
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double OrthPolyD::FuncForConstLn(double x) c0nst {//For Const Lambda-n; 
return x*Weight(x)*Polynomial(x,Cur0rder()-2)*Polynomial(x,Cur0rder()-1); 

} 

double OrthPolyD::FuncForConstNorm(double x) const { 

} 

double temp= Polynomial(x,CurOrder()); //For Normalization Constant; 
return Weight(x)*temp*temp; 

!!************************************************************************ 
II Integrations Functions 
!!************************************************************************ 
double OrthPolyD::Trapzd(OPDfuncPtr func, double a, double b, int n) { 
f* This routine computes the nth stage of refinement of an extended 
* trapzoidal r~le. func is input as a pointer to the function to be 
* integrated between a and b, also input. When called with n=1, 

} 

* the routine returns the crudest. estimate of int f(x)dx [a,b]. 
* Subsequent calls with n=2,3 ... (in that sequential order) will improve 
* the accuracy of s by adding 2-(n-2) additional interior points. 
* Adapted from [Pres 92] . 

*I 
double x, tnm, sum, del; 
static double s; 
int it, j; 
if (n==1) { 

return ( s = 0.5*(b-a)* ( (this->*func)(a) + (this->*func)(b) ) ); 
} else { 

} 

for (it=1,j=1; j<n-1; j++) it <<~ 1; 
tnm = it;· 
del = (b-a)/tnm; //This is the spacing of 
x = a + 0.5*del; //the points to be added; 
for (sum=O.O,j=1; j<=it; j++,x+=del) sum+= (this->*func)(x); 
s = 0.5*(s+(b-a)*sum/tnm); //This replaces a by its refined value 
return s; 

double OrthPolyD::Qsimp(OPDfuncPtr func) { 
I* float qsimp(float (*func)(float), float a, float b) 

* Returns the integral of the function func from a to b. 



} 

* The parameters EPS can be set to the desired fractional accuracy 
* and JMAX so that 2 to the power JMAX-1 is the maximum allowed 
* number of steps. Integration in performed by Simpson's rule. 
* Adapted from [Pres 92] . 

*I 
const double EPS = 1.0e-8; 
const int JMAX = 30; 
double a= Low_a(); //integration limit [a,b]; 
double b = High_b(); 
int j; 
double s, st, ost, os; 
ost = os = -1.0e+30; 
for (j=1; j<=JMAX; j++) { 

} 

st = Trapzd(func,a,b,j); 
s = (4.0*st-ost)/3.0; //Compare equation (4.2.4). 
if (fabs (s-os) < EPS*fabs (os)) return s; 
OS = s; 
ost = st; 

cout << "Too many steps in routine Qsimp."; 
return 0.0; //Never get here. 
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!!********************** end of file: OrthPolyD.cxx ********************** 

I!********************* start of file: OrthWeightD .h **********.*********** 
class OrthWeightD { 
public: 

inline OrthWeightD(); //constructors: 
inline OrthWeightD(double P1,double P2,double P3,double P4,double P5); 
inl:i.ne OrthWeightD(float P1, float P2, float P3, float P4, float P5); 
inline OrthWeightD(const OrthWeightD &w); 

inline OrthWeightD& operator= (const OrthWeightD &w); //assignment op. 

inline double Magnitude() const; //member accessors 
inline double Bcoulomb() const; 
inline double Temperature() const; 
inline double ParaAmplify() const; 
inline double ParaAlpha() const; 

double SqrtWeight(double x) const; //weight functions 
double SqrtWeight(float x) const; 
double Weight(double x) const; 



double Weight(float x) canst; 

private: 

}; 

double Mag_, Bcoul_, Temp_, Pamp_, Alpha_; 
inline void setMagnitude(double x); 
inline void setBcoulomb(double x); 
inline void setTemperature(double x); 
inline 
inline 
inline 
inline 
inline 
inline 
inline 

void 
void 
void 
void 
void 
void 
void 

setParaAmplify(double x); 
setParaAlpha(double x); 
setMagnitude(float x); 
setBcoulomb(float x); 
setTemperature(float x); 
setParaAmplify(float x); 
setParaAlpha(float x); 

//constructors: 
inline DrthWeightD::DrthWeightD() 

Mag_ (0. 0), Bcoul_ (0. 0), Temp_ (0. 0), Pamp_ (0. 0), Alpha_ (0 .·0) {} 
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inline DrthWeightD::DrthWeightD(double P1, double P2, double P3,double P4, 
double P5) : Mag_(P1), Bcoul_(P2), Temp_(P3), Pamp_(P4), Alpha_(P5) {} 

inline DrthWeightD: : DrthWeightD (f"loat P1, float P2, float P3, float P4, 
float P5) Mag_((double) P1), Bcoul_((double) P2),Temp_((double) P3), 

Pamp_((double) P4), Alpha_((double) P5) {} 

inline DrthWeightD: :DrthWeightD(const DrthWeightD &w) : 
Mag_(w.Mag_), Bcoul_(w.Bcoul_), Temp_(w.Temp_), Pamp_(w.Pamp_), 
Alpha_(w.Alpha_) {} 

//member accessors: 
inline double DrthWeightD::Magnitude() canst { return Mag_; 
inline double DrthWeightD::Bcoulomb() canst { return Bcoul_; 
inline double DrthWeightD::Temperature() canst { return Temp_; 
inline double DrthWeightD::ParaAmplify() canst { return Pamp_; 
inline double DrthWeightD::ParaAlpha() canst { return Alpha_; 

//set values 
in line void OrthWeightD::setMagnitude(double x) { Mag_ = x; } 

inline void DrthWeightD::setBcoulomb(double x) { Bcoul_ = x; } 

in line void DrthWeightD::setTemperature(double x) { Temp_ = x· } , 
inline void DrthWeightD::setParaAmplify(double x) { Pamp_ = x; } 

in line void DrthWeightD::setParaAlpha(double x) { Alpha_ = x· } , 

} 

} 

} 
} 

} 



inline void OrthWeightD::setMagnitude(float x) { Mag_ = (double) 
inline void OrthWeightD: :setBcoulomb(float x) { Bcoul_ = (double) 
inline void OrthWeightD::setTemperature(float x) { Temp_ = (double) 
inline void OrthWeightD::setParaAmplify(float x) { Pamp_ = (double) 
inline void OrthWeightD::setParaAlpha(float x) { Alpha_ = (double) 

//assignment operator: 
inline OrthWeightD& OrthWeightD::operator= (canst OrthWeightD &w) { 

Mag_ = w.Mag_; 
Bcoul_ = w.Bcoul_; 
Temp_ = w.Temp_; 
Pamp_ = w.Pamp_; 
Alpha_ = w.Alpha_; 
return *this; 

} 
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x; } 

x; } 

x; } 

x; } 

x· 
' 

} 

!!********************** end of file: OrthWeightD.h ********************** 

!!******************** start of file: OrthWeightD.cxx ******************** 
#include <iostream.h> 
#include <math.h~ 
#include 11 0RTHPOLY/include/OrthWeightD.h 11 

canst double pi= 3.1415926535897932384626433; 
canst int IT MAX = 200; 
canst double EPS = 1.0e-q; 
canst double. FPMIN = 1.0e-30; 

double OrthWeightD::Weight(double energy) canst { 
double sqrtwgt = SqrtWeight(energy); 
return sqrtwgt*sqrtwgt; 

} 

double OrthWeightD::Weight(float energy) canst { 
return Weight((double) energy); 

} 

double OrthWeightD::SqrtWeight(double energy) canst { 
double erfcclog(double); 

double x = energy- Bcoulomb(); 
double EO = Bcoulomb(); 
double T = Temperature(); 
double pp = ParaAmplify(); 



double a = ParaAlpha(); 

double var1 = (pp - 2.0*x)/(2.0*sqrt(pp*T)); 
double var2 = (pp - 2.0*x- a*pp*T)/(2.0*sqrt(pp*T)); 
double var3 = (pp - 2.0*x + a*pp*T)/(2.0*sqrt(pp*T)); 

double M_N = exp(erfcclog(var1)); // M-N = 1.0- erf(var1) 
double L = exp(-var1*var1 + var2*var2 + erfcclog(-var2)); 
double J = exp(-var1*var1 + var3*var3 + erfcclog(var3)); 

return Magnitude()*exp(-x/T)*(M_N + 0.5*(1-J)); I I Eq. (23 & 24) 
} 

double OrthWeightD::SqrtWeight(float energy) const { 
return SqrtWeight((double) energy); 

} 

double erfcclog(double x) { 
I* Returns the log of complementary error function erfc(x) 
* with fractional error everywhere less than 1. 2e-7. · 

*I 

} 

double z = fabs(x); 
doublet= 1.0/(1~0+0.5*z); 
double erfcclog_ = log(t) - Z*z - 1.26551223 + t*(1.00002368 

+ t*(0.37409196 + t*(0.09678418 + t*(-0.18628806 
+ t*(0.27886807 + t*(-1.13520398 + t*(1.48851587 
+ t*(-0.82215223+ t*0.17087277)))))))); 

return x >= 0.0? erfcclog_ : log(2.0- exp(erfcclog_)); 
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!!********************end of file: OrthWeightD.cxx ********************** 

!!******************** 
class Spectrum1D { 

start of file: Spectrum1D.h *********************** 

public: 
Spectrum1D(); //constructors: 
Spectrum1D(float st, float en, float 
Spectrum1D(float st, flc~t en, float 
Spectrum1D(float st, float wdth, int 

wdth); 
wdth, float* p); 
n); 

Spectrum1D(float 
Spectrum1D(const 
-spectrum1D () ; 

st, float wdth, int n, float* p); 
Spectrum1D&); //construct by copying 

//destructor 

inline int NumOfChannels() const; //member accessors: 



inline float StartOfSpec() const; 
inline float EndOfSpec() const; 
inline float BinSize() const; 
inline float WindowLeft() const; 
inline float WindowRight() const; 
inline float *PointerToData() const; 

//functions that return spectrum properties: 
inline float Counts(int) const; 
inline float Counts(float) const; 
inline float Counts(double) const; 
inline float CountsinWindow(int, int) const; 
inline float CountsinWindow(float, float) const; 
inline float CountsinWindow(double, double) const; 
inline float CountsinWindow() const; 
inline float TotalCounts() const; 

inline void setSpectrumWindow(float &a, float &b); 
inline void setSpectrumWindow(double &a, double &b); 

II Spectrum1D& compress(const Spectrum1D&); 
II search for a list of peaks; 
II window facilities; 
II void PrintSpectrum1D(); 

protected: 
float Window_Left_, W.indow_Right_; 

private: 

}; 

int NumOfChannels_; 
float StartOfSpec_, EndOfSpec_, BinSize_; 
float* ptr_to_data_; 
void copy(const Spectrum1D& s); 

//Spectrum window limit; 
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!!********************* implement inline functions *********************** 
//member accessors: 
inline int Spectrum1D::Num0fChannels() const { return NumOfChannels_; } 

inline float Spectrum1D::StartOfSpec() const { return StartOfSpec_; } 

inline float Spectrum1D::EndOfSpec() const { return EndOfSpec_; } 

inline float Spectrum1D::BinSize() const { return BinSize_; } 

inline float Spectrum1D::WindowLeft() const { return Window_Left_; } 

inline float Spectrum1D::WindowRight() const { return Window_Right_; } 

in line float* Spectrum1D::PointerToData() const { return ptr _ to_data_; } 



//functions that return spectrum properties: 
inline float Spectrum1D::Counts(int chn) corist { 

} 

if (ptr_to_data_ != 0 && chn >= 0 && chn < NumOfChannels_) { 
return *(ptr_to_data_+chn); 

} else { 
return 0.0; 

} 

inline float Spectrum1D: :Counts(float x) canst { 

} 

int chn = (int) floor( (double) ((x- StartOfSpec_)/BinSize_) ); 
return Counts(chn); 

inline float Spectrum1D: :Counts(double x) canst { 
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int chn = (int) floor((x-((double) StartOfSpec_))/((doul:ile) BinSize_)); 
return Counts(chn); 

} 

inline float Spectrum1D; :CountsinWindow(int 
if (ptr_to_data_ == 0) return 0.0; 

n1, int n2) canst { 
//empty spectrum; 
//swap n1 and n2; if (n1 > n2) { 

int temp = n1; 
n1 = n2; 
n2 = temp; 

} 

if (n1 >= NumOfChannels_ I I n2 < 0) return 0.0; //[n1,n2] is not in 
if (n1 < 0) n1 = 0; //the spectrum range. 
if (n2 >= NumOfChannels_) n2 = NumOfChannels_ -1; 
float sum= 0.0; //n1=n2 OK; 
float *begin = ptr_to_data_ + n1; 
float *end = ptr_to_data_ + n2 +1; 
while (end != begin) sum += *--end; 
return sum; 

} 

inline float Spectrum1D: :CountsinWindow(float a, float b) canst { 

} 

if (ptr_to_data_ == 0) return 0.0; //empty spectrum; 
int n1 = (int) floor( (double) ((a- StartOfSpec_)/BinSize_) + 0.5 ); 
int n2 = (int) floor( (double) ((b- StartOfSpec_)/BinSize_) + 0.5 ); 
return CountsinWindow(n1, n2-1); 

inline float Spectrum1D::CountsinWindow(double a, double b) canst { 



return CountsinWindow( (float) a, (float) b); 
} 

inline float Spectrum1D: :CountsinWindow() const { 
return CountsinWindow(Window_Left_, Window_Right_); 

} 

inline float Spectrum1D::Tota1Counts() const { 
float sum = 0.0; 

} 

float* y = ptr_to_data_ + NumOfChannels_; 
while (y != ptr_to_data_) sum += *--y; 
return sum; 

//set window: 
inline void Spectrum1D::setSpectrumWindow(float &a, float &b) { 

float: temp; 
int n1, n2; 
if ( BinSize_ > 0 ) { 

if .(a > b) { 

} 

temp = a; 
a = b; 

b = temp; 

//swap a & b when a > b; 

if (a> EndOfSpec_ II b < StartOfSpec_) { 
cout << "Window is not in the spectrum range" << endl; 
return; 
} 

n1 = (int) floor( (double) ((a- StartOfSpec_)/BinSize_) +0.5 ); 
n2 = (int) floor( (double) ((b- StartOfSpec_)/BinSize_) +0.5 ); 
Window_Left_ = (a > StartOfSpec_) ? 
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StartDfSpec_ + BinSize_*n1 StartOfSpec_; 
Window_Right_ = (b < EndOfSpec_) ? 

} else if ( BinSize_ < 0 ) { 
if (a < b) { 

temp = a; 
a = b; 

b = temp; 
} 

StartDfSpec_ + BinSize_*n2 EndOfSpec_; 

//swap a & b when a< b; 

if (a< EndOfSpec_ II b > StartOfSpec_) { 

} 

cout << "Window is not in the spectrum range" << endl; 
return; 



n1 = (int) floor( (double) ((a - StartDfSpec_)/BinSize_) +0.5 ); 
n2 = (int) floor( (double) ((b- StartDfSpec_)/BinSize_) +0.5 ); 
Window_Left_ = (a < StartDfSpec_) ? 
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StartDfSpec_ + BinSize_*n1 
Window_Right_ = (b > EndDfSpec_) ? 

StartDfSpec_; 

StartOfSpec_ + BinSize_*n2 EndDfSpec_; 

} 

} else { //BinSize_ = 0.0; 

} 

Window_Left_ = a; 
Window_Right_ = b; · 
return; 

//meaningless though; 

if (a != Window_Left_ ) a= Window_Left_; 
if (b != Window_Right_) b = Window_Right_; 
//now a and b are the same as the spectrum window boundaries; 

inline void Spectrum1D: :setSpectrumWindow(double &a, double &b) { 
float aa = (float) a; 

} 

float bb = (float) b; 
setSpectrumWindow(aa, bb); 
if (a != (double) aa) a = (double) aa; 
if (b != (double) bb) b = (double) bb; 
//now a and b are the same as the spectrum window boundaries; 

l' 

!!*********************end of file: Spectrum1D.h ************************ 

!!*********************start of file: Spectrum1D.cxx ******************** 
#include <iostream.h> 
#include <math.h> 
#include "DRTHPDLY/include/Spectrum1D.h" 

//constructors: 
Spectrum1D::Spectrum1D() { 

} 

NumOfChannels = 0; 
StartDfSpec_ 
EndDfSpec_ 
BinSize_ 
ptr_to_data_ 
Window_Left_ 
Window_Right_ 

= 
= 
= 
= 
= 
= 

0.0; 
0.0; 
0.0; 
0; 

0.0; 
0.0; 

//set pointer to null 

Spectrum1D::Spectrum1D(float st, float en, float wdth) : 
StartOfSpec_(st), EndDfSpec_(en), BinSize_(wdth) { 



} 
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if ( wdth != 0.0 ) { 
NumOfChannels_ = (int) floor( ((double) (en-st))/((double) wdth) ); 
if (NumOfChannels_ < 0) { 

NumOfChannels_ = - NumOfChannels_; 
BinSize_ = - BinSize_; 

} 

if ( en ! = (StartOfSpec_ + wdth* ((float) NumOfChannels_)) ) { 
EndOfSpec_ = StartOfSpec_ + wdth*((float) NumOfChannels_); 

} 

if (NumOfChannels_ != 0) { 
ptr_to_data_ =new float[NumOfChannels_]; 
float* pp = ptr_to_data_ + NumOfChannels_; 
while (pp > ptr_to_data_) *--pp = 0.0; 

} else { //abs(en-st) < BinSize_ --> empty spectrum; 
ptr_to_data_ = 0; 

} 

} ~ls~ if (st != en) { //wdth==O && st!=en --> reset BinSize_ = en-st; 
NumOfChannels = 1; //StartOfSpec_ = st; EndOfSpec_ = en; 
BinSize_ = en-st; 
ptr_to_data_ = new float [1] ; 
*ptr _ to_data_ = 0.0; 

} else { 
NumOfChannels_ = 0; 

ptr_to_data_ = 0; 
} 

//widt == 0 && st == en--> empty spectrum; 
//StartOfSpec_ = st; EndOfSpec_ = st; 
//BinSize_ = 0.0; 

Window_Left_ 
Window_Right_ = 

= StartOfSpec_; 
EndOfSpec_; 

Spectrum1D: :Spectrum1D(float st, float en, float wdth, float* p) : 
StartOfSpec_(st), EndOfSpec_(en), BinSize_(wdth) { 

if ( wdth != 0.0 ) { 
NumOfChannels_ = (int) floor( ((double) (en-st))/((double) wdth) ); 
if (NumOfChannels_ < 0) { 

NumOfChannels_ = - NumOfChannels_; 
BinSize_ = - BinSize_; 

} 

if ( en != (StartOfSpec_ + wdth*((float) NumOfChannels_)) ) { 
EndOfSpec_ = StartOfSpec_ + wdth*((float) NumOfChannels_); 

} 

if (NumOfChannels_ != 0) { 
ptr_to_data_ =new float[NumOfChannels_]; 
for (int i=O; i<NumOfChannels_; i++) ptr_to_data_[i] = p[i]; 



} 
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} else { 
ptr_to_data_ = 0; 

//abs(en-st) < BinSize_ --> empty spectrum; 

} 

} else if (st != en) { 
NumOfChannels_ = 1; 

//wdth==O && st!=en --> reset BinSize_=en-st; 
//StartDfSpec_ = st; EndDfSpec_ = en; 

BinSize_ = en-st; 
ptr_to_data_ = new float [1] ; 
*ptr_to_data_ = 0.0; 

} else { //widt == 0 && 
NumOfChannels_ = O· //StartDfSpec_ , 

//BinSize_ 
ptr_to_data_ = 0; 

} 

Window_Left_ = StartDfSpec_; 
Window_Right_ = EndDfSpec_; 

st == en --> empty spectrum; 
= st; EndDfSpec_ = st; 
= 0.0; 

Spectrum1D: : Spectrum1D (float st, float wdth, int n) : 

} 

NumOfChannels_(n), StartOfSpec_(st), BinSize_(wdth) { 
if ( n==O ) { //NumOfChannels_ = 0; StartDfSpec_ = st; 

EndDfSpec_ = st; 
ptr_to_data_ = 0; 

} else if ( wdth==O.O ) { 
NumOfChannels_ 
EndDfSpec_ 
ptr_to_data_ 

} else { 

= 0; 

= st; 
= 0; 

//BinSize_ = wdth; 

//reset NumOfChannels_; 
//StartDfSpec_ = st; BinSize_ = 0.0; 

if (NumOfChannels_ < 0) NumOfChannels_ = - NumOfChannels_; 

} 

//StartDfSpec_ = st; 
EndDfSpec_ = StartDfSpec_ + wdth* ((float) NumOfChannels_) ; 

//BinSize_ = wdth; 
ptr_to_data_ = new float[NumOfChannels_]; 
float* pp = ptr_to_data_ + NumOfChannels_; 
while (pp > ptr_to_data_) *--pp = 0.0; 

= StartDfSpec_; 
EndDfSpec_; 

Window_Left_ 
Window_Right_ = 

Spectrum1D::Spectrum1D(float st, float wdth, int n, float* p) : 
NumOfChannels_(n), StartDfSpec_(st), BinSize_(wdth) { 

if ( n==O ) { //NumDfChannels_ = 0; StartDfSpec_ = st; 
EndOfSpec_ 
ptr _ to_data_ 

= st; 
= 0; 

//BinSize_ = wdth; 
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} else if ( wdth==O.O ) { 
NumDfChannels_ = 0; //reset NumDfChannels_; StartDfSpec_ = st; 
EndDfSpec_ = st; //BinSize_ = 0.0; 
ptr_to_data_ = 0; 

} else { 
if (NumOfChannels_ < 0) NumOfChannels_ =-- NumOfChannels_; 

//StartDfSpec_ = st; 
EndDfSpec_ = StartDfSpec_ + wdth*((float) NumOfChannels_); 

//BinSize_ = wdth; 
ptr_to_data_ =new float[NumOfChannels_]; 
for (int i=O; i<NumOfChannels_; i++) ptr_to_data_[i] = p[i]; 

} 

} 

Window_Left_ 
Window_Right_ = 

= StartDfSpec_; 
EndOfSpec_; 

Spectrum1D::Spectrum1D(const Spectrum1D& s) { 
NumOfChannels_ = s.NumOfChannels_; 

= s.StartDfSpec_; 
= s.EndOfSpec_; 
= s.BinSize_; 
= s.Window_Left_; 
= s.Window_Right_; 

StartDfSpec_ 
EndDfSpec_ 
BinSize_ 
WindoTri_Left_ 
Window_Right_ 
ptr_to_data_ 
copy(s); 

=new float[s.NumOfChannels_]; 

} 

Spectrum1D::-spectrum1D() { 
delete [] ptr_to_data_; 
ptr_to_data_ = 0; 

} 

//destructor 

void Spectrum1D::copy(const Spectrum1D& s) { 
float* p = ptr_to_data_ + NumDfChannels_; 
float* q = s.ptr_to_data_ + NumDfChannels_; 
while (p > ptr_to_data_) *--p = *--q; 

} 

//copy function 

!!*********************end of file: Spectrum1D.cxx ********************** 




