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Abstract

I. Fission Probabilities, Fission Barriers, and Shell Effects

II. Particle Structure Functions
by .
Kexing Jing

Doctor of Philosophy in Engineering-Nuclear Engineering

University of California, Berkeley

Professor Stanley G. Pfussin, Chair

In Part I, fission excitation functions of osmium isotopes 185186187189y o

duced in %He + 182'183'154’186\7\7 reactions, and of polonium isotopes 20931072“:212%
prodeced in 3He/*He + 206:207.208P} reactions, were measured with high precision.
Theee excitation functions have been analyzed in detail based upon the transition
stateé formalism. The fission barriers, and shell effects for the corresponding nuclei
are extracted from the detailed analyses.

A novel approach has been de\./eloped to determine upper limits of the tran-
sient time of the fission process. The upper limits are constrained by the fission

probabilities of neighboring isotopes. The upper limits for the transient time set

with this new method are 15x10~%' sec and 25x10~?! sec for Os and Po compound



nuclei, respectively.-

In Part II, we report on a search for evidence of the optical modulations in
the energy spectré of alpha particles emitted from hot compound nuclei. The optical
modulations are expected to arise from the a-particle interaction with the rest of
the nucleus as the particle prepai‘es to exit. Some evidence for the modulations has
been observed in the alpha spectra measured in the He-induced reactions, *He +
natAg in particular. The identification of the modﬁlations involves a technique that
substracts £he bulk statistical background from the measured alpha spectra, in order
for the modulations to become visible ini fhe residuals. Due to insufficient knowledge
of the background spectra, however, the presented evidej*nce should only be regarded

as preliminary and tentative.
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Chapter 1

Introduction

A nucleus behaves very much like a liquid drop. A hot nuclear droplet, -
heated thrqugh mechanisms such as compound nucleus formation, will cool itself
by either evaporating light particles, or changing.its shape rénd managing to split
into two smaller droplets of éomplementary sizes. The latter process, called nuclear
fission, is the main theme of this thesis.

The rnosf probable paths a nucleus. may take on the way to fission pass
over a saddle point in its potential energy surface. The rate for fission to occur is
determined at the saddle point and is controlled by its height. Thé fission barrier,
defined as the saddle point height, thus plays a central role in understanding fission
probabilities. The experimental studies of fission probabilities in turn provide us the
means to determine the fission barrier.

For a relatively heavy nucleus (lead or heavier) of low-to-moderate excitation

energy, fission occurs nearly symmetrically and the two fission fragments are of more



or less equal size, making fission an apparently distinct process from light particle
emissién. The fission process, in this case, can be characterized approximately by a
single fission barrier.

In general, howéver, a nucleus can split into a,”pair of complementary frag-
ments of any mass asymmetry, ranging from very symmetric, such as in fission in its
conventional sense, to very asymmetric such as in particle emission. The decay c;f
hot nuclei in the mass region A ~ 100 that gives rise to intermediate mass fragments
(or complex fragments) exemplifies this general picture. Each mass or charge emis-
sion can be associated with a conditional saddle (or barrier) with the constraint of
a fixed mass asymmetry. The locus of all such conditional saddles defines the ridge
line in the potential energy surface of a nucleus [More 75]. This ridge line controls
~ the emission of complex fragments, and can be measured with techniques similar to

those used to determine fission barriers.

1.1 Transition State Formalism

The fission rate is often calculated with transition state theory, which was
first introduced into chemistry to estimate chemical reaction rates [Wign 38], and '
Waé subsequently applied by Bohr and Wheeler to calcul@te fission probabilities [Bohr
39]. In this approach, th¢ re@gtion rate is equated to the total flux of phase space tra-
jectories across a dividing surface (a hyperplane) normal to the reaction coordinate.

This dividing surface, or the transition state, separates reactants from products, and
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is conventionally located af a saddle point between the reactant and the product
. region in the potential energy surface of the reacting system. The transition state
theory assumes that any phase space trajectory crossigg the dividing surface will
not find its way back and recross it. The transition state rate is exact only if no
trajectory of a given energy crosses the dividing surface more than once. Therefore
the transition state location should be so chosen as to minimize the number of phase
space trajectories doubling back across the dividing surface.

In the case of fission, the reaction (fission) coordinate can be considered as
the deformation coordinate at the saddle point. The fission process can be envisioned
as the evolution of the shape of a nucleus from its ground state shape to the saddle
point shape, and finally to the scission point where the two halves of the nucleus
dissociate into two fission fragments. At the saddle point, the number of all coﬁﬁgu-
rations the system can possibly reach becomes minimum, due to thé minimization of
int.ernal (thermal) énergy available to the system. In other words, ther'saddle poiﬁt
in the potential energy surface corresponds to a bottleneck in phase space.

To determine the fission probability, we consider an ensemble of nuclei, all
having excitation. energies between E and F + dFE. The number of nucler will be
chosen to be exaétly equal to the number p(F) dF of levels in this energy interval, so
that there is one nucleu; in each state. Let Ay (=I's/h) be the fission probability per
unit time. Then the number of ﬁuclei which fission per unit time will be p(E) dE-As =
p(EYdE-(Ts/h). This number will be equal to the number of nuclei in the transition

state which pass outward over the fission barrier By per unit time. In a unit distance



in the direction of fission there will be (dp/h) ps(E — Bf —¢)dE quantum states for
which the momentum p and the kinetic energy 6. associated with fission have values
in the intervals dp and de = v dp, respectively. Here dp/li is the number of states
corresponding to the phasé space volume in a unit distance in the fission degree of
freedom. p; is the density of those leveis of the compound nucleus in the transition
state (the saddle) which arise from excitation of all degrees of freedom other than
the fission itself. At the initial time we have one nucleus in each of the quantum

states, and consequently the number of fissions per unit time will be [Bohr 39] .

d
p(E)dE —_dE/thps (E~By—e)=dE [ p(E~ By —c)de 7 = dEN,/h,
(1.1)
where N, = /ps(E — By —¢) dé 1s the total number of lev_els in the transition state

available with given excitation. Then we have

N

ry =
d 27rp(E) 27rp

/ps (E— By —¢) de. (1.2)

Expanding the logarithm of the level density p, around (E — B;): p,(E — B; —¢€)
~ ps(E — By) exp(—9[ln ps(z)]/0z|=B, - €), and integrating over ¢, one obtains the

dpproximate expression for the fission decay width

Ts ps(E — By)
N — 1.

where T is the energy dependent nuclear temperature at the saddle point and 1/7, =

dn ps(z)]/0z|5-B,-

For the one dimensional case, in which the only degree of freedom treated

<



explicitly is the reaction coordinate, the decay width takes the form [More 74]

(E - By)

I'y ~ hw Ps o (E) ~ hwe BT, , (1.4)

where T is temperature of the compound nucleus. The quantity 4w is the oscillator
phonon associated with the ground state minimum. In this simplest formulation,
one can read the reaction rate in terms of its two factors: the frequency w which
gives theb free rate of assault on the barrier and the Boltzmann factor which gives
the probability per assault of making it over the barrier.

This simple and elegant formalism has been successful in many subfields of
physics and chemistfy, and has become the standard approach to interpret the exci-
tation functions of many physical and chemical proces'ses Whi'ch require overcoming
a potentizﬂ barrier.

Recent literature, however, provides extensive claims for the failure of transi-
tidn state rates to account for the amounts of pre-scission neutrons, charged particles,
or y-rays measured in relatively heavy fissioning systems. These claims prompted
our attempts to justify the validity of the transition-state method, and/or to idenfify
regimes in which deviations might Be expected. Our attempt in this ;egard lead to
the discovery of a universal scaling law in fission prob.abilities.

The width for neutron emission which compétes very eﬁ"ectivély with fission
and often dominates the decay process, can also be derived in a very simple form.
The Weisskopf formalism [Weis 37] given in the following was derived by taking

the transition state to be a spherical shell of unit thickness just outside the nuclear



surface 47 R®. The number of quantum states which lie in the transition region and
for which the neutron momentum lies in the range p to p 4+ dp and in the solid angle
dQ will be

(47 R? - p*dpdQ/h®) - ¢ - p(E — B, —¢)dE, (1.5)

where B, is the neutron separation energy and p(E — B, — ¢) is the level density of
the residual nucleus after emission of a neutron with kinetic energy €. ¢’ is the spin
factor (¢’ = 2). We multiply this by the normal velocity v cosd = (de/dp) cos 8 and

integrate over {2, obtaining the phase space flux passing through the transition state
dE(4nR* - 2rm/h®) - ¢ - /p(E — B, —¢)ede, (1:6)

where m denotes the neutron mass. This is the number of neutron emissions occur-

ring per unit time that is to be indentified with p(E)dE - A\, = p(E)dE - (T, /R).

Therefore we have for the probability of neutron emission, expressed in energy units,

2.7 .
_ Imity ! /sp(E — B, —¢)de. (1Y

e = RE 27p(E)

Expanding the logarithm of the level density p around (E — B,): p(E — B, — ¢€)
~ p(E — By) exp(—09[In p(:v)]/(éx|E_Bn - €) and integrating over ¢, one obtains the
approximate expression for the neutron decay width

r ~ 72 22— Be)

o) .

-where T,, is the tempe}ature of the residual nucleus after neutron emission defined

as 1/T, = Ollnp(x)]/0z|z_p,, and K = 2mR2g' /R
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More sophisticated formalisms such as the Hauser-Feshbach formalism [Haus
52] could also be used to evaluate the neutron width. The Hauser-Feshbach formal-
ism, however, necessarily introduces additional unknowns - the transmission coefhi-
cients T, which have to be calculated with specific models. The Weisskopf formalism,
on the other hand, emphasizes phase space, and is therefore less model specific. In
both the Weisskopf and the Hauser-Feshbach formalisms, the common (dominant)
factor is the same, i.e., the level density of the residual nucleus afté; a ﬁeutron emis-
sion. For simplicity and transparency we choose to use the Weisskopf formalism iﬁ

our analysis of the fission excitation functions.

1.2 Extraction of Fission Barriers and Shell Effects from

Fission Excitation Functions

As can be seen in Eq. .1.3, the fission barrier By controls the fission de-
cay width, especially at low energies. Thus a detailed‘study of the exﬁerimentally
measured fission cross sections as a functivon of excitation energy should allow us to
determine the fission barriers.

Taking into account the angular momentum a fissioning. nucleus may have,

‘the fission decay width can be rewritten as

T, ps(E — By — E?)
Iy~ — u 1.

where E7 and EY° denote the rotational energy of the system at the saddle point

and the energy of the rotating ground state relative to the non-rotating macroscopic



sphere. Accordingly, the width for neutron emission can be rewritten as

'y~ KT, 2mp(E — BF) (1.10?.

Using for simplicity the Fermi gas level density
p(E) x exp(2VaFE), _ (1.11)

where a is the level density parameter, 'y and I', can then be evaluated readily. In

particular, by integrating directly Eqgs. 1.2 & 1.7, one obtains for 'y /T',:

. _ _ gsy .
T (o g, 4 2 PE B BT
) ' 2an, 4a?

or more explicitly:

exp (2 as(E — By — E3) — 2\/an(E — B, — E,%'S)> ,

(1.13)
where a; and a, denote the level density parameter at the saddle and the level density
parameter for the residual nucleus after neutron emission, respectively.

For nuclei with strong shell effects (nuclei in the lead region, for example),

however, the approximation p( £ — B, — F?®) x exp (2 an(F — B, — E?s)) becomes a
" poor one. The shell effects of a nucleus affect its level density in a rather complicated
way at very low energies. At excitation energies of a few MeV or more above the

shell effects Ag, however, the level density assumes its asymptotic form p(E)

exp (2\v/an(E — Aqn)) [Rose 57, Huiz 72]. This is shown schematically in Fig. 1.1,
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| - >

1}

Figure 1.1: The logarithm of the level density Inp is plotted, schematically, versus the
internal excitation energy F, for a nucleus with shell veffect-s Agh- '

where the logarithm of the level density In p(E) for a nucleus with shell effects Ay is
plotted versus the internal excitation energy E. For the daughter nucleus produced
by neutro.n emission from a nucleus in the lead region, when the excitation energy
of the daughter nucleus is greater than 15-20 MeV, the level density thus takes the

asymptotic form:

p(E — By — E%°) o exp (2 anlE - B — B = A (1.14)

where AZ7} is the ground state shell effect of the daughter nucleus after neutron
emission. For the level density at the saddle point p;, the problems should be far less

serious. On the one hand, the large deformations at the saddle point imply small
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shell effects. On the other hand, by its nature the saddle locates itseif.in between
maxima and minima in the potential energy surface.

vThe pairing effects of a nucleus also affect its level densify, In a manner
similar to that with which thé shell effects affeét the lével density. In Fig. 1.2, the
logarithm of the level density is plotted schematically versus the interﬁal excitation
energy for a nucleus of pairing condensation energy AFE.. For an even-even nucleus,
AE, = %gAg;_ and for an odd A nucleus, AFE, :%gAg — Ao, where Ag is the gap
parameter and ¢ is the density of doubly-degenerate single particle levels. At exci-
tation energies of a few MeV or more, the level density also assumes its asymptotic

form [Sano 63, Eric 60]:

1 B

p(E) x exp (2 a(E - igAg)), for even-even, (1.15)
1

p(E) exp(Q\/a(E - §gA(2, + Ao)), for odd A. (1.16)

For the level density at the saddle point p,, deviations due to pairing may

also be expected at very low excitation energies. However, it should be safe to use:

. ps(E — By — E7) x exp (2. af(E—B;—Ef)) , (1.17)

where B} = By + %gsAz fqr even-even nuclei and B} = By + —;-gsAf — A, for odd
A nuclei. Ay is the saddle gap parameter and g, is the density of doubly-degenerate
.single particle leveis at the saddle. In other words, B} represents the unpaired saddle
energy.

The correction for the pairing effects on the extracted fission barriers is not

attempted in this thesis because of its great uncertainties. For a fissioning even-even
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Figure 1.2: The logarithm of the level density Inp is plotted, schematically, versus the
internal excitation energy F [Sano 63], for a nucleus with a pairing condensation energy
AE.. For an even-even nucleus, AE, = %gA(Q); and for an odd A nucleus, AF, = %gA% -
Ag, where Ag is the gap parameter and g the density of doubly degenerate single particle

levels. -

nucleus, the effect of the pairing on the extracted barriers may be estimated in the

following way:

o1, o(E - By - %gsAi — E?)
Ltotal Ly P(E - B, — A:'h-eh - %gnAi + A, — E;?s>
(B (14 7 (Gondt -~ ) - )

. (118)

~

p(E - B, — ALl — E¥°)
where A, is the gap parameter of the residual nucleus after neutron emission, and ¢,
is the density of doubly-degenerate single particle levels of the residual nucleus. Here

all the level densities have been implicitly assumed to take the form of the Fermi gas
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- level density. Similarly, for an even Z but odd A fissioning nucleus;

r, 1, #(E-Br-300l+A-E)

— L ~ :
Ftotal Fn

p(E = Bn— Al — %gné&i ~ E¥°)

Ts
(e (o7 Blno) )
" p(BE-B.-ami-Er)

(1.19)

In the above equations, the pairing 'effe.cts at the saddle are incorporated into the
effective fission barrier Bj}. To correct for the pairing effects of the residual nucleus,
the .ex‘tra,cted bérrier B} should be shifted down by ~(T,/T,)AE.. This average
should correspond to the excitation energy where the excitation functions are steep—v
est. Thus it is expected that (T,/T,) < 1 and the correction should be of the order
of ~1 MeV or less.

Let o¢ be the angular momentum distribution of the fusion cross section.

Then the fission cross section oy is:

'Zm ax

Q’f = ZO‘[PJ: (f) s (120)

where P¢(?) is the fission probability of the nucleus of angular momentum ¢ () and
lmax 1s the maximum of angular momenta brought into the compound nucleus by
the entrance channel reaction. For first chance fission, P¢(¢) = I'f/Tiotal = /T, |
where I'iotar = 'y + T’y + is the total decay width. Multichance fission can also
be conveniently included in the expfession for. Ps(£).

Thus, by ﬁtting the experimentally measured fission ex’citationv functions

with Eq. 1.20, using Bj and Al as free parameters, one determines the values of
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Figure 1.3: Shell effects Aghen for daughter nuclei produced by neutron evaporation, ex-
tracted from fits to the fission excitation functions [More 95b], are plotted against the
values determined from the ground state masses [M&ll 93]. The diagonal line is to guide
the eye.
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the effective fission barrier B} and the shell effect AJ}, of the daughter nﬁcl(eus»after
neutron emission.

This new way of determining the shell effects, in éontrast to the standard
procedure V[Mé')ll 93, Myer 94, Myer 96|, is completely local. It depend; only on
the properties of the nucleus under considera,tion.. Shown in Fig. 1.3 are the shell v
effects extfacted from fits to the fission excitation functions. for fourteen nuclei in
the lead region. plotted against the corresponding values obtained as the difference
~of the ground state mass and the corresponding liquid drop x./a,lue [Moll 93]. The
cofrelation between the shell effects extracted by this method and those obtained

from the ground state masses is excellent.

1.3 Scaling Laws in Fission Probabilities

Let o9 be the compound nucleus formation cross section. The transition

state fission cross section can then be expressed as

Ff 1 Tsps(E - Bf)
o5 =0 xNo 1.21
d i} OFtotal OFtotal 27TP(E) ( )
This equétion can be rewritten as:
o 2np(E). '
_thotal p( ) = ps(E - Bf) . (122)
g9 Ts i :

By evaluating the left hand side of this equation, we obtain, on the right hand side,

the level density of the system at the saddle point. A new quantity Ry, called the
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reduced fission probability, is naturally introduced:

27 p(E)
T,

Rf = ‘q—f‘rtotal (123)
0o

Thus the reduced fission probability is equal to the level density at the saddle point,

Ry = p(E - By). - (124)

In general, the compound nucleus formed in a fusion reaction has a distri-
bution of angular momenta. The compound. nucleus formation cross section is the

sum of all partial fusion cross section o, with angular momentum #,

lmax

oo= Y, 0y. (1.25)

In this general case, if the angular momenta of the fissioning nuclei are not too large,
an equation similar to Eq. 1.22 may be written for the compound nucleus formed in

a fusion reaction, to a first order approximation as

95 (Ftotal 27{'/)(E — Egs))
0o - <Ts>

= (Ry) = pu(E— B; — (E2)),  (1.26)

where (Ef) and (E¢®) are the average rotational energy.of the fissioning nucleus at
the saddle point and the average energy of the rotating ground state, respectively.‘
Assumihg a sharp Cu‘;—off at {max for the angular-momentum distribution, (E?) and
(E?2°) can be evaluated as the rotational energy at the saddle and the enérgy of the

rotating ground state corresponding to (¢2) = £2, /2, respectively.

Using the Fermi gas level density, we obtain:

In(Ry) = 2y/as(E — B} - (E2)). (1.27)
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Thus, plotting the logarithm of the reduced fission probability, In{Ry), versus the

square root of the internal excitation energy \/E — B} — (Ez), we should obtain a
straight line. |

The slope of the streﬁght line given by Eq. 1.27 depends on the mass of the
fissioning nucleus via the ievel density parameters a, and a s. Taking out the mass

dependence of the level density parameters, one obtains:

In(Rf)  [a . s
_QJCTZ_\/é(E—Bf—(ET)). (1.28)

This equation should permit us to scale all the fission excitation functions onto a
single universal straight line.

In Fig. 1.4, the left-hand side of the equation 1.28 is plotted versus the

square root of the internal excitation energy \/ E — B} — (E}), for fourteen different
compound nuclei in the lead region. All of these excitation functions reduce nicely
to a sipgle straight line. This scaling extends well over seven orders of magnitude in
fission probabilities. The straight line, which is a linear fit to all but the lowest data
points, passes through zero very closely, and its slope is nearly 45° indicating that
the ra,;cio ag/ay is very close to unity. The universality of the scaling and the lack of
deviation from a straight line over the entire enefgy range, except for the very !owest
energies, indicates that the transition state formalism holds extremely well.

The linear scaling laws are also observed by the mass-asymmetric fission
probabilities of nuclei in the intermediate mass region, where over 90 different exci-

tation functions for complex fragments arising from mass-asymmetric fission of the
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Figure 1.4: The quantity In By divided by 2,/a, versus the squaie root of the intrinsic
excitation energy over the saddle point for fission of the compound nuclei: 36:187:188(Qg,
2017], 203,204,205,206,208py,  208,210,211,212pg  and 213At [More 95b]. The straight line is a

linear fit to all but lowest two or three data points.
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compound nuclei 3Br, 994%Mo, and 9112 were shown to be scalable onto a
3
single universal straight line according to transition state predictions. More details

on this work are given in the papers [Jing 99, More 95a).

1.4 Transient Time of Fission Process

The evolution of a fissioning system, starting from an assumed spherical
shape towards the fission saddle, and eventually ‘to the scission point, has been
studied extensively [Hils 92, Paul 94, Frob 97]. If the transient time that a nucleus
takes to evolve from a groun}d state sha,;[)ev to the saddle point is longer than the
characteristic time for compo.und nucleus (CN) decay (rcn = A/Ton = 2/ (Ff+T0)),
“then fission probabilities are expected to b¢ suppressed, and additional particles can
be emitted, as compared to those predicted by transition state theory. This is shown
schematically in Fig. 1.5, where the fission width is plotted versus time [Gfan 83]. If
a transient time 7p is short as compared to the compound nucleus decay time 7¢n,
the station;iry Kramers current [Kram 40] (i.e., the transition state fission rate) is
then expected. If a transient time is long as compared to 7¢n, then the fission width
1s necessarily surpressed.

This transient time effect has been advocated as an explanation for the large
number of prescission neutrons [Gavr 81; Holu 83, Hind 92, Fior 93], charged particles
[Scha 84, Peas 88, Siwe 87|, and electric dipole v-rays [Paul 94, Thoe 87] observed in

relatively heavy fissioning systems. Transient times as long as ~10~!? sec have been
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Figure 1.5: A schematic drawing illustrating the transient time effects on the fission decay
width.

inferred from the observed prescission particles [Hils 92, Newt 89], although more
recent works [Char 97, Mort 97] indicate a shorter transient time.

The fission time scales inferred from prescission particle emssion are the
sum of the transient time discussed above and the time required for the nucleus to
* descend from the saddle to scission, since the prescission particles can be emitted
either before the system reaches the fission saddle, or during the descent from the
saddle to scission. Postsaddle times do not affect the fission probability. It is therefore v
necessary t‘o distinguish between presaddle and postsaddle times. Efforts have been
made to separate the presaddle and postsaddle time components by examining the

differences in the mean kinetic energy of charged particles emitted pre- and post-
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~saddle [Lest 93a, Lest 93b, Lest 91]." However, the separation of presaddle and
postsaddle particle emission is fraught with difficulties and ambiguiti.es.

Since only the transient time has a strong and direct bearing on the fission
probability, the effects of a transient time on the fission probability and the mag-
nitﬁde of the transient time may be determined more reliably from the measured
fission probabﬂities rather than from other means such as barticle emission.

In Chapter 4, a new and straight-forward way to determine an upper limit
éf the transient time, set by the fission probabilities of neighboring isotopes, is pre-
sented. This novel approach, which does not involve measuring anything beyondvthe )
fission saddle, bypasses all of the difficulties associated with the separation of pre-
saddle and postsaddle particle emission. The new approach is applied to the ﬁésion
excitation functions of neighboring Osband Po isotopes to extract an upper limit of
the fission transient time. The upper limits for transient time determined with this
épproach are 15x10‘21, and 25x10~2! sec for isotopes of Os and Po, respectively.
This is in apparent contradiction with a long fission time (Nl(b)”19 sec) claimed in the
literature [Hils 92, N ewt 89] to explain the measured amounts of prescission neutrons
or v-rays in reiatively heavy ﬁssionihg s&stems. The apparent contradiction may be
reconciled when the distinction is made between the presaddle and the postsaddle
times. That is, most, if not all, of the fission times determined from light partiple

emission is postsaddle.
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1.5 First Chance Fission Probabilities

The scaling law presented in Section 1.3 is predicted by the transition state
formalism for first chance fission probabilities, yet it is well observed by the total
fission probabilities. This puzzling aspect of our observed empirical linear scaling
has created much concern and anticipation regarding how first chance probabilities
should behave. Based on calculations with a particular statistical code, the argument
has been made that first chance fission may still be substantially supressed by the
effects of a long transient time (107'? sec) but the transient time effects are somehow
made up with fission probabilities for second and higher chance fission [Back 97].
However, the effects of a transient time as small as 30x107%" sec on the fission
probabilities of *1°Po are so tremendous that the above argument could not possibly
be accommodated [More 97a]. This is especially so in the case of the mass-asymmetric
fission of nuclei in ther 'intermedia,te mass region such as 90’9v4’98M0, where first chance
fission truly dominates throughout the excitation energy range up to 140 MeV. Due to
the large conditional fission barriers (Bz ~ 40 MeV), the fission excitation functions
are very steep [Jing 99, More 95a]. The fissioning system can not aﬁord losing energy
through particle evaporations, since to lose energy before reaching the fission saddle
by emitting a particle would greatly decrease the fission probability. First-chance
fission, therefore, must d.ominate. |

For heavy fissioning systems (Pb or heavier), however, the fission barriers

“are lower, and multichance fission may become pronounced at high energies. The
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dominance of first chance fission is thus called into question. It is therefore of great
interest to determine first chance fission probabilities empirically. Their very sensitiv-
ity to the transient time effects would also allow us to set more stringent constraints
on the: possible transient times. It is, however, very difficult, and éven subjective, to
sort out the first, second, and higher chances in the total fission probabilities.

The difficulty comes with the uncertainties in the measured total fission
probabilities Py, which are usually determined as the ratio of the fission cross section
to the compound nucleus formation cross section. Although the fission cross sections
can be measured very précisely, the formation cross sections are often estima'ggd
with models such as the Bass Model [Bass 74], the Extra-push Model [Swia 82,
the Optical Model [Macf 78], etc., or just with the geometrical cross section. The
estimated fusion cross sections are rather uncertéin, and are generally overestimated -
at high energies, the very energy regime where the dominance of first chance fission
is questioned and where the relative contribution of first chance to the total fission
probability is to be determined. An overestimation of the fusion cross sections would

~cause an underestimation in the total fission probabilities, anﬂd consequently, lead to
an underestimation of the first chance fission probabilities.

Natowitz et al. has used an old recipe to extract the first chance fission
probability by comparing the total fission probabilities of neighboring isotopes [Nato
90]. The subjective aspect of the recipe is rooted in its hidden assumption that either
the décay. clock be reset at each step on the decay chain or the fission transient time

be otherwise zero, and therefore the second plus higher chance fission probability
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may be equated to the total fission probability of the neighboring nucleus with one

neutron less. This will be further discussed in Chapter 4.

1.6  Goals of the Project

In this theéis, a novel approach will be developed to determine upper limits
of the fission transient time, which is set by the fission probabilities of neighbor-
ing isotopes. The approach will be applied to neighboring Os and Po isotopes to
determine the upper limits of their fission transient times.

For this purpose, the fission excitation functions for 185186:187.189(g pro.-
duced in the 3He + 182183184184\ reactions, and the fission excitation functions
for 209,210.211,212P¢ produced in the *He and 1He + 206:207:208P}, reactions, were mea-
sured with high precision. The details of the experiment and the measured fission
excitation functions are given in Chapter 2.

These fission excitation functions are analyzéd in detail according to the

statistical formalism presented in Section 1.2. The fission barriers, and shell effects

for che corresponding nuclei are extracted from the detailed analyses.



Chapter 2

Measurement of Fission Excitation

Functions for Os and Po Isotopes

In this chapter, the fission  excitation -functions of the compound nuclei
185,186,187,189()¢ 5 209.210.211,212P¢, produced in the reactions $He 4 182183184186 natyy
3He + 206:207,208,natpl, and 1He 4 206:207.208matph, are presented. These fission excita-
tion functions were measured in experiments carried out at the 88-Inch Cyclotron of
the Lawrence Berkeley National Laboratory. Through analysis of these data, one can
determine some of the nuclear properties such as the ﬁssi(;n barriers, t-ﬁe shell.effects;
etc., for the fissioning nuclei or their daughters produced by neutron emission. The
high precision of the measurements also alloWs us to make detailed comparisons of
the fission probabilities of these neighboring isotopes, and to set upper limits for the

dynamic transient time of the fission process.
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2.1 Experimént

A variety of compound nuclei (Os and Po isétopes) was prepared by the
3He and *He induced reactions on targets of W and Pb isotopgs. 3He beams of
28 different energies between 21 MeV and 140 MeV, and *He beams of 24 different
energies between 32 and 118 MeV, were used to bombard the targets made from
oxides of tungsten isotopes and made from metallic lead isotopes. The uncertainty

in beam energies was about 0.3%. The thicknesses and isotopic enrichments of the

targets used in the experiments are listed in Table 2.1.

Table 2.1: The thicknesses and isotopic purities of the targets.

Target  Thickness (ug/cm?) Purity (%)

206pp, 555 + 10 97.2
207pp 560 + 10 - 92.0
208py, 500 + 10 - 99.3
natpt, 544 + 10 100
182W0; . 330+7 94.0
183W 04 355+ 8 82.5
184W Q4 34147 93.8
186W 03 385+ 8 97.3
nat\wQ, 363+ 8 100

Two large area Parallel Plate Avalanché Counters (PPACs), with an active
area of 200x240 mm? each, were used to detect the fission fragment pairs. Shown
in Fig. 2.1 is a photograph of the experiment setup. The two PPACs were placed
15 cm from the target, and were mounted at 60° and 240° with respect to the beam
axis, allowing for the detection of both fission fragments in coincidence. The self-

surporting targets (20 mm in diameter) were mounted on a target ladder. The target'
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was selected by moving the ladder up or down via remote control. The beams, which
were focused on the target, entered the reaction chamber through the hole near the
top of the picture.

The PPAC’s volume is divided by a cathodeﬂ foil backe(i with 2 pm thick
mylar foil. The cathode was operated at a voltage of —450 V. The readout of the
cathode gives an amplitude and a timing signal, which is independent of position.
Two signal wireplanes, one horizontal on one side of the cathode and one vertical on
the other side, are mounted at a disténce of 3 mm from the cathode. The 20 pm
thick wires are separated by a distance of 1 mm. Groups of five wires are combined
by a delay line, the readout of which provides the pésition of the fission fragment.
An intrinsic position resolution of 3 mm vertically and 5 mm horizontally, allows
for the measurement of the folding angle of a fission ffagment pair. Fission events
were characterized by a prompt relative time peak, large cathode amplitudes, and a
Back-to-back emission geometry in the center of mass.

Each PPAC has an entrance win(‘iovs./ made of a stretched polypropylene foil
(~100 pg/cm?) which separates the isobutane gas in the detector from the chamber
vacuum. T.he PPACs were operated at a constant pressure of 3 torr of isobutane gas.

With lead targets, beam intensities varied from 1 nA ét the highest ene-
rigies to 30 nA at the lowest energies. The highest beam intensities were limited
to minimize erosion of the 1éad targets. With tungsten targets, which were in the
form of oxides, the beam intensities varied from 10 nA to 350 nA. For these targets,

- the highest beam intensities were limited by the brittleness and the poor thermal



Figure 2.1: A photograph of the experimental setup.
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conductivity of the oxides.

In order to minimize the time needed for beam tuning when changing the
beam species and the energies, both the beam species, *He and *He, were accelerated
at the same magnetic figidity of the cyclotron. Thus, only the electrostatic elements
had to be changed, and a significant decrease in cyclotron tuning time was achieved
[Clar 90].

High voltage (8 kV) was applied to the target ladder to suppre.ss delta elec-
trons from entering the PPACs, thus improving their signal/noise ratio.

For inéreasing beam energy, the.Velocity of the compound nucleus increases
in the laboratory frame, resulting in a decreased folding angle between a fission
fragment pair. Since our detectors were mounted at fixed angles, and the detection of
both fission fragments in a fission event was required, the acceptance of our detector
setup had a weak dependence on the beam energy. In our experiments, the geometric
acceptance varied from 14% to 16% of 4, for beam energies from 140 and 21‘ MeV,
respectively.

To minimize systemdtic errors in our measurements, we required a precise
determination of the thickness and homogeneity of our targets, which were isotopi-
cally enriched and commercially made [Micr 97]. Rutherford backscattering measure-
fnents §vere thus performed. The thickness of the target foils wés determined from
the widths of the energy spectra of backscattered *He ions. To determine the overall
homogeneity of the targets, we measured the target thickness at different points on

each target foil. The thickness fluctuations within the central 10 mm were found to
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be small (1%). In our experiments, the diameter of the beam spot on the target was
approximately 5 mm and the accuracy of the center focus was ~1 mm. The target
thicknesses determined by Rutherford backscattering agree well with the thicknesses
determined by weighing [Rube 97].

Contamination from heavier elements is potentially another source of sys-
tematic uncertainties, especially at the lowest energies where even a very small quan-
tities of heavy contaminénts éould contribute substantially to the fission yield, be-
cause of their lower fission barriers. Fortunately, with targets isotopically enriched by
mass separation, this source of contaminant was practically eliminated. No evidence
for heavier contaminants was apparent in our measuyred fission ‘excita,tion functions
which are presented in the next section. Measurement of particle-induced x-ray

emission also confirmed that the contaminant level was negligible [Rube 97].

2.2 Fission Cross Sections

Fission cross sections oy were determined by using the expression

n
of = Ly, » (2.1

np Ty

where ny is the number of the detected fission events; n, is the number of incident
SHe/*He particles; and n; is the target thickness (atorﬁs/cmz). The quantity 7 is
the inverse of the efficiency of detecting the fission fragment pairs, and is determined
by both the geor‘netrical acceptance of the PPACs and the angular distribution of

fission fragments. n depends not 6nly on the angles of both the PPACs, due to
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anisotropic angular distribution of the fission fragments, but also.depends weakly .
on the beam energy, due to the decreasing folding angle between the pair of fission
fragments with ipcreasing beam energy. The apgular distribution (3—6)(9/(3—5)900 of
;che fission fragments was taken to be 1/sin @ [Vand 73| in our determination of the
factor . This should be reasonable, since the deviation of the angular distribution
from 1/sin @ for non-zero projection of an/gular momentum on the symmetry axis
occurs mostly at angles near 0° or 180°, where the geometrical weighting factor dQ2
= sin 8dfd¢ is very small.

The experimental fission excitation functions measured in this work for eight "
different compound nuclei formed in ten different reactions, are shown in Figs. 2.2 &~
2.3. These vexcita,tion functions are also tabulated in Tables 2.2, 2.3, and 2.4). The ',
errors given both in the figures and the tables are statistical errors only. The statis-
tical errors are smalier than 1% for the Po-conllpound nuclei at excitation energies
above 40 MeV, and-the statistical errors are smaller than 2% for the Os compound
nuclei at excitation energies above 50 MeV, as can be seen in the Figs. 2.2 & 2.3.
Systematic errors arise mainly from the uncertainties in the.target thicknesses, the
beam current integration, ami the uncertainties associated with the PPAC accep-
tance. Overall, the systematic error, which is essentially the same for all reactions
forming the neighboring compound nuclei, except for the uncertainties in the target
thicknesses, is estimated to be ~4%. The excitation energy was éalculated assuming
a full rﬁomentum and mass transfer of the helium ions to the compound nucleus.

Our measurements of the fission cross sections for severai different isotopes
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Figure 2.2: The fission excitation functions for osmium isotopes 185:186:187.189(5 nroduced
in the reactions 3He + 182:183,184186\y The lines are to guide the eyes. The statistical errors
are shown when they exceed the size of the symbols. The number to the right of each legend
indicates the factor by which the corresponding excitation function was multiplied, in order
to separate it from its neighboring excitation functions for visual clarity.
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Table 2.2: The measured fission cross sections o of the compound nuclei 185:186:187,185()5

and "'Qs produced in 3He + 182,183,184186\y g natWy reactions. The errors given in the
table include the statistical error only.

Fyeam | oy (mb)

(Mev)| 1850s 18605 187OS IBQOS natOS
21.0 [(8.6+3.1)107% (4.1+1.6)107° (6.0 +3.5)107
23.0 [(2.240.8)107% (2.74+0.8)10~° (1.5+£0.6)107° (2.2+2.2)107% (2.0+0.6) 10~°
25.0 [(1.0£0.2)107* (1.14£0.2)107* (5.44+1.0)107° (2.04+0.8)107% (1.04£0.2)10~*

©27.0 (2.940.3)107* (2.6 £0.3)10* (1.3+0.2)107* (6.34+1.0)10"* (2.240.3) 104
29.0 {(1.0£0.1)1073 (6.7£0.5)10™* (3.84+0.4)10™* (1.940.2)10~* (5.44+0.4) 10~*
32.0 {(3.04£0.1)1073 (2.840.1)1073 (1.440.1)1073 (6.24+0.5)107* (1.940.1)1073
35.0 [(9.240.3)107% (7.240.2)1073 (4.0£0.2)107* (1.840.1)1073 (5.04£0.2) 1073
375 {(1.74£0.2)1072 (1.24£0.1) 1072 (7.6 £ 0.6) 1073 (9.7+1.8)1073
40.0 [(3.540.1)1072 (2.6 +0.1)1072 (1.5+.04)1072 (6.84£0.2)1073 (2.0£.06)1072
45.0 |(8.94£0.2)1072 (7.34£0.2)1072? (4.340.1)1072 (1.94.05)1672 (5.440.1) 1072
50.0 | 0.204£0.004 0.15140.004 (9.74+0.3)107% (4.54+0.1)10"2 0.115+ 0.003
55.0 | 0.407 £0.008 0.31140.006 0.206+0.004 (9.5+0.3)1072 0.244 + 0.005
60.0 | 0.7254+0.013 0.525+0.009 0.352+0.007 0.174+ 0.004. 0.401 + 0.008
65.0 | 1.17+£0.02 0.880+0.018 0.605+0.006 0.306+ 0.006 0.684 + 0.014
70.0 | 1.6940.02 1.2940.02  0.901+0.012 1.05+ 0.01
75.0 | 2.3840.03 1.83+0.03 1.30+£0.02  0.6784£0.010  1.5140.02
80.0 | 3.2640.03 2.58 £ 0.03 1.85 + 0.02 2.10 + 0.03
85.0 |. 4.5140.05 3.36 £ 0.05 2.56+0.02 - 1.3840.02 2.84 4+ 0.03
90.0 | 5.4140.05 4.24 £ 0.04 3.10 + 0.03 3.4340.03
95.0 | 6.794£0.07 5.26 £ 0.05 3.89 + 0.04 2.18 + 0.03 4.32 4 0.04
102.5 | 8.3940.10 6.51 4 0.08 5.07 + 0.07 2.92+0.04 5.354+0.07
110.0 | 10.39+0.10  8.40+0.08 6.66 + 0.06 3.95 4+ 0.04 6.97 + 0.07
1175 | 12.084+0.17  10.27+£0.14 ~ 8.01+0.12 4.78 £ 0.08 8.50 + 0.12
125.0 | 14.91+0.15 12.02+£0.12 = 9.60 £ 0.10 5.99 + 0.06 10.12 £ 0.10
1325 | 16.284£0.20 13.26+0.17  10.884+0.16  7.06 +0.12 11.19+£0.15
140.0 | 18.46+0.18 1549+0.15 12.60+0.13  8.09 £ 0.08 12.94 £0.13
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Table 2.3: The measured fission cross sections oy of the compound nuclei 209,210,211pg and
natPo produced in 3He + 206:207,208pp & natPh reactions. The errors given in the table

include the statistical error only.

Fheam | os (mb)

(MeV) | 209p, 210p 211p, natp
21.0 | (8.740.9)107* (544+0.6)107* (1.84+0.4)107* (5.6+0.9)107*
22.5 | (1.04+£.07)107%2 (6.4£0.5)107% (2.1£0.2)10™3 (5.9+0.4)1073
24.0 | (4.240.1)1072 (2.54£0.1)107%2 (9.84+£0.5)107% (2.2+£0.1)10°?
25.5 | 0.1414+0.004 (8.6+0.3)107% (3.940.1)10"2 (8.04+0.3)1072

'27.0 | 0.3074£0.006  0.19440.004 (9.640.2)10"2  0.188 + 0.004
30.0 1.06 £ 0.01 0.7414£0.011  0.393£0.007  0.719£0.011
35.0 | 4.3240.04 2.99 + 0.03 1.80+0.02  2.87+0.03
40.0 11.6 £ 0.1 8.20 + 0.08 5.19 £ 0.05 7.89 +0.08
45.0 21.74£0.2 16.0+ 0.2 10.4 £ 0.1 15.4 +0.2
50.0 35.14+0.3 26.4 £ 0.2 18.1£0.2 25.4 £ 0.2
55.0 50.8 + 0.4 39.34+0.3 27.5+ 0.3 37.7+£0.3
60.0 69.4 + 0.5 53.9+ 0.4 39.74+0.3 52.8 4 0.4
65.0 91.04+ 0.6 72.7+0.5 52.5+ 0.4 69.4 4+ 0.5
70.0 1159+ 0.8 93.44 0.8 68.7 + 0.7 88.9+ 0.8
75.0 141.6 £ 0.9 115.7+ 0.8 85.24 0.8 110.4 4 0.8
80.0 168.7 £ 1.2 1374+ 1.1 104.3 £ 1.0 132.5+ 1.1
85.0° 192.5+£1.3 158.4 4+ 1.1 121.0+ 1.1 152.3+ 1.1
90.0 216.7+1.3 180.9 + 1.2 139.0 £ 1.1 176.0 & 1.2
95.0 244.0 + 1.8 205.1 £ 1.6 161.3+ 1.5 197.8+ 1.6
100.0 266.2 + 1.8 226.5+ 1.7 . 176.6 £ 1.6 216.3 £ 1.7
105.0 286.7+ 1.9 247.94 1.8 196.2 +1.7- 237.7+ 1.7
110.0 311.1£2.0 270.54 1.8 21444 1.7 260.9 + 1.8
115.0 332.7+£2.0 286.9 + 1.9 231.74 1.8 281.0 + 1.9
120.0 350.1+ 2.1 309.7 4 2.0 249.6 £ 1.9 295.0 + 2.0
125.0 363.4 £ 2.2 323.6 £ 2.0 256.8 4+ 1.9 310.2 £ 2.0
130.0 384.3+£1.8 338.8+ 1.7 280.7 4 1.6 330.0 £ 1.7
135.0 397.0+2.3 355.0 £ 2.1 294.0 £ 2.1 345.4 4+ 2.1
140.0 416.0 + 2.3 . 363.2 + 2.2 304.1 £ 2.1 352.1+2.1
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Table 2.4: The measured fission cross sections oy of the compound nuclei 210,211,212pg and
nalPo produced in *He + 206:207,208p}, & natPh reactions. The errors given in the table

include the statistical error only.

Ebpeam l gf (mb)

(MeV) | 2101:)0» _ 211Po 212P0 ) natPo
320 |(7.1+£0.8)10* (2.64+06)107* (1.3+£0.3)10°* (6.5+0.8)107*
33.5 | (444£0.2)1073 (2.14£0.1)107® (4.8+£0.6)107* (2.64+0.2)1073
35.0 | (2.04+£0.1)107%2 (1.0£.05)10"% (3.14£0.3)107* (1.14.06)1072
38.0 0.1514+0.004 (8.4+£0.2)1072 (3.04£0.1)1072 (8.74£0.2)1072
41.0 | 0.624+0.010  0.368+0.006  0.155+0.003 . 0.344 +0.006
45.0 2.45 4 0.026 1.63 £ 0.02 0.786'4+ 0.011 1.49 4+ 0.02
49.0 5.83 + 0.059 3.97+0.04 2.32+0.03 3.82 +0.04
53.0 12.7+0.1 8.99 + 0.08 5.63 £ 0.06 8.66-+ 0.09
56.8 21.240.2 15.24+ 0.2 9.66 + 0.10 144+ 0.2
60.7 32.1£0.3 24.1£0.2 15.74 0.2 23.0+£ 0.2
64.4 45.8+0.3 3424 0.3 23.2+0.3 32.84+0.3
68.3 58.5 + 0.4 45.0+ 0.3 31.6+0.3 44.0+ 0.3
72.1 77.04+ 0.5 59.6 + 0.4 41.740.4 57.44+ 0.4
75.9 '97.6 £ 0.7 76.54 0.6 55.2 + 0.6 74.5+ 0.6
79.7 115.740.9 91.84+ 0.8 66.9 £ 0.7 89.8 + 0.8
83.6 143.3+£1.3 113.6 + 1.0 83.9+ 0.8 110.2 4+ 1.0
87.4 168.5 4 1.5 136.7 + 1.3 99.7+ 1.0 128.7 + 1.2
91.2 191.7+£ 1.3 158.9+ 1.1 117.8 £ 1.0 151.0 4+ 1.2
95.1 214.0+ 1.6 1753+ 1.5 135.0+ 1.4 17144+ 1.5
98.9 241.74+ 1.8 200.9+ 1.5 153.0 £ 1.2 191.7 £ 1.6
102.7 273.94 1.9 226.1+ 1.7 171.8+ 1.6 219.04+ 1.7
106.6 302.5 £ 2.0 248.24+ 1.8 194.4 4+ 1.7 238.8+ 1.8
113.0 344.74+ 2.1 290.9+ 1.9 228.84+ 1.8 280.5+ 1.9
118.0 384.6 +2.3 333.44+2.1 259.8 + 1.9 319.9+ 2.1
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of the same element, and for a target of that element containing isotopes of known
abundances (natural, for example), allow us to examine the self-consistency of the
rneasuvrements. Shown in Fig. 2.4 aré the ratios of the helium-induced fission cross
section of ®*Pb, as synthesized with the fission cross sections measured for the indi-
vidual lead isotopes, to the helium-induced fission cros; section for "2*Pb, as measured
usingvv a natural lead target. In synthesizing the helium-induced fission cross section of
n2tPh from the helium-induced fission cross sections of the individual Pb isotopes, the
cross section for 2*4Pb, which was not mé@sured in our experiments, was estimated
from the cross sections for the *®*Pb and ?**Pb by extrapolation. This estimation
should be sufficient for the purpose of synthesizing the overall cross section, since
the abundance of 2°4Pb in natural lead is only 1.'42%. The fact that ‘the ratios are
equal to unity within 3% over the éntire energy range, verifies the high precision
of our measurements. This ratio is very sensitive to isotopic purities of the targets,
particularly the isotopic purity of 2°8Pb target, at low energies where the fission cross
sections decreases substantially with increasing neutron numbers (see Tables 2.3 and
2.4). Thus the observed ratios close to unity also verified that our 208Pb target was
indeed isotopically very pure.

The same consistency was also verified for the measured 3He-induced fission
cross sections of tungsten isotopes (see Fig. 2.5).

For a given compound nucleus (**°Po or ?!'Po), the 4He—indubc_ed fission
cross section at a given excitation energy is higher than the *He-induced fission cross

section at the same excitation energy, as can be seen in Fig. 2.3. This is mainly
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Figure 2.4: The ratios of the *He/*He-induced fission cross sections of natural lead, as
calculated from the fission cross sections measured for the individual lead isotopes, and the
3He/*He-induced fission cross sections of natural lead, as measured using a natural lead
target. Shown in the upper panel is the result for the 3He-induced fission of lead (*He +
nat,206,207,208ph) . and shown in the lower panel is the result for the *He-induced fission of
lead (4He + nat,206,207,208Pb).

IIIlIlllI|IlIIIllllllll|llllIllI|Illl|lIlllIllIllllI

AV,
n

beam



39

IIII|IIII|IIII|IIII[IIIA

‘He+W

PR,

TT

1.1

1.0

I%atio

ITIIIIIIIIIIII|IIII]I|
—.._

—— ‘
——

0.9

LllllllIIlIJlJlllllllll'llll

TTTT

I | S

| S l | TS - l 1 !

0 75 100 125 150
E (MeV)

Figure 2.5: The ratios of the 3He-induced fission cross sections of natural tungsten, as
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measured using a natural tungsten target (*He + "W).
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due to the higher fusion cross sections of the *He-induced reactions (see Figs. 3.2
and 3.3 in next chapter). The difference in the angular momentum of the compound
nuclei formed by different entrance channels also plays a role, resulting in different
branching ratios for fission dlie to differences in rotational energies. However, since
the angular momenta of the compound nuclei formed in *He/*He-induced reactions
are generally small, the angular momentum effects on the fission probabilities are
‘not expected to be significant.

In an earlier experiment [Rube 96] we measured the fission excitation func-

tions for the compound nuclei 2°°T1, ?'1Po, and ?'?At formed in the *He-induced



40

reactions on '%7Au, 2®Pb, and 2%Bi, respectively. The data from these measure-
ments are in excellent agreement with our current ones.

Even earlier, during the period 1960-1970, the fission excitation functions
of 208:210.211.212p hroduced in “He-induced reactioﬁs on 204.206,207,208P},  and of other
nuclei, were measured over the excitation energy range from 120 MeV down to an
energy Very close to the fission barriers [Khod 66]. These earlier data deviate from
the current measurements by up to 20% depending> oﬁ the targets. The discrepancies

are not well understood. However, the deviations are not significant.
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Chapter 3

Fission Barriers and Shell Effects

The fission excitation functions presented in Chapter 2 can Be interpreted
and analyzed accordi-ng to the statistiéal formalismillustrated in Chapter 1.2. Several
physical parameters, such as fission barriers, éhell effects, etc., of the corresponding
nuclei are containedvin the fission excitation functions, and can therefore be deter-
mined from detailed analyses of these excitation functions. The standard analysis
procedure is to fit the measured fission excitation functions with the statistical for-
malism, using the fission barriers, shell effects, etc., as free parémeters in the fits.

In this chapter, the measured fission excitatioﬁ functions are analyzed and
fitted with the statistical formalisrﬁ, under various assumptions for the compound
nucleus formation cross sections. The fission barriers and shell effects, etc., extracted

from these fits are presented and discussed in the following.
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3.1 Formation Cross Sections of the Fissioning Nuclei.

The fission probability of a compound nucleus can be calculated with the
statistical formalism. However, to calqulate the fission cross section, one needs to
know the formation cross section of the fissioning compound nucleus (see Eq. 1.20). In
the 3He/*He-induced fission, the formation cross section of the fissioning compound
nucleus is the fusion cross section of the projectile and the target nucleus. The
fusion process occurs over a range of impact parameters from head-on éollision to
the maximum impact parameter. The compound .nucleus is, therefore, formed with
a distribution of angular momenta. The maximum impact parameter, and thus the
maximum angular momentum #;,x, can bg related directly to the total fusion cross
section. Assuming a sharp spin cut-off at the maximum angular moméntum Lrnax,

the angular momentum distribution of the fusion cross section oy becomes
O'g=7TX? (2€+1)’ ézoal’azv"'aémaxa (31)

where X is the reduced wave length (A ="//p with p being the momentum of the

incident particle in the center-of-mass frame). The total fusion cross section og is
Lmax . €max
oo= Y oe=mX D (2+1) = 7X (lnax + 1) (3.2)
0

0

The angular momentum distribution of the fusion cross section o, can also be pa-
rameterized using a Fermi distribution [Plic 83, Hass 85], to take into account a more
reaiistic diffuseness of the distribution near £;,,x

_ TA* (20 + 1)
= TF exp (= b /30

¢
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where 6/ determines the diffuseness of the angular momentum distribution.

The fusion cross sections for these reaction systems are, however, not well .
known, and have to be estimated with theoretical models suéh as the Bass model
[Bass 74], the Extra-push model [Swia.82], etc..

The Bass model [Bass 74] assumés a frozen shape of the colliding nuclei
during their approach, and takes a conservative two-body potential which includes
the effects of the finite range of nuclear forces. The Bass model assumes that fusion,
or the transition ffom the entrance channel to the compound nucleus, occurs at the
point of contact where the projectile and target densities in the overlap region add up
to saturation density of nuclear fnatter. Energy and anéular momentum dissipation
by friction are considered iq the limit of strong localization at the point of contact.

The Extra-push model [Swia 82] considers the further time evolution of the
system (either towards fusion or reseparation) after two nuclei have been brought
into contact. The evolution is governed by the relative magnitudes of the repulsive
electric forces and the cohesive nuclear forpes. For light systems, for which the
electric forges are small, the configuration of tangent nuclei is expected to evolve
automatically towards fusion. For heavier nuclei, the electric repulsion may become
so large that, starting frofn rest at contact, the system will réseparate. In this case,
an additional energy - an extra push - is thus needed to achieve fusion.

The fusion cross sections calculated with the Bass model and the Extra-
push model for the reactions *He + %W, 3'He + 207Ph and *He + 2°7Pb are shown

in Figs. 3.1, 3.2 and 3.3. Also plotted in these figures are the reaction cross sections
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Figure 3.1: The fusion cross sections og predicted for the reaction *He + 184W by the
Bass model [Bass 74] and the Extra-push model [Swia 82], plotted as a function of the 3He
beam energy Epeam- The excitation energy E of the resulting compound nucleus 870Os is
indicated on the top. The reaction cross section calculated with the Optical model [Macf
78] is also given.
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Figure 3.2: The fusion cross sections gg predicted for the reaction 3He + 297Pb by the
~ Bass model [Bass 74] and the Extra-push model [Swia 82], plotted as a function of the *He
beam energy Epeam. The excitation energy E of the resulting compound nucleus 2!°Po is
indicated on the top. The reaction cross section calculated with the Optical model [Macf
78] is also given.
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Figure 3.3: The fusion cross sections oo predicted for the reaction ‘He + 2°7Pb by the
Bass model [Bass 74] and the Extra-push model [Swia 82], plotted as a function of the 3He
beam energy Epeam. The excitation energy E of the resulting compound nucleus 2!Po is
indicated on the top. The reaction cross section calculated with the Optical model [Macf
78] is also given. :
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predicted by the Optical model [Fesh 54, Macf 78]. The reaction cross section from
the Optical model inciudes both the fusion cross section and the cross sections for
direct reactions, and may thus be considered as an upper limit of the formation cross
section of compound nucleus.

Having estimated the fusion cross sections of the ﬁséio’ning nuclei, we can
now calculate the fission cross sections with the statistical formalism. A fit of the
- calculated fission cross sections as a function of energy to the measured fission ex-
citation function should allow us to determine the effective fission barrier Bj, the
ratio of the level densify parameter at the saddle point to that of the ground state |
(af/an), and the shell effect of the daughter nucleus after neutron emission A’_j;, by
using these physical quantities as free parameters in the fitting procedure.

As sh;)wn above, the .uncerta,inty in the calculated fusion cross sections is
quite substantial (see Figs. 3.1, 3.2 and 3.3). Presumably, the exponential dependence
of the fission probability on the square root of the internal excitation energy at the
saddle point should be so dominanf a factor that it may make this uncertainty
rather irrelevant, if the fusion cross sections, however uncertain, depend on energy
only weakly. However, in the_ cases where the fusion barriers of the entrance channel
- reactions are comparable to the fission barriers, such as in the He-iﬁdﬁced fission in
the lead region, the fusion cross sections may play a larger role in the determination
of the fission cross sections. In these cases, some difficulties may be expected dué
to the uncertainty in the fusion cross sections. “To find out what difficulties the

uncertainty may cause, and to determine its effects on the extracted parameters,
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we will proceed with our analysis in the following order: 1) fitting the excitation
functions with A%} fixed with its nominal value from ref. [Méll 93], leaving B} and
aj/a, as free parameters; 2) fitting the excitation functions with B7 fixed, leaving

A%l and ay/a, as free parameters; 3) fitting the excitation functions with all three

as free parameters.

3.2 Fission Barriers

As shown in Egs. 1.9 and 1.10, the angular momentum dependence of I'y -
and T',, is taken into account by the éddition of the rotational energy at the saddle
E; and the energy of the rotating ground state FE9° (which are not available for
the internal excitation), to the fission barrier B; and the neutron separation energy
B,, respectively. The rotational energy of the nucleus at the saddle point is £} =
R2(£+1)/2Saadle Where Sqaqqie is the moment of inertia about the axis perp.en.dicular '
to the symmetry axis of the nucleus at the saddle point. In this analysis VSSaddle is
calculated assuming a saddle configuration of twé spheres separated by 2 fm. Since
nuclet in the lead region are spherical or véry nearly so, the energy of the rotating
ground state E2° is thus equal to the rotational energy of the ground state, £¢° =
REO(L+ 1)/2Ss where Sy is the moment of inertia of the ground state. In calculating
Sisaddle and Sgs, fhe radius of a nuclear sphere is taken to be R :,. 1.2AY3 fm. |

The angular momentum £ of a fissioning nucleus is determined by the prod-

uct of the projectile momentum and the impact parameter. The maximum angular
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2

momentum .y, or the maximum impact parameter at which a projectile and a tar-
get nucleus can be brought to form a compound nucleus, are calculated with three

different models f. the Bass model [Bass 74], the Extra-push model [Swia 82], and

the Optical model [Macf 78]. £nax is related to the fusion cross section og by Eq. 3.3,

or_by Eq. 3.2 assuming a sharp cut-off at £y, in £ distribution. In this analysis, the

diffuseness parameter 6¢ is taken to be 1, implying a nearly sharp spin cut-off. The

ﬁt.ting is insensitive to the specific value of 8¢, since, for £ < lpax, variations of ¢

from 0 to oo result only in changes of o¢ by at most a factor of 2.

The statistical formalism requires the use of a specific level-density expres-
sion in the widths ].-‘f. and I',,. It is mainly in the level densities that all of the physical
information concerning the nucleus at the saddle point and the residual nucleus after
neutron emission is contained. For the level density, we have used the approxi’mate
Fermi gas expression p(F) exé(Z\/JE), where F is the thermal excitation energy
of the system and a is the level density parameter. In the calculation of thevﬁssion
cross section with Eq. 1.20, the branching ratio for fission P;(¢) is I';/(T'y + I'y),
where I'f /T, can be evaluated with Eq.v 1.12. The leV‘el densities p(E — B,, — E¢*)
and p;(E — By — E?) can in turn be evaluated with Eqé. 1.14 and 1.17, respectively.

Multichance fission is expeé’ted to occur at high energies. To avoid com-
plications from possible multichance fission, we shall, for now, limit ourselves to fit
only the low-energy portion of the excitation functions where the ﬁséion probability
1s most sensitive to the fission barrier By and first chance fission is dominant.

The low-energy portion of the fission excitation functions for the nuclei
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185,186,187.189()s produced in *He-induced reactions on the targets of 18%:183,184,.186yy

(see Table 2.2 and Fig. 2.2), and of the fission excitation functions for the nuclei
209,210,211,212py, produced in *He/*He-induced reactions on the targets of 206:207.208p},
(see Table 2.3, 2.4 and Fig. 2.3), were therefore fitted with two free parameteré: B3
— the effective fission barrier, and as/a, — the ratio of the level density parametef
at the saddle point to that of the compound nucleus at the ground state. A level
ciensity parameter for the compound nucleus a =an = A/8 (MeV™!) was assumned
in the fitting. For the residual nucleus after neutron evaporation, a, = (A — 1)/8
(MeV~1). The nominal value of the shell effect for the residual nucleus after neutron
emission A;‘ll_e}l,‘taken to be Emic + (Mexp — Myy) from ref. [Mll 93], and listed in
Table 3.1, was used as a fixed input parameter. (In ref. [M6ll 93], Epic denotes (Mth‘
- Mypsph) — the difference between the theoretical mass My, and the mass of the
liquid-drop sphere My psph. Thus, Emic + (Mexp — Mthl) = (Mexp —AML,D_sph) where
M.yp is the experimental mass. Throughout this thesis, the shell effects Agpen take
the opposite sign of these in ref. [M6ll 93], i.e., Ashen = (MLD.sph — Mexp).) The
energy range of the data points used in the fitting is indicated by Ey, the highest
excitation energy of the data points in the range, which was listed in Table 3.1. Ey
was chosen to be around 70 MeV, below which the sheer steepness of the excitation

function implies undoubﬁedly the dominance of the first chance fission.
Sh.o'wn in Fig. 3.4 are the fission excitations of the nuclei 185:186.187.189()g

produced in the *He + 182:183184186\y reactions, and the corresponding fits with three

different assumptions, i.e., the Bass model [Bass 74], the Extra-push model [Swia 82]
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and the Optical model [Macf 78], for the formation cross sections of the fissioning
nuclei. These formation cross sections of ¥70Os from the reaction *He + W are
presented in Fig. 3.1 in Section 3.1. The formation cross sections of 851881890 from
the reactions *He + 82183186\ are taken to be th;z same as those of ¥70s from
the reaction *He + 13*W at the same incident energy. In the data range where the
fitting was attempted, all the fits are excellent, despite the substantial difference in
the formation cross sections predicted by the different models. In Fig. 3.4, all the
fitted lines were extended to the highest energy data point, using the parameters B}
and ay/a, extracted from the fits. |

The extracted ﬁssioh barriers B; and as/a, are listed in Table 3.1. The
extracted barriers are remarkably consistent, and very little affected by the large
uncertainties in the formation cross sections predicted by the different models. The
fission barriers extracted using the formation cross sections from the different models
agree with each other within 0.5 MeV. For example, the extracted fission barriers for
18705 are22.33, 21.86, and 21.99 MeV by using the formation cross sections from the
Bass model [Bass 74], the Extra-push model [Swia 82] and the Optical model [Macf
78], respectively. For ofher nuclei (1%°0s, 80s and '®90s), one sees the same, or bet-
ter, agreement between the barriers extracted using different model calculations for
the formation cross sections. Thus, given the shell effect of the residual nucleus after
neutron emission, one is able to determine the fission barriers B} to an uncertainty

. of about 0.5 MeV, despite the large uncertainties in the formation cross sections of

the fissioning nuclei.
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Figure 3.4: The fission excitation functions for the nuclei 18%:186:187.1890g produced in
the reactions SHe 4 182183184186\ were fitted with the statistical formalism, with B}
and as/a, as two free parameters. The solid lines, the dotted lines and the dashed lines
represent fits using the formation cross sections of the fissioning nuclei calculated by the
Bass, the Extra-push and the Optical models, respectively. The fits were attempted for
only the low energy portion of the fission excitation functions. The highest energy of the
data segment used in the fitting is indicated by Ey in Table 3.1. The fits were extended
to the full range of the experimental data, using the extracted parameters (B} and as/ax)
which are listed in Table 3.1. The number to the right of each legend indicates the factor
by which the corresponding excitation function is multiplied for visual clarity.
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Figure 3.5: The fission excitation functions for the nuclei 2°%:219:211pg produced in the
reactions *He + 20%.297.208Ph were fitted with the statistical formalism, with B} and a;/an
as two free parameters. The solid lines, the dotted lines and the dashed lines represent
fits using the formation cross sections of the fissioning nuclei calculated by the Bass, the
Extra-push and the Optical models, respectively. The fits were attempted for only the low
energy portion of the fission excitation functions. The highest energy of the data segment
used in the fitting is indicated by Fp in Table 3.1. The fits were extended to the full range
of the experimental data, using the extracted parameters (B} and ay/a,) which are listed
in Table 3.1. The number to the right of each legend indicates the factor by which the
corresponding excitation function is multiplied for visual clarity.
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Figure 3.6: The fission excitation functions for the nuclei 219:211:212Po produced in the
reactions ‘He + 206:207.208p}, were fitted with the statistical formalism, with B} and af/an
as two free parameters. The solid lines, the dotted lines and the dashed lines represent
fits using the formation cross sections of the fissioning nuclei calculated by the Bass, the
Extra-push and the Optical models, respectively. The fits were attempted for only the low
energy portion of the fission excitation functions. The highest energy of the data segment
used in the fitting is indicated by Epg in Table 3.1. The fits were extended to the full range
of the experimental data, using the extracted parameters (B} and ay/a,) which are listed
in Table 3.1. The number to the right of each legend indicates the factor by which the
corresponding excitation function is multiplied for visual clarity.
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Table 3.1: The values of B} and ay/a, extracted by fitting the low energy portion of the
measured fission excitation functions. The data and the corresponding fits are shown in
Figs. 3.4, 3.5 and 3.6. The fits were performed with three different assumptions for the
formation cross sections of the fissioning compound nuclei (CN): the Bass, the Extra-push
and the Optical models. a, = A/8 (MeV~') was assumed. AZziy (MeV) is the nominal
shell effects of the daughter nucleus after neutron emission taken to be Enjc 4+ (Mexp — Mih)
in ref. [Moll 93] and used as a fixed parameterin the fitting. Eg (MeV)indicates the highest
.excitation energy of the data points up to which the fits were attempted.

Reaction CN Eg  Algbm B} (MeV) ag/an x2 | oo
21.43+0.05 1.1034+0.002 8.4 | Bass
SHe4182W  185(Qs 73.4 0.85 | 21.05+0.04 1.078+0.002 39.1 | Extra-push
21.174+0.02 1.063+0.001  30.2 | Optical
23.4240.05 1.095+0.002 13.5 | Bass
SHe+!83W 1860s  75.5 1.18 ] 23.04+0.05 1.070+0.002 32.9 | Extra-push
23.15+0.05 1.054+0.002 24.9 | Optical
22.33+0.05 1.098+0.002 6.1 | Bass
SHe4!84W 1870s 744 1.32 | 21.86+0.05 1.070+0.002 22.9 | Extra-push
21.9940.05 1.056+0.002 17.5 | Optical
23.2340.06 1.090 +0.002 4.6 | Bass
SHe+185W 1890s  75.4 1.87 | 22.724+0.06 1.062+0.002 6.3 | Extra-push
22.8640.06 1.048 +0.002 4.1 | Optical
21.80+0.02 1.086+0.001 24.3 | Bass
3He+296Pb  29%Po  66.6 °  9.06 | 22.0040.01 1.082+0.001 209.1 | Extra-push
' 22.38+0.02 1.075+0.001 399.3 | Optical
23.72+0.02 1.079+£0.001  19.2 | Bass
3He4+2"Pb  210Po  67.6  10.31 | 23.88+0.02 1.074+0.001 132.6 | Extra-push
2410+0.02 1.062+0.001 183.9 | Optical
, 23914002 1.077+0.001 23.2 | Bass
‘He4296Pb 210Po  65.3 10.31 | 23.774£0.01 1.063+£0.001  54.6 | Extra-push
- 24.044+0.02 1.035+0.001  27.3 | Optical
21.28+0.02 1.081£0.001  16.3 | Bass
3He+208Pb  2!'Po  64.8 10.49 | 21.4540.02 1.077+0.001 158.9 | Extra-push
21.654+0.02 1.064+0.001 185.1 | Optical
21.494+0.02 1.082+0.001  35.4 | Bass
4He+207Ph  21lps  63.1 1049 | 21.364+0.01 1.0684+0.001 84.9 | Extra-push
21.61+0.02 1.041+0.001 41.9 | Optical
21.9740.01 1.070+0.001  39.7 | Bass
‘He+2%%Pb  212Po  65.5 9.61 | 21.78+0.02 1.053+0.001 48.6 | Extra-push
22.114+0.02 1.0284+0.001  39.2 | Optical
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The extracted values of ay/ay, lie between 1.0 and 1.1 in all cases, and appear
to be the same for different isotopes. The large uncertainties in the formation cross
sections seem to be well accommodated by slight variations in the extracted values of
ag/an. Other than these observations, it may be premature, at this stage, to attach
much more physical significance to the extr;cted values of af/ay.

For all the systems studied, the x? of the fit using the formation cross

sections (0¢) from the Bass model [Bass 74] is somewhat smaller than the fits to the
same fission excitation function using oo from the Extra-push model [Swia 82] or
the Optical rnédel [Mactf 78] (see Table 3.1). r:[‘his alone, of course, is not sufficient
to indicate that the Bass model prediction for the fusion cross sections is better
vth:;m the other models. However, there are indications that even the Bass model
may overestimate the fusion cross sections [Stic 74], while the fusion cross sections
predicted by the Bass model are already smaller than those predicted by the Extra-
push model and the Optical model.

The fission excitation functions of the nuclei 2°%21%211Po produced in the
3He + 206:207.208P}, reactions, and the corresponding fits with the three different
assumptions for the formation cross sections of the fissioning nuclei, are shown in
Fig. 3.5. The fission barriers By and the ratio ay/a, extracted from'the fits are listed
in Table 3.1. The formation cross sections of *'°Po from the reaction *He + 2°"Pb
which are used in the fits and predicted by the Bass, .the Extra-push and the Optical
models, are shown in Fig. 3.2. As in the case of osmium isotopes, the formation

cross sections of 29%211Pg from the reactions 3He + 20%:208PY, are taken to be the same
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as those of ?'°Po from the reaction *He + 2°’Pb at the same incident energy. In
the data range where the fitting was attempted, the fits using the formation cross
sections from the Bass model are excellent for all three polonium nuclei (20%210:211pg).
The quality of the fits using the formation cross sections (cp) from the Extra-push
model and the Optical model are, however, not as good as the quality found in the
fit with oo from the Bass model. For all the three nuclei, the x?2 of the ﬁts using thé
formation cross sections from the Bass model [Bass 74] is substantially smaller than
that of the fits using oo from the Extra-ﬁush [Swia 82] or the Optical models [Macf 78]
(see Table 3.1). Nevertheless, the fission bérriefs (Bj}) extracted using the different
formation cross sections are remarkably consistent, despite the large uncertainties in
the formations cross sections, as seen in the cases of.osmium isotopes. For different
polonium isotopes, the extracted ag/an appears to be the same.

The fission excitations of the nuclei ?'°?'*'2Po produced in the *He -|—
206,207.208p}, reactions, and the corresponding fits with the same three assurﬁptions for
the formati‘0n cross sections of the fissioning nuclei, are shown in Fig. 3.6. The fission
barriers B} and the ratio as/a, extracted from the fits are alsé listed in Table 3.1.
The formation cross sections of 2'*Po from the reaction »4He + 297Pb which are used
in the fits and predicted by the Bass, the Extra-push and the Optical models, are
shown in Fig. 3.3. The fofmation cross sections of 2'%%12Pg from the reactions 4He‘
+ 206*208PB are taken to be the same as those of ?''Po frpm the reaction *He + 2°7Pb
at the same incident energy. In the data range where the fitting was attempted,

all the fits are excellent, despite the large differences in the formation cross sections
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predicted by the different models. For all three nuclei (21%211:212Po) the x? values of
the fits using the formation cross sectioné (00) from the different models are about
the same (see Table 3.1).

As in the cases of Os and Po nﬁclei produced in *He-induced reactions, the
ﬁséion barriers (B}) for Po nuclei produced in *He-induced reactions extracted using
th.e different formation crbss sections are consistent to within 0.3 MeV, deépite the
large differences in the formations cross sections. More remarkably (and to one’s
own satiéfaction), the extracted fission barriers for the same nuclei (*'°Po or ?!!Po)
produced in different entrance channels (*He/*He-induced) are consistent within 0.2
MeV. Thus, we have found a sifnple and robust method to determine accurately the
fission barriers from the fission excitation functions, given the shell effects of the

nuclei concerned.

3.3 Shell Effects

The shell effect of a nucleus is, éonventionally, defined as the difference
befcween its ground state mass and the corresponding macroscopic liquid-drop value.
The standard procedure to determine the shell effect of a nucleus is, therefore, to
develop a liquid-drop model of nuclei, and to.take the difference between the ground
state mass of the nucleus and the liquid-drop baseline. It is difficult, however, to
establish a good liquid-drop baseline. Great efforts have been made to develop apd

improve the various liquid-drop models. As the models evolved, so did the derived
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shell effects. Over the years, the values for the shell effects have changed quite
substantially [Myer 65, Méll 93, Myer 94]. The shell effects given by the Finite
Range Droplet Model (FRDM) by Moller et al [M61l 93, Myer 94] represent the
- culmination of over 30 years of effort.. " |

The standard procedure to determine shell effects is necessarily a global one,
i.e., the shell effect of a nucleus depends on the properties of all the other nuclei. The
parameters in a liquid-drop model are determined by fitting the liquid-drop model
to the ground state masses of all the known nuclei across thg nuclidic chart. The
parameters are adjusted to achiéve a Best fit on a global basis, but the same fit may
not be the best fit forl a local mass region. This may account, in part, for changes in
‘the derived shcll effects over the years:

The shell effects affect the available phase space of an excited nucleus [Rose
57, Huiz 72] (see discussion in Section 1.2). In particular, the shell effect A%}, of
the daughter nucleus produced by neutron evaporation goes, asymptotically, into the
- argument of the level density expression when the excitation energy is a few MeV
above the shéll effects (see Eq. 1.14). Consequently, the shell effect A%} exerts great
influence on thé competition between fission and neutron emission, and together with
the fission barrier By determines the branching ratio of fission. Using A%~} as a free
parameter, the fit of the statistical formalism for the fission cross sections to the
experimental fission excitation function should allow us to extract, independently
and locally, the shell effect of the daughter nucleus produced by evaporation of é

neutron from the fissioning nucleus.
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In Section 3.2, it was shown that, using A%} taken from ref. [Moll 93] as a

ﬁ‘xed parameter, the fits to the low-energy portion of the fission excitation function
produced remarkably consistent fission barriers ( B}) of a fissioning nucleus, regardless
of the substantial uncertainties in the formatiron cross sections of the nucleus.

In this section, it will be demonstrated that, given the effective fission barrier
B3, one can éxtract, to a very small "uncertainty, the shell effect. of the residual nucleus
produced by neutron evaporation, by fitting the fission excitation function with the
statistical formalism, using A%}, and a;/a, as free parameters. For this purpose, the
fits should also be limited to only the low-energy portion of the excitation function,
in-order to avoid complications frém the possible involvement of multichance ﬁssion..

The fission barrier B} to be used as a fixed parameter in the fitting can be
either the nominal values calculated with fhe liquid drop models [Moll 93, Myer 94],
or the experimental values. The experimental determination of the fissioq barriers is
possible by measuring the fission excitation funciions to very low energies. When the
fission excitation functions are measured very close to the fission barriers, the true
fission barriers may be determined, regardless of the uncertaintie; in the formation
cross sections of the fissioning nuclei, and regardless of t.he fact that the relevant
shell effects are yet to be determined. To measure the fission excitation functions
very close to the fission barriers is difficult, due to the extremely small cross sections
(<10~7 mb), and requires a large amount of beam time. For quite a few nuclei

produced in *He-induced reactions on the targets of °7Au, 206:207:208P}, apd 209Bj,

great efforts have been undertaken to measure their fission excitation functions from
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hundreds of mb (abov¢ 100 MeV in excitation energy) all the way down to fission
cross sections of 1078 mb, and from the measured ﬁssioﬁ excitation functions, their
true fission barriers By have been determined [Khod 66, More 72a, More 74].

For the purpose of demonstrating the method By which the shell effect can
be determined from the fission excitation function, the eﬁ‘ectiv-e barriers B} presented
iﬁ the previous section are used instead as a fixed parameter. The values of B} chosen
for the fits are those extracted using the formation cross sections predicted by the
Bass model. If the fissioning nuclei (2'°Po or ?*!Po) are produced by the different
entrance channels (3Hve- and *He-induced), the barriers determined from the *He-
- induced fission excitation functioﬁs are then used. The B} values used in the fitting
are given in Table 3.2.

Now a fit can be carried out readily with two free parameters: AL} -
the shell effect of the residual nucleus produced by neutron emission, and as/a, —
the ratio of the level density parameter at the saddle point to that of the compound
nucleus at its ground state configurations. Asin Section 3.2, a level density parameter
a, = A/8 (MeV;l) was assﬁmed for the compound nuclei. The fits were also limited
to the low-energy segment of the measured fission excitation function, to ensure the
dominance of the first-chance fission. The energy range of the data p(;ints used in
the fitting was chosen to be the same as that used in the fits in Section 3.2. The
fission excitation functions and the correspondingvﬁts for osmium isotopes produced
in 3He—induce(i reactions, and for polonium isotopes produced in 3He/*He-induced

reactions, are shown in Figs. 3.7, 3.8 and 3.9, respectively.
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These fits with A;L};}l and ay/a, as free parameters Iook similar to the fits
using B} and ag/a, as free parameters. For nuclei #1%%18%1%Qs produced in *He
+ 182183184186\ reactions, in the data range where the fits were attempted, the fits
shown in Fig. 3.7 and the fits in Fig. 3.4 look almost identical. Only in the extensi(;ns
of the fits to higher energies, can one discern some small differences. The same can be

Isaid for the nuclei 299:219.211Pg produced in *He + 206:207298P}, reactions (see Fig. 3.8
and Fig. 3.5), and for the nuclei 2'9'121?Po produced in *He 4 2°%297:298P} reactions
(see Fig. 3.9 and Fig. 3.6).

The shell effects A%} and the a;/a, values, extracted from the fits shown
in Figs. 3.7, 3.8 and 3.9, are listed in Table 3.2. | The shell effects A%~1. extracted
using the different formation cross sections, show excellent consistency, despite the
large differences in the formation cross sections used in the fitting (see Figs. 3.1, 3.2
and 3.3). The consistency is retained remarkably well for the same nuclei produced
in different entrance channel reactions. For example, the shell eﬂ"ecf for the nucleus
20Q‘Po, extracted from the fission excitation function of the fissioning nucleus ?!°Po
produced in 3He + 2°7Pb reaction, are 10.56, 10.38, and 10.06 MeV with use of the
formation cross sections from the Bass [Bass 74], the Extra-push [Swia 82], and the
Optical models [Macf 78], respectively. The shell effect for the same nucleus (2*Po),
extracted from the fission excitation function of the fissioning riucle_us 210Po produced
in *He + 2%Pb reaction, are 10.31, 10.53, and 10.12 MeV by using the different
formatior cross sections, respectively. These values are consistent, to within 0.5

MeV, which must be considered very good indeed, since they were extracted from the
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Figure 3.7: The fission excitation functions for the nuclei 8518618718905 nroduced in the
reactions 3He + 182183184186\ were fitted with the statistical formalism, with two free
‘parameters: A%} and aj/a,. The fission Barrier B listed in Table 3.2 was used as a
fixed parameter. The solid lines, the dotted lines and the dashed lines represent fits using
the formation cross sections of the fissioning nuclei calculated by the Bass, the Extra-push
and the Optical models, respectively. The fits were attempted for only the low energy
portion of the fission excitation functions. The highest energy of the data segment used in
the fitting is indicated by Eg in Table 3.2. The fits were extended to the full range of the
experimental data, using the extracted parameters listed in Table 3.2. The number to the
right of each legend indicates the factor by which the corresponding excitation function is
multiplied for visual clarity. ’
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Figure 3.8: The fission excitation functions for the nuclei 20%219211Pg produced in the
reactions He 4 206:207,208ph  were fitted with the statistical formalism, with two free
parameters: A1 and a;/a,. The fission Barrier B3 listed in Table 3.2 was used as a
fixed parameter. The solid lines, the dotted lines and the dashed lines represent fits using
the formation cross sections of the fissioning nuclei calculated by the Bass, the Extra-push
and the Optical models, respectively. The fits were attempted for only the low energy
portion of the fission excitation functions. The highest energy of the data segment used in
the fitting is indicated by Fpg in Table 3.2. The fits were extended to the full range of the
experimental data, using the extracted parameters listed in Table 3.2. The number to the
right of each legend indicates the factor by which the corresponding excitation function is
multiplied for visual clarity.
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Figure 3.9: The fission excitation functions for the nuclei 21%211:212Pg produced in the-
reactions ‘He + 206:207.208P},  were fitted with the statistical formalism, with two free
parameters: A%} and ay/ an. The fission Barrier B} listed in Table 3.2 was used as a
fixed parameter. The solid lines, the dotted lines and the dashed lines represent fits using
the formation cross sections of the fissioning nuclei calculated by the Bass, the Extra-push
and the Optical models, respectively. The fits were attempted for only the low energy
portion of the fission excitation functions. The highest energy of the data segment used in
the fitting is indicated by Fp in Table 3.2. The fits were extended to the full range of the
experimental data, using the extracted parameters listed in Table 3.2. The number to the
right of each legend indicates the factor by which the corresponding excitation function is
multiplied for visual clarity. i
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Table 3.2: The shell effects A:'h_e}l of daughter nuclei produced by neutron emission from the
fissioning nuclei, and the values of as/a,, were extracted by fitting the low energy portion
of the measured excitation functions. For comparison, the nominal shell effects Agﬁ})M
given in ref. [M6ll 93] are also listed. The data and the corresponding fits are shown in
Figs. 3.7, 3.8 and 3.9. The fits were performed with three different assumptions for the
formation cross sections of the fissioning compound nuclei (CN): the Bass, the Extra-push
and the Optical models. a, = A/8 (MeV™') was assumed. B} (MeV) are the effective
fission barriers taken from Table 3.1 and used as a fixed parameter in the fitting. FEy
(MeV) indicates the highest excitation energy of the data points up to which the fits were

attempted.

Reaction CN Ex B; A?I_UIDM | A;‘h_elll (MeV) ag/an x2 | o
0.86+0.02 1.103+0.001 8.4 | Bass
SHe4+182W 18505 734 2143 0.85 1.464+0.02 1.07540.001 34.0 | Extra:push
1.28+£0.07 1.060£0.002 27.1 | Optical
_ 1.1840.02 1.0954+0.001 13.5 | Bass
SHe+!83W 18605 755 23.42 1.18 1.794+0.07 1.06630.002 28.6 | Extra-push
1.614+0.06 1.0524+0.002 22.5 | Optical
1.324+0.02 1.0984+0.001 6.0 | Bass
SHe+1!34W 1870s 744 22.33 1.32 2.07+£0.07 1.066+0.002 19.0 | Extra-push
1.86£0.02 1.053+0.001 15.1 | Optical
1.86+0.03 1.091+0.001 4.6 | Bass
SHe+185W 18905 754 23.23 1.87 2.66+0.02 1.058+0.001 4.6 | Extra-push
' ' 2.4440.02 1.04540.001 3.1 | Optical
: : 9.064+0.03 .1.08640.001 24.3 | Bass
3He+296Ph 2P0 66.6 21.80 9.06 8.80+0.03 1.083+0.001 222.9 | Extra-push
8.234+0.03 1.080+0.001 481.4 | Optical
10.56 £0.03 1.077+0.001 18.9 | Bass
3He+2°"Pb 2P0 67.6 23.91 10.31 | 10.38+0.03 1.073+0.001 130.2 | Extra-push
10.06 £0.03 1.06340.001 203.8 | Optical
10.31+£0.02 1.0774+0.001 23.2 | Bass
4,1e4+205Pb  219Po-  65.3 23.91 10.31 10.53+0.02 1.061+0.001 46.4 | Extra-push
10.12+0.02 1.036+£0.001 29.5 | Optical
10.79+0.03 1.080+0.001 14.4 | Bass
SHe+2%%Pb 2'Po  64.8 21.49 1049 | 10.57+0.03 1.076+£0.001 155.4 | Extra-push
10.28+0.03 1.06540.001 202.1 | Optical
_ 10.49+0.02 1.08240.001 35.4 | Bass
‘He+27Pb 2'Po  63.1 21.49 10.49 | 10.71+£0.02 1.066+0.001 73.0 | Extra-push
10.32+0.02 1.0424+0.001 48.0 | Optical
9.614+0.03 1.070+0.001 39.7 | Bass
‘He+2%8Pb 212Po  65.5 21.97 9.61 9.87+0.03 1.0514+0.001 46.2 | Extra-push
9.42+0.03 1.029+0.001 38.4 | Optical
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- fission excitation functions for different reaction channels, and were extracted using
substantially different formation cross section estimates. The same consistency, to
within 0.8 MeV in general, is observed for all the other nuclei studied in this thesis
(see Table 3.2). |

Thus, a new method has Been established to determine, with very small
uncertainty, the shell effect of the daughter nucleus produced by neutron emission
from a fissioning nucleus, given the fission barrier. This new method, based on
detailed analyses of the fission excitation functions, is totally independent of the
standard precedure, and is completely local. It depends only on the properties of
the nucleus under consideretien.

As observed in the previous section, the extracted velues of as/a, lie between
1.0 and 1.1, and ay/a, appears to be the same fer different isotopes. The large
differences in the formation cross sections seem to be well accommodated by slight

variations in the extracted values of a #/an.

3.4 Simultaneous D'eter'minat‘ion of the Fission Barrier and

the Shell Effect

In the previous sections, it has been shown that the fission barrier B3 can be
very well determined given the shell effect Ajj7}, and that the shell effect A} can
be equally well determined given the fission barrier B}, by fitting the experimental

fission excitation function, regardless of the current inadequacy in the knowledge of
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the formation cross sections of the ﬁssioqing nucleus.

Naturally, one would like to determine the fission barrier B} and the shell
effect Aln simultaneously, by using both of them and ay/a, as free parameters in '
thé fit. Previously, we have fitted the fission excitation functions measured in 1970s
for fourteen nuclei prodﬁced in *He-induced reactions [More 95b], with tl.hese three
free parameters. The shell effects extracted from the fits correlate remarkably well
with those determined from the grounvd state masses. The extracted effective fission
barriers B} are consistent with the relgtionship B} = B+ %gAg for even-even nuclei
and B} = By + —;—gAg — Ay for odd A nuclei for a value of Ag ~ 0.7 MeV.

These fits were performed not just for the low-energy portion of the measured
fission excitation functions, but for the excitation functions from a few MeV above
the fission barriers to the highest .energy data point measured (~ 120 MeV). Although
multichance fission is ekpeCted to occur 'at high energies, these fits, which included
only first chance fission, were excellent across the whole range of energy where the
fits were attempted. The scaling law, predicted by the transition st@te rate for first
chance fission, was found to be well observed by the total fission probabilities. This
| puzzling aspect has created much concern and anticipation regarding how first chance
fission probabilities should behave. The argument was thus made that first chanpe_
fission may be substantially suppressed by a transient time and that the effects of the
transient time were somehow compensated by fission probabilities of higher chances
[Back 97].

‘

Here, as was done earlier in the two free parameter fits, the three free pa-
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rameter fit was performed for only the low-energy portion of the fission excitation
functions, to ensure the dominance of first chance fission, thus avoiding the difficul-
ties associated with rﬁultichance fission. The three parameter fit, in principle, should
allow us to determine By, A%l and af/a,, simultaﬁeously, and perhaps, with good
consistency as well. |

Shown in Fig. 3.10 are the fission excitation functions and the corresponding
fits for polonium isotopes 210’2,11'212136 produced in *He 4 206:297.208P}, reactions. The
fits were performed with the same three different assgmptio_ns for the formation cross
sections of the ﬁssoning"nuclei: the Bass, the Extra-push and the Optical models.
The formation cross sections given by these models were shown previously in Fig. 3.3.
- The energy range of the excitation functions iﬁ thch the three parameter ﬁts were
attempted was chosen to be the same as in. the two parameter fits (see Figs. 3.6 &
3.9, and Tables 3.1 &'3.2).

All fits shown in Fig. 3.10 are excellent in the energy range where the data
were used in the fitting. Notice that the extensions to higher energies of the fits using
the formation cro"s;s sections from the Bass and the Extra-push models agree well with
the data points. The extensions of thé fits using the formation cross sections from
_the Optical model are all higher than the experimental data, as was the case in the.
two parameter fits.

The fission barrier B3, the shell effect of the daughter nucleus after neu-
tron emission A%}, and a;/a,, determined from these ﬁts for the fissioning nuclei

210211212P6  are listed in Table 3.3. Both the B} and the Al}, extracted using
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Figure 3.10: The fission excitation functions for the nuclei 210211:212Pg produced in the

reactions ‘He + 206:207:208P},  were fitted with the statistical formalism, with B3, AL,

and as/a, as the three free parameters. The solid lines, the dotted lines and the dashed

lines represent fits using the formation cross sections of the fissioning nuclei calculated by

the Bass, the Extra-push and the Optical models, respectively. The fits were attempted for

only the low energy portion of the fission excitation functions. The highest energy of the

data segment used in the fitting is indicated by Ey in Table 3.3. The fits were extended -
to the full range of the experimental data, using the extracted parameters ( By}, A1 and

af/ay,) which are listed in Table 3.3. The number to the right of each legend indicates the

factor by which the corresponding excitation function is multiplied for visual clarity.
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Table 3.3: The effective fission barriers Bf, the shell effects A:};}l of the residual nuclei
after neutron emission, and the ratios ays/a,, extracted for polonium isotopes produced
in the “He-induced reactions by fitting the low energy portion of the measured fission
excitation functions. The data and the corresponding fits are shown in Fig. 3.10. The
fits were performed with three different assumptions for the formation cross sections oo of
the fissioning compound nuclei (CN): the Bass, the Extra-push and the Optical models.
an = A/8 (MeV~1) was assumed. Ey (MeV) indicates the hlghest excitation energy of the
data points up to Wthh the fits were attempted

Reaction ~CN Ey | B} AL B;—Ag};}l arfan x* | oo

23.99 10.42 13.57 1.076  23.1 | Bass
4He+205Pb  219Po 65.3 | 24.43 11.28 13.15 1.054  32.6 | Extra-push
24.16 10.49 13.67 1.033  26.8 | Optical

21.87 11.06 10.81 1.077  28.8 | Bass
He+2°7Ph  21'Po  63.1 | 22.28 11.89° 10.39 1.055  39.3 | Extra-push
: 22.02 11.09 10.93 1.035  33.1 | Optical

21.77  9.33 12.44 1.071  39.0 | Bass
1He+20%Pb  212Po  65.5 | 22.24 10.24 12.00 1.049  45.0 | Extra-push
21.90 9.33 12.57 1.029  38.3 | Optical

different formation cross sections, show remarkable consistency, regardless of the
substantial differenge in the formation cross sections. The extracted barriers B} are
consistent within 0.5 MeV, and the extracted shell effects are consistent within 1.0
MeV. For instance, for the nucleus ?''Po produced in the reaction *He + 2°7Pb,
the values for »B; are 21.87, 22.28, and 22.02 MeV, and the values for A%} are
11.06, 11.89, 11.09 MeV, when extracted from the fits using formation cross sections
predicted by the Bas;, Extra-push, and Optical models, respectively. The large un-
certainties in the formation cross sections are found to be well accommodated with
slight variations of a;/a,.

For nuclei 209.210:211pg produced in the *He-induced reactions on 206:207:298pp,
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however, the fission barriers B} and the shell effects A} extracted from the three
parameter fits are less consistent. The B}, AL} and aj/a, extracted from the fits
shown in Fig. 3.11, are listed in Table 3.4. The B} and AJ} values extracted using
the formation cross sections from the Bass model are consistent with those obtained
in the two parameter fits, and also consistent with those obtained from data for *He-
induced fission. However, the corresponding values éxtracted.using the formation
cross sections from the Extra-push and Optical models are abou£ 3 MeV higher than
~ those obtained using the Bass model predictions. The origin of this discrepancy will
become evident in the following discussion.

The excitafion functions for these *He-induced fission reactions and the cor-
responding fits using the three different asbsumptions for the formation cross sectioﬁs,
are shown in Fig. 3.11. The fits are all excelleht in the energy range where the data
points were used in the fitting. In comparisqn with the previous two parameter
fits (shown in Figs. 3.5 and 3.8), the quality of the three parameter fits (shown in
Fig. 3.11) using the formation cross sections from the Extra-push and Optical models
irnpr_ovesvconsiderably. This is more evident in the substantially smaller x2 than the
corresponding x? listed Tables 3.1 and 3.2. This improvement in the fitting quality
1s, of course, very natural, since the three parametgr fits are more flexible than the
two parameter fits. On the other hand, the improvement in the quality of the fit
seems to come at the expense of the consistency in the extracted parameters. |

The fission excitation functions for the nuclei 8518618718905 produced in

the 3He-induced reactions on W targets, and the corresponding three parameter
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Figure 3.11: The fission excitation functions for the nuclei 29%219.211pg produced in the

reactions 3He 4 206:207:208ph  were fitted with the statistical formalism, with Bs%, Ag};h, '
and ay/a, as the three free parameters. The solid lines, the dotted lines and the dashed

lines represent fits using the formation cross sections of the fissioning nuclei calculated by

the Bass, the Extra-push and the Optical models, respectively. The fits were attempted for

only the low energy portion of the fission excitation functions. The highest energy of the

data segment used in the fitting is indicated by Eg in Table 3.4. The fits were extended

to the full range of the experimental data, using the extracted parameters (B}, ALY, and

af/an) which are listed in Table 3.4. The number to the right of each legend indicates the

factor by which the corresponding excitation function is multiplied for visual clarity.
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Table 3.4: The effective fission barriers Bj, the shell effects Agh;h of the residual nuclei
after neutron emission, and the ratios as/a,, extracted for polonium isotopes produced
in the 3He-induced reactions by fitting the low energy portion of the measured fission
excitation functions. The data and the corresponding fits are shown in Fig. 3.11. The
fits were performed with three different assumptions for the formation cross sections og of
the fissioning compound nuclei (CN): the Bass, the Extra-push and the Optical models.
a, = A/8 (MeV~!) was assumed. Eg (MeV) indicates the highest excitation energy of the
data points up to which the fits were attempted. ’

Reaction CN -EH| B3 Ag};h B}-—Agh"eh af/an x? oo

~ 22.89 10.53 12.36 1.078  16.4 | Bass
3He+29Ph  299Po  66.6 | 25.90 14.45 11.45 1.047  15.5 | Extra-push
25.87 1423  11.64 1.032 9.2 | Optical

23.82 10.44 13.38 1.078  19.0 | Bass
3SHe+2°"Pb  219Po  67.6 | 26.91 14.54 12.37 1.045  14.0 | Extra-push
: 26.69 14.06 12.63 1.032 9.0 | Optical

- : 22.05 11.56 10.49 . 1.075  12.1 | Bass
SHe+29%Ph  2!'Po  64.8 | 24.40 14.75 9.65 1.045  14.7 | Extra-push
24.29 1442  9.87 1.031 7.0 | Optical

fits, are shown in Fig. 3.12. The fits, still usiné the same three assumptions for
the formation cross sectiohs, are all excellent in the energy range fitted. The B} and
AL values extracted using the different formation cross sections, however, lose their
consistency. The values for Bj}, \mel, and ag/an éxtracted from the three paramefer
fits are listed in Table 3.5. One observes again that, the B} and Al_] extracted
using the formation cross sections from the Bass model al;e consistent with those
obtained in the ‘two parameter fits. The B;} and A%) extracted using the formatién
cross sections from the Extra-push and Optical models are, however, several MeV
higher than those obtained using the formatibn cross sections from the Bass model.

As observed previously in the two parameter fits, the as/a, values extracted
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from the three parameter fits seém to be the same for all the nuclei under consider-
ation (see Tables 3.3, 3.4 and 3.5).

Now the question is: why, in the case of the ‘He-induced fission, the three
parameter fits allow one to determine the fission barrie1; Bj and the shell effect Alj-j,
simultaneously and accurately, regardless of the large uncertainties ivn the formation
crossvsections of the fissioning nuclei, whereas in the case of the *He-induced fission

the three parameter fits seem to be too flexible to give consistent values for B} and

n—1

shell *

The answer probably lies in the difference in the energy dependence of the
formation cross sections of the 3He-induced fission and the “He-induced fission. To
form a fissioning nucleus, the entrance channel reaction must first overcome a fusior;
(Coulomb) barrier. The fusion barriers which both thé entrance channel with *He
and the entrance channel with *He must overcome to form the same fissioning nuclei,
are of the same maghitude, since the Coulomb repulsion depends only on the charge
and geometry of the approaching projectilé and the target. For helium induced
reactions, the fusion barrier Byg,s (MeV) can be estimated- with the semi-empirical

formula [Park 91, Vaz 84]:

2.88 Zyarget

= : (34)
118 AU S + 46427 (

fus

where Zyarget and Agarget are the atomic number and the mass of the target nucleus,
respectively. With this equation, the fusion barrier for He + Pb is calculated to be

20.3 MeV, and the fusion barrier for He + W to be 18.8 MeV. These fusion barriers
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are similar to thé fission barriers, which are to be determined for the nuclei formed in
these reactions, and which are to be determined from the fission excitation functions
measured in these reactions! This must be the origin of the difficulties.

For *He-induced fusion reacti;)ns in the lead region, the ) values are gen-
erally smaller than zero by séveral MeV. For the compound nucleus to have an
excitation energy above the fission \b(arrier, the minimum energy of the incident *He
particle must be at least || MeV greater than the fission barrier. Thus the minimum
‘He energy must be substantially larger than the fusion barrier. In this case, the
energy dependence of the formation cross sections of the fissioning nuclei becomes
insignificant, and the exact kﬁowledge of the formation cross sections is less cri£ical
in determining the fission barriers from the measured ﬁ‘ssion excitation f'unctions..

For ‘He + 2.06’>207’207Pb — 21021L212Pg reactions, the @ values are —5.41,
~7.59, and —8.95 MeV, respectively. The minimum beam energy for which the
fission cross sections were measured in this work, is 32.0 MeV (see Table 2.4), far
above the fusion barrier of 20.3 MeV. At a *He incident energy of 32.0 MeV the
fissioning nuclei 21%:211,212Pg have excitation energies of 25.98, 23.80, and 22.44 MeV,
respectively, which are very close to the fission barriers of these nuclei. In fact, these
lowest excitation energies are so close to the fission barriers, that one or two of the
lowest energy data points'had to be excluded in the fitting in order for the asymp-
totic expressions of the level densities (Eqgs. 1.14 and 1.17) to be applicable. For *He"

+ 206,207.207p}, _, 210.21L.212p, —, fission, since the energies of the entrance channel

were far above the fusion barriers in the whole range of the measured excitation
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Figure 3.12: The fission excitation functions for the nuclei 1851861871895 produced in the
reactions *He 4 182183184186\ were fitted with the statistical formalism, with B, AL
and ay/a, as the three free parameters. The solid lines, the dotted lines and the dashed
lines represent fits using the formation cross sections of the fissioning nuclei calculated by
the Bass, the Extra-push and the Optical models, respectively. The fits were attempted for
only the low energy portion of the fission excitation functions. The highest energy of the
data segment used in the fitting is indicated by Ep in Table 3.5. The fits were extended
to the full range of the experimental data, using the extracted parameters (B7, A;‘h"e}l, and
af/ay) which are listed in Table 3.5. The number to the right of each legend indicates the
factor by which the corresponding excitation function is multiplied for visual clarity.
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Table 3.5: The effective fission barriers B}, the shell effects A7 11 of the residual nuclei
after neutron emission, and the ratios as/a,, extracted for osmium isotopes produced
in the >He-induced reactions by fitting the low energy portion of the measured fission
excitation functions. The data and the corresponding fits are shown in Fig. 3.12. The
fits were performed with three different assumptions for the formation cross sections og of
the fissioning compound nuclei (CN): the Bass, the Extra-push and the Optical models.
a, = A/8 (MeV~1) was assumed. Eg (MeV) indicates the hlghest excitation energy of the
data points up to which the fits were attempted

Reaction CN Egy l B Ag};}l B - Agh_e}l ag/ay x? oo

2091  0.04 20.87 1.108 9.7 | Bass
SHe+182W 185Qs 734 (2538 7.42  17.96 1.042 4.5 | Extra-push
' ' 25.00  6.64 18.36 - 1.031 4.2 | Optical

23.27  0.95 22.32 1.096  13.4 | Bass
SHe4+'%3W 18805 75.5| 26.22  6.00 20.22 1.044  10.7 | Extra-push
2582  5.20 20.62 1.033  10.3 | Optical

21.96  0.76 21.20 1.101 6.0 | Bass
SHe+'84W 18705 74.4 | 25.18 6.33 18.85  1.045 4.9 | Extra-push
2528  6.26 19.02 1.030 4.3 | Optical :

_ 22.52  0.77  21.75 1.096 3.7 | Bass
SHe+136W 1390s 754 | 25.65 6.27 19.38  1.041 0.4 | Extra-push
25.46  5.75 19.71 1.029 0.5 | Optical

functions, the ener.gy dependénce of the formation cross sections of 219211:212Pg he-
comes insignificant. The fission barriers B} and the shell effects Ashell) are therefore
expected to be well determined from the fission excitation functions, even given the
large uncertainties in the formation cross sections. It is indeed so, as shown in this
and the previous sections.

For 3He-induced fusion reactions in the lead region, the Q values are, how-
ever, greater than zero by several MeV or more. Since the fusion barriers for these
reactions are close to the fission barriers, the excitation energies of the ﬁss.ioning

nuclei, formed with *He energies near the fusion-barrier, may still be far above the
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corresponding fission barriers. ‘In this case, on the one hand, it is not feasible? to mea-
sure the fission excitation functions very close to the fission barriers, and on the other
hand, the fission cross sections depend increasingly 01.1.the formation cross sections
as the incident energy approaches the fusion barriers. To determine fission barriers
and shell effects accurately by fitting the 3He—induced fission excitation functions,
better knowledge of the formation cross sections is thus required.

For reactions *He 4 206:207,208pp, _, 209'2.10’2-“Po, the @ values are +7.51,
—.{—8.43, and +5.62 MeV, respectively. The minimum *He energy for which the fission
cross sections were measured in this wqu, was 21.0 MeV (see Table 2.3), barely
enough to overcome the fusion barrier of 20.3 MeV. The incident ®He particles of
21.0 MeV resulted in excitation energies of the formed fissioning nuclei 2°%210:211pg of
28.21, 29.13, and 26.31 MeV, respectively, which are substantially above the fission
barriers of these nuclei. At the lowest bombarding energies near the fusion barriers,
the energy  dependence of the fusion créss sections becomes significant. Thus both
the formation cross éections and the properties (B}, AL}, as/ay) of these fissioning
nuclei are important in determining the ﬁssion cross sections. Since the formation
cross sections are not well kno;zvn, the fission barriers B} and the shell effects A
extracted from the fits using the differen‘g assﬁmptions for the fusion cross sections
may suffer, not surprisingly, from significant variations originating from uncertainties
in the fusion cross sections. This explains the discrepancy in the values of B} and
A%~ extracted using the different fusion cross s.ec'tions (see Table 3.4). The fact

that the B and A%l extracted using the fusion cross sections from the Bass model
f shell g _ ¢
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are consistent with those obtained from the two parameter fits, may suggest that the
fusion cross sections predicted by the Bass model are closer to the correct values.

For 3He + 18%:183,184,186\y _, 185,186,187,189()5 reactions, the @) values are even
larger: +9.49, +11.57, +10.45, and +11.41 MeV, respectively. The minimum 3He
energy for which the ﬁssi(;n Cross sectiéns were measured for these systems, was 21.0
MeV (see Table 2.2), which is just above the fusion barrier of 18.8 MeV. At an
incident energy of 21.0 MeV, the ﬁssioning nuclei 18518618701890s were formed with
excitation energies of 30.15, 32.22, 31.11, and 32.07 MeV, respectively, which are
far above the fission barriers of these nuclei. It is thus expected that the formation
cross sections at the lowest energies play even a larger role in determining the fission
cross sections than seen in the 3He + Pb reactions. The fission barriers B} and
the shell effects AL} extracted frorﬁ the fits using the different assumptions for the
formation cross section may suffer, as in the case of the 3He;-induced.ﬁssion on Pb
targets, substantial variations resulting from the lack of knowledge of the fofmation
cross sections. This is evident in the iarge discrépancies in B} and AL extracted
using the three different assumptions for the formation éross sections (see Table 3.5).
Here again, the extracted B} and Ajy) using the formation cross sections from the
Bass model are consistent with those obtained from the two parameter fits.

At high energies, the following correlation presents itself (see Egs. 1.12., 1.14
and 1.17): |

Iy Ty ps (E — B} — E3)
Lww  Tn * p, (E— By~ Al — EF)
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In other words, at sufficiently high excitation energies (T ~ 1), it is (B} — Aj ),
the difference Abetween the fission barrier and the shell effect, that determines the
fission p_robabﬂities. In the cases where B} is similar to (B, + A:h_e}l),. such as for the
Po isotopes, T, ~ T, at moderate or even lower energies, and (B} — Z};}I) is thus
expected to be the relevant quantity in determining the fission probabilities over a
relatively wide range éf the excitation energies. The correlation presented in Eq. 3.5
may cause problems when one tries to extract both the fission barriers and shell
effects simultaneously from the fission excitation functions which are not rneasuljed
sufficiently close to the fission barriers.

As seen earlier, the minimum excitation energies of Os and Po nuclei pro-
duced in the *He-induced reactions are substantially greater than the corresponding
fission barriers, due to fhe high fusion barriers and the large positive () values. In
such cases where the fission excitation functions weré not measured sufficiently close
to the fission barriers, the simultaneous extraction of the fission barriers B; aqd the
shell effects A:};}lb may be difficult, since the fission probabilities are more sensitive
to (B} — Aly) rather than B} and A}y individually. This implies that, the x* of
the three parameter ﬁts is rather flat in the three parameter space (Bj, A1 and
ays/a,) along a valley of roughly constant (B} — AL_}). In fa.ct, if one takes the B}‘

and A7) from the best fit and shifts both parameters up or down by 1 - 2 MeV, the
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fission excitation functions re-calculated with the shifted parameters look roughly
the same as the original fit. It should not be surprising, then, that the process of
minimization of x? in the three parameter fits experiences some difficulties when
trying to converge.

It is instructive to examine fhe values of (B} — Al}) obtained by taking the
difference of B} and AL extrécted from the three parameter fits. These values are
listed in Tables 3.3, 3.4 and 3.5. Both the B} and the AL} valuesvextracted using
the different formation cross sections deviate quite substantially for the Os and Po
isotopes produced in the. *He-induced reactions. The (B} — Al ) values, however,
are more or less consistent, in spite of the large difference in the formation cross
sections used in the fitting (see Table 3.4 and 3.5). These (B; — Ajp) values are
also consistent with the corresponding values obtained from the two parameter fits.

The problem presented in Eq. 3.5 can be ameliorated, or may even be elim-
inated, by measuring the fission excitation functions closer to the fission barriers.
This can be achieved for the 4He-.induced fission, taking advantage of the negative
@ values of the entrance channel reactions. The large negative @) values of the
4He-induced reactions on Pb targets not only allow the measurements of the fission
excitation functions very close to the fission barriers, but also elevate the minimﬁm
‘He energy required to substantially above the fusion barriers, thus diminishing the
role of the fusion cross sections. This is why we were able to determine, simultane-
ously and accurately, both B} and A%} for Po isotopes from the excitation functions

of the *He-induced fission, without good knowledge of the fusion cross sections (see
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Table 3.3).

When it becomes unachievable to measure the fission excitation functions
very close to the fission barriers due to physical or technic%l reasons, the simultaneous
determination of both B} and AL is difficult, and it.rnay require good knowledge
of the fusion cross sections which are not yet available. If one of the two parameters
B} and A can be fixed somehow, the ambiguity presented by the difference (B} —
- ALl in Eq. 3.5 is thus eliminated, and the other parameter can then be determined

uneqﬁivocally. This has been shown in Sections 3.2 and 3.3.

3.5 From Fission Cross Sections to Fusion Cross Sections

The fission probabilities of the compound nuclei of the same isotope but
produced in different entrance channel reactions are expected to be, with a small
correction for angulér momentum effects, the.same at the same excitation energies.
This provides a mean to compare the fﬁsidn cross sections of different entrance chan-
nels, given ‘the fission cross sections. In particular, if both the fission excitaﬁion
functions of the same nucleus but produced in two different entrance channels are
known, then the fusion cross section of one entrance channel can be determined
relative to the fusion cross séction of the other channel.

For nuclei 210PQ aqd 1Po, we have measured their fission excitation fu‘nc-
tions with both the *He- and *He-induced fission. The fusion cross sections of the

3He-induced reactions can thus be extracted relat‘ive to the fusion cross sections of
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the “He-induced reactions. The method is as follows. Let oy, 6o and Py be the fission
cross section, the fusion cross section and the fission probability, respectively, for the

same fissioning nucleus, then

o/(*He, B) _ .
os(*He, E') oo(*He, E') P;(*He,E' — (E!))  o0o(*He, E')’

oo(*He, E) P¢(*He,E — (E,)) _ oo(’°He, E) .(3.6)

where F — (ET) = E' — (E]); E and E' are the excitation energies; (E,) and (E;)
denote the average rotational energies. In Eq. 3.6, the different entrance channels
(*He- and *He-induced) leading to the same fissioning nucleus are denoted explicitly.

As seen in Section 3.4, for the compound nucleus (**°Po or *''Po) to be
formed with the same excitation energy, the fusion reaction with *He requires beam
energy greater by ~13.5 MeV than that the fusion reaction with 3He requires, due to
the difference in the Q-Valueé. For the .excitation energy range over which the fission
excitation functions were measured, the fusion reaction with *He always occurs at
energies far above the f;1sion barrier, V\./hereas the‘fusion reaction with *He may occur
at energies very close to the fusion barrier. Therefore, the fusion cross section g
for theISHe—binduced reaction near the fusion barrier where oo changes rapidly with
energy, can thus be deterimined relative to the fusion cross section for the “He-
induced reaction in the region where oy depends on energy rather weakly. This
makes it a worthwhile exercise to obtain in the prescribed manner the fusion cross
sections for the 3He-induced reactions, even though the reference cross sections - the
fusion cross sections of the “He-induced reactions — are also not well known.

Taking the fusion cross section for the *He-induced reaction to be the Bass
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Figure 3.13: The fusion cross sections for the 3He 4+ Pb reactions obtained by comparing
the fission cross sections of the same compound nuclei (2'°Po or 2!1Po) produced in both
the 3He- and *He-induced reactions, given the fusion cross sections for the *He entrance
channels as the Bass model prediction. For comparison, the fusion cross section calculated
with the Bass model for the 3He + 297Pb reaction is also shown.
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model prediction (see Fig. 3.3), the fusion cross section for the *He-induced reaction
which leads to the same compound nucleus (2*°Po or 211Po) can be obtained with
Eq. 3.6. The results are shown in Fig. 3.13. For éomparison, the fusion cross section
calculated with the Bass model for the 3Hé + 297Pb reaction is also shown. It is
interesting to note that the fusion cross sections obtained this way are even lower

than the Bass model prediction.

3.6 Summary

In this chapter, the fission excitation functions for the nuclei 18%:186.187,189()5

produced in the 3He + 182183184186\ reactions, for 209219211Pg produced in the
3He + 206,207.208P}, reactions, and for 210211:212Pg produced in the He + 206:207,208py,
reactions, have been analyzed in detail based on the statistical formalism. The
analysis aimed at an accurate determination of the effective fission barriers Bz, the
shell effects Al of the residual nuclei after evaporation of a neutron, and the ratio
as/an of the level density at the saddle point to that of the ground staté.

It was demonstrated that, in the case of the 210,211,212p, isotopes formed
in the *He-induced reactions, B} and A" can be determined from the fission ex-
citation functions, simultaneously and with high accuracy, regardless of the large
uncertainties in the formation cross sections of these nuclei. This is possible because
the largeA nég’ative @-values of the *He-induced reactions allow the fission excitation

functions to be measured very close to the fission barriers, with *He energies substan-
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tially above the fusion barriers, thus diminishing the importance of the fqrmation
cross sections in the fitting process.

For nuclei formed in the 3He-induced reactions, however, the simultaneous
determination of B} and Al requires better knowledge of the formation cross
sections of the fissioning nuclei than is now available. The large fusion ‘barriers
- and the large positive Q) values ofv the 3He-induced reactions on Pb and W' targets
make it impossible to measure the fission excitation functions sufficiently close to
the fission barriers. This allows, on the one hand, for the correllation. represented
by Eq. .3.5 to set in, and on the other hand, pushes the minimum 3He energy very
close to the fusion barriers, thus leaving way for the fusion. cross sections to play a
larger role in determiniﬁg the fission cross sections. The attempt to simultaneously
deterrﬁine B} and A%1 therefore produced inconsistent results. However, if one of
the parameters (B} or A }) can be fixed somehow, the other parameter can then
be determined consistently from the fission excifation functions, even in the face of
large uncertainties in the formation cross sections.

The extracted as/a, values, which lie between 170 and 1.1, seem to be the
same;_for all the nuclei under s_tudy. This result, if confirmed with a larger set of
experimental data, may be of funda;me‘ntal. significance ‘to statistical physics. Its

theoretical implications are yet to be explored.
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Chapter 4

Dynamic Fission Time Scale

The precisely measured fission excitation functions for neighboring Os and
Po isotopes presented in the previous chapter should contain information on the effect
of a possible transient time on the fission process, since a transient time longer than
the characterist.ic time for fission should necessarily reduce the fission probabilities.
A detailed comparison of the fission probabilities of neighboring isotopes should
reveal the transient time effect and may allow us'to determine its magnitude; In
this chapter, a new and straight-forward way to determine the upper limit of the
transient time will be devéloped. This novel approach bypasses all of the difficulties
~ associated with the separation of the presaddle and postsaddle particle emissionl. The
upper limits for the transient time set with this new method are'15x10‘21 sec and
25% 1072 sec for, respectively, the neighboring Os and Po compound nuclei produced

in *He-induced reactions.
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4.1 Method

We begin by taking the simplest assumption for transient time effects on the -
fission decay width, as shown in Fig. 4.1: that no fission occurs during a transient
time 7p, and that fission assumes the transition state width beyond 7p. Then, the

fission decay width T'Y with transient time effects can be written as

tr | o0 e oo e t
I = ’/0 C(t) N(8) don dt = T )/TD N(t)d(a), (4.1)

where ((t) = 0 (t < 7p) and ((t) = 1 (t > 7p); 7p is the transient time; N(t) is
the number of the remaining compound nuclei at time ¢ (starting with 1 compound
nucleus> at t = 0); /\C]Y is the total decay constant of the compound nucleus and
TCN =. 1/Xon is the Compound nucleus lifetime, without transient time effects; I’S,OO)
denotes the expected fission ‘width without the transient time effects, or the transition
state fission width.- In the following we will use A’s (7’s) to refer implicitly the
corresponding decay (time) constants Without transient time effects unless iﬁdicated
otherwise, since the transient time effects on fission rates have been nicely taken care
~of by the step function ((t).

| Now consider a decay chain starting from the compound nucleus (Z, A) with

excitation energy F:

(Z,AE) = (Z,A-1,E—-AE) - (Z,A-2E—AE —AE) -

lfission lfission | ’ lfission (42)

where AE; (z =1, 2, ---) denotes the average energy loss through the evaporation of

the ith neutron. AE; can be estimated as (B, + 27"), with T; being the temperature
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() (Transition State Width)

Time (t) -

Figure 4.1: Transient time effects on the fission decay rate are taken to be a step function.
7p denotes an assumed transient time. ’ '

of ‘the residual nucleus after ith neutron em‘ission and B, being the corresponding
neutron separation energy. 27T; is the average energy' of evaporated neutrons of a
Maxwellian energy distribution. To simplify the picture, angular momentum effects
are not included. This neglect may be justified in the case of light charged particle
induced fission where the angular momentum involved is generally small. Let A,,
Ag, /\(;N_(:/\n—}-/\f) be the neutron, fission and total decay constants of the nucleus
(Z, A, E), respectively; A/, X}, Ay be the neutron, fission and total decay constants
of the nucleus (Z, A—=1, E=AE,), respectively; and Ay, A7 Ay be the neutron, fission
and total decay constants of the nucleus (Z, A—2, E—AE, —AE,), respectively. The
inverse of these decay constants defines the corresponding characteristic times: 7,, 74,
TON» Tps Tfs TON» Tn> Tf» Ton+ Let Pr(A, Z, E) be the expected fission probability for

the compound nucleus (Z, A) with excitation energy E in the limit that no transient
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time effects are present. Let us further assume that the decay clock is not reset at
each step in the decay chain. Given a transient time 7p, the observed total fission

probability P{(Z, A, E) can be written as
P}:(Z,A,E): }5!+and+P?rd+_'.’ . (43)
where

P}t = Py(Z,A,E) e /™,

. n /\n !
P{" = Py(Z,A—-1,E - AE) e~/ 4 (e=mo/m — e"TD/T")} , etc.

CN An = Ay,
In this equation, P}, ond and P}J”d represent the first, second, and third chance

fission probabilities expected for the nucleus (Z, A, E), with a transient time 7p,

respectively. The neutron and fission decay constants can be estimated with Eqs. 1.9

and 1.10. Ps(Z, A, E), Pi(Z,A-1,E— AE), Pfg‘”i, and 7p are, however, unknown.

The non-reset of the decay clock after neutron emission should be a reason-

~ able assumption, as can be seen in the following. Let V(s) be the potential energy

surface with- s designating the shape or deformation coordinates of a nucleus. The

probability distribution p(s) of the compound nucleus as a function of shape s can
be written as

p(s) < p(E = V(s)), | (4.4)

where p(FE — V(s)) is the level density at the corresponding shape s. The probability

distribution p’ of the residual nucleus after neutron emission should be

, (B = V(s) - By)
P X p(S) ) Fn(S) 58 p(E - V(S)) p(E — V(S))

~ p(E—V(s))- e BT, \ (4.5)
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In other words, the residual nucleus retains the same probability distribution profile
as the mother nucleus has (Eq. 4.4). The assumption that the decay clock is not
reset after neutron emission is thus more or less justified.
While Eq. 4.3 loyoks hopelessly insoluble, it does provide clues to an upper
limit of fission transient time 7D When P{(Z, A, E) is specified, there exists a
maximum value of 7p for which Eq. 4.3 can be satisified. Taking the experimental
value P}’(Z, A—2 FE — AE, — AFE,) as the upper limit of hf3rd, and replacing P
in Eq. 4.3 with this upper limit, and replacing be(Z, A —1,FE — AFE);) with the the
experimental value P{(Z,A—1, E — AE;), the resulting equation can then be eelved

for an upper limit of 7p. One must keep in mind, of course, that Py c [0,1].

o

4.2 Upper Limits of Fission Transient Times for Os and Po

Isotopes

The experimental fission probability can be determined as the ratio ef the
fission cross secﬁien os and the compound necleus formation cross section oy. We
have measured with high precision the fission cross sections for several Os and Po
isotopes; and presented in chapter.2.2 the experimental data in Figs. 2.2 & 2.3 and
Tables 2.2, 2.3 & 2.4.

The compound nucleus formation cross sections or the fusion cross sections
for these reaction systems are, however, not known, and have to be estimated with

certain theoretical models such as the Bass model [Bass 74], the Extra-Push model
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[Swia 82], etc.. The fusion cross sections calculated with the Bass model and the
Extra-push model for the reactions *He + '**W, *°He 4 ?*"Pb and “He + **"Pb are
shown in Figs. 3.1, 3.2 and 3.3. Also plotted in these figures are the reaction cross
sections predicted by the optical model [Macf 78].

In the following analysis, we choose the fusion cross sections predicted by
the Bass model to determine the fission probabilities. The reason for this choice will
be discussed later on. The fission probabilities P}(Z, A, E) of different isotopes at
different"excitation energies can then be calculated accordingly as o¢/0o.

We now try to solve for upper limits for the tr‘ansient tirﬁe p, for both the
Os isotopes and the Po isotopes, in two ways: 1) by setting Ps(Z, A, E) = 1. This
will obviously result in very relaxed upper limits of 7p; 2) by setting P¢(Z, A, E) =
PH(Z, A, E) This s-hould result in more stringent, and perhaps more propér, upper
limits of 7p. -

In Fig. 4.2 we show the preséddle transieﬁt time upper limits derived for Os-
isotopes in the prescribed ways plotted against the excitation energy of ¥’Os. One
sees that the uppér limit obtéined by setting Py(Z, A, E) = P{(Z,A, E) does not
Chénge substantially as the energy changes. The very relaxed upper limit derived by
setting P;(Z, A, E) = 1, on the other hand, increases as the lifetime of the compound
lnucleus increases (decreasing in energy). However, the upper limits derived both ways
converge at the highest excitation énergies where the compound nucleus lifetime 1s
short. The upper Iimit of the transient time can therefore be set at 15x1072! sec.

The upper limits for the transient times for Po isotopes are plotted against
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Figure 4.2: The upper limits of the transient times determined from the fission probabilities
of neighboring isotopes 185:186:187(Qg produced in 3He+W reactions are plotted at different
excitation energies. The abscissa represents the excitation energy of ¥70Os. The very
relaxed upper limits (open symbol) are obtained by assuming P;(Z, A, E) = 1, and the more
proper upper limits (solid symbol) are obtained by assuming Ps(Z, A, E) = P)’Z(Z,A,E).

See text.
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Figure 4.3: The upper limits of the transient times determined from the fission probabilities ..
of neighboring isotopes 209:210.211pg produced in *He+Pb reactions are plotted at different
excitation energies. The abscissa represents the excitation energy of *1'Po. The very
relaxed upper limits (open symbol) are obtained by assuming P¢(A, E) = 1, and the more
proper upper limits (solid symbol) are obtained by assuming P¢(A, E) = P}(A,E). See
text. -
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the excitation energy of *'Po in Fig. 4.3. As in the case of Os, the very relaxed
upper limit derived by setting Pi(Z,AE) = 1 and the upper limit obtained by
setting Py(Z,A,E) = P{(Z,A, E) converge at aboﬁf 25%x107%! sec at the highest
excitation energies. For Po isotopes, the transient upper limit can then be set at
25x10~%! sec.

The approach presented above is sensitive when thé lifetimes of the com-
pound nuclei under consideration are sufficiently short. If the lifetimes of the nuclei
are too long, the upper limit set this way may become so relaxed as to be irrelevant,
as can be seen in Fig. 4.3 for Po.

This approach also hinges on the assumption that the observed total fission
probability (all chances included) P}(Z, A — 2, E — AFE, — AE;) can be taken as the
upper limit of Pf?”d+- --. While this assumptidn may not be logically sound, it is most
likely the case, and justifiable at the energy regime where transient time effects on
fission probability are expected to be very small for nucleus (Z, A—2, E—AE,—AE,).
For example, when E(*%70s) < 80 MeV, 7on(1830s, E — AEy — AE;) > 38x1072
sec and 7p < 10x107?! sec (see Fig. 4.2), whereas P}('*°0s, E — AE, — AE,) < 16%
of P}(187Os, E). In this case the assumption is clearly justified.

The fusion éross sections gy (see Fig. 3.1, 3.2 and 3.3), which are calculated
with the Bass model [Bass 74] and used to determine the total fission probability
P} in the current analysis, represent a major uncertainty. There is little direct
experimental evidence in the energy regime of particular interest to this work (>70

MeV) that can be used for us to judge the correctness of the Bass Model calculations.
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If the actual fusion cross sections are lower than the Bass predictions, which is likely
[Stic 74], the resulting upper limit of 7p would become smaller. If the actual fusion
cross sections are higher than the Bass predictions, the resulting u‘pper limit of 7p
would be more relaxed. In the low-energy regime (<60 MeV), however, the given
upper limits, which remain very small in the case of Os.. (see Fig. 4.2), hold regardless

of the uncertainties in the fusion cross sections oy.

4.3 Simulation of Transient Time Effects on Total Fission

Probabilities

It may be instructive to calculate the total fission probabilities of all chances
(up to the point where all of the excitation energy has been exhausted) as a func-
tion of both the initial excitation energy F and an aésumed transient time 7p, and
compare the calculated total fission probabilities with the experimental values. A cal-
culation of this nature should help either to further our-insight (;n possibie transient
times or to justify some of the previous assumptions. |

To perform such a calculation, a scheme to follow the decay pl;ocess and-
calculate multichance ﬁséion probabilities rﬁust be developed. It turns out that such
a scheme can be implemented rather simply, as folvlows:

Cénsider the decay chain Eq. 4.2. .Let No(t), Ny(t), Na(2), -+ -, Ni(t), -+ -, be
the numbers of nuclei (Z; A), (Z,A-1),(Z,A-2), ---,(Z,A—1), - - -, respectively,

at time ¢ (starting with 1 compound nucleus at t = 0: Np(0) = 1, N1(0) = 0, N,(0)
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=0, ---). Assuming a step function for the transient time effect, for an assumed

transient time 7p, the number of nuclei (Z, A —7) must satisfy the balance equations:

djjlit(t) = MmN () = ADN(), (t <) (4.6)
W MONLO - AN, 2 ) (4.7)

where Ai"1) and A{) are the neutron decay constants of the nuclei (Z, A —i+1) and
(Z,A — 1), respectively; Ag}v is the total decay constant of the nucleus (Z, A — 1),
and ’\(cf}v = 0 4 /\y) with /\y) being the fission decay constant.

The solution of the above equations is straightforward:

Jj=i , ' '
Ni(t) = Y ai; exp(=A01),  j5=0,1,2,--4, (t<7p)  (4.8)
. 1=0 -

_ A aiy

ai; = ma J :071).-‘9-',"_'#—"17
J=1—1
Qig = — Z Gijs
Jj=0
ao,0 = ].O,
=i ,
Ni(t) = 3 big exp(=2N 1), G=0,1,2,-0,  (t=7p)  (4.9)
J=0
A _l)bi_ . .
bi,j = (1:) (1]’; ’ J = 0a1v2a"')z_ ]-a
’\CN - /\CN

=1—1

i j=i- .
bi; = exp(/\gg\, D) [Ni(TD) — Z b; ; exp(—/\g])V TD)],
7=0

bo,o = exp(()\(coj)\, —'XSZO)) TD> :

This solution, so written as above, also provides the algorithm to follow the decay

chain 4.2 until all the excitation energy is exhausted.

With the solution N;(t) (i=0,1,2,---) in hand, the total fission probabilities
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P} can be simply calculated as

(@)

Fi=XF pin =y 7 £)dt = X;(%)/:Ni(t)d(;%)—), ©(4.10)

i=0" 7D CN CN
where 7'((;121 = 1/)\CN, the fission decay constants )\S,i) and the total decay constants
/\ on can be estimated with Egs. 1.9 and 1.10.-

Now we calculate the total fission probability for the nucleus *’Os, given a
transient time 7p. The fission barriers B} and the level density parameters of the
nuclei ¥70Os, 186-AOs, 18505 used to estimate the corresponding A(’s, are from the fits to.
the low-energy portion (<75 MeV) of the correspondingvﬁssion excitation functions
using the fusion cross sections from the Bass model. Both the fission excitation
functions and the correspondiﬁg fits are shown in Fig. 3.4. The B} and ays/a, values
extracted from the fits are listed in Table 3.1. a, is taken to be A/8 (MeV~1). For
isotopes lighter than '®°Os in the decay chain Eq. 4.2, as/a, was taken to be the
same as that for 1850s, and B} was taken to be the corresponding liquid drop barrier
corrected for. shell effects. The shell effects of all fhe nuclei involved are taken to
be the nominal values from Moller et al. [Mdll 93], some of w.hich are listed in the
column ARgpy of Table 3.1. The results of this calculation for a series of assumed
transient times are shown in Fig. 4.4. A comparison of the calculated total fission
probability with the corresponding experimental value indicates that the transient
time 7p is not larger than 30x1072! sec.

There are two major deficiencies in this calculation. First, the decay scheme

does not include decay channels such as p, «, - -, emissions. This over simplistic
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Figure 4.4: Calculated total fission probabilities (solid lines) as a furiction of excitation
energy for a series of assumed transient time Tp ranging (0 - 100)x 102! sec, for compound
nucleus ®70Os. The experimental total fission probabilities (solid symbols), determined as
the ratios of the fission cross sections to the fusion cross sections predicted with the Bass
Model, are also shown. A comparison of the calculated total fission probabilities with the
corresponding experimental values indicates that 7p is smaller than 30x1072! sec. See

text.
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decay scheme tends to result in a substantial overes‘gimation of the fission proba-
bilities for higher chance fission, and consequently requires a larger transient time
to lower the calculated total fission probability to its corresponding éxperimental
value. Second, while the fit to only the low-energy portion of the excitation function
results in an accurate fission barrier B ¢, the same fit tends to give foo large a value
of ag/a, (~ 1.09 in the cases of 1¥7Qs, 18¢0s, 1850s). This very large value of a/a,
tends to. greatly overestimate the fission probabilities, and consequently requires a
significantly la;ger transient time to lower the calculated total fission probability.
Both of the deficiencies reinforce the conclusion that the resulf from the above sim-
ple-calculation, le., the'transi'en.t time can not be larger than 30x10~2! sec, is very

conservative.

4.4 Resetting the Decay Clock at Each Step in the Decay

Chain

If the decay clock is assumed to reset at each step in the decay chain, Eq. 4.3

should be rewritten as
PiZ,AE)= PP + (1 = PF) P} + (1 — PP (1 =P} P/ +---,  (4.11)
Where_

P} =Py(Z,A~1,E — AE)e P/,

P! = Py(Z,A—2,E — AE; — AE;)e™™/™,
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Solving this eq.uation in the same ways as discussed in Section 4.1 gives more stringent
upper limits for the transient time, for both Os and Po isotopes. For example, for
osmium isotopes with 870s at the highest excitation energy of 148 MeV, taking
Py(Z,A,E) and Py(Z,A—1,E — AE;) to be the measured values P}('*7Os, E) and
P}(IBGOS,E - AEl), repect-ively, and téking (1= P41 = PH)P{ 4 --- to bé the
measured value P{('*O0s, E — AE, — AE,), solving Eq. 4.11 gives an upper limit of
11x107% sec for the transient time 7p. In the same way, for polonium produced in

3He-induced fission with 2!'Po at the highest excitation energy of 144 MeV, assuming

the “resetting” of decay clock leads to an upper limit of 23x107?! sec for 7p.

4;5 _First Chance Fission Probabilities

Assuming that either the decay clock is reset after each step in the decay

© chain, or that the fission transient time is zero, Equation 4.3 can be rewritten as

P{(A,Z,E) = P} + (1 = P}) P{(A~ 1,2, E — AE), O (412)

P{A—1,7Z,E — AE,) = P 4 (1 — P PFr ..

where P{(A—1,Z, E — AE,) is the total fission brobability of t.he nucleus (A-1,7)
With excitation energy F — AF;. Since both P}(A, Z,E)and P{(A—-1,Z,E - AE)
can be determined experimeﬁtally, the first chance fission probabilities P}St can thus
be obtained, given the above assumptions. The assumption of the zero transient time
or resetting of the decay clock, is rather subjective, however, since fhe justification

may be otherwise, as seen in Section 4.1.



103

- Nevertheless, it is of great interest to determine empirically the first chance
fission probabilities, since the first chance fission probabilities are expected to be very
sensitive to, and therefore may reveal, transient time effects. Rearranging Eq. 4.12,

one obtains:

P{A,Z,E) - P{(A—1,7,E — AE,)

Plst —
1 1—P{(A—-1,Z,E — AE)

(4.13)

This is the fecipe used by Natowitz et al. [Nato 90] to extract the first chance fission
probabilities. |
T.he first chance fission probability obtained with Eq. 4.13 is, unfortunately,
sensitive to the errors in both P}(A,Z,E) and P;(A—1,Z, E—AE,), since the errors
get amplified by taking the difference of the total fission probabilities of neighboring
‘isotopes. The total fission probabilities P{(A, Z, E) and P{(A—1,Z,E — AE;) can
- be determined as the ratio of the fission cross section and the formation cross section
of the fissioning nucleus. While the fission cross sections presented in this work were
measured very precisely, the formation cross sections are much less well kno.wn. One
has to resort to the theoretical models to calculate the formation cross sections for the
fissioning nuclei. As shown in Section 3.1, the formation cross sections calculated
with the Bass ;ﬁodel [Bass 74], the Extra-push model [Swia 82], and the Optical
model [Macf 78], differ quite substantially. The uncertainties in these fofrnation
cross sections result in large errors for the total fission probabilities. |
However, an'exafnination of where the errors for the calculated fusion cross
sections may lie, should indicate where the resulting first chance fission probabili-

ties may err, and therefore provide guidance on how the first chance probabilities

AT
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extracted with Eq. 4.13 are to be interpreted. In Fig. 3.1, the reactio'n cross sections
calculated with the Optical model [Macf 78], and the fusion cross sections pr.edicted.
by both the Extra-push model [Swia 82] and the Bass model [Bass74], for the reac-
tion *He + 18W —>‘187Os, were shown. The large differences in the formation cross
sections predicted by different models are an example of how uncertain these for-
mémtion cross sections can be. Furthefmbre, there e;re few experimental data on the
fusion cross sections at energies above 70 MeV. Notice that the Bass model predicts
the iowest fusion cross section among the above'meﬁtioned models at energies above
70 MeV. There are indications, howéver, that even the Bass model may overestimate
the fusion cross sections at high energy [Stic 74]. The fusion cross sections from the
Bass model were chosen in the analysis presented in the previous sections of this
chapter. At high energies, the resulting total ﬁséion probabilities are most likely
underestimated, and underestimated even more as the energy gets higher. The first
chance fission probabilities obtained with these underestimated total fission prob-
abilities are, fherefore, likely to be the lower limits of the true first chance fission
probabilities.

Although it may still be worthwhile to extract the first chance fission proba-.
bilities, keeping in mind that the extracted first chance fission probabilities would be
the lower limits, due to the large uncertainties in the experimental total fission prob-
abilities, it is better to defer this effort until more accurate formation cross sections

of the fissioning nuclei become available.
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4.6 Summary

In summary, we have found a new and straight forward way to determine the
upper limit of the transient time of fissioning systems, set by the fission probabilitiés
of neighboring isotopes. The upper limit of the transient time is set at 15x107%! sec |
for Os isotopes, and at 925x10~2! sec for Po isotopes. We then conclude that most,
if not all, of the transient time as determined from excess amounts of prescission

particle emissions, is, therefore, postsaddle.



106

Part 11

Particle Structure Functions
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Chapter 5

Introduction

In Part I, we have studied the nuclear decay process at one extreme — nu-
clear fission. Through the detailed analysis of the experimental fission excitation
functions, we have obtained with good accuracy some of the nuclear propertiés such
as fission barriers, shell effects, etc.. The fission probabilities, even at the highest
excitation energies studied, were found to be interpretable Based on the transition
state formalism, without invoking some of the heavily advertised theoretical effects
such as nuclear viscosity. A novel approach has also been developed to determine an
upper limit of the fission transient time.

It’s only natural to look next at the nuclear decay process at the other ex-
treme — light particle evaporation. An‘ experiment was thus proposed and performed

“to study the excitation functions of light charged particles emitted from compound
nuclei formed in *He-induced reactions. A comparison of the measured excitation

functions against the transition state predictions should provide us another check on



108

the validity of the transition state formalism. Of particular interest are the ratios of
the emission cross sections of the particles of the same charge but of different mass,
such as p/d/t, *He/*He/®He, etc., since, by taking the ratio, some common factors,
such as the formation cross sections which are not well known, can be divided out.
Soon after the experiment was carried out, however, all our attention Was‘
drawn to the study of new physics — the eﬁistence of complex pafticles as independent
particles inside the nucleus, and their stuctures. The particle spectra obtained from
this experiment lent themselves to our search in them for structural modulations
A similar to those expected from optical potentials. The original physics goal has thus
been put aside, and the attention will not return to it as far as this thesis is concerned.

I now turn to this new subject.

5.1 Particle Structure Functions

The existence of com.plex particles in a nucleus may be compared to that of
a solute molecule in a solvent. The effect of the solvent on a solute molecule varies
from a modest modification of its_ prope1‘ti¢s to full dissociation. Particles («, d, t,
etc.) inside a nucleus can be seen as solutes in the nuclear solvent. Their existence.
as independent particles in the nuclear medium relates directly to the question of the
extent to which the total nuclear wave function is factorizable into the product of
the wave function of the particle and that of the residual nucleus. Qualitatively one

can expect that tightly bound particles such as an «a particle may have more than a
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fleeting existence in the nucleus, certainly much longer than that of weakly bound
particles such as the deuteron.

The interaction of the particles with the nuclear medium can be studied
through their evaporation from compound nuclei. Suppose that a complex particle
pre-exists in a compound nucleus before it is emitted. As the particle is segregated
from a compound nucleus state and prepares to exit, it senses its environment. This
envirohrﬁen‘c could be a mean field, like the shell/optical model potential, or a local
};olarization field. This should result in states which acquire a width through their
coupling with the cqntinuum and the remaining many-body aegrees of freedom. A.
strength function should arise which modulates the spectrum of the emitted particles.

This is illustrated qualitatively in Fig. 5.1 [More 97b]. The states inside and above the

1

r

Figure 5.1: Schematic drawing of the states of a particle in potential well [More 97b].
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well are the states of the particle in the nucleus, which, in the case of a proton, tend
to be the shell model states well below the barrier and the optical model resonances
in the continuum above the barrier.

An optical resonance is illustrated in Fig. 5.2, where the reaction cross sec-
tion (;Lop panel) calculated with an optical m.odel [Fesh 54, Macf 78] using an optical
potentieﬂ for ‘He+2°®Pb reaction is shown. In this calculation the potential has beén
modified so that the imaginary part is only 30% of its normal value in order to en-
hance the resonance structure. In an-effort to isolate this structure the cross-section
has been fitted with a smooth “background” which has. been substracted out (bottom
panel).

The optical modulations illustrated in Figs. 5.1 and 5.2 should superimpose
on the bulk of the evaporation spectrum determined by phase space, and may become
observable in evaporation spectra of very high statistical quality. Since the particle to
be emitted is in a hot nucleus whose excitation energy is under experimental control,
the strehgth function obtained from the modulation of the spectrum refers to t.hat
specific excitétion energy or temperatufe. If is _thus possible to study the modulation
not only for a variety of particles, but also for different temf)eraturés.

In this part, I will present some tentative evidence for the optical modula-
tions in spectra of « particles evapora,ted f_ro'm indium compound nuclei produced
in the reaction *He+™*Ag at bombarding energies ranging from 55 to 110 MeV. I

will also present the orthogonal polynomial analysis, an approach which has been

developed to represent the modulations in the measured a-spectra as a combination
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Figure 5.2: Top panel: The reaction cross section as a function of energy calculated for
4He+2%8Pb using an optical model (solid line). In order to enhance the optical resonance,
the imaginary part of the optical potential has been reduced in the calculation from 16%
to 5% of the real potential. The dashed line is a smonth fit to reproduce the general trends
of the cross section. Bottom panel: Fractional deviation of the optical model calculation
from the smooth fit. '
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of orthogonal modes. This approach is poteﬁtially applicable to a wide range of

problems.

5.2 Inverse Cross Section

Another way of looking at the presumed particle structures is to consider
the standard expression for the evaporation spectrum. Detailed balance between the

compound nucleus states a and the final states b requires that
PaFa—#) = Pbrb—m, (51)

where I',_;, and Iy, are the direct and the inverse decay widths, and p,, p, are

the corresponding phase space volumes. The inverse width is formally expressed in

[¢

terms of the “inverse” cross section (Giny):

OinvV

Pyms = A5, (5.2)

where v is the velocity of the particle, and V is a normalization space volume.
The combination of Eq. 5.1 and Eq. 5.2 gives the decay width differential in

the particle kinetic energy (¢):
I'(€)de < Oinvep(E — B —€)de, (5.3)

where B is the particle binding energy. A first order expansion of the log of the level

density in the kinetic energy of the particle gives the transparent form:

['(€) de x Oiny € e_e/Tdé. (5.4)
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Thus the spectrum is the product of a structure factor, namely the “inverse”
cross section, and of a phase space factor. Removal of the latter should leave the

former with its potentially interesting modulations.

5.3 Shape Polarization and Evaporation Spectra

In order to exit from a nucleus, a charged particle must overcome the
Coulomb barrier. If the nucleus deforms in the direction of emission, the Coulomb
barrier decreases. Let us consider a configuration formed by the emitted particlé
just in contact with the residual nucleus. Now we deform the residual nucleus always
keeping the light particle in contact, and we plot the total energy as a function of
deformation. The total energy has a minimum at some finite prolate deformation.
This is the location of the saddle point, as shown in Fig. 5.3 [More 75, More 87]..

The unbound. mode, or reaction coordinate, is the distarnice between cen-
troids. A particle crossing over the saddle point with zero kinetic energy acquires a
kinetic energy at infinity smaller than the Coulomb barrier associated with a spherical
configuration. This is not subbarrier emission, in the éense that it is not associated
with quantum barrier penetration.

Thermal fluctuations along this deformation coordinate Z lead to large fluc-
tuations in the Coﬁlomb interaction energy, as shown in Fig. 5.3. While the total
potential energy Vr has a minimum at some prolate deformation, the fragment-

fragment Coulomb interaction Vgoy is a monotonically decreasing function of defor-
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Saddle Point and Normal Modes

) decay mode:
Cov== D .
i) non-amplifying mode: .

1) om:ln‘ymg mode:

QO-

z

Figure 5.3: Top: Normal modes at the saddle point. Bottom: Total potential énergy VT
and Coulomb energy Voo as a function of the deformation coordinate Z [More 97b).-
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mation coordinate.

Therefore one can expand the totai potential energy and the Coulomb in-
teraction energy about the saddle point along the deformation coordinate Z(Z=0
at the saddle):

Vr = VIQ + k‘Zz, Vooul = Vc())oul —cZ. (5.5)

Now, if the shape is allowed to fluctuate involving an energy of the order of the
temperature T" (see Fig. 5.3), one obtains a corresponding fluctuation of the Coulomb

energy:
2
AVeou = 2\/%T = 2./pT. (5.6)

The parameter p (=c?/k) is called the amplification parameter. A degree of freedom
with such a general structure is called an amplifying mode.

When the potential energies vary almost exclusively from the Coulomb en-
ergy, we have non-amplifying modes. For instance, the oscillation of a particle about
the tipbof the prolate core can be considered a non-amplifying modes (see Fig. 5.3).
As the particle rolls away from the tip, the Coulomb energy increases because of the
decreasing distance between the particle and the residual, while the surface energy
of the system changes only in higher order and can be considered approximately
constant [More 75].

More quantitativ¢ considerations iead to an expression for the kinetic energy

spectrum of the particle [More. 75]:

P(e) x e~/ Terfe (1;_ Qx) , (5.7)

g
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where z = ¢ — V.

We see immediately that, by using a formula like Eq. 5.7 to fit experimental
spectra, we can obtain information on the shape polarization associated with particle
emission.

Equation 5.7 can be easily generalized to include a number of amplifying
and non-amplifying degreés of freedom at the saddle [More 75], and to include the
‘quantum barrier penétration [More 87]. A slightly more sop‘histicated formula, which
incorporates one decay mode, one amplifyiﬁg mode, and the barrieil~ penetration, has
_been developed by Moretto and Bowman [More 87]. The formula will be given in
Chapter 7 (see Eq. 7.1). It will be shown that this form‘ula can represent alpha

evaporation spectra to a remarkable precision.



117

Chapter 6

Measurement of Particle Spectra

In this chapter, the expériment to measure the energy spectra of the light
charged particles (p, d, t, ®He, a, etc.) emitted from the reactioﬁs 3He + 197Au,
1815, natAg natCy, 27Al and '2C, will be described. The experiment was orginally
proposed to study the excitation functions of the light charged particles emitted from
the compound nuclei formed in these 3He-induced reactions. The particle spectra.ob-
tained from this experiment with high statisfical quality, however, lent themselves to
our search for evidence of the existence of complex particles as independent particles
inside a nucleus, and their associated structures.

’i‘he experiment was carried out at thé~88-I.nChl Cyclotron of the Lawrence
Berkeley National Laboratory. 3He beams of energies 55.0, 65.0, 75.0, 85.0, 95.0,
110.0, 125.0, 140.0 MeV were used to bombard targets made of 1°"Au, ¥ Ta, “‘;‘tAg,
natCy, 27Al and 2C. The thicknesses of the tax;gets were 1.99, 2.10, 1.55, 1.55, 1.56

and 0.413 mg/cm?, respectively. The uncertainty in the beam energies was 0.3%.
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Two pos'ition-sensitive AE-E quad telescopes were used to detect the par-
ticles emitted in the reactions. Each quad unit consisted of four separate gas-silicon
telescopes, and covered 25° in plane and 5° Qut—of—plane. The active area of each
telescope subtended 5°x5° and the separation between adjacent telescopes was 1.8°.
The gas ionization detectors served as AE detectors, and were operated at a pressurev
of 51 torr of isobutane gas. The E-detector in each telescope unit was a 45x45 mm?
square (5 mm thick) silicon detector with, on the front, strips of low-resistivity ma-
terial separated by gaps of high—resi;tivity material to determine and self-calibrate
the position [Keho 92, Walt 90]. Using these telescopes, the energy, the atoﬁlic num-
ber (and the mass number for light charged particles), the in-plane and out-of-plane
angles could all be determined for each particle that traversed the AE detector and
stopped in the E-detector. The out-of-plane angle of the incident particle was deter-
mined from the ion drift time in the gas ionizatién detector. T‘he 'in-plane ang]e was
determined from a resistive division of the energy signal from the silicon detector.

Operating at different pressure or with different gas, these same qudd units
of telescopes have been used previously to detect intermediate madss.fra'gments from
boron all the way up to fragments as heavy as the projectiles in t‘;he reverse kinematics
reactions [Jing 99, Deli 91, Char 90, Han 89].

In this experiment, the detectors were placed at backward angles, with one
quad unit on each side of the beam. Relative to the direction of beam, the centers
of the eight telescopes were at 116.1°, 122.9°, 129.8°, 136.6°, 143.9°, 150.7°, 157.5°,

164.4°, respectively.
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The particle species were identified from the measured AE and F-values.
The particle species ub to beryllium were resolved both in charge and mass.

‘The energy calibration of the £ and AFE detectors was performed using the
method illustrated in ref. [McMa 86]. Calibration points were obtained with beams
of 20.0 MeV alpha, and 20.6 MeV Hj"' (equivalent of 10.3 MeV proton). These beafns
were back scattered into the detectors by the Au target. Alpha-particles of energy
6.118 MeV from 2°2Cf were also used to provide a calibration point %Lt low energy.
The energy loss of the calibration particles in the gas section was measured from the
difference bétween the energies deposited in the E detector with and without gas
in the ion chamber. Corrections were made for energy losses in the mylar entrance
window of the ionization chamber and in a Auvabsorber used for suppressing electrons
and X-rays.v Corrections were also made for the energy loss in the Au target. The
energy calibrations are accurate to +1%.

The oqt—of—plane position was calibrated with a mask, consisting of a matrix
of 2 mm holes separated by. 4.73 mm, which could be lowered into position remotely.
The in-plane position was self-calibrated [Keho 92]. The typical position resolution
obtained was +0.2°. |

The beam charge was collected in a Faraday cup and integrated with a
charge—integration module. The integrated éharge gives the number of the incident
projectiles. Although this information was not used in the current search for the op-
tical modulations in the measured particle spectra, it will allow for the determination

of the absolute cross sections of the particles later on.
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For complete fusion reactions, the velocity of the formed compound nucleus
Von 1s equal to thé center-of-mass (C.M.) Velocify. In this ca'se, the velocity and the
kinetic energy in the lab frame of the measured particles can be readily transformed
into the velocity and the kinetic energy in the source frame (i.f;., the center-of-mass
frame in complete fusion'). The velocity and energy spectra of the particles both
in the source frame and in the lab franﬁe can be accumulated at the samé time,
event-by-event, in the offline analysis.

At high beam energies, incomplete fusion may set in and contribute substan-
tially. The velocities of the nuclei formed in incomplete fusion dep‘énd on momentum
transfer, and are different from those of the nuclei formed in complete fusion where
complete momentum transfer occurs. In light particle (*He) indﬁced reactions on
heavy targets ("**Ag, ...), the velocity of the source from which a particle is emitted
is smaller for incomplete fusion than for complete fusion.. Thus, in the presence of
incomplete fusion, using the cgnter-of—rnass velocity to trénsforﬁ the velocity and
energy of emitted particles from the lab frame to the source frame may cause dis-
tortion of the spectra in the source frame. At 90°, thé velocity of a particle in the
source frame is the same as the Velocity in the lab frame. The tranformation does
nothing and therefore no distortion is expected. As a particle is emitted increasingly
backwards, the source velocity plays an incfeasing role in the transformation of the
velocity and energy between the two reference frames. At thev most back;ivard an-
gle (180°), the velocity of a particle in the source frame is equal to the sum of the

particle’s velocity in the lab frame and the source velocity. Thus, at angle 180°, the
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Figure 6.1: The center-of-mass energy spectrum of alpha particles emitted from the 3He +
nat Ao reaction at 65 MeV beam energy.
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velocity and kinetic energy spectra should appear harder due to the distortion b.y
the transformation from the lab frame to the source frame using the center-of-mass
velocity as the source velocity, if incomplete fusion cont'ributes substantially. In other
words, in the presence of incomplete fusion, the spectra in the C.M. frame should
show a gradual (apparent)' hardening from 90° to 180°. Conversely, an apparent
hardening of the spectra with increasing angle in the C.M. frame should indicate the
presence of incomplete fusion.

For the 3He + ™'Ag reaction at energies of 110 MeV or lower, no such
apparent{ hardening of the C.M. spectra was evident as observing angle increased, in-
dicating a dominance of complete fﬁsion. At energies of 125 MeV or higher, however,
an apparent hafdening of the C.M. spectra with increasing observing angle becamé
discernible, indicating a presénce of incomplete fusion at these higher energies.

In this thesis, only the C.M.‘ energy spectra of a-particles emitted from
nuclei formed in these *He-induced reactions at bgam energies below 110 MeV are
presented. These spectra were measured with high statistical quality. As an example,
the C.M. energy spectrum of a-particles emitted from *He + ™*'Ag reaction at 65
MeV beam energy is shown in Fig. 6.1. This composite spectrum was generated by

summing together the C.M. energy spectra from several individual telescopes. Other

spectra will be shown in the next chapter as the analysis proceeds.
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Chapter 7

Tentative Evidence for Particle

Structures in Alpha Spectra

In this chapter, the high-statistics evaporation spectra of alpha particles
emitted from the reactions 3He + "**Ag and !*”Au at bombarding energies of 55 to
110 MeV are analyzed, in order to determine whether physical modulations similar
to those expected from optical potentials are present.

The optical modulations can not only arise from a volume potential well, as
illustrated in Chapter 5.1, but may also arise from a potential barrier which a par-
_ticle on its way out encounters near the nuclear surface. Although the transmission
coeflicient for an inver‘ped real parabolic potential is smooth by Hill-Wheeler formula
[Hill 53], the transmission coefficient in general, for a square barrier for example,
oscillates with the energy of a penetrating particle.

We will search for evidence of these optical modulations in the measured
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alpha .energy spectra. The plan is to fit the alpha spectra with a smooth function,
and to search the residuals for modulations. The functional form chosen for the fit
should be smooth, and represent adequately the bulk evaporation spectra that arises
solely from the available phase space plus the barrier penetration, thus leaving in the
residuals the structural modulations intact.

Standard expressions fqr the evaporation spectra do not provide adequate
fits since they do not incorporate thermal shape fluctuations, quantum barrier pene-
tration, etc.. A transition state formalism, which incorporates both the shape polar-
_izations and the barrier penetration, however., is found to fit the measured.spectra
‘ remarkably well. This formalis;m, developed byr Moretto and Bowman [More 87], is

given in the following.

7.1 A Transition State Formalism for Evaporation Spectra

| Moretto has developed a transition state formalism, which includes shape
pblarizations (sge Eq. 5.7) [More 75], for kinetic energy spectra of evaporated parti-
cles. Eq. 5.7 can be generalized to include a number of amplifying and non-amplifying
degrees of freedom (modes) at the saddle. He has also gengralized the formalism to
include quantum barrier penetration. With inclusion of one decay mode, oné ampli-
fying mode, and the barrier penetration, his formula for eva,poration spectra P(e) is

written as follows [More 87):

Ple) « e/ T{ erf ((2V3,u + )/2y/pT) — exf ((p — 22)/2,/pT)



125

+%e—(P—2z)2/4PT[ e(p—?z—va)2/4pT<1 +erf((p — 22 — ypT)/2y/ PT))
_ o(p=2c+7pT)?/4pT <erf((2Vgoui +p +pT)/2y/pT)

_erf((p—2a:+'ypT)/2\/ﬁ)>]}, . (7.1)

where z = € — V3, and ¢ is the kinetic energy of evaporated particle; V3, is the
Coulomb barrigr; T is the temporature of the residual nucleus; p the amplification
parameter, and y a parameter repfesenting the barrier p.enetrability. In develop-
ing the above formula, the barrier penetration probability Fgp has been chosen for
simplicity as the form:

FBP(E) = le’m, ($ < 0), | FBP(C) =

5 (2-e7), (220. (7.2)

DN o—

This function and its first derivative are continuous at z = 0, and has the qualitative
features of penetration and reflection expected for a penetrability function.
~ In the case where the temperature T is low and the Coulomb barrier V3,

is large (for « particles, for example), erf((QVgoul +p)/2\/pT) =1, and erf ((QV&UI +

p+ 7pT)/2\/pT) = 1. Taking advantage of these facts, Eq. 7.1 can be rewritten as:

P(e) « e_m/T{ erfc((p - 2i)/2\/pT)
+%e_(p_2”)2/4”T [ e(P=20=7T)?/4pT o g (~(p — 2z — 7pT)/2\/pT)

—e(p_-2z+’YPT)2/4pTerfC((p — 2z +pT)/24/ PT)] } (7.3)

Notice that Equations 7.1 and 7.3 do not contain any polynomial of 2"¢ order or
higher in'e, and the (complementary) error functions and the exponentials are all

smooth functions.
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The complementary error function erfc in Eq. 7.3 can be readily calculated

with fractional error everywhere less than 1.2x10~7 [Pres 92[:

In(erfc(|z])) = In(t) — 2 — 1.26551223 + ¢ x (1.00002368
+t % (0.37409196 + t x (0.09678418 + ¢ x (—_0.18628806

+ ¢ % (0.27886807 -+ t x (—1.13520398 -+ ¢ x (1.48851587

+t x (—0.82215223 + t x 0.17087277)))))))), (7.4)
1.0 3 : j
where t = m, and
| Aexp(ln(erfc(:r)))', z > 0; o
erfe(z) = _ - (7.5)
2.0 - exp(ln(erfc(—:c))), z < 0.

Equation 7.3 is found to be able to fit the measured alpha spectra to a

remarkable precision. This is shown in the following section.

7.2 Smooth Fit of Alpha Spectra, and Modulation in

Residuals

Now we fit the energy spectra of alpha particles evaporated from nuclei
formed in 3He+"*'Ag reaétions with Equation 7.3. The fit will be performed for the
spectra in the energy range from 10 to 24 MeV. The high-energy tail above 24 MeV is
excluded in the fitting to avoi(i the involvement of pre-equilibrium particle emission,
which is not considered in Eq..7.3. The cut-off point at 24 MeV was determined

“empirically. The spectra below 10 MeV is also cut off due to possible contributions
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from light contaminants on the surface of the target. The shape of a—particle energy
spectra for possible light contaminants such as carbon an.d oxygen should look simﬁar
to those for 3He+"2*Ag, but are narrower and peaked at léwer energies. The relative
contributions from possible light contaminants may .be estimated by the relative
counts at energies below the evaporation peak (~6 MeV for 3He+"2*Ag reactions,
see Fig. 6..1) of the measured energy spectra.

Shown in the lower panel of Fig. 7.1 are the measured alpha-particle spec-
trum and the fit for *He + "' Ag reaction at the beam energy of 65 MeV. The quality
of the fit is remarkable. The exceedingly good quality of the fit indicates that, on the
one hand, (the bulk of) the evaporation spectrum is indeed statistical, and that, on
the other hand, the shape ﬂuctuétions at the saddle point are very well accounted
for by Eq. 7.3. The high quality of the fit should also allow for an accurate determi-
nation of the amplification parameter p, and the Coulomb barrier V& , for a-particle
evaporation.

The percentage difference between the experimental data and the fit is shown
in the upper panel of Fig. 7.1. The residual of the fit is of the order of 1% throughout
the energy raﬁge, which shows the goodness of the fitting function. The residual
shows a statistically significant modulation With an amplitude of about 1.5%.

The alpha-particle spectra and the corresponding fits with Eq. 7.3 for 3He
+ "*Ag reactions at other bombarding energies ranging from 55 to 110 MeV are
shown in the lower panel of each sextant in Fig. 7.2. The percentage residuals of the

fits are also shown in Fig. 7.2, in the upper panel of each sextant. All the fits are
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Figure 7.1: Lower panel: The experimentally measured C.M. a energy spectrum ( e ) from
3He+™*'Ag reaction at 65 MeV beam energy, and the fit (—) with Eq. 7.3. Upper panel:
The percentage difference between the experimental data and the fit shown in the lower
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129

excellent, with residuals on the order of only 1%. All the residuals show a statistically
significant modulation with an amplitude of about 1.5% which repeats itself both in
amplitude and phase at all bombarding energies.

Several questions immediately come to mind. Is the modulation physical, as
those expected for optical potentials? Could it be the results of instruméntal effects,
like modulations introduced by departures from linearity of ADCs, amplification
electronics, detectors, etc.? Or could it be a fitting problem associated with the
rigidity or modulations in the fitting function?

Instrumental effects have been ruled out. The modulation is observed in sev-
eral independent de'tector—electronics chains. The modulation and the alpha-spectra
themselves shown in Fig. 7.2 have also been conﬁrmed in follow-up experiments us-
ing different detectors, ADCs, different gains, and different chains of ampliﬁcation
electronics.

The question regarding the fitting function is a more difficult one. The
fitting function Eq. 7.3 is non polynomial, thus it does not introduce the modulation
we see. From a close inspection it is clear that it is the data that wrap themselves
aroﬁnd the fitting function, not vice-versa.

But what if there is a slight mismatch between a smooth fitting function
and a true statistical evaporation spectrum which is also smooth? There seems no
easy and clear-cut answer to this question.

Before we can answer this question, let us look now at the spectra of alpha-

particles emitted from nuclei formed in another *He-induced reaction, 3He + °7Au.
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Figure 7.2: Lower panels: The experimentally measured C.M. « energy spectra ( o) from
the 3He + "'Ag reactions at 55, 65, 75, 85, 95, 110 MeV beam energies, and the corre-
sponding fits (—) with Eq. 7.3. Upper panels: The percentage differences between the
experimental data and the fits with Eq. 7.3 shown in the lower panels. The error bars
represent the statistical errors of the experimental data.



131

NP I SR IS PP | SIS IS PP I B
15 20 20 15 <0 2O

e (MeV)

Figure 7.3: Lower panels: The experimentally measured C.M. o energy spectra (o) from
the 3He + 1°7Au reactions at 75, 85, 95, 110 MeV beam energies, and the corresponding
fits (—) with Eq. 7.3. Upper panels: The percentage differences between the experimental
data and the fits with Eq. 7.3 shown in the lower panels. The error bars represent the
statistical errors of the experimental data.
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Shown in the lower panels of sextants in Fig. 7.3 are the alpha-spectra and
the corresponding fits with Eq. 7.3 for 3He + %7Au reactions at bombarding energies
of 75, 85, 95, 110 MeV, respectively. As in the case of *He + "**Ag reaction, the low
energy part of the spectra was excluded in the fits because of possible contributions ‘
frofn light surface confaminants, a,n.d the high-energy tail of the measured spectra
was also excluded because Eq. 7.3 does not consider pré-equilibrium emission. Due
to the substantially higher Coulomb barrier for a-particle emission, the a-particle
emission probability is much smaller in the *He + '°”Au reaction than in the 3He
+ ™2*Ag reaction. The low emission probability, on the one hand, leaves way for
pre-equilibrium emission to play a larger role in the high-energy tail of the measured
spectra, and on the other hand, elevates‘the relative importance of the contributions
to the low-energy part of the spectra by light surface contaminants. Thus the data
range used in the fits was even more limited than in the case of 3He + ™*Ag reaction.

The quality of the fits .is excellent. The residuals of the fits aré of the order
of 1%. The percentage residuals of the fits are shown in Fig. 7.3, in the upper panels
of sextants. The residuals also show a modulation somewhat sirﬁilar to that observed
in Fig. 7.2 for *He + "#*Ag reaction. But, the periodicity of the modulation seen in
the spectra from the 3He + ™*Ag reaction, seems lost, and the modulation seems
to decrease in magnitude as energy increases, perhaps due to the more limited data
rarige.

The alpha-spectra from the 3He + ¥1Ta and ®**Cu reactions are not shown.

The results for 3He + 8'Ta reaction look sirﬁilar to those for the 3He + °7Au
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reaction. Both Ta and Cu targets are more susceptible to surface contamination
from oxidation. Thus the low-energy part of the alpha-spectra obtained for the
reactions with these targets has contributions from light surface contaminants such
as carbon and oxygen. For 3He 4 ™#'Cu reaction, the center-of-mass velocities are |
high except at the lowest bombarding energies. The presence of incomplete fusion
at high bombarding energies therefore makes the C.M. energy spectra different from
the energy spectra in the fr@me of emitting sQurceé. However, the alpha-spectra
from the 3He + "**Cu reaction at the lowest bombarding energies (55, 65 & 75 MeV)
should allow us Ito-extract with goon accuracy the Coulomb barrier V2 , and the
amplification parameter p for the Ga nucleus formed in the reaction. The a-particle
energy spectra from the 3He + !%1Ta reaction at intermediate bombarding energies
(75, 85, 95 & 110 MeV), where the alpha-emission probability is rgldtively high, thus
diminishing the contributions from light surface contaminants, should also allow us
to extract the Coulomb barrier V2 | and the ampliﬁcation parameter p for the Re
nucleus. The extracted values for these parameters are presented in the following

section.

7.2.1 Extracted parameters, and Systematics of Coulomb Barriers for

Alpha Evaporation-

The high quality of the fits shown in Fig. 7.1, 7.2 and 7.3 indicates that the
formalism represented by Eq. 7.3 can well account for the underlving physical process

of alpha evaporation. That is: a) particle evaporation is governed by phase space; b)
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the thermal shape fluctuations at the saddle lead to a distribution of configurations
— thus a distribution of Coulomb barriers — at which a particle is emitted. The
lattervcan be well described by the Coulomb barrier V2 , at the saddle and the
amplification parameter p.‘ The high quality of the fits using Eq. 7.3 thus allows for
an accur;ate determination of V3 ,, p, and the temperature T of the residual nucleus
produced by particle emis§i0n.

The values for V8 ., p, and T extracted from the fits shown in F ig. 7.2 for
nuclei formed in the 3He + ™*'Ag reactions, are shown in Fig. 7.4, as a function of
bombarding energies. In the energies range from 55 to 110 MeV, the values for V,
are constant, indicating virtually the same saddle shapes in this energy range. The
amplification parameter p also remains roughly constant. The temperéture T of t.he
residual nucleus incréaseé slowly as energy increases, as expected.

~ The values for V&, p, and T obtained from the fits shown in Fig. 7.3 for
nuclei formed in the 3He + !°7Au reactions, are shown in Fig. 7.5. The extracted
values for these parameters for nuclei formed in the He + 1.81Ta and "**Cu are
shown in Figs. 7.6 and 7.7, repectively. In the explored energy range, the Coulomb
barriers V3, for these systems do not change with energy, as observed in Fig. 7.4 for
3He + "*Ag. One also observes approximately constant values for the amplification
parameter p over the energy range explored. The values for the temperature T
increase slowly with energy, but decréase, also slowly, with»increa,sing size of the
nucleus.

The Coulomb barriers V§,, at the saddle for alpha evaporation, obtained
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The solid line is the systematic of V§, ; established with the data points shown. The dashed
line is the systematic of the Coulomb barriers for alpha evaporation given by Parker et al.
(Park 91].

for a range of nuclei (Ga, In, Re, T1) produced in the *He + Cu, Ag, Ta, Au
reactions, proyide a systematic of V3, as a function of the atomic number and
the geometrical size of nucleus. This systematic is shown as the solid line in Fig. 7.8
where the Coulomb barrier V3, for alpha evaporation isvv plotted against the atomic
number Zcn of the compound nucleus from which the alpha particle is emitted. The
systematic is well represente‘d by the equation:

o 2.88 (Zon — 2)

= M 7.6
Veou 1.370(ACN—4)1/3+4.537( ev), (7.6)
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where Acn 1s the mass number of the compbund nucleus. Also shown in Fig. 7.8 as
the dashed line is the systematic of Parker ét al. [Park 91] for Coulomb barriers for
alpha-particle evaporation. The eyaporation barriers from the Parkgr’s systematic
are slightly lower than ours. The compound nuclei, whose alpha evapqration barriers
were determined and used to establish the Parker’s systematic, were prepared in
heavy-ion reactions, and have therefore average angular'xﬁomenta substantially larger
than for the compound nuclei produced in the *He-induced reactions. Large angular
momenta may result in deforméd compound nuclei and thus redﬁced evaporation
barriers. The difference between the Parker’s systematic and ours may also lie in
the fact that, while our Coulomb barrier is for the Sé;ddle configuration, Parker’s is
averaged over the thermal shabe ﬂuctuations.

It should be interesting to see how the amplification parameter p changes
with the size of compound nucleus. In Fig. 7.9, the values for p are plotted against
the atomic number of the nucleus from which the a-particle is emitted. One observes
a gradual increase of p as an emitting nucleus becomes largér. This seems natural,
since the larger the nucleus, the more Coulomb energy associated with it. No effort

has been made yet, however, to understand the detailed systematic features of Pp.

The extracted values for the penetrability parameter v are 20.3, 23.9, 15.0,
14.2, 16.9, 14.9 for the *He + "**Ag reactions at 55, 65, 75, 85, 95, 110 MeV bom--
barding energies, respectively. For 3He + ®7Au reactions at bthe beam energies 75, -
83, 95, 110 MeV, the extracted values for v are 35.1, 14.4, 15.4, 14.4, respectively.

The 7 values obtained from the fits for alpha emission from the 3He + *2*Cu & 8!Ta
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Figure 7.9: The extracted values of the amplification parameter p are plotted versus the
atomic number Z¢y of the nucleus from which a-particle is emitted.

reactions are also high, all above 12.6. These large values for v indicate that con-
tributions from the quantum barrier penetration are negligible at these excitation

energies [More 87].

7.3 Orthogonal Polynomials Representation of Modulations
in Alpha Spectra

As shown in Section 7.2, the fits with Eq. 7.3 indeed represent very well
the spectral shape of the a-energy spectra from reactions 3He + "2 Ag and other

reactions at the various excitation energies. Moreover, Eq. 7.3 is a smooth function.
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The residuals of the fits show statistically significant modulations which, in the case
of 3He + ™'Ag reaction in particular, repeat themselves both in amplitude and
phase at all bombarding energies. The goodness of the fits with Eq. 7.3 is, however,
a posteriort knowledge. We do not know a priori that Eq. 7.3 should werk so well.
Therefore, one still needs to seek further assurance that the modulations
observed in the residuals are indeed physical resonances. This assurance turns out
“to be quite difficult to obtain.

_To a lesser extent, one can try to quantitatively describe and extract in-
format‘ion on the modulations observed in tﬁe alpha spectra,-perhaps in the hope
that some.clue may beeome evident. For this purpose, we have devised an analyti-
cal procedure based upon orthogonal polynomials. We write down the experimental

spectrum F'(¢) as a linear combination of orthogona! polynomials P, (¢)

F(e) = cuS(€)Pale), ‘ (7.7)

where S(€) is a suitably chosen weight function that generates the polynomials P, (¢);
¢n is the coefficient which can be considered as the amplitude of a spectral mode

corresponding to the nth order polynomial P,(¢). The orthogonality condition is
b
/ S2(€) Pa(€) P (€) de = (7.8)

The choice of S(e) is dictated by the desire to concentrate the bulk of the
spectral shape into the single coeflicient ¢y. The modulations then appear in the

higher-order coefficients, hopefully in only one or two. This goal can be achieved
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by choosing for S(€) the form given by Eq. 7.3 with parameters obtained from the
least squares fit. This guarantees that ¢y will take up the bulk of the spectrum. The
amplitudes ¢, can be obtained from the dot product of the experimental spectrum

with the nth polynomial .
b .
ey = / F(€)S(e) Po(e) de, (7.9)

and the corresponding strength s, can be defined as

sn:ci//abFQ(e)de. o (7.10)

By definition we have Y s, = 1.

For the given weight function S(e), the existence of the polynomials P,(€)
that satisfy the orthogonality condition Eq. 7.8 can be proved. The proof, and the
procedure that is used to genefate the polynomials P,(¢€), can be found in textbooks,
ref. [Sans 59] for example. .

AC++ céﬁlpuﬁer code has thus been developed to implement this analytical.
procedure. The details of the implementation and the code are given in Appendix B.
Now we can apply the procedure to the experimental spectra shown in Section 7.2.

The rééults of this analysis for the alpha spectrum for the 3He + "'Ag
reaction at 65 MeV bombarding energy is shown ih Fig. 7.10. The weight function
S(e) is chosen to be the fit shown in Fig. 7.1. Shown in the lower panel in Fig. 7.10 are
the measured alpha spectfum and the linear combination of the orthogonal functions
(Eq. 7.7) up to the 10'® order. This linéar combination of the orthogonal functions

indeed represents the spectrum in all its details. The percentage residuals of the
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Figure 7.10: Lower panel: The measured C.M. a-particle energy spectra (o) and the
linear combination of the orthogonal functions (Eq. 7.7) (solid lines), for the 3He 4 "**Ag
reaction at 65 MeV beam energy. The inserted figure shows the strength s, of the nt*
order as defined in Eq. 7.10 plotted against the order n. Upper panel: The dots are
the percentage difference between the experimental data and the fit with Eq. 7.3. The
error bars represent the statistical errors of the experimental data. The solid line is the
percentage difference between the combination of the orthogonal functions and the fit.
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fit, and the percentage difference between the linear combination of the orthogonal
functions and the fit, are plotted in the upper panel of the figure. The nearly perfect
match between the two percentage differences shows also the excellent quality of the
polynomials representation. The strength s,, as defined in Eq. 7.10 is plotted against
the order n in the insert inside the lower panel. We see that indeed ¢ (sp = 1)
takes uf) the bulk of the spectrum, and that only a few of the coeflicients c;z of small
magnitude suffice to exhaust the modulation. |

Shown in the lower panels of sextants in Fig. 7.11 are the measured center-
~of-mass a-energy spectra and the linear combination of the orthogonal functions,
for the 3He + natAg reactions at bombarding energies of 55, 65, 75, 85, 95, and
110 MeV. The weight functions are chosen to be the .corresponding fits shown in
Fig. 7.2. Plotted in the ﬁpper panels of sextants are the percentage residuals of the
fits, and the percentage differences between the linear combination of the orthogonal
fuﬁctions and the fits. We see that both the spectra and the residuals of the fits are
excellently represented by a combination of the orthogonal functions. In Fig. 7.12 the
strength s, is plotted against the order n. At all bomdarding energies, the 0*" order
amplitudés co take uvp the bulk of the spectra (s, = 1), and only a few coeflicients
¢n of small magnitude suffice to exhaust the modulations. Th¢ amplitudes for the
5" order (c5) seem to stand out and retain api)roximately the same magnitﬁde for
all bombarding energies.

For the C.M. a-energy spectra from the ®He + !97Au reactions at 75, 85,

95, and 110 MeV bombarding energies, the linear combination of the orthogonal
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Figure 7.11: Lower panels: The measured C.M. a-particle energy spectra (o ) and the linear
combination of the orthogonal functions (Eq. 7.7) (solid lines), for the 3He + "@*Ag at six
different bombarding energies. Upper panels: The dots are the percentage differences
between the experimental data and the fits with Eq. 7.3. The error bars represent the
statistical errors of the experimental data. The solid lines are the percentage differences
between the combination of the orthogonal functions and the fits.
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Figure 7.13: Lower panels: The measured C.M. a-particle energy spectra ( o ) and the linear
combination of the orthogonal functions (Eq. 7.7) (solid lines), for the 3He + °7Au at four
different bombarding energies. Upper panels: The dots are the percentage differences
between the experimental data and the fits with Eq. 7.3. The error bars represent the
statistical errors of the experimental data. The solid lines are the percentage differences
between the combination of the orthogonal functions and the fits.
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functions also represents very well both the spectra and the fesiduals of the fits, as
shown in Fig. 7.13. The corresponding strength s, is plotted versus the order n in
Fig. 7.14. As expected, the strength so for the 0! order is appfoximately equal to 1,
and only a few coeﬁcients ¢, of small magnitude suffice to exhaust the residuals of
the fits.

The orthogonal poiynomials analysis presented above provides us a way to
quantitatively describe both the measﬁred spectra and the observed modulations in
the spectra (see Fig. 7.11). It also allows us to extract information on the strength of
a mode represented by a polynomial of certain order n, althqugh at this stage what
physical meaning that may be attached to the polynomial‘s is uncléa,r. In general,

ana,lysis schemes of this sort should be useful to pick up signals in noisy environments.

7.4 An Alternative Approach

Although the orthogonal polynomials analysis works excellently in describ-
ing .quantitatively both the measured spectra and the observed modulations, it falls
short of convincing us that fhe observed modulations are really physical. To believe -
the modulations obsérved in ‘the residuals of the fits still ;‘equires the assumption
that the fits truthfully represent the unmodulated spectral shape.

It becorﬁes clear that new ways to identify strucfrual modulations without
relying on a fit with certain spectral shape must be developed.

One alternative approach is to use a smoothing procedure, which retains
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the long-range variations but removes the short-range modulations, to provide the
unmodulated background spectral,shape. Strutinski has developed a procedure based
on a Gaussian smoothing function, to obtain smoothed shell model Iével densities
[Stru 67]. The S£rutins'ki procedure has also been generalized to retain higher-order
(up to the 7*h order) variations in the smoothéd shell model level densities [Nils
69, Tsan 69, More 72b]. Using the generalized Strutinsk.i procedure, the.smoothed

spectrum Fj(€) can be written as:

Fie) = %/F(e’) fk(elf‘e) exp[—(elge)z] d(%), (7.11)
where F.(e) is the original spectrum to be smoothed; ¢ is the width of the Gaussian
smoothing function. The function fi is chosen in such a way that the smoothed
spectrum retains the long-range variations up to a fixed order. Choosing the function

fr as [Nils 69, Tsan 69, More 72b]:

’Il

k- .
Z 22%, Hopn(u), (7.12)

€ —e€ . i :
where v = ——, and H,, are the Hermite polynomials of even order, the smoothed

spectrum then retains the long-range variations up to the (2& + 1)** order (see Ap-
pendix A).

This smoothing procedure works excellently to obtain long-range features.
However, in the current case, this smoothing procedure does not help, since the width
of the modulation is comparable to the feature scale of the spectr:;.m. The modulation
either gets no chance to stand out (lwith small £), or entangles with spectral shape

itself (with large ¢).
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7.5 Conclusion

The search for evidence for the existence of complex particles as independent
particles inside a nucleus is still an ongoing effort. Tentative evidence is presented
in this part for structural modulations of alpha particles similar to those expected
for optical potentials. The presented structural modulations were observed in the
residuals of the fits to the measured alpha spectra with a smooth spectral shape. Th¢
spectrql shape used in the fitting is shown to represent alpha spectra to an excellent
precision, although this is not sufficient to convince one that the modulations, which
- appear in the residuals of the fits, are a measure of a-particle resonances in a potential
well.

An analysis procedure based on orthogonal polynomials has been developed,
to quantitatively describe the residuals of the fits. This procedure allows one to
extract information on the strength of a mode represented by a pblynomial of a
certain order. However, the physical meaning of the polynomials, which are generated
by using the spectrzﬂ shape as their weight function, is unclear.

It seems still a long way to reach definite conclusions regarding the physi-
cal .reality of the observed modulations, thus the existence of complex particles as

independent particles inside a nucleus.
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Appendix A

(Generalized Strutinski Smoothing

Procedure

Using the generalized Strutinski smoothing procedure [Nils 69, Tsan 69,

More 72b], the smoothed function Fy(z) can be written as:

’

= = F ) e~ (=)’ d(%), (A1)

where F'(z) is a function to be smoothed, and ¢ is the width of the Gaussian smooth-

st )fk

-z

ing function. The correction function fj (u = ) is so chosen that the smoothed

function retains the long range variations up to a fixed order. In the following it will

be demonstrated that, choosing f; to be [More 72b]

'n.

k
Z 22%, Hyn(u), (A.2)

where k is a positive integer and Hy,(u) are the Hermite polynomials of even “order,

the smoothed function F,(z) retains the long range variations up to the (2k + 1)th



160

order. Equivalently, it is to show that, for m =0, 1,2, ---, (2k + 1),

z™ \/_/ (€u + ) (zk: (22711)11 Hsn(u )) exp(—u?) du. (A.3)

First, it is easily verified that, for m =0, 1, ---, (2k 4+ 1), Equation A.3 is
valid if £ = 0, 1, 2, 3 (see also refs. [Nils 69, Tsan 69}).
Now, given that, for m = 0,1, 2, ---, (2k — 1),

z™ \/_/ (fu+z (iz;::) (2;1127 Hgn(U)> .exp(—u2) du, (A.4)

we show that Eq. A.3is valid for m =0, 1,2, ---, (2k + lb). Notice that, for m =0,

1,2, -+, (2k — 1),

=™ . | | (A.5)

00 ' 0, n # m,
/, H,(uv)H,(u) exp(—u?) du = : . (A.6)
e 2"nl\/m, n=m,
has been used. Thus, for m = 2k — 1 in particular, Eq. A.5 becomes

n

H2n )) exp(—u?) du. (A.7)

— 00

$2k—1:%/w(£u+$2k 1(2
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Next we show that Eq. A.3 is valid for m = 2k and 2k + 1. By Eq. A.7,

2’“:/1219 21 dg

= \/_/ [/ 2k (éu + z)* dz ](Z S| Hzn(u)> exp(—-uz)du.

_ _1_\/_ 2’“(12) 22711 ’ ‘Qn )) exp(—u?) du
k ( n

- \/_F/_oo(ﬁw‘” %(Z 22n

n=0

- Hon )) exp(—u?) du, (A.8)

where the identity

[ (8 G ) epctyau =0, Gz, ag)

has been used. The proof of this identity will be given later. In the same way,

g+l = /x(2k +1)z%* dz .
\/_/ [/ 2k + 1) (éu + x)dem] (go (2;37); Hgn(U)> exp(—u?) du
= ﬁ/— fu + z) 2k+1(nz_: (22"?’1,' Hau( )) exp(—u?) du

| N GO Vi
—7; " e (2

Han(u)) exp(—u?) du

- = / (€u+2) 2k+1< > (2;172' Hzn(u)) exp(—u?) du, (A.10)
where
/ Z LR ( nZ: (2;171' H2n(u)> exp(—u?) du = 0, (A1)

since the integrand is an odd function.
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Now the prdof of Eq. A.9 is given to finish the proof of Eq. A.3. It is easily

verified that Eq. A.9 is true for £ = 1 and 2. We show in the following that Eq. A.9

holds for any k (k > 1). Notice that u?*=2 can always be expressed as

k=1
w7 = 3" a, Hyn(u), (A.12)

n=0

where a, are the coefficients properly chosen to make the identity. Thus, by using

the recurrence formula of the Hermite polynomials

Hopr(uw) + 2uHp(u) + 2nHyq(u) = 0, (A.13)

one gets
o ' k-1
4u?* = é]n,t2y2k_2 = 442 Z an Hyp(u)
= ao(Ha(u) + 2Ho(w)) | ' (A.14)
k-1 :
+ Z G (Hanga(u) + (81 + 2)Han(u) + 8n(2n — 1) Hyn_o(u)).
Therefore,.
0 ko 1\n
/_oo 4u2k<7§ (2237)” H2n(u)) exp(—u?) du
= [ ‘: ao(Ha(u) + 2Ho(u)) ( 2 (2;13: H%(u)) exp(—u?) du
+ /_o:o[ : an, (H2n+2(u) + (8n + 2)Han(u) + 8n(2n — 1)H2n_2(u))]
k (_1\n
(7;) (22:71' Hgn(U)> exp(—u?) du
=0, (A.15)

where the integrals are readily evaluated by using the orthogoﬁality equation A.6.

QED.
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Appendix B

Orthogonal Polynomials Analysis

and a C+-+ Code

A system of polynomials P,(z):
Pn(x)___anmn_i_a;mn—l_*___,, (n:0’172,...)’ (Bl)

is called orthogonal on the interval [a, b] with respect to the weight function w(z), if

b ' 0, n#m,
/ w(2) Po() Pr(2) dz = (B.2)

e hny, n=m.
The weight function w(z) (w(z) > 0, z € [a, b]) determines the system P,(z) up to a
constant factor in each polynomial. The specification of these factors is referred to as
standardization. The usual way to standardise is called normalization by specifying

h, = 1.

One example of orthogoﬁal polynomials is the Legendre polynomials where
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w(z) = 1, ¢ € [—1,1]. The Legendre polynomials are widely used to represent the
angular distributions of products in nuclear reactions.

Another_ example of orthogonal polynomials is the Hermite polynomials
where w(z) = exp(—z?), z € [—oo,oo]; The Hermite polynomials can be used to

represent the wave functions of a harmonic oscillator.

B.1 Generation of Orthogonal Polynomials for An Arbitrary

Weight Function

Given a weight function w(z) defined in [a,b] that the following integrals

-

(called moments) exist and are finite
b . '
O = / w(z)z" dz, (n=0,1,2,--), (B.3)

and that ap > 0, then it is possible to construct in a unique way, apart from the
sign, a sequence of orthogonal polynomials P,(z) with respect to the weight function

w(z) in [a,b]. This is shown as follows [Sans 59).

If we let
O (2) = Po(2)/an = 2" = Dpa"' 4 -+, (B4
then .
Qo(z) = 1; 1= ab w(z)aldr, 1/a} = ap;
®,(z) = ¢ — Di; /ab w(@)[z — Di]de =0; (B.5)



165

To construct the successive polynomials ®,, ®3, - - -, we notice that for any constants

fin, Vpn the polynomial

Pn(z) = (2 — pin)Pr1 — Vn®roo, (n>2)

has its first coefficient equal to one and is orthogonal to ®,, @y, --

orthogonality to ®,_, with respect to w(z) implies

/ab zw(z)®p-1(2)Py—2(z)dz = v, /b w(z)®:_,(z) de,

the orthogonality to ®,_; with respect to w(z) implies
b : ' b
| ww(@)03_ (@) do = pn [ w(@)®2, (2) da,

and the normalization of a,w!'/?(z)®,(z) in [a, b] implies

a /ab w(z)®2(z)dz = 1.

(B.6)

t q)n-3. The

(B.7)

(B.8)

(B.9)

Thus we have the procedure to generate a complete set of orthogonal polynomials

with respect to the given weight function w(z).

B.2 OrthogonalA Polynomials Representatioﬁ of Structural

Modulations in Alpha-Particle Speétra

We observe that, in our experimentally measured alpha-particle spectra (see

Fig. 7.1, for example), the structural modulations of small magnitudes superimpose

on the overall smooth background represented by the fits S(¢) using Eq. 7.3. Choos-

ing the weight function to be w(e) = S%(e), the corresponding set of orthogonal
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polynomials P,(€) can be generated which satisfies the orthogonality condition:

b 07 n 7é m,
- / S2(€) Py(€) P(€) de = (B.10)
1. n=m.

Then the experimental spectrum F'(¢) can be written as a linear combination of

orthogonal functions S(€)P,(e)

F(e) = Z cnS(€)Py(e), (B.ll)
where ¢, is the coefficient which can be considered as the amplitude of a spectral
mode corresponding to the n't order polynomial P, (e).

The choice of 5%(¢) as the weight functiOI; guarantees that the coefficient ¢
of the zero-th order will take up the bulk of the spectrum, and the modulations then
appear in the higher order coefficients, hopefully in only one or two. The amplitutes

¢, can be obtained from the dot product of the experimental spectrum F{e) with

the n'® order orthogonal function S(€)P,(¢)

en = /: F(€)S(€)Pa(e)de, - (B.12)

and the corresponding strength s, can be defined as

on = c;i/ /b F2(e) de. | | (B.13)

By definition we have S8y, = 1.
This analysis procedure based on the orthogonal polynomials should allow
us to quantitatively describe the modulations in the measured alpha spectra, and
extract information such as the strength associated with a spectral mode represented

by the polynomial of the order n.
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B.3 A C+4++4 Code that Implements the Polynofhials

Analysis Procedure

A computer code in C++ has been developed to implement the analysis
procedure illustrated above. The C++ code package consists of the following four

object classes:

o OrthWeightD: Delared in the head file OrthWeightD.h. This class estab-
lishes the weight function. Tt has utility functions that return the values of
w(z), w'/?(z), and other properties such as the parameters the weight func-
tion requires. The class also provides utilities to reset some of its parameters.
Its inline member functions are implemented in the head file OrthWeightD.h.

Other member functions are implemented in the file OrthWeightD. cxx.

e OrthPolyD: Declared in the head file OrthPolyD.h. OrthPolyD is a subclass
of the class OrthWeightD, and inherits all the propérties of OrthWewghtD.
The- class OrthPolyD establishes the system of the orthogoﬁal polynomials,
with respect to the weight function inhe‘rited from Ov;thWeig‘htD, up to a
specified maximum order MaxN_. It has utilities to reset the boundaries of the
variable domain [a,b] and the rn'aximum”order, and reestablish the polyno-
mials upon the resetting of [a,b] and/or MaxN_. Its inline member functions
are implemented in the head file 0OrthPolyD.h. Other member functions are

implemented in the file OrthPolyD. cxx.
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e SpectrumlD: Declared in the head Aﬁle SpectrumiD.h. This class establishes
. the object of one dimensional spectrum which is to be analyzed. It has utility
functions that return the values of many aspects of the spectrum properties,
such as the counts in a specified channel, the integrated counts in a specified
spectrum window, etc.. It has the structure in place for expansion into a full
fledged analysis package for one dimensional spectrum, although the full im-
plementation has not been made. For the current analysis, a member function
providing access to the spectrum data sufﬁces. The inline member functions
are implemented in the head file SpectrumiD.h. Other member functions and

non-member functions are implemented in the file SpectrumiD.cxx.

. M.odeAmplitudes:' Declared in the head file ModeAmplitudes.h. This is the
class object in which the orthogonal polynomials analysis is carried out.
ModeAmplitudes is a subclass of both the class OrthPolyD and the class
SpectrumlD, and inherits all the properties of OrthPolyD and SpectrumlD.
Its inline member functions are implemented in the head file ModeAmpiitudes .h.

Other member functions are im'plemented in the file ModeAmplitudes.cxx.

The head ﬁle‘s, OrthWeightD.h, OrthPolyD.h, SpectrumiD.h, and ModeAmplitudes.h,
should reside in a directory callea ORTHPOLY/include, whére ORTHPOLY ‘is a s‘ymbolic
link pointing to the parent directory of include.

The following is a main program (function) which puts everything together,

to perform the orthogonal polynomials analysis on the alpha energy spectrum from
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the *He + "**Ag reaction at 65 MeV beam energy. It serves as a sample llustrating

how the classes are to be used.

[/ *%Fkkxxkkmkk kR xkkkkkk start of file: AgB5.cC kkkkkkkkkkkkdhkikikhkkkkk
//To perform the polynomlals anaylsis on spectrum in the file Ag65.dat.

#include
#include
#include
#include
#include
#include
#include

<iostream.h>

<stdio.h>

<math.h>
"ORTHPOLY/include/OrthWeightD.h"
"ORTHPOLY/include/OrthPolyD.h"
"ORTHPOLY/include/SpectrumiD.h"
"ORTHPOLY/include/ModeAmplitudes.h"

char *StrCat(const char *, const char *);

int main() {

int MaxOrder = 10; //the analysis is done up.to order MaxOrder;-
double LimitLow
double LimitHigh

10.0; //the energy range of the spectrum to be
25.0; //analysed [LimitLow,LimitHigh];

char fnameSpc[] = "Ag65.dat"; //the file that contains spectrum data;
const char fnamef] = "Ag65"; //prefix for output file names;

double wparal[] = { 0.20854e+6, 12.423, 2.8737, 1.6870, 23.944 };
//values for (statistics, Vcoul, T, p, gamma) from fit with Eq.23;
OrthWeightD w(wparal[0], wpara[1], wpara[2], wpara[3], wpara[4]);
//declare and establish the weight object w of class OrthWelghtD
OrthPolyD Pn(w,LimitLow,LimitHigh,Max0Order);
//declare and establish the polynomial object Pn of class OrthPolyD;
//Pn of variable domain [LimitLow,LimitHigh] is established with w
//up to the order MaxOrder;

//now read in the spectrum:

float st, en, bi;

float *sp = new float[4096];

int nch;

void getSpectrum(char *fname, float &st, float &en, float &bi,

int &nch, float *sp);

getSpectrum(fnameSpc, st, en, bi, nch, sp);
SpectrumlD s(st, en, bi, sp);

//declare and establish the spectrum object s of class SpectrumiD;
delete [] sp; //sp is no longer needed; release the space;

//now the polynomials analysis:
ModeAmplitudes An(s,Pn,LimitLow,LimitHigh,Max0Order);
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//declare the object An of class ModeAmplitudes; An is established’
//with both s and Pn, in the domain [LimitLow,LimitHigh], and up to
//the order MaxOrder;

//print out the results to files:

FILE *Pfit = fopen(StrCat(fname,".fit"),"w+"); //original fit;

FILE #Psum = fopen(StrCat(fname,".sum"),"w+"); //sum of orth functions
FILE *Pdif = fopen(StrCat(fname,".dif"),"w+"); //diff. btw sum & fit;
FILE *Pdel = fopen(StrCat(fname,".del"),"w+"); //diff. btw data & fit;
FILE *Pstr = fopen(StrCat(fname,".str"),"w+"); //strength vs order n;
double x;

for(x = An.LowBoundary();

}

}

x <= An.HighBoundary(); x += ((double) An.BinSize())/4.0) {
//print out the calculated quantities for each bin of reduced width;
double sqrtw = An.SqrtWeight(x); //the original fit; :
double sum = 0.0; . //combination of orth functions;
for (int i=0; i<=An.MaxOrder(); i++) {

sum += An.ModeAmp(i) * An.Polynomial(x,i) * sqrtw;

}
fprintf (Pfit, "%f %f\n", x, sqrtw);
fprintf(Psum, "%f %f\n", x, sum);
fprintf(Pdif, "%f J%f\n", x, 100.0*(sum_- sqrtw)/sqrtw) ;

for(x = An.LowBoundary()+0.5%An.BinSize();

x < An.HighBoundary(); x += An.BinSize()) {
double sqrtw = An.SqrtWeight(x);
double del = 100.0*(An.Counts(x) - sqrtw)/sqrtw;
double err = 100.0/sqrt(An.Counts(x));
fprintf(Pdel, "4f 4f %f\n", x, del, err);

double IntF2 = An.IntegralOfSquaredSpec();
for (int i=0; i<=An.MaxOrder(); i++) {

}

double strength = An.ModeAmp2(i)*An.PolyConstNorm(i)/IntF2;
fprintf (Pstr, "%d hg\n", i, strength); :

fclose(Pfit);
fclose(Psum);
fclose(Pdif);
fclose(Pdel);
fclose(Pstr);
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return O;

#include <string.h> ,
char *StrCat{const char *si, const char *s2) {

}

char *S = new char[strlen(s1)+strlen(s2)+1];
char *sptr = S;
while ((*sptr++

xg1++) 1="\0’) ;

sptr--;
while ((#sptr++ = *s2++) !="\0’) ;
return S; ‘

void getSpectrum(char *fname, float &st, float &en, float &bi,

}

int &nch, float *sp) {
float Energy; '

FILE *fp = fopen(fname,'r");

int 1 = 0; . _
while ( fscanf (fp,"/fAf", &Energy, (sp+i)) != EOF ) {
if (i==0) st = Energy;

i++;
}
nch= i;
en = Energy;
bi = (en - st)/({(float) (nch -1));
. st -= 0.5%bi;
en += 0.5%bi;

fclose(fp);

[ /¥ *5ksckckckxdkokookekerkkk end of file: Ag65.cc kkkkskskkskoksokskskkokokskok ok kkk
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The source code of the four object classes is given below. It consists of the
following files:
e class ModeAmplitudes: ModeAmplitudes.h, ModeAmplitudes.cxx
e class OrthPolyD: OrthPolyD.h, OrthPolyD.cxx
e class OrthWeightD: OrthWeightD.h, OrthWeightD.cxx

e class SpectrumlD: SpectrumiD.h, SpectrumiD.cxx

[/ xkkkckkkkkkkkkkkk start of file: ModeAmplitudes.h kkkkiokskkkkiokkdkkkkk
class ModeAmplitudes : public SpectrumiD, public OrthPolyD {
public: :
ModeAmplitudes(); //constructors:
ModeAmplitudes(const SpectrumiD& s, const OrthPolyD& p);
ModeAmplitudes(const SpectrumiD& s, const OrthPolyD& p, int n);
ModeAmplitudes(const SpectrumiD& s, const OrthPolyD& p, double a,
) double b);
ModeAmplitudes(const SpectrumiD& s, const OrthPolyD& p,
double a, double b, int n);
ModeAmplitudes(const ModeAmplitudes&); //construct by copying
“ModeAmplitudes(); //destructor

inline int MaxModeNum() const;
inline double LowBoundary() const;
inline double HighBoundary() const;
inline double ModeAmp(int n) const;
inline double ModeAmp2(int n) const;

-double IntegralOfSquaredSpec() const;
void setMaxModeNumber(int n);
void setAmplitudeOfAllModes();

//void setAmplitudeOfNthMode(int n); //not implemented
private: . . '
int MaxModeNum_; //<= MaxOrder of OrthPolyD;

double* PtrToModeAmplitudes_;
void copy(const ModeAmplitudesg);
};

[k krsokokkokokok ook dkokkkkokkk inline TUNCTIOonS #kskskkkskokkokokskdokok ok Kok ok Kok ok Hok ok Kok
inline int ModeAmplitudes: :MaxModeNum() const { return MaxModeNum_; }
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inline double ModeAmplitudes::LowBoundary() const { return Low_a(); }
inline double ModeAmplitudes::HighBoundary() const { return High_b(); ¥

inline double ModeAmplitudes::ModeAmp(int n) cecnst {
if (n<0) {
cout << "Error: Mode n < 0;" << endl;
return 0.0;
} else if ( n > MaxModeNum_ ) {
cout << "Amplitude for mode " << n << " is not available;" << endl;
return 0.0; '
} else {
return PtrToModeAmplitudes_[n];
. } '
}
inline double ModeAmplitudes::ModeAmp2(int n) const {
if (n<0) {
cout << "Error: Mode n < 0;" << endl;
return 0.0;
} else if ( n > MaxModeNum_ ) {
cout <<"Amplitude**2 for mode "<< n <<" is not available;"<< endl;
return 0.0;
'} else {
return ModeAmp(n)*ModeAmp(n) ;
}
}

/] *¥xkxkkkkkxkkkxkkkkkkkk end of file: ModeAmplitudes.h *¥kkkkkkskkkkkkskokkkkkok

[ [ ¥%xFxxkxk 0k 0k 0k kk k% start of file: ModeAmplitudes.cxx *kkkkskkskkkikokkskkskokk
#include <iostream.h>

#include <math.h>

#include "ORTHPOLY/include/OrthWeightD.h"

#include "ORTHPOLY/include/OrthPolyD.h"

#include "ORTHPOLY/include/SpectrumiD.h"

#include "ORTHPOLY/include/ModeAmplitudes.h"

ModeAmplitudes: :ModeAmplitudes() : SpectrumiD(), OrthPolyD() {
MaxModeNum_ = 0; ’
PtrToModeAmplitudes_ = new double[MaxModeNum_+1] ;

}

ModeAmplitudes: :ModeAmplitudes{const SpectrumiD& s, const OrthPolyD& p) :
Spectrum1D(s), OrthPolyD(p) {
float a = StartO0fSpec();
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float b = End0fSpec();
setSpectrumWindow(a, b);
if (a<b) {
setlLimit(a, b);
} else if (a>b ) {
setLimit(b, a);
}
MaxModeNum_ = O; :
PtrToModeAmplitudes_ = new double[MaxModeNum_+1];
setAmplitudeO0fAllModes();
} £l
ModeAmplitudes: :ModeAmplitudes(const SpectrumiD& s, const OrthPolyD& p,
' int n) : SpectrumiD(s), OrthPolyD(p) {

float a = Start0fSpec();

float b = End0fSpec();

setSpectrumWindow(a, b);

if (a<b) {
setLimit(a, b);

} else if Ca>b ) {
setLimit (b, a);

} : .
if (n<0) { Sy
MaxModeNum_ = 0;
} else if ( n > MaxOrder() ) {
MaxModeNum_ = MaxOrder();
} else {
MaxModeNum_ = n;
}
PtrToModeAmplitudes_ = new double[MaxModeNum_+1];
setAmplitudeOfAllModes(); '
} ) .

ModeAmplitudes::ModeAmplitudes(const SpectrumibD& s, const OrthPolyD& p,
‘ double a, double b) : SpectrumiD(s), OrthPolyD(p) {
setSpectrumWindow(a, b); ' :
if (a<b) { I‘
setlimit(a, b);
} else if (a>b ) {
setLimit (b, a);
}
MaxModelium_ = O;
PtrToModeAmplitudes_ = new double[MaxModeNum_+1];
setAmplitude0fAllModes();
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)

ModeAmplitudes: :ModeAmplitudes(const SpectrumiD& s, const OrthPolyD& p,
double a, double b, int n) : SpectrumiD(s), OrthPolyD(p) {
setSpectrumWindow(a; b);
if (a<b) {
setLimit(a, b);
} else if (a> b ) {
setLimit(b, a);
}
if (n<0) {
MaxModeNum_ = O;
} else if ( n > MaxOrder(}) ) {
MaxModeNum_ = MaxOrder();
} else {
MaxModeNum_ = n;
}
PtrToModeAmplitudes_ = new double[MaxModeNum_+1] ;
setAmplitude0fAllModes(); -
+

ModeAmplitudes: :ModeAmplitudes(const ModeAmplitudes& m)
SpectrumiD((SpectrumiD) m), OrthPolyD((OrthPolyD) m) {

MaxModeNum_ = m.MaxModeNum_;
PtrToModeAmplitudes_ = new double[MaxModeNum_+1];
copy (m);

}

ModeAmplitudes::~ModeAmplitudes() { delete [] PtrToModeAmplitudes_; }

void ModeAmplitudes::copy(const ModeAmplitudes& m) {
double *p = PtrToModeAmplitudes_ + MaxModeNum_ +1;
double *q = m.PtrToModeAmplitudes_ + MaxModeNum_ +1;
while (p > PtrToModeAmplitudes_) *--p = *--q;

}

void ModeAmplitudes::setMaxModeNumber(int n) {

if (n <0 |l n > MaxOrder() ) {
cout << "Error in -routine setMaxModeNumber: n < 0 ";
cout << "or n > MaxOrder of OrthPolyD" << endl;

} else if ( n == MaxModeNum_ ) {

T else { ‘
double *Pma = new double[n+1];
double *p, *gq;
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if ( n < MaxModeNum_ ) { //n < MaxModeNum_;
P = Pma + n +1;
q = PtrToModeAmplitudes. + n +1;
while (q > PtrToModeAmplitudes_) *--p = *--q;
delete [] PtrToModeAmplitudes_;
PtrToModeAmplitudes_ = Pma;
MaxModeNum_ = n;

} else { //n > MaxModeNum_;
p = Pma + MaxModeNum_ +1;
q = PtrToModeAmplitudes_ + MaxModeNum_ +1;
while (q > PtrToModeAmplitudes_) *--p = *--q;
delete [] PtrToModeAmplitudes_; '
PtrToModeAmplitudes_ = Pma;
for (int i=MaxModeNum_; i<=n; i++) setAmplitudeOfNthMode(i);
MaxModeNum_ = n;

void ModeAmplitudes::setAmplitude0fAllModes() {
for (int i=0; i<=MaxModeNum_; i++) setAmplitudeOfNthMode(i);
}

void ModeAmplitudes::setAmplitudeOfNthMode(int n) {
if (n <0 || n > MaxOrder() ) {
cout << "Error in routine setAmplitudesO0fNthOrder: n < 0 “;
cout << "or n > MaxOrder of OrthPolyD" << endl;
return; :

}

int ndata = (int) floor{((double) //number of channels in window;

( (WindowRight()-WindowLeft()+0.01*BinSize())/BinSize() ));
doible *pX = new double[ndata+1];
double *pY = new double[ndata+1];

float halfBin = 0.5%BinSize();
int i = 0;
if (BinSize() > 0.0) { ‘
for (float x = WindowLeft(); x < WindowRight(); x += BinSize()) {

i++;
pX[i] = (double) (x+halfBin);
pY[i]l = log((double) Counts(x+halfBin));

} .
} else if (BinSize() < 0.0) { : . ‘
for (float x = WindowLeft(); x > WindowRight(); x += BinSize()) {



}

4
pX[i]
pY[i]

(double) (x+halfBin);
log((double) Counts(x+halfBin));

int NumOfSubBin = 16; //shoulbe be 2°M;

double
double

int iBin = 0;
int K =

int iH

double

H = fabs((double) BinSize())/((double) NumOfSubBin);
sum = 0.0;

4;
=O;

aa, bb; //integration limit;

if (BinSize() > 0.0) {

aa
bb
} else
aa
bb
} else

(double) WindowLeft();
(double) WindowRight();
if (BinSize() < 0.0) {
(double) WindowRight();
= (double) WindowLeft();
{

return;

}

double y, dy, deltaX;
for (double x = aa; x <= (bb+0.0001*H); x += H) {
if (iBin == 0) {

}

deltaX = pX[2] - pX[1]; ,
'y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX;
if (iH == Num0fSubBin/2) {
iBin++;
iH = 1;
} else {
iH++;
}
else if (iBin == 1) {
deltaX = pX[2] - pX[1];
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX;
if (iH == NumOfSubBin) { '
iBin++;
iH = 1;
} else {
iH++;

3
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//nearest left spectrum bin index (1,2,...,ndata)
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} else if (iBin == ndata-1) { ,
deltaX = pX[ndata] - pX[ndata-1];
y = pY[ndatal] x* (x-pX[ndata-1])/deltaX
+ pY[ndata-11# (pX[ndatal-x)/deltaX;
if (iH == NumOfSubBin) '
iBin++; :
i = 1;
} else {
iH++;
-}
} else if (iBin >= ndata) {
deltaX = pX[ndatal - pX[ndata-1];
y = pY[indata]l] x* (x-pX[ndata-1])/deltaX
+ pY[ndata-1]* (pX[ndatal-x)/deltaX;
} else { _ '
double XX_1 = (pX[iBin]-pX[iBin-1]) *
(pX[iBin+1]-pX[iBin-1])*(pX[iBin+2]-pX[iBin-1]);
double XX_0 = (pX[iBin-1]-pX[iBin]) =
(pX[iBin+1]-pX[iBin]) * (pX[iBin+2]-pX[iBinl);
double XX_1p = (pX[iBin-1]-pX[iBin+1]) *
(pX[iBin]-pX[iBin+1]) * (pX[iBin+2]-pX[iBin+1]);
‘double XX_2p = (pX[iBin-1]-pX[iBin+2]) *
(pX[iBin]-pX[iBin+2]) * (pX[iBin+1]-pX[iBin+2]);
y = pY[iBin-1]*(pX[iBin]-x)*(pX[iBin+1]-x)*(pX[iBin+2]-x)/XX_1
+pY [iBin] *(pX[iBin-1]-x)*(pX[iBin+1]-x)*(pX[iBin+2]-x)/XX_0
+pY[iBin+1]*(pX[iBin-1]-x)*(pX[iBin] -x)*(pX[iBin+2]-x)/XX_1p
+pY [iBin+2] *(pX[iBin-1]-x)*(pX[iBin] -x)*(pX[iBin+1]-x)/XX_2p;
if (iH == NumOfSubBin) {
iBin++;
il = 1;
} else {
iH++;
}
}
sum += exp(y) * Polynomial(x, n) * SqrtWeight(x);
} .

x = WindowLeft();

deltaX = pX[2] - pX[1];

y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX;
sum -= 0.5 * exp(y) * Polynomial(x, n) * SqrtWeight(x);
x = WindowRight();.

deltaX = pX[ndata] - pX[ndata-1];

y = pYlndata] * (x-pX[ndata-1])/deltaX
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+ pY[ndata-1]* (pX[ndaté]-x)/deltaX;
sum -= 0.5 * exp(y) * Polynomial(x, n) * SqrtWeight(x);
sum *= H; '

PtrToModeAmplitudes_{n] = sum/PolyConstNorm(n);
delete [] pX; ~ '
delete []1 pY;

}

double ModeAmplitudes::IntegralOfSquaredSpec() const {

int ndata = (int) floor((double) //number of channels in window;
((WindowRight () -WindowLeft() +0.1*BinSize())/BinSize()));
new double[ndata+1];
new double[ndata+1];

double *pX
double *pY

float halfBin = 0.5%BinSize();
int i = 0;
if (BinSize() > 0.0) {
for (float x = WindowLeft(); x < WindowRight(); x += BinSize()) {

i+4; .
pX[i] = (double) (x+halfBin); _
pY[il = log((double) Counts(x+halfBin));

} .
} else if (BinSize() < 0.0) {
for (float x = WindowLeft(); x > WindowRight(); x += BinSize()) {

o it
pX[i] = (double) (x+halfBin);
pY[i] = log((double) Counts(x+halfBin));
}-
}
int NumOfSubBin = 16; //shoul be be 2°M;

double H = fabs((double) BinSize())/((double) NumOngbBin);
double sum = 0.0;

int iBin = 0; ~ //nearest left spectrum bin index (1,2,...,ndata)
int K = 4;

int iH = 0;

double aa, bb; /7integration 1limit;

if (BinSize() > 0.0) {
aa = (double) WindowLeft();
bb = (double) WindowRight();
} else if (BinSize() < 0.0) {
aa = (double) WindowRight();
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bb = (double) Windowleft();
} else {
return 0.0;

}

double y, dy, deltaX;
for (double x = aa; x <= (bb+0.1*H); x += H) {
if (iBin == 0) {
deltaX = pX[2] - pX[1];
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX;
if (iH == NumOfSubBin/2) {
iBin++;
iH = 1;
} else {
iH++;
}
} else if (iBin == 1) {
deltaX = pXx[2] - pXx[1];
y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX;
if (iH == NumOfSubBin) {
iBin++;
iH = 1;
} else {
iH++;
} .
} else if (iBin == ndata-1) {
deltaX = pX[ndata] - pX[ndata-1];
y = pYindatal =* (x-pX[ndata-1])/deltaX
+ pY[ndata-1]* (pX[ndata]-x)/deltaX;
if (iH == NumQfSubBin) {
iBin++;
iH = 1;
} else {
iH++;
}
} else if (iBin >= ndata) { _
‘deltaX = pX[ndata] - pX[ndata-1];
y = pY[ndata] * (x-pX[ndata-1])/deltaX
+ pY[ndata-1]* (pX[ndata]-x)/deltaX;
} else {
double XX_1 = (pX[iBin]-pX[iBin-1]) *
o (pX[iBin+1]-pX[iBin-1])* (pX[iBin+2]-pX[iBin-11);
double XX_0 = (pX[iBin-1]-pX[iBin]) *
(pX[iBin+1]-pX[iBin]) * (pX[iBin+2]-pX[iBin]);
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double XX_1p = (pX[iBin-1]-pX[iBin+1]) *
(pX[iBin]-pX[iBin+11) # (pX[iBin+2]-pX[iBin+1]);
double XX_2p = (pX[iBin-1]-pX[iBin+2]) *
(pX[iBin]-pX[iBin+2]) * (pX[iBin+1]-pX[iBin+2]);
= pY[iBin~1]*(pX[iBin]-x)*(pX[iBin+1]-x)*(pX[iBin+2]-x)/XX_1
+ pY[iBin]l*(pX[iBin-1]-x)*(pX[iBin+1]-x)* (pX[iBin+2]-x)/XX_0
+ pY:.[iBin+1]*(pX[iBin-1]-x)*(pX[iBin]-x)* (pX[iBin+2]-x)/XX_1p
+pY[1B1n+2]*(pX[1B1n 1]-x)*(pX[iBin]- x)*(pX[lBln+1]-x)/XX 2p;
if (iH == NumOfSubBin) {
1B1n++,
iH = 1;
} else {
iH++;
}

}
sum += exp(2.0%y);

= WindowLeft();

deltaX = pX([2] - pX[1];

y = pY[2] * (x-pX[1])/deltaX + pY[1] * (pX[2]-x)/deltaX;
sum -= 0.5 * exp(2.0%y);

= WindowRight();

- deltaX = pX[ndata] - pX[ndata-1];

y = pY[ndata] * (x-pX[ndata-1i])/deltaX
+ pY[ndata-1]* (pX[ndata]-x)/deltaX;

sum -= 0.5 * exp(2.0%y);

sum *= H;

delete []1 pX;
delete [] pY;
return sum;

J /¥ kskkkkkkkkkrkkkkkk end of file: ModeAmplitudes.cxx *¥kikkkkkokkkkkkkkkkok

[/ ¥k x0k ik kkkxokkkornkkk start of file: OrthPolyD.h ssksksokskskokskokskokkkokokkkokskkok
class OrthPolyD : public OrthWeightD {
public:

OrthPolyD(); ‘
OrthPolyD(OrthWeightD &w, double a, double b, int n);
OrthPolyD(OrthWeightD &w, float a, float b, int n);
OrthPolyD(const OrthPolyD &p);

“0rthPolyD(); //destructor



double
,double
double

inline
inline
inline
inline
inline
inline
inline
inline

void se
void se
void se
void se

private:
double
int
int
double*
double*
double*

void co
void se
void se

double
double
double
double

Moments(int n);
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//CurOrder_ reset to n;

Polynomial(double x, int n) const; //CurOrder_ not reset;

Polynomial(float x, int n) const;

//CurOrder_ not reset;

OrthPolyD& 6perator= (const OrthPolyD &p);

double Low_a() const;

double High_b() const;

int MaxOrder() const;

int - CurOrder() const;

double PolyConstC(int n) const;

double PolyConstLambda(int n) const;
double PolyConstNorm(int n) const;

tLimit(double a, double b);
tLimit (float a, float b);
tMax0Order(int n);
tCurrentOrder(int n);

Low_a_, High_b_;
MaxN_;

CurOrder_; 3
PtrToPolyConstC_;
PtrToPolyConstLambda_;
PtrToPolyConstNorm_;

py(const OrthPolyD& p);
tConstants0fNthOrder(int n);
tConstants0fAl10rder();

FuncForNthMoment (double x) const;
FuncForConstCn(double x) const;
FuncForConstLn(double x) const;
FuncForConstNorm(double x) const;

//Constants updated;
//Constants updated;
//Constants updated;

//define the range of the poly;
//up to MaxN_ th order;
//just an integér holder;

//update the constants;
//update the constants;

typedef double (OrthPolyD::*0PDfuncPtr)(double); //establish interface;
double Trapzd(OPDfuncPtr, double &, -double b, int n);

double
};

Qsimp (OPDfuncPtr) ;

[/ Fx5xnk k0 k0 k k% kkk%x implement inline functions skkskkksikskikkiokkikokkkokkkkk

inline double OrthPolyD::Low_a() const
inline double OrthPolyD::High_b() const
inline int

{ return Low_a_; '}
{ return High_b_; }

OrthPolyD: :MaxOrder() const { return MaxN_; }
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\

inline int OrthPolyD: :CurOrder() const { return CurOrder_; }

inline double OrthPolyD::PolyConstC(int n) const {

if (n<0) {
cout << "Error: Order n < 0." << endl;
return 0.0;

} else if ( n > MaxN_ ) { ,
cout << "Poly Constants for order " <<.n << " are not available.";
cout << endl;
return 0.0;

} else {
return PtrToPolyConstC_[n];

}

}

inline double OrthPolyD::PolyConstLambda(int n) const {
if (n<0) {
cout << "Error: Order n < 0." << endl;
return 0.0;
} else if ( n > MaxN_ ) {
cout << "Poly Constants for order " << n << " are not available.";
cout << endl; ‘
‘return 0.0;
} else {
return PtrToPolyConstLambda_[n];
}
}

inline double OrthPolyD::PolyConstNorm(int n) const {
if (n<0) {
cout << "Error: Order n < 0." << endl;
return 0.0; )
} else if ( n' > MaxN_ ) {
cout << "Poly Constants for order " << n << " are not available.";
cout << endl;
return 0.0;
} else {
return PtrToPolyConstNorm_[n];
} .
+

//*********************** assignment operator **>;=************************
inline OrthPolyD& OrthPolyD::operator= (const OrthPolyD &rhs) {
if ( *this !'= rhs ) { //not to assign to itself.
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(OrthWeightD) *this = (OrthWeightD) rhs; //copy OrthWeghtD;

Low_a_ = rhs.Low_a_;
High_b_ = rhs.High_ b_;
CurOrder_ = rhs.CurOrder_;
if (MaxN_ !'= rhs.MaxN_) {

delete [] PtrToPolyConstC_;
delete [] PtrToPolyConstLambda_;
delete [] PtrToPolyConstNorm_;
MaxN_ = rhs.MaxN_;

PtrToPolyConstC_ = new double[MaxN_+1];
PtrToPolyConstLambda_ = new double[MaxN_+1];
PtrToPolyConstNorm_ = new double[MaxN_+1];
}
copy(rhs);

}

return *this;

}

] /¥ x%kkkk Rk Rk Rk kkokkokkkkkk end of file: OrthPolyD.h skskksckkkkkkkkokokskokkkokkkk

[ [ RFskck sk kb Rk kokkokkkkkkk start of file: OrthPolyD.cxx sokskskskskskskoksoksksdokdokkkkok
#include <iostream.h> '

#include <math.h>

#include "ORTHPOLY/include/OrthWeightD.h"

#include "ORTHPOLY/include/OrthPolyD.h"

[ [HFFF R AR AR AR AR CONSTTUCTOTS : Hkkk ok ks skkakA kAR A KA KKK
OrthPolyD: :0rthPolyD() : OrthWeightD() {

Low_a_ = 0.0;

High_b_ = 0.0;

MaxN_ = 0;

CurQOrder_ = 0;

PtrToPolyConstC_ = new double[MaxN_+1];
PtrToPolyConstLambda_ = new double[MaxN_+1];
PtrToPolyConstNorm_ = new double[MaxN_+1];

}

OrthPolyD::OrtthlyD(OrthWeightD gw, double a, double b, int n) :
OrthWeightD(w) {
if (a <= b) {

Low_a_ = a;
High_ b_ = b;
} else {
Low_a_ = b;
High_ b_ = a;
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}

MaxN_ =(n>0) ?n: 0;

CurOrder_ = O;

PtrToPolyConstC_ = new double[MaxN_+1];

PtrToPolyConstLambda_ = new double[MaxN_+1];
PtrToPolyConstNorm_ new double[MaxN_+1]; ~ !
if (Low_a_ < High_b_ ) setConstants0fAll0rder(); //set poly constants;

¥

OrthPolyD: :OrthPolyD(OrthWeightD &w, float a, float b, int n)
' OrthWeightD(w) {
if (a <= b) {
Low_a_ = (double) a;
High_b_ = (double) b;
} else {
Low_a_
High_b_

(double) b;
(doudble) a;

}
MaxN_ (n>0)?n: 0;
CurOrder_. = 0; )
PtrToPolyConstC_

new double[MaxN_+1];

PtrToPolyConstLambda_ = new double[MaxN_+1];

PtrToPolyConstNorm_ new double[MaxN_+1]; _

if (Low_a_ < High_b_) setConstants0fAll0rder(); //set poly constants;

}

OrthPolyD: :0rthPolyD(const OrthPolyD &p) : OrthWeightD((OrthWeightD) p) {
Low_a_ = p.Low_a_; ' '
High_b. = p.High_b_;
MaxN_ = p.MaxN_;
CurOrder_ = p.CurOrder_;
PtrToPolyConstC._ = new double[MaxN_+1];
PtrToPolyConstLambda_ = new double[MaxN_+1];
PtrToPolyConstNorm_ new double[MaxN_+1];

copy(p);

}

[ [ xxEdokdkokkdkkokkdkokk Q@STTUCTOT  Hodokokokk sk 4 ok ok e ok sk 3 ok sk sk ok ok sk okok o
OrthPolyD:: “0rthPolyD() {

delete [] PtrToPolyConstC_;

delete [] PtrToPolyConstLambda_;

delete [] PtrToPolyConstNorm_;
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[ /%% k00 kkkkk COPY FUNCTION *kkskskiriknkakkkkhkdkdokkkkk*
void OrthPolyD::copy(const OrthPolyD& plynm) {
‘double *p, *q;

p = PtrToPolyConstC_ + MaxN_ +1;

q = plynm.PtrToPolyConstC_ + MaxN_ +1;
while (p > PtrToPolyConstC_) *--p = *--q;
p= PtrToPolyConstLambda_.’ + MaxN_ +1;
q = plynm.PtrToPolyConstLambda_ + MaxN_ +1;

while (p > PtrToPolyConstLambda_) *--p = *--q;

p = PtrToPolyConstNorm_ + MaxN_ +1;
q = plynm.PtrToPolyConstNorm_ + MaxN_ +1;
while (p > PtrToPolyConstNorm_) *--p = *--q;

)

void OrthPolyD::setCurrentOrder(int n) {
if (n<0) {
cout << " Sorry, can’t set current order less than 0." << endl;
return; ‘ '
} else if ( n > MaxN_ ) {
cout << " Sorry, can’t set current order larger than MaxOrder.'";
cout << endl;
return;
} else {
' CurOrder_ = n;
}
}

void OrthPolyD::setLimit(double a, double b) {
if (b<a){
double temp = a; //swap a and b;
a=b;
b = temp;
} else if ( a ==b ) {
cout << "Error in routine setLimit:" << endl;
cout << '"Constants can’t be set for b = a" << endl;
return;
} .
if ( Low_a_ == a &% High_b_ == b ) return; //no change in limit;
Low_a_. = a;
High_b_ = b;
setConstants0fAl10rder(); ) . //set poly constants;
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void OrthPolyD::setLimit(float a, float b) {
setLimit((double) a, (double) b);

}
void OrthPolyD::setMaxOrder(int n) { - //Constants updated;
if (MaxN_ == n) return;
if (n < 0) {
cout << " Error in routine setMaxOrder: n < 0" << endl;
return;
} .
double *pC = new double[n+1]; //allocate memory for the constants;

double *pL = new double[n+1];
double *pN = new double[n+1];

double *p, *q;
if (MaxN_ > n) { //copy constants for up to nth order;

P = pC+ n +1;
q = PtrToPolyConstC_ + n +1;
while (q > PtrToPolyConstC_) *--p = *--gq;

P =pL *+ 1 +1; . :
q = PtrToPolyConstLambda_ + n +1;
while (q > PtrToPolyConstLambda_) *--p = *--q;

P = PN + n +1;
q = PtrToPolyConstNorm_ + n +1;
while (q > PtrToPolyConstNorm_) *--p = *--q;

delete []J PtrToPolyConstC_; //Might this be done automatically
delete [] PtrToPolyConstLambda_; //by invoking the destructor?
delete [] PtrToPolyConstNorm_;

PtrToPolyConstC_ = pC;
PtrToPolyConstLambda_ = pL;
PtrToPolyConstNorm_ = pN;
MaxN_ = n;

return;

} else if (MaxN_ < n) {-

if (MaxN_ <= 1) {
delete [] PtrToPolyConstC_;
delete [] PtrToPolyConstLambda_;
delete [] PtrToPolyConstNorm_;
- PtrToPolyConstC_ = pC;
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PtrToPolyConstLambda_ = pL;

PtrToPolyConstNorm. = pN;
MaxN_ = n;
if (Low_a_ < High_b_) setConstants0fAll0rder();
return; : '
} else { //copy the existing poly constants;

p = pC + MaxN_ +1;
q = PtrToPolyConstC_ + MaxN_ +1;
while (q > PtrToPolyConstC_) *--p = *--q;

p = pL + MaxN_ +1;
q = PtrToPolyConstLambda_ + MaxN_ +1;
while (q > PtrToPolyConstLambda_) *--p = *--q;

p = pN + MaxN_ +1; .
q = PtrToPolyConstNorm_ + MaxN_ +1;
while (q > PtrToPolyConstNorm_) *--p = *--q;

delete [] PtrToPolyConstC_;
delete [] PtrToPolyConstLambda_;
delete [] PtrToPolyConstNorm_;

PtrToPolyConstC_ = pC;

PtrToPolyConstLambda_ = pL;

PtrToPolyConstNorm. = pN;

if (Low_a_ < High. b_) { //set constants for higher order;
int oldMaxN_ = MaxN_;
MaxN_ = n;

for (int i = oldMaxN_+1; i <= MaxN_; i++)
setConstants0fNthOrder(i);
return;
} else {
MaxN_ = n;
return;

¥

void OrthPolyD::setConstantéOfAllOrder() {
//to generate and set all of the poly constants;
for (int i=0; i <= MaxN_; i++) setConstants0fNthOrder(i);

}
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void OrthPolyD::setConstants0fNthOrder(int n) {
//to generate and set the poly constants of the nth order, prov1ded that
//the constants of the (n-1)th and less order are known;
if (n<0) { .
cout << "Error in routine setConstantsOfNthOrder: n < 0 " << endl;
return;
} else if ( n > MaxN_ ) {
cout << " Sorry, can’t set constants for n > MaxOrder (=" << MaxN_;
“cout << ")." << endl;
return;
y |
OPDfuncPtr ForCn OrthPolyD: :FuncForConstCn;
OPDfuncPtr ForLn = OrthPolyD: :FuncForConstln;
OPDfuncPtr ForNorm = OrthPolyD::FuncForConstNorm;
if ( n==0) {
setCurrentOrder(0);

" PtrToPolyConstLambda_[0] = 0.0;
PtrToPolyConstC_[0] = 0.0;
PtrToPolyConstNorm_[0] = Qsimp(ForNorm);
} else if (n == 1) {
setCurrentOrder(l);
PtrToPolyConstLambda_[1] = 0.0;
PtrToPolyConstC_[1] = Qsimp(ForCn) / PtrToPolyConstNorm [o];
PtrToPolyConstNorm_[1] = Qsimp(ForNorm);
} else {
setCurrentOrder(n);

Qsimp(ForLn) / PtrToPolyConstNorm_[n-2];
Qsimp(ForCn) / PtrToPolyConstNorm_[n-1];
Qsimp (ForNorm) ;

PtrToPolyConstLambda_ [n]
PtrToPolyConstC_[n]
PtrToPolyConstNorm_[n]

3

return;

¥

double OrthPolyD::Moments(int n) {

if (n<0) {
cout << "Error: Order n < 0. " << endl;
return 0.0;

} else if ( n > MaxN_ ) {
cout << "Sorry, can’t compute Moments for n > MaxOrder (=" <<MaxN_;
cout << ")." << endl;
return 0.0;

} else {
OPDfuncPtr ForNthM = OrthPolyD::FuncForNthMoment;

: //To establish interface;



190

setCurrentOrder(n);
return Qsimp(ForNthM);

}

[ [ xkxkxnkkkionkkkkk Core FUNCtions: kkkskkkokikkskskkdkkkkkkkk
double OrthPolyD::Polynomial(double x, int n) const {
if (n > MaxN_) { '
cout << "Error in routine Polynomial:" << endl;
cout << "Order n should not exceed the maximum = " << Max0rder();
cout << endl;
_ return 0.0;

X

if (n < 0) {
cout << "Error in routine Polynomial: n < 0" << endl;
return 0.0;

}

if (n ==0) {
return 1.0;
} else if (n==1) {
return x-PolyConstC(1); //return x - Moments(1)/Moments(0);
} else { . .
return (x-PolyConstC(n))*Polynomial(x,n-1)
- PolyConstLambda(n)*Polynomial(x,n-2);

}

double OrthPolyD:ﬁPolynomial(float x, int n) const {
return Polynomial( (double) x, n);

}

double OrthPolyD::FuncForNthMoment(double x) const { //For n-th moment;

double XToNthPower(double, int);

return XToNthPower (x,CurOrder())*Weight(x);
3 )
double XToNthPower(double x, int n) {

if (n==0) {

return 1.0;
} else {
return x*XToNthPower(x,n-1);

}

}

double OrthPolyD::FuncForConstCn(doﬁble x) const { //For Constant Cn;
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double temp = Polynomial(x,CurOrder()-1);
return x*Weight (x)*temp*temp;

}

double OrthPolyD::FuncForConstLn(double x) censt { //For Const Lambda-n;
return x*Weight(x)#*Polynomial(x,CurOrder()-2)*Polynomial(x,CurOrder()-1);
}

double OrthPolyD::FuncForConstNorm(double x) const {
double temp = Polynomial(x,CurOrder()); //For Normalization Constant;
return Weight(x)*temp*temp;

}

[ 1Kok sk ok ok s ko s ok ok s ok ok ok kR R AR AR R R ko
// Integrations Functions '

[ 1 Hxskok ok R kokokok dokok sk okl ook skokosk kool ok ok sk kil sk skok ok sk ok skkok ok ok kol sk ok kb ok o eskok ok
double OrthPolyD::Trapzd(OPDfuncPtr func, double a, double b, int n) {

./* This routine computes the nth stage of refinement of an extended

* trapzoidal rule. func is input as a pointer to the function to be
* integrated between a and b, also input. When called with n=1,
* the routine returns the crudest estimate of int f(x)dx [a,b].
* Subsequent calls with n=2,3... (in that sequential order) will improve
* the accuracy of s by adding 2°(n-2) additional interior points.
* Adapted from [Pres 92].
*/
double x, tnm, sum, del;
static double s;
int it, j;
if (n==1) {
return ( s = 0.5%(b-a)* ( (this->*func)(a) + (this->*func)(b) ) );
} else {
for (it=1,j=1; j<n-1; j++) it <<= 1;
tnm = it;"
del = (b-a)/tnm; //This is the spacing of
X = a + 0.5%del; ' //the points to be added;
for (sum=0.0,j=1; j<=it; j++,x+=del) sum += (this->*func)(x);
s = 0.5%(s+(b-a)*sum/tnm); //This replaces a by its refined value
return s;
}
}

double OrthPolyD::Qsimp(0PDfuncPtr func) {
/* float gsimp(float (*func)(float), float a, float b)
* Returns the integral of the function func from a to b.



}

* ¥ ¥ ¥

¥*
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The parameters EPS can be set to the desired fractional accuracy
and JMAX so that 2 to the power JMAX-1 is the maximum allowed
number of steps. Integration in performed by Simpson’s rule.
Adapted from [Pres 92].

const double EPS = 1.0e-8;
const int JMAX = 30; : _
double a = Low_a(); _ //integration limit [a,b];

double b = High_b();
int j;

double s, st, ost, 0s;
ost = os = -1.0e+30;

for (j=1; j<=IMAX; j++) {
st = Trapzd(func,a,b,j);
= (4.0*st-o0st)/3.0; //Compare equation (4.2. 4)
1f (fabs(s-o0s) < EPS*fabs(os)) return s;
os = s;
ost = st;
} .
cout << "Too many steps in routine Qsimp.";
return 0.0; : //Never get here.

[ [ Fxxskakkendokskkkrkkkk end of file: OrthPolyD.cxx dkskkkskskokikokokkkok ko kkokkok

[/ xkxk ks shkkiokkkkkrkkx start of file: OrthWeightD.h sskskskoskkskokskokokskdokkkokok ok
class OrthWeightD {
public:

inline OrthWeightD(); //constructors:
inline OrthWeightD(double P1,double P2,double P3, double P4 ,double P5);
inline OrthWeightD(float P1, float P2, float P3, float P4, float P5);
inline OrthWeightD(const OrthWeightD &w);

inline OrthWeightD& operator= (const OrthWeightD &w); //assignment op.

inline double Magnitude() const; //member accessors
inline double Bcoulomb() const; '
inline double Temperature() const;

inline double ParaAmplify() const;

inline double ParaAlpha() const;

double SqrtWeight(double x) const; //weight functions
double SqrtWeight(float x) const;

double Weight(double x) const;
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double Weight(float x) const;

“private:
double Mag_, Bcoul_, Temp_, Pamp_, Alpha_;
inline void setMagnitude(double x);
inline void setBcoulomb(double x);
inline void setTemperature(double x);
inline void setParaAmplify(double x);
inline void setParaAlpha(double x);
inline void setMagnitude(float x);
" inline void setBcoulomb(float x);
inline void setTemperature(float x);
inline void setParaAmplify(float x);
inline void setParaAlpha(float x);
o '

//constructors:
inline OrthWeightD::0rthWeightD() : _
Mag_(0.0), Bcoul_(0.0), Temp_(0.0), Pamp_(0.0), Alpha_(0.0) {}

inline OrthWeightD::0rthWeightD(double P1, double P2, double P3,double P4,
double P5) : Mag_(P1), Bcoul_(P2), Temp_(P3), Pamp_(P4), Alpha_(P5) {}

inline OrthWeightD::0rthWeightD(float P1, float P2, float P3, float P4,
float P5) : Mag_((double) P1), Bcoul_((double) P2),Temp_((double) P3),
Pamp_((double) P4), Alpha_((double) P5) {}

inline OrthWeightD::0rthWeightD(const OrthWeightD &w)
Mag_(w.Mag_), Bcoul_(w.Bcoul_ ), Temp_{(w.Temp_), Pamp_{(w.Pamp_),
Alpha_(w.Alpha_) {3}

//member accessors:

inline double OrthWeightD::Magnitude() const { return Mag_; }
inline double OrthWeightD::Bcoulomb() const { return Bcoul_; }
inline double OrthWeightD::Temperature() const { return Temp_; }
inline double OrthWeightD::ParaAmplify() const { return Pamp_; 1}
inline double OrthWeightD::ParaAlpha() const { return Alpha_; }
//set values

inline void OrthWeightD::setMagnitude(double x) { Mag. = x; }
inline void OrthWeightD::setBcoulomb(double x) { Bcoul_ = x; }
inline void OrthWeightD::setTemperature(double x) { Temp. = x; }
inline void OrthWeightD::setParaAmplify(double x) { Pamp_. = x; }
inline void OrthWeightD::setParaAlpha(double x) { Alpha_ = x; }



inline void OrthWeightD::setMagnitude(float x)
inline void OrthWeightD::setBcoulomb(float x)
inline void OrthWeightD: :setTemperature(float x)
inline void OrthWeightD::setParaAmplify(float x)
inline void OrthWeightD::setParaAlpha(float x)

//assignment operator: :
inline OrthWeightD& OrthWeightD::operator= (const OrthWeightD &w) {
w.Mag_;

.Bcoul_;

w.Temp_;

Mag_ =
Bcoul_
Temp_ =
Pamp_ =
Alpha_

w

W
W

Pamp_;
Alpha_;

return *this;

}

[/ x50k x 0k 0%k k 6k kxkkkx*% end of file: OrthWeightD
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{ Mag_ = (double) x; }
{ Bcoul_ = (double) x; }
{ Temp_ = (double) x; }
{ Pamp_ = (double) x; } -
{ Alpha_ = (double) x; }

L skokeokok skokok ok ke ok ok ok ok sk sk ok sk ok ok ok sk ok

[ /¥3kxsx k0 kk k00 k0 xkkxk start of file: OrthWeightD.cxx sskkscksiokickikkokiokdorsikokk
#include <iostream.h>

#include <math.h>

#include "ORTHPOLY/include/OrthWeightD.h"

const double
const int

const double
const double

pi = 3.1415926535897932384626433;

ITMAX = 200;
EPS = 1.0e-12;
FPMIN = 1.0e-30;

double OrthWeightD::Weight(double energy) const {
double sqrtwgt = SqrtWeight(energy);
return sqrtwgt*sqrtwgt; '

double OrthWeightD::Weight(float energy) const {
return Weight((double) energy);

¥

double OrthWeightD::SqrtWeight(double energy) const {
double erfcclog(double);

double x

double EO

double T

double pp

energy - Bcoulomb();
Bcoulomb () ;
Temperature();
ParaAmplify();
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double a = ParaAlpha();

double varl = (pp - 2.0%x)/(2.0*sqrt(pp*T));
double var2 = (pp - 2.0*x - a*pp*T)/(2.0*sqrt(pp*T));
double var3 = (pp - 2.0%x + axpp*T)/(2.0%sqrt(pp*T));

double M_N = exp(erfcclog(varl)); /] M-N = 1.0 - erf(varl)
double L = exp(-vari*varl + var2xvar2 + erfcclog(-var2));
double J = exp(-vari*varl + var3*var3 + erfcclog(var3));

return Magnitude()*éxp(-x/T)*(M_N + 0.5%x(L-J)); // Eq.(23 & 24)
} : .

double OrthWeightD::SqrtWeight(float energy) const {
. return SqrtWeight((double) energy); :
3
double erfcclog(double x) {
/* Returns the log of complementary error function erfc(x)
* with fractional error everywhere less than 1.2e-7.
*/
double z = fabs(x); -
double t = 1.0/(1.0+0.5%z);
double erfcclog_ = log(t) - z*z - 1.26551223 + t*(1.00002368
+ t%(0.37409196 + t*(0.09678418 + t*(-0.18628806
+ t%(0.27886807 + t*(-1.13520398 + t*(1.48851587
+ t%(-0.82215223+ t*0.17087277))))))));
return x >= 0.0 7 erfcclog_ : log(2.0 - exp(erfcclog.));

}

[ [Fxxxkxxsxrrknkknkkkx end of file: OrthWeightD.cxx Hksdkdoksokkokskskokkokkkokokkok

[ [ xxxskkskkiooonkkkkkdkk start of file: SpectrumiD.h skssksksksksksokksskkokkkkkkokkk
class SpectrumiD {
public:
SpectrumiD(); //constructors:
SpectrumiD(float st, float en, float wdth);
SpectrumiD(float st, flecat en, float wdth, float* p);
SpectrumiD(float st, float wdth, int n);
SpectrumiD(float st, float wdth, int n, float* p);
SpectrumiD(const SpectrumiD&); //construct by copying
“SpectrumiD(); //destructor

inline int NumOfChannels() const; //member accessors:



inline float
inline float
inline float
inline float
inline float
inline float

Start0fSpec() const;
End0fSpec() const;
BinSize() const;
WindowLeft() const;
WindowRight() const;
*PointerToData() const;

//functions that return spectrum properties:

inline float
inline float
inline float
inline float
inline float
inline float
inline float
inline float

Counts(int) const;
Counts(float) const;
Counts(double) const;
CountsInWindow{int, int) const;
CountsInWindow(float, float) const;
CountsInWindow(double, double) const;
CountsInWindow() const;
TotalCounts() const;

inline void setSpectrumWindow(float &a, float &b):
inline void setSpectrumWindow(double &a, double &b);
// SpectrumiD& compress(const SpectrumiD&);
// search for a list of peaks;
// window facilities;
// void PrintSpectrumiD();

protected:

float Window_Left_, Window_Right_;

private:

int NumOfChannels_;
float Start0fSpec_, End0fSpec_, BirnSize_;

float* ptr_

to_data_;

void copy(const SpectrumiDg& s);

};

//Spectrum window limit;

196

[ [Fxkkxkiokkkkkkkkkokkkkx implement inline functions skkkkskkkskksokkkokokiokkakkkokk

//member accessors:

inline int
inline float
inline float
inline float
inline float
inline float
inline floatx*

SpectrumiD:
SpectrumlDi
SpectrumiD:
SpectrumiD:
SpectrumiD:
SpectrumiD:
SpectrumiD:

:Num0fChannels() const
:Start0fSpec() const
:End0fSpec() const
:BinSize() const
:WindowLeft() const
:WindowRight () const
:PointerToData() const

{
{
{
{
{
{
{

return NumOfChannels_; }

return
return
return
return
return
return

Start0fSpec_;
EndO0fSpec_;
BinSize_;
Window_Left_;
Window_Right_;
ptr_to_data_;

¥
}
¥
X
X
¥
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//functions that return spectrum properties:
inline float SpectrumiD::Counts(int chn) const {

if (ptr_to_data_ != O && chn >= 0 &% chn < NumOfChannels_) {
return *(ptr_to_data_+chn); :
} else {

v return 0.0;
}
}
inline float SpectrumlD::Counts(float x) const {
int chn = (int) floor( (double) ((x - Start0fSpec_)/BinSize_) );
return Counts{chn); ‘

3

inline float SpectrumlD::Counts(double x) const {
int chn = (int) floor((x-((double) Start0fSpec_))/((double) BinSize_ ));

return Counts(chn);

}
inline float SpectrumiD::CountsInWindow(int n1, int n2) const {
if (ptr_to_data_ == 0) return 0.0; //empty spectrum;
" if (n1 > n2) { : . //swap nl1 and n2;
int temp = ni;
nil = n2;
‘n2 = temp;
}
if (n1 >= NumOfChannels_ || n2 < 0) return 0.0; //[n1,n2] is not in
if (n1 < 0) n1 = 0; //the spectrum range.
if (n2 >= NumOfChannels_) n2 = NumOfChannels_ -1;
float sum = 0.0; //n1=n2 0K;
float *begin = ptr_to_data_ + ni; '
float *end = ptr_to_data_ + n2 +1;
while (end != begin) sum += *--end;

return sum,;

}

inline float SpectrumlD::CountsInWindow(float a, float b) const {
if (ptr_to_data_ == 0) return 0.0; ' //empty spectrum;
int n1 = (int) floor( (double) ((a - StartOfSpec_)/BinSize_) + 0.5 );
int n2 = (int) floor( (double) ((b - Start0fSpec_)/BinSize.) + 0.5 );
return CountsInWindow(ni, n2-1);

}

inline float SpectrumiD::CountsInWindow(double a, double b) const {
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return CountsInWindow( (float) a, (float) b );
} ' '

inline float SpectrumiD::CountsInWindow() const <{
return CountsInWindow(Window_Left_, Window_Right_);

}

inline float SpectrumiD::TotalCounts() const {
float sum = 0.0;
float* y = ptr_to_data_ + NumOfChannels_;
while (y != ptr_to_data.) sum += *--y;
Treturn sum;

¥

//set window:

inline void SpectrumiD::setSpectrumWindow(float &a, float &b) {
float temp;
int n1, n2;
if ( BinSize_ > 0 ) {

if (a > b) { //swap a & b when a > b;
temp = a;
a =b; , T
b = temp; ‘
3 | . '
if (a > EndO0fSpec_ |} b < Start0fSpec_) {
cout << "Window is not in the spectrum range" << endl;
return; ’
} . | |
nl = (int) floor( (double) ((a - StartOfSpec_)/BinSize_) +0. s

5)
n2 = (int) floor( (double) ((b - StartOfSpec_)/BinSize_) +0.5 );
Window_Left_ = (a > StartOfSpec_ ) 7 i

Start0fSpec_ + BinSize_*nl : Start0fSpec_;
Window_Right_ = (b < End0fSpec_) ? -
' StartOfSpec_ + BinSize_*n2 : EndOfSpec_;
} else if ( BinSize_ < 0 ) { o
if (a < b) { //swap a & b when a < b;
temp = a;
a = b;
b = temp;
}
if (a < EndOfSpec_ || b > StartOfSpec_) {
' cout << "Window is not in the spectrum range" << endl;
return;
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nl = (int) floor( (double) ((a - StartOfSpec.)/BinSize_ ) +0.5 );
n2 = (int) floor( (double) ((b - StartOfSpec_)/BinSize_) +0.5 );
Window_Left_ = (a < Start0fSpec_.) ?

Start0fSpec_ + BinSize_*nl : StartO0fSpec_;
Window_Right_ = (b > End0fSpec_) ?

Start0fSpec_ + BinSize_*n2 : EndOfSpec_;

} else { //BinSize_ = 0.0;
Window_Left_. = a; //meaningless though;
Window_Right_ = b;’

return;
}
if (a !'= Window_Left_ ) a = Window_Left_;
if (b !'= Window_Right_) b = Window_Right_;
//now a and b are the same as the spectrum window boundaries;

}

inline void SpectrumiD::setSpectrumWindow(double &a, double gb) {
float aa = (float) a;
" float bb = (float) b;
setSpectrumWindow(aa, bb);
if (a != (double) aa) a = (double) aa;
if (b != (double) bb) b = (double) bb;
_//now a and b are the same as the spectrum window boundaries;
}

[ [x*5xxcksckxkxckxckkokkckkkk end of file: SpectrumlD.h scksokiksksksokskokkskokkokskkokkokdok

[ [ FxExkkkkkokkkkkdkokkkkkk gtart of file: Spectrum1D,cxx 3 3 3k ok ok ok 3k oK ok ok ok ok ok ok ok ok ok sk ok K
#include <jiostream.h>

#include <math.h>

#include "ORTHPOLY/include/SpectrumiD.h"

//constructors:
SpectrumiD: :SpectrumiD() {
NumOfChannels_ 0;

Start0fSpec_

End0fSpec_

BinSize_ =
ptr_to_data_
Window_Left_
Window_Right_

nonn
o O O

]

; . ~//set pointer to null

1]
O O O O O O
o O

-e

¥

SpectrumiD: :SpectrumiD{float st, float en, float wdth)
Start0fSpec_(st), EndOfSpec_(en), BinSize_(wdth) {
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if ( wdth !'= 0.0 ) {
NumOfChannels_ = (int) floor( ((double) (en-st))/((double) wdth) );
if (NumOfChannels_ < 0) {
NumOfChannels_ ~ NumOfChannels_;
BinSize_ - BinSize_;

}

if ( en != (StartOfSpec_ + wdth*((float) NumOfChannels_)) ) {
End0fSpec_ = Start0fSpec_ + wdth*((float) NumOfChannels_);

}

if (NumOfChannels_ !'= 0) {
ptr_to_data_ = new float[NumOfChannels_];
float* pp = ptr_to_data_ + NumOfChannels_;
while (pp > ptr_to_data_.) *--pp = 0.0;

} else { //abs(en-st) < BinSize_ --> empty spectrum;
ptr_to_data_ = O;

}

} else if (st != en) { //wdth==0 &% st!=en --> reset BinSize_ = en-st;
NumOfChannels_ = 1; //StartOfSpec_ = st; EndOfSpec_ = en;

BinSize_ = en-st;
ptr_to_data_ = new float[1];
*ptr_to_data_ = 0.0;

} else { //widt == 0 && st == en --> empty spectrum;
NumO0fChannels_ = 0; //Start0fSpec_ = st; End0fSpec_ = st;

//BinSize_ = 0.0;
. ptr_to_data_ = 0;

3 :

Window_Left_ = Start0fSpec_;

Window_Right_ =

EndOfSpec_;
} S

SpectrumiD: :SpectrumiD(float st, float en, float wdth, float* p)
: Start0fSpec_(st), End0fSpec_(en), BinSize_(wdth) {
if ( wdth t=0.0) { - »
NumOfChannels_ = (int) floor( ({(double) (en-st))/((double) wdth) );
if (NumOfChannels_ < 0) {
NumGfChannels_ = - NumOfChannels_;
BinSize_ - BinSize_;

}

if ( en != (Start0fSpec_. + wdth*((float) NumOfChannels_)) ) {
EndOfSpec_ = Start0fSpec_ + wdth*((float) NumOfChannels_);

} . .

if (NumOfChannels_ != 0) {
ptr_to_data_ = new float[NumOfChannels_];
for (int i=0; i<NumOfChannels_; i++) ptr_to_data_[i] = p[il;
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T} else { //abs(en-st) < BinSize_ --> empty s ectrum;
pty sp
ptr_to_data_ = 0;

}
} else if (st !'= en) { //wdth==0 && st'!=en --> reset BinSize_=en-st;
NumOfChannels_ = 1; //Start0fSpec_ = st; End0fSpec_ = en;

BinSize_ = en-st;
ptr_to_data_ = new float[1];
*ptr_to_data_. = 0.0;
} else { //widt == 0 &% st == en --> empty spectrum;
NumOfChannels_ = O; //Start0fSpec_ = st; EndOfSpec_ = st;
//BinSize_ = 0.0;
ptr_to_data_ = 0; '
X
Window_Left_ = StartOfSpec_;
Window_Right_ = EndOfSpec_;

}

SpectrumiD: :SpectrumiD(float st, float wdth, int n)
NumOfChannels_(n), StartOfSpec_(st), BinSize_(wdth) {»
if ( n==0 ) { ’ //NumOfChannels_ = 0; Start0fSpec_ = st;
EndOfSpec_ = st; //BinSize_ wdth;
ptr_to_data_ 0;
} else if ( wdth==0.0 )

NumOfChannels_ = 0; //reset NumOfChannels_;
End0fSpec_ = st; //Start0fSpec_ = st; BinSize_ = 0.0;
ptr_to_data_ = 0;
} else {
if (NumOfChannels_ < 0) NumOfChannels_ = - NumOfChannels_;
//Start0fSpec_ = st;
End0fSpec_ = Start0fSpec_ + wdth*((float) NumOfChannels_);

//BinSize_ = wdth;
ptr_to_data_ = new float[NumOfChannels_];
float* pp = ptr_to_data_ + NumOfChannels_;
while (pp > ptr_to_data_) *--pp = 0.0;

3
Window_Left_ = Start0fSpec_;
Window_Right_. = EndOfSpec_;

3

SpectrumiD: :SpectrumiD(float st, float wdth, int n, float* p)
NumOfChannels_(n), StartOfSpec_(st), BinSize_(wdth) {

if ( n==0 ) { ~//NumOfChannels_ = 0; Start0fSpec_ = st;
End0fSpec_ = st; //BinSize_ = wdth;
ptr_to_data_ = 0;
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} else if ( wdth==0.0 ) {

NumOfChannels_ = 0; //reset NumOfChannels_; Start0fSpec_ = st;
End0fSpec_ = st; //BinSize_ = 0.0;
ptr_to_data_ = 0; '
} else {
if (NumOfChannels_ < 0) NumOfChannels_ = .- NumOfChannels_;

//Start0fSpec_ = st; _
Start0fSpec_ + wdth*((float) NumOfChannelé_);.
//BinSize_ = wdth;
~ ptr_to_data_. = new float[Num0fChannels_];
for (int i=0; i<NumOfChannels_; i++) ptr_to_data_[i] = p[il;

EndO0fSpec_

L
Window_Left_ = StartO0fSpec_;
Window_Right_ = End0fSpec_;

SpectrumiD: :SpectrumiD(const SpectrumiD& s) {

NumOfChannels_ = s.NumOfChannels_;
Start0fSpec. = s.Start0fSpec_;
EndOfSpec_ = s5.End0fSpec_;
BinSize_ . = s.BinSize_;
Window_Left_ = s.Window_Left_;
Window_Right_ = s.Window_Right_; )
ptr_to_data_ = new float[s.NumOfChannels_];
copy(s); -

¥

SpectrumiD: : “SpectrumiD() { . [//destructor
delete [] ptr_to_data_;
ptr_to_data_ = O;

}

void SpectrumiD::copy(const SpectrumiD& s) { //copy function
float* p = ptr_to_data. + NumOfChannels_;
float* q = s.ptr_to_data_ + NumOfChannels_;
while (p > ptr_to_data_) #*--p = *--q;

}

][ Rxkkkrkrckkokkkkrokkokk end of file: SpectrumiD.cxx Hkkkskktokkkokkkokkkokokkokkk
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