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* zocycled paper 

Abstract 

FFT-based fast Poisson and fast Helmholtz solvers on rectangular parallelepipeds for periodic boundary 
conditions in one-, two and three space dimensions can also be used to solve Dirichlet and Neumann boundary 
value problems. For non-zero boundary conditions, this is the special, grid-aligned case of jump corrections 
used in the Explicit Jump Immersed Interface method. 

Fast elastostatic solvers for periodic boundary conditions in two and three dimensions can also be based 
on the FFT. From the periodic solvers we derive fast solvers for the new "normal" boundary conditions 
and essential boundary conditions on rectangular parallelepipeds. The periodic case allows a simple proof 
of existence and uniqueness of the solutions to the discretization of normal boundary conditions. Numerical 
examples demonstrate the efficiency of the fast elastostatic solvers for non-periodic boundary conditions. 

More importantly, the fast solvers on rectangular parallelepipeds can be used together with the Immersed 
Interface Method to solve problems on non-rectangular domains with general boundary conditions. Details 
of this are reported in the preprint The Explicit Jump Immersed Interface Method for 2D Linear Elastostatics 
by the author. 

Keywords: Fast Helmholtz solver, fast Poisson solver, fast elastostatic solver, boundary conditions. 



1 Introduction 

We derive fast solvers for the finite difference discretization of the equations of homogeneous linear elas
tostatics, also known as homogeneous small displacement elastostatics. We consider the approximation of 
plane stress or plane strain, 

cAu + 8xxu + 8xyv = f U
, 

cAv + 8yyv + 8xyu = r, 
as well as the discretization of the~quations of homogeneous linear elastostatics in three dimensions 

cAu + 8xxu + 8xyv + 8xzw = f U
, 

cAv + 8yyv + 8yxu + 8yzw = r, 
cAw + 8zzw + 8zxu + 8zyv = f W

, 

(1) 

(2) 

on rectangular parallelepipeds. The fast elastostatic solvers can be used in an embedding approach to solve 
elastostatic problems with traction, displacement and other boundary conditions on multiply connected, 
non-rectangular domains, which is the application of Schur-complement methods for Poisson problems 
on irregular domains by Buzbee, Dorr, George and Golub[l] and Proskurowski and Widlund [2] to the 
elastostatic equations. The main benefit of this approach is that it avoids mesh generation while allowing 
us to rapidly solve finely discretized problems in arbitrary domains in [7]. 

To introduce the notion of FFT-based fast solvers and our treatment of boundary conditions, we first 
consider discretizations of 

M 82u 
(-A +~) u = - L 8 2 + fi,u = f, (M = 1,2,3), 

i=1 Xi 

(3) 

i.e. the Poisson equation (~ = 0) and the Helmholtz equation (~ > 0), with periodic, Dirichlet or 
Neumann boundary conditions. 

We then write fast solvers for the elastostatic equations with periodic and "normal" boundary con
ditions and a somewhat slower approach for pure displacement (essential) boundary conditions. 

For the purpose of exposition, all equations are approximated by a second order centered difference 
discretization with equidistant mesh (AX = hI = h, Ay = h2' Az = h3) in one, two or three space 
dimensions, i.e. on [0, hINd, [0, hINI ] x [0, h2N2] or [0, hINI ] x [0, h2N2] X [0, h3N3], where. Ni E Nand 
hi > O. But the derivation of the solvers is not limited to second order discretizations. 

The basic idea is to find discrete analogies of solving differential equations via Fourier transforms. Recall 
that for X ERn, u: Rn -4 Rand F the n-dimensional Fourier Transform, we have 

Thus, the Helmholtz equation 

becomes 
(Let + ~) F(u) = F(f) 

in Fourier space, where it is solved easily as 

(4) 

In the discrete case, it turns out one can replace F by the discrete Fourier transform (DFT); the work lies 
then in finding the appropriate divisors in the discrete equivalents of (4 )-they depend on the discretization 
and boundary conditions-and dealing properly with the case ~ = O. Dirichlet and Neumann boundary 
conditions can be reduced to the periodic case. 
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In §2 we describe an approach that uses DFTs to solve the periodic Poisson and Helmholtz problems in 
eJ(NlnN), where N = NlN2N3. The ideas can be found for example in Schwarztrauber [4], but go back 
much further, see the references in [4], e.g. [1,2]. The solution of the Poisson problem ('" = 0) with periodic 
boundary conditions exists only for i with J i = 0 and in this case is unique only up to constants. Since 
these properties are inherited also by the discretized problem, we choose the solution to lie in the subspace S 
of grid functions whose entries sum to zero. This choice is natural as S is both the range and the orthogonal 
complement to the Nullspace of the (symmetric) discretization Ll~ of the Laplacian with periodic boundary 
conditions, so that Ll~ is invertible on S. 

Using tables of sines and cosines, it is easy to write fast sine-transform and fast cosine-transform based 
algorithms for the Neumann (§3) and Dirichlet (§4) problems (see also [4]). Because we had available a very 
efficient DFT (the FFT), but no comparable DCT or DST, we instead obtain solutions for Neumann and 
Dirichlet boundary conditions using the periodic solution on a larger domain which is results from reflection 
in each dimension. 

The reflection approach deals naturally with the Nullspace of the discretization of the Neumann problem. 
For the Neumann problem with Schwarztrauber's discretization of the boundary conditions, the Nullspace 
of the discretization is also .s, but the range consists of vectors that sum to zero under a convention that 
boundary points on the relative interior carry half the weight of interior points. Corners in 2D and edges in 
3D carry a quarter of the weight of interior points and corners in 3D carry an eighth of the weight of interior 
points. This is consistent with the reflection approach, where boundary, points are duplicated differently 
from interior points, and depending on their position on the boundary. 

The main points of this paper are in §5. There we consider the linear elastostatic equations for periodic 
boundary conditions in the approximation of plane stress (§5.1) and in 3D (§5.2) .We describe fast solvers for 
what we will call normal boundary conditions in 2D(§5.3) and in 3D (§5.4). Normal boundary conditions 
mean given normal displacement and normal derivative of the tangential displacement; Our treatment of 
pure Dirichlet (displacement) boundary conditions in §5.5 avoids enlarging the domain at the cost of several 
fast solves, and shows how to deal with the "inverse" of the singular submatrix that arises when Dirichlet 
boundary conditions are treated via Schur-complement as a perturbation of periodic boundary conditions. 

The fast solvers for second order centered finite difference approximations are shown to be useful also 
for non-rectangular regions in[7], and may turn out useful as preconditioners for homogenization approaches 
to structural topology design or as fast transform subdomain perconditioners in domain decomposition 
approaches. 

2 Fast Poisson and Helmholtz solvers for periodic boundary con
ditions 

Here we describe the use of FFTs for the fast inversion of the linear systems of equations resulting from the 
discretization of the Laplacian with periodic boundary conditions by centered second order differences. Upper 
case variable names indicate one-dimensional Fourier transforms, bars and hats mean Fourier transforms in 
the first two and all three variables, respectively. Due to periodicity, all arithmetic on the indices is modulo 
N l , N2 and N3 in the first, second and third variables, respectively. The moduli are calculated as if we let 
the indices range from 0 to N j - 1 instead of 1 to N j . We use 1 to Nj for closer correspondence with our 
implementation - the programming language does not allow the index O. Throughout we write i = A. 

2.1 One space dimension 

Discrete Fourier Transform (DFT): 

U ~ (-27ri(k - 1)(n - 1)) 
k = L...J unexp N 

n=l 1 

Inverse DFT: 

_ 2-~ U' (27ri(k -1)(n -1)) 
Un - N L...J k exp N 

1 k=l 1 

2 

i 
-.J 

also 

f - 2- ~h2t;1 (27ri(k -1)(n -1)) 
n - N L...J lL'keXP N 

1 k=l 1 

(5) 

Finite differences for (3): 

Un+l (2 ) Un-l 
in = -h2 - h2 + /'\: Un + ~ = 

1 1 1 

1 ~ (27ri(k'- 1)(n - 1)) { 27r(k - 1) 2 h2 -27r(k - 1) } _ 
-2-L...J Uk exP N exp N - - l",+exp N -
hl Nl k=l 1 1 1 

_1_ f Uk {2COS (27r(k -1)) _ 2 _ h~"'} exp (27ri(k -1)(n -1)) . 
h~Nl k=l ' Nl Nl 

Comparing coefficients of this Fourier series with the one in (5), we find 

{2COS (27r(~~ 1)) _ 2 - h~"'} Uk = h~Fk' 
The left hand side is zero for k = 1 in case of the Poisson problem. In order for a solution to exist, we 

need Fl = 0, which means simply L: in = O. In this case, we set Ul = O. For 2 :::; k :::; Nb (1 :::; k :::; Nl for 

'" > 0) let 

U h~Fk 
k = 2 cos e1l"~;l») - 2 - h~"" 

(6) 

Finally, recover Un via inverse DFT. For", = 0 the choice Ul = 0 ensures L:n Un = O. 

2.2 Two space dimensions 

Now we use 

Un+l,j Un,j+l (2 2 ) Un-l,j Un,j-l_ 
in,j = -h2 + -h2 - h2 + h2 + '" Un,j + ~ + h2 -

1 2 1 2 1 2 

1 ~u. (27ri(k-l)(n-l)) {2h2cos(27r(k-l)) _2h2 _2h2 _h2h2",} + 
h2h2 N L...J k,J exp N' 2 N 1 2 1 2 

1 2 1 k=l 1 1 

1 ~ (27ri(k - 1)(n - 1)) 1 ~ U . (27ri(k - 1)(n - 1)) + h2N L...J Uk,j+1 exp N + h2N L...J k,J-l exp, N . 
2 1 k=l 1 2 1 k=l 1 

This decouples into Nl periodically tridiagonal linear systems indexed by k = 1,2, ... N l . For fixed k, the 
system is given by 

Uk',~+l + {cos (~) - 2 _ 2, 2 _ "'} Uk,j + Ukh,~-l = Fk,j, for j = 1,2, ... ,N2. (7) 
h2 hl h2 2 , 

We could continue with a Fourier transform in t1;le second variable. This idea is described for the 3D case 
in the n~:xt section. Alternatively, one can solve the periodically tridiagonal system (7) for each k. Due to 
the special structure of the matrices, this is possible in eJ(N2). For", = 0 and k = 1, the matrix is rank 
deficient-it is simply the one dimensional periodic centered difference operator considered in §2.1. Right 
hand sides with sum zero are in the range' of this matrix. In that case, we set Ul,l = 0 and solve the 
(Nl -1) x (Nl -1) system which is obtained from (7) by scratching the first row and first column for Ui,b 
for i = 2,3, .. , ,N2. Finally, Nl inverse FFTs of length N2 give u. As in §2.1, for", = 0 the choice of Ul,l = 0 
ensures that U E S; 
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2.3 Three space dimensions 

We do a DFT on the first index, and find (for fixed n) 

f "I = Un+l,j,l + Un,j+l,l + Un,j,l+l _ (~ + ~ + ~ +) "+ Un-l,j,l Un,j-l,l Un,j,l-l 
n,J, h2 h2 h2 h2 h2 h2 K, Un,J,1 h2 + h2 + h2 = 

I 2 3 123 I 2 3 

~ ~U" (27ri(k-l)(n-l)) {2COS(~) -2 2 2 } 
N L..t k,J,1 exp N h2 - h2 - h2 - K, + 

I k=l I I 2 3 

+ _1_ ~ U(k "+ 1 l) (27ri(k - 1)(n - 1)) 1 ~ U (27ri(k - 1)(n - 1)) 
h2N I L..t ,J ,exp N + h2N L..t k,j-I,leXp N + 

2 k=l I 2 I k=l I 

+ _1_ ~ U " (27ri(k -1)(n -1)) 1 ~ (27ri(k -1)(n -1)) 
h2 N L..t k,J,I+! exp N + h2N L..t Uk,j,l-l exp . 

3 I k=l . I 3 I k=l NI 

Comparing Fourier coefficients, 

{

2COS(21T(k-I») -2 } 
Uk,HI,1 + Uk,j,l+! + Nl _ ~ _ ~ _ U" Uk,j-l,l Uk,j,l-l_ 

h2 h2 h2 h2 h2 K, k,J,1 + h2 + h2 - Fk,j,l. 
2 3 I 23 2 3 

Denoting the variables transformed in the first two indices by bars, we get (for fixed k) 

Uk,j+!,l + Uk,j,l+! + {2 cos (~) - 2 2 2 } U Uk j-l1 Uk j 1-1 
h2 h2 h2 - h2 - h2 - K, k,j,l + h' 2 '+ h' 2 = 

2 3 1 23 2 3 

~ ~ U (27r(m -1)(k -1)) {2COS (~) - 2 2 cos e1T(N2- 1») - 2 2 } 
No L..t k,m,l exp No 2 - 2" - K, + 

2 m=1 2 hI h~ h3 

+ _1_ ~ U (27ri(m -1)(k -1)) 1 ~ - (27ri(m -1)(k -1)) 
h2 No L..t k,m,l+! exp No + h21\T L..t Uk,m,I-1 exp . 

3 2 m=1 2 31V2 m=1 N2 

Thus we get NIN2 tridiagonal systems, indexed by k = 1,2, ... Nl, m = 1,2, ... ,N2 , 

(h,m,I+1 {2 cos (~) - 2 2 cos e1T(;2- 1
») - 2 2 } - Uk,m 1-1 _ 

h2 + h2 + h2 - h2 - K, Uk,m,l + hi = Fk,m,l. 
3 1 2 3 '3 

These tridiagonal systems can be solved as before, but clearly another DFT (in the third variable denoted 
by hats) reduces this to ' . 

{

2COS(21T(k-l») -2 2 cos (2.1T(m-l») -2 2 cos (21T(P-. 1») -2 } Nl N2. N3 . ';' h h 

h2 + h2 + h2 - K, Uk,m,p = Fk,m,p. 
1 2 3 

The left liandfactor is zero forK, =0 and k = m ::±: p == 1, so that we need to require F(I, 1, 1) = 0 and set 
V(l,l,l) =0 Jllst as in the One dimensional case:" Otherwise, for (k, m,p) t= (1,1,1) (any (k', rn,p) if K, > 0), 

h Fk Uk - ,m,p 
,m,p - 2COS(~)-2 2COS(~)-2 2COSe"W;-ll)-2 

M + M + M -K, 
1 2 3 

(8) 

Finally, NIN2 inverse DFTs of length N3, NIN3 inverse DFTs of length N2 and N2N3 inverse DFTs of 
length Nl give the answer, Un,j,l. As in §2.1, for K, = 0 the choice of U1,1,1 = 0 ensures that U E S. 
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Remark 2.1 

• Equations (6) and (8) are the discrete analogies of (4) in 1D and 3D, respectively. 

• For clarity of exposition, we have assumed that each DFT is one-dimensional in nature. Of course the 
formulas can also be used with two- and three-dimensional DFTs. 

• We assume that a Fast Fourier Transform will be used, and hence the procedure works fastest if NI , 

N2 and N3 are powers of 2. 

• It is clear how to generalize. to fast poisson solvers in N dimensions for N ~ 4. 

3 Poisson and Helmholtz equations with Neumann boundary con
ditions 

3.1 One space dimension 

Recall that in one space dimension, we write Ax = h for hI. Schwarztrauber [4] discretizes the Poisson 
Problem with centered differences and Neumann boundary conditions using ghost values 

U-I = Ul, 

UNl+I = UN l -l· 

The ghost values are used to modify the standard centered differences for the boundary points. 

2Ul - 2uo = h2 fo, 

2UNl-l - 2UNl = h2fNl · 

This discretization of Neumann boundary conditions is characterized by the following features 

• The boundary is grid aligned. 

• The equation holds and f is known all the way up to including the boundary. 

• Using the fictitious point, the standard second order centered discretization of the differential equation 
can be used on the boundary. " 

• The second order centered discretization of the Neumann boundary condition is also written using the 
fictitious point. 

• Between these two equations, the solution value at the fictitious point is eliminated, resulting in a 
combined equation for the boundary value instead of the discretization of the boundary condition and 
the discretization of the differential equation. 

• In ID, the resulting tridiagonal system is solved directly, in 2D a tridiagonal system is created by 
making an Ansatz in a Cosine series, as in §3.4. 

We proceed similarly, but wish to find solutions in an exponential series, in order to use the .DFT. 
Schwarz~rauber's discretization res\llts in a singular matrix, with kernel consisting of the constant vectors, 
and the range consisting of all vectors whose weighted sum is zero. Endpoints in ID. as well as interior side 
points in 2D and 3D carry the weight 1/2 inthe summation, corners in 2D and edges in 3D carry the weight 
1/4 and corners in 3D carry the weight 1/8. 

Suppose u = [uo, Ub ... ,UNlV consists of values of a solution at the left boundary, at the interior grid 
points and at the right boundary, in this order, for some right hand side f = [fo,ft, ... ,fNl-l,!Nl]T that 
satisfies the weighted sum condition. 
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Theorem 1 The solution of the periodic problem on 2N1 grid points with right hand side 

£=[fo,/1, ... ,fNl-lofNl,fNl-lo ... ,/11, 

is 

(9) 

(10) 

Proof. The symmetric continuations of u and f satisfy the periodic equations (index arithmetic modulo 
2N1 - 1) on the enlarged domain 

Un+1 - 2un + Un-1 = h2 
In for n = 0,1,2, ... ,2N1 - 1, 

and also the centered discretizations of the Neumann boundary conditions, 

U1 - U-1 = U1 - U2Nl-1 = 0, 

UNl+1 - UNl-1 = O. 

(11) 

o 
The weighted sum condition on f ensures that £ lies in the range of the periodic operator, the Neumann 

boundary value problem is reduced to the methods of the previous section for both the Laplace and Helmholtz 
operator. 

3.2 Non-zero Neumann data 

Now consider non-vanishing Neumann data, ux(O) = bo and ux(Ni) = bNl' These values appear in the 
discretization of the derivative, 

U1 - U-1. = 2hbo, 

UNl +1 - UNl-1 = 2hbNl , 

and thus as sources in the combined equation. The solution ii. tends to a continuous, but not differentiable 
function as the grid is refined. Schwarztrauber's values at the fictitious points do not agree with our 
symmetric extension (10) , but are instead "corrected" by jumps in the first derivative of the magnitude of 
the Neumann boundary value. So (11) for n = 0, N1 becomes 

U1 - 2uo + U2Nl -1 = h210 - h[uxlo- - h[ux10+, 

UNl +1 - 2UNl + UNl-1 = h21Nl - h[uxl(Nl)- - h[uxl(Nl )+, 

where [uxlo- = [uxlo+ = bo and [UxhNt}- = [uxl(Nl )+ = -bNl . 

(12) 

(13) 

The factor h in the corrections results from the fact that the jump occurs exactly at the grid point; this is 
also the reason why each jump is needed to correct only a single equation. In the other equations corrected 
by the jumps, tp.e corresponding factor is zero. More explicitly comparing with the Explicit Jump Immersed 
Interface Method (c.f. [9, equations (5) and (6))), (11) for n = 1, Nl - 1, Nl + 1, 2Nl - 1 results from 

U2 - Zih + uo= h2 it - O[uxlo+, 

ito,.- 2UZNl-l + U2Ni-Z = h212Nl_l - O[uxlo-, 

UNl +2 - 2UNl +1 + UNl = h21Nl +1 - 0[ux1(Nl)+' 

UNl - 2UNl -l -:'- UNl-2 = h2lNl-l - O[uxl(Nl)-· 

No second order corrections are needed due to the continuity of the extension of f to £, i.e. [uxxl = o. 
A nonzero Neumann boundary condition yields an example of EJIIM corrections in the special case of a 
discrete single layer potential occurring at a boundary point. 
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Figure 1: The extended solutions U in a) and right hand side I in b), for f(x) = -4sin(2x) and N = 5,10,20 
(stars, circles and crosses). As the grid is refined, the values of I at 0 and 7r tend to 00 in such a way that 
the kinks in U remain the same. The Poisson solver fixes the constant c so that E Ui = O. The discrete 
solution values converge rapidly to the exact solution (solid line). 

3.2.1 Example 

The function u(x) = sin(2x) - c solves Uxx = -4sin(2x) with ux(O) = 1 and ux(7r) = 1 for any c. The 
"singularity" of I can be clearly seen in Figure 1 b). As the grid is refined, the values at 0(= 27r) and 7r tend 
to ±oo in such a way that the kinks in U remain the same. The Poisson solver fixes the constant c so that 
EUi = O. 

3.3 Higher dimensional issues· 

The extension to d space dimensions for the periodic solver as well as non-zero Neumann boundary conditions 
is straight forward. The reorderings of the extensions are indicated symbolically below. The letter f and its 
reflections (typewritten letters mean that the third index is reflected) indicate the d-dimensional array of 
interior grid values. Solid lines mean appropriate boundary values for f are filled in. 

ID f \ 

f \ 

2D 

\. f 

f \ f 

3D 

\. ' f t J 

In 3D, there is also a layer of boundary values below the left and between the two 3D arrays. 
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The reflection ansatz has the drawback that the size of the problem is increased like 2d. Schwarztrauber 
[4] and §3.4 shows how an ansatz in sine series can avoid this growth. However, for clarity of exposition, for 
analogy with the elastostatic case, to observe connections with the Immersed Interface Method mentioned 
in [7], and because we have a fast DFT but no fast discrete sine transform in Matlab, we prefer the ansatz 
in exponential series. 

3.4 Neumann boundary conditions solved on the original domain 

Consider the one-dimensional problem with Schwarztrauber's discretization, Le. with right hand side given 
at the left endpoint, fo, at interior points, fn, n = 1,2, ... ,N -1 and at the right endpoint, fN. Recall the 
periodic transform on N points, 

F1 -;... f (-21fi(k -1)(n -1)) 
k-L.JnexP N. 

n=l 

1 ~ k ~ N. 

We use the indexing convention it = fo, i2 = ft, ... , iN+! = fN, iN+2 = fN-1. ... , i2N = ft and write 
out the transform on the periodically extended domain, 

- _ ~ - (-21fi(k-l)(n-l)) 
Fk - L.Jfnexp 2N 

n=l 

1 ~ k ~ 2N. 

We observe that in = i2N -n+2 for 2 ~ n ~ N, and also 

(
-21fi(k -1)(n -1)) (-21fi(k -1)(2N - n + 2 -1)) (21f(k -1)(n -1)) 

exp . N +exp = 2 cos , N N 
. (-21fi(k -1)0) 1 
exp N =, 

(
-21fi(k -1)(N + 1 -1)) _ ( 1)(k-1) 

exp N .- - . 

Thus 
N 

jA = it + (_I)(k-1) iN+! + 2 ~ in cos (21f(k - ~(n -1)) 1 ~ k ~ 2N. 

Finally, since 

(
21f(k - 1)(n - 1)) (21f(k - 1)(1 - n)) (21f(2N - k + 2 - 1)(n - 1)) 

cos N = cos N = cos N 

and 

(_I)(k-1) = (_I)(2N-k+2-l), 

we also get 

Fk = F2N -k+2 1 ~ k ~ N. 
·'.Ii 

Together with the symmetry of the denominators in (6), (7) and (8), the Neumann boundary problem can 
thus ~e solved on the original domain with cosine and inverse cosine transforms. 

4 Poisson and Helmholtz equations with Dirichlet Boundary Con
ditions 

4.1 One space dimension 

To solve Uxx = f, with zero Dirichlet boundary conditions, observe that UNI = 0 and suppose that u = 
[U1, U2,'" ,UNI-dT solves the discrete problem with zero Dirichlet boundary conditions (the matrix for the 
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Dirichlet problem is obtained from the periodic one by scratching the last row and column) and right hand 
side f = [ft,h,··· ,fNI-1]. 

Theorem 2 The solution of the periodic problem on 2N1 grid points with right hand side 

- - 2N-1 _ T 
f= Udi=O = [O,f1.h, .. · ,fNI-1. 0,-fNI-1.-fNI-2,'" ,-ft] 

is 

Proof. The equations clearly hold at interior grid points and we need to check only at the boundary points: 

follows from U2N-1 = -U1 and uo = o. 

U1 - 2uo + U2N -1 = 0 
h2 

UN+! - 2UN + UN-1 = 0 
h2 

follows from UN+! = -UN-1 and UN = O. o 

The compatibility condition for the periodic system is satisfied, Le. LUi = L h = 0, and again the problem 
is reduced to the methods of §2. 

4.2 Non-zero Dirichlet data 

For non-zero Dirichlet data, the boundary values are placed in f as usual, and the method works as it is. 
Denote the boundary values on the left and right by Uo and UN, respectively and use the second order 
singular right hand side. According to our convention from §2, h = h1 and N = N1· 

- 2 fN-1 = fN-1 - uN/h , 
- 2 fN+1 = -fN-1 +uN/h , 

- 2 ft = ft - uo/h , 
- 2 hN-1 = -f1 +uo/h . 

The solution f tends to a discontinuous function as the grid is refined. On the original boundary, ii is zero, 
while quadratic extrapolation from interior points to the boundary results in the desired boundary values, 
and their negative on the other (extended) side. This is the discrete analogue of a double layer potential 
and the special case of two corrections in the EJIIM sense (c.f. [9, equations (5) and (6)]) occurring at each 
boundary gridpoint, infinitesimally close on the two sides: 

4.2.1 Example 

- 2 fN-1 = fN-1 - [u]N-/h , 

iN = 0 + [u]N-/h2 - [u]N+/h2, 
- 2 fN+! = -fN-1 + [ulN+/h , 
~. 2 hN-1 = - ft + [u]o- /h , 

- 2 2 fo =.0 + [u]o+ /h - [u]o- /h , 
- . . 2 ft ::::; ft -[u]o+/h . 

The function u(x) = cos(2x) solves Uxx = --'4cos(2x) with u(O) = 1 and u(1f) = 1. The "singularity" of i 
can be clearly seen in Figure 2 b). As the grid is refined, the values at grid points just to the left and right 
of O( = 21f) and 1f tend to ±oo in such a way that the discontinuities in U remain the same. Note that on all 
grids due tou(O) = u(1f) = 0, the discretization "has four discontinuities". 
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Figure 2: The extended solutions it in a) and right hand side I in bY, lor I(x) = -4cos(2x) and N = 5,10,20 
(stars, circles and crosses). As the grid is refined, the values 01 I at grid points just to the left and right 
01 O( = 27r) and 7r tend to ±oo in such a way that the discontinuities in it remain the same. The discrete 
solution values converge rapidly to the exact solution (solid line). 

4.3 Higher dimensional issues 

The extension to d space dimensions is clear. The reorderings of the extensions are indicated symbolically 
below. The letter I and its reflections (typewritten letters mean that the third index is reflected) indicate 
the d-dimensional array of interior grid values. Vertical solid lines indicate columns and horizontal lines 
indicate rows of zeros. 

1D I -\ 

I -\ 

2D 

-'\, f 

In 3D, there is also a layer of zeros below the left and between the two 3D arrays. 

4.4 Di:richletboundary conditions· solved on the original domain 

Consider the one-dimensional problem with right hand side given at the interior points, In, n = 1,2, ... , N-
1, and antisymmetric extension by zeros on' the boundaries and -I. Recall the periodic transform on N 
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points, 

D _ ~ f (-21ri(k -l)(n -1)) 
L'k - L.J n exp 2N 

n=1 

1 ~ k ~ N. 

We use the indexing convention A = 0, 12 = - h, ... , IN = - IN-I, IN+1 = 0, IN+2 = - IN-I, IN+3 = 
- IN-2, ... , 12N = h and write out the transform on the periodically extended domain, 

- _ ~ - (-27ri(k -l)(n -1)) 
Fk - L.Jlnexp 2N 

n=1 

1 ~ k ~ 2N. 

We observe that In = - 12N -n+2 for 2 ~ n ~ N, and also 

(
-27ri(k -l)(n -1)) (-27ri(k -1)(2N ~ n + 2 -1)) 2" (-21r(k -l)(n -1)) 

exp N - exp N = ~sm N . 

Thus 

- .~ - . (-27r(k-1)(n-1)) 
Fk = 2~ L.J In sm N 

n=2 
1 ~ k ~ 2N. 

Finally, since 

. (-27r(k -l)(n -1)) __ . (-21r(k -1)(1- n)) __ . (-27r(2N - k + 2 -l)(n -1)) 
sm N -sm' N -sm N ' 

we also get 

A = -F2N-k+2 1 ~ k ~ N. 

Together with the symmetry of the denominators in (6), (7) and (8), the Dirichlet boundary problem can 
thus be solved on the original domain with sine and inverse sine transforms. 

5 Fast elastostatic solvers on rectangu~ar parallelepipeds' 

Throughout this section, il is the rectangle [0, NIh] x [0, N2h], where h = ~x = ~y is the uniform meshwidth 
and NI and N2 are numbers of grid points in a discretization with periodic boundary conditions. The 
equations are discretized by centered second ordered finite differences (see (14) and (15) below), Dirichlet 
and Neumann boundary conditions are imposed by finite differences as for Laplace's equation in §4 and §3. 

5.1 Periodic boundary conditions in 20 

Consider the equidistant (~x = ~y = h) discretization of 

C~u+ 8xxu + 8xyv = I U in il, 

cAv + 8xyu + 8yyv = r in il, 

with U and v periodic. The boundaries x = 0 and x = Nih are identified by periodicity as are the boundaries 
y = 0 and y = N2h. We write out second order finite differences in detail for the point (nh,jh). 

CUn+l,j + CUn,j+1 - 4cun,j + CUn-l,j + CUn,j-1 + Un+l,j - 2un,j + Un-I,j + 
+ Vn+1,j+1/4 - Vn-l,j+1/4 - vn+l,j_l/4 + vn -I,j_l/4 = h21::,j (14) 
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If 

,', 

and 

CVn+I,j + CVn,j+l - 4cvn,j + CVn-l,j + CVn,j-l + Vn,j+l - 2vn,j + Vn,j-1 + 

+ Un+1,HI/4 - un-I,HI/4 - Un+1,j_I/4 + Un-I,j_I/4 = h2 f~,j' (15) 

As before the discrete Fourier transform (DFT) in the first variable (recall that i = P) is indicated by 
upper case variables 

U ~' ('-27ri(k-l)(n-l)) 
k,j = L..t Un,j exp N 

n=l 1 

and the inverse DFT is 

,_ i ~ U. (27ri(k -1)(n -1)) 
un,J - N L..t k,J exp N 

1 k=l 1 

(16) 

We use this notation also for the right hand side, for example the DFT in the first variable reads 

F1 . - ~ f. (-21fi(k -1)(n -1)) 
k,J - L..t n,J exp N1 1 ::; k ::; NI . 

n=l 

To indicate the discrete Fourier transform in both variables, we write bars: 

- ~ U (-21fi(m -1)(j -1)) 
Uk,m = L..t k,j exp N 

j=1 2 

The following theorem states that the methodology for the discretized Laplace equation with periodic 
boundary conditions can also be applied to discretized homogeneous linear elastostatics. 

Theorem 3 For 1 ::; k ::; Nl and 1 ::; m ::; N 2, but km > 1 

(17) 

(18) 

where 

27r(k - 1) 27r(m - 1) 
ak,m = -4c - 2 + 2(c + 1) cos Nl + 2ccos N2 ' 

b 
. 27r(k - 1),. 27r(m - 1) 

km=-sm N sm tv. ' , I 2 

21f(k - 1) 27r(m - 1) 
dkm=-4c-2+2ccos N +2(c+l)cos tv. . 

, 1 2 

Proof. Define 

_ (21fi(k -l)(n - 1)) 
ekn = exp N . , I 

After a transform in the first variable and substituting (16) for n,n + 1 and n -1 into (14) we get for fixedI 

n, 1 ::; n ::; NI 

1 Nl ( ,21f(k-l)) c ~ , 
-' L ek,n -4c - 2 + 2(c + 1) cos N Uk,j + N L..t ek,n (Uk,Hl + Uk,j-l) + 
Nl k=l 1 1 k=I 

l' Nl . 27r(k - 1) h2 Nl U 

+ 2'N Lek,n sm N (-ltj,k+1 + ltj,k-I) =]if" Lek,nFk,j 
1, 1 k=I I I k=l 

1 Recall that index arithmetic is modulo grid size. 
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and 

1 Nl ( 27r(k-l)) c+l Nl 
N L ek,n -4c - 2 + 2ccos N Vk,j + -;:;- L ek,n (Vk,HI + Vk,j-d + 

I k~I I I k=1 

1 Nl 27r(k _ 1) h2 Nl 

+ 2'N Lek,n sin N (-Uj,k+1 +Uj,k-d = N Lek,nFi:,j' 
1, I k=1 I I k=I 

By the independence of the Fourier modes, for fixed k and n: 

( 
27r(k - 1)) 

-4c - 2 + 2(c + 1) cos Nl Uk,j + c (Uk,j+1 + Uk,j-l) + 

1 . 21f(k - 1) 2 u 
+ 2i sm Nl (-ltj,k+1 + ltj,k-l) = h Fk,j 

and 

( 
21f(k -1)) 

-4c - 2 + 2ccos NI Vk,j + (c + 1) (Vk,j+1 + Vk,j-1) + 

1 . 21f(k - 1) ( 2 v 
+ 2i sm Nl -Uj,k+1 + Uj,k-I) = h Fk,j' 

By the same argument, after a transform in the second variable, for fixed 1 ::; k ::; Nl and 1 ::; m ::; N2 

h2p-u . 27r(k - 1) '. 27r(m - 1) Vi-
k m = - sm N sm N k,m + 

, I 2 
(19) 

( 
27r(k -1) 27r(m -1)) -

+ -4c-2+2(c+l)cos NI +2ccos N2 Uk,m 

h2p-v . 27r(k - 1) . 27r(m - 1) U-
k m = - SIn N sm N k,m + 

, I 2 
(20) 

( 
27r(k -1) 27r(m -1)) -

+ -4c-2+2ccos NI +2(c+l)cos N2 Vk,m 

The inversion of (19) and (20) for U, V with k, m such that km > 1 yields just the formulas in the theorem. 
o 

Remark 5.1 For k = m = 1, the derivation of the system for pu and pv in the theorem remains valid, 
but in this case a = b = d = O. By (19) and (20), the solution of the 2D elastostatic equations with periodic 
boundary conditions exists only if PU(I, 1) = PV(I, 1) = O. In this case, the solution is not unique. We can 
choose arbitrary values for U(I, 1) and V(I, 1). In the implementation we set them to zero. This means that 
the finite difference operator with periodic boundary conditions is invertible on the subspace of grid vector 
fields (gU, gV) whose first and second components each sum to zero. 

5.2 Periodic Boundary Conditions in 3D 

In 3 space dimensions, the same technique also yields a fast elastostatic solver for periodic boundary condi~ 
tions .. We discretize the equations of elastostaticf! (2) as follows. 

(1 + c)Un+1,j,i + Un,HI,i + Un,j,HI - (4 +,2c)Un,j,i + (1 + C)Un-I,j,i + Un,j-l,i + Un,j,i-1 
C C C C 

+ 4Vn+1,Hl,i + 4 Vn- I,j-l,i - 4Vn-1,HI,i - 4 Vn+I,j-I,i 
C C C C U 

+ 4Wn+I,j,i+l + 4Wn-l,j,i-I - 4 Wn- l ,j,i+l - 4 Wn+1,j,i-l = fn,j,£! 
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.'. 

vn+1,j,e + (1 + C)vn ,j+1,e + Vn,j,HI - (4 + 2c)vn ,j,e + Vn -1,j,e + (1 + C)Vn,j-l,e + Vn,j,e-l 
C C C C 

+ 4'Un+I,j+I,e + 4'Un-l,j-l,e - 4'Un-I,j+I,e - 4'Un + I ,j-I,e 

C C C C v 
+ 4'Wn ,j+l,e+1 + 4'Wn ,j-I,e-1 - 4'Wn,j+l,e-1 - 4'Wn ,j-1,e+1 = fn,j,i> 

Wn+l,j,e + Wn,j+1,e + (1 + C)Wn,j,HI - (4 + 2c)wn ,j,e + Wn-1,j,e + Wn,j-1,e + (1 + C)wn,j,e-1 
C C C C 

+ 4'Un+l,j,e+1 + 4'Un-1,j,e-1 - 4'Un+1,j,e-1 - 4'Un- 1,j,e+1 

C C C C fW + 4'Vn ,j+1,e+1 + 4'Vn,j-l,e-1 - 4'Vn ,j+1,e-1 - 4'Vn ,j-l,e+1 = n,j,e' 

Theorem 4 For 1 :::; k :::; Nt, 1 :::; m :::; N2 and 1 :::; p :::; N3, but kmp > 1 

where 

27r(k - 1) 27r(m - 1) 27r(p - 1) 
ak,m,p=-(4+2c)+2(I+c)cos N1 +2cos N2 +2cos N3 ' 

· 27r(k - 1) . 27r(m - 1) 
bk m p = -CSln N SIn 1\T , 

, , 1 lV2 

· 27r(k - 1) . 27r(p - 1) 
gk m p = -C SIn N sm N ' , , 1 3 

27r(k - 1) 27r(m - 1) 27r(p - 1) 
dk,m,p=-(4+2c)+2cos N1 +2{I+c)cos N2 + 2 cos N3 ' 

· 27r(m - 1) . 27r(p - 1) 
ekmp = -CSln 1\T SIn N ' 

, , lV2 3 

27r(k - 1) 27r(m - 1) 27r(p - 1) 
!k.m,p = -(4 + 2c) + 2 cos N1 + 2 cos N2 + 2(1 + c) N3 . 

Proof. The proof is completely analogue to 2D. Hats denote 3D FFTs, e.g. W is the 3D Fourier transform 
of the displacement W in the third spacial variable z. D 

For completeness, we note that (here short a = ak,m,p, ... ,f = fk,m,p) 

A-I = -- -bf + ge af - g2 -ae + bg , 
1 ( df - e

2 
-bf + ge be - gd ) 

det(A) be - gd -ae + bg ad - b2 

and det(A) = adf + 2bge - ae2 - fb2 - dg2. Whenever kmp > 1, we have det(A) #- 0. For k~p ~ 1 the 
derivations for the theorem still hold, but all coefficients in A are zero. In that case we reqUlre Ft1,1 = 

Ff,l,l = Fr;l,1 = 0 and inth:atcase choose U1,l,1 = V1,l,l = W1,l,1 = 0. 

5.3 Normal boundary conditions iri 2D 
Neither Dirichlet nor Neumann boundary conditions can be solved by reflection because of the different 
nature of the second order centered differences for first and second derivatives. The symmetric differences 
for axx and ayy keep the same sign under reflection, while the antisymmetric differences for axy change signs 
under reflection. 
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To avoid this difficulty, we consider "normal" boundary conditions. 

u{O, y) = u(N1h, y) = 0, 

V", (0, y) = V", (Nih, y) = 0, 
v(x,O) = v(x, N2h) = 0, 

uy(x, O) = uy(x, N2h) = 0, 

y E [0,N2hj, 

y E (0,N2h), 

x E [0, Nih], 

x E (0,N1h). 

Using Schwarztrauber's discretization of the normal boundary condition (c.f. §3) and a symmetry-based 
implementation of Dirichlet boundary conditions results in (N1 + 1) X (N2 + 1) discrete variables each for 
u, and v. The system of linear equations is reducible. We find a total of five blocks, two in u variables on 
the two vertical sides with Dirichlet boundary conditions, two in v variables on the two horizontal sides with 
Dirichlet boundary conditions, and one for all the interior variables and variables with Neumann boundary 
conditions. The subsystems on the Dirichlet boundaries all four have solution zero as expected. 

To take advantage of the fast periodic solver, we use antisymmetric reflections for u and fU in x and v 
and r in y, and symmetric reflections for u and fU in y and v a.nd r in x, with extension by zero at all 
four corners for both rand r. 
The.orem 5 The solution of the discretization of homogeneous linear elastostatics in 2D with normal bound
ary conditions exists and is unique. The extension (it, v) as described above solves the periodic system on 
(2N 1) x (2N 2) points with right hand side (/u,/V). 

Proof. Solutions to the reflected system exist and are unique up to an additive constant each for it and v 
by Theorem 3 since L: ju = L: jv = 0. By symmetry of ju and jv, preservation of symmetry under the 
DFT (c.f. §3.4 and §4.4) and symmetry properties ofthe ak,m, bk,m and dk,m, the solution (it, v) (choosing 
the solutions with U1,l,l = ° and V1,l,l = 0) has the claimed form. Inspection shows that the appropriate 
restriction of the solution to the upper left quarter satisfies the difference equations and "normal" boundary 
conditions. D 

The reorderings of the extensions are indicated symbolically below. Between sign changes and at the four 
corners, fill in zero. Between same size quantities, fill in appropriate boundary values. 

2D 

Remark 5.2 Nonzero Dirichlet and Neumann boundary conditions have a similar interpretation in terms 
of the EJIIM as we showed for Laplace's equation. 

Remark 5.3 The quadrupling of the domain can be avoided using an ansatz in sine and cosine series as 
outlined in §3·4 and §4.4. 

5.3.1 Example 

To get an idea of what the benefits of the fast elastostatic solver can be, we implemented the matrices of 
the discretizatipn of linear elastostatics in . 2D with normal boundary conditions. Figure 3 visualizes . linear 
and cubic growth (d9tS) as well as the solution tirpes of Matlab's "slash" operator (a direct method, crosses) 
applied to these sparse matricesand the fast elastostatic solver (circles) in a loglog plot against the size of the 
linear system of equations. Note that the fast solver does not require the matrices! On the horizontal axis, 
we show the number of variables for "slash" ,N = 2(N1 + 1)(N2 + 1). Due to the reflections the fast solver 
performs two FFTs and two inverse FFTs o(Iength 4N1N2' We see cubic behavior for the direct solver, and 
N log N behavior for the fast solver. We have chosen values of N so that the dependence of the performance 
of the FFT on the prime decomposition of N shows. For large N, we could not perform the direct solve in 
memory (without swapping), and consequently show only the data for the fast solver for such N. 
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Figure 3: Solution times of the fast elastostatic solver (circles, up to N = 261121) and Matlab's "slash" 
operator (a direct method, crosses, only up to N = 16641) in a loglog plot against the size of the linear 
system of N equations solved by the direct method. We plot dots at N/1024 and (N/1024)a to compare with 
linear and 'cubic growth. 

Remark 5.4 This fast solver is used in [7} to solve problems on arbitrary domains with essential, natural 
and rigid punch boundary conditions. 

5.4 Normal boundary conditions in 3D 

In 3D, "normal" boundary conditions are 

u(O, y, z) = U(Nlhl' y, z) = 0, 

vx(O, y, z) = vx(Nlhl, y, z) = 0, 

wx(O, y, z) = wx(Nlhl, y, z) = 0, 

v(x, 0, z) = v(x, N2h2' z) = 0, 

uy(x, 0, z) = uy(x, N2h2' z) = 0, 

wy(x,O,z) = wy(x,N2h2'z) = 0, 

w(x, y, 0) = w(x, y, Naha) = 0, 

uz(x,y,O) = uz(x, y, Naha) = 0, 

Y E [0, N 2h2], z E [0, Naha) , 

y E (0, N2h2), z E (0, Naha) , 

y E (0, N2h2), z E (0, Naha), 

x E [0, Nlhl), z E [0, Naha) , 

x E (0, Nlhl ), z E (0, Naha), 

x E (0, Nlhl ), z E (0, Naha), 

x E [0, Nlhl ], y E [0: N2h2], 

x E (O,Nlhl),y E (0,N2h2), 

vz(x,-y, O) = VZ(~I V, Naha) = 0, x E (0, Nthl ), y E (0, N2h2)· 

UsingSchwarztrauber's discretization of the normal boundary condition (d. §3). and a symmetry:-based 
implementation of Dirichlet boundary conditions results in (Nl + 1) X (N2 + 1) X (Na + 1) discrete variables 
each for u, v and w. As in the 2D case, the system of linear equations is reducible. We find a total of 
seven blocks, two in u variables on two oppbsite vertical faces with Dirichlet boundary conditions, two in 
v variables on the other two vertical faces with Dirichlet boundary conditions, two in w variables on the 
two horizontal faces with Dirichlet boundary conditions and one for all the interior varfables and Neumann 
boundary variables. The subsystems on the Dirichlet boundaries aU six have solution zero as expected. 
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To take advantage of the fast periodic solver, we use antisymmetric reflections for u and fU in x, v and 
r in y and wand fW in z, and symmetric reflections for u and r in y and z, v and r in x and z and v 
and fW in x and y, with extension by zero at the twelve edges and eight corners for f U , rand fW. 

Theorem 6 The solution of the discretization of homogeneous linear elastostatics with normal boundary 
conditions exists and is unique. The extension (iL,~, w I a~ descri.bed above solves the periodic system on 
(2Nl ) x (2N2) x (2Na) points with right hand side (r,r,fW). 

Proof. Solutions to the reflected system exist and are unique up to an additive constant each for iL, v and w 
by Theorem 4 since I:.lu = I: Iv = I: Iw = 0. By symmetry of Iu, Iv and Iw, preservation of symmetry 
under the DFT (c.f. §3.4 and §4.4) and symmetry properties of the ak,m,p, bk,m,p, dk,m,p, ek,m,p, fk,m,p 
and gk,m,p, the solution (iL,v,w) (choosing the solutions with (; = 0, "II = ° and TV = 0) has the claimed 
form. Inspection shows that the appropriate restriction of the solution to the upper left quarter satisfies the 
difference equations and "normal" boundary conditions. D 

We indicate symbolically the reflections needed for the "normal" boundary conditions in 3D. As before, 
the f* and their reflections Indicate a 3-dimensional array of values of the right hand side of the respective 
the elastostatic equation, Typewritten f indicates reflection in the third index. 

3D 

There are also two layers of boundary values (in rand r) and a layer of zeros (in the fW slots) below the 
left and between the two volumes. 

Remark 5.5 The octupling of the domain can be avoided using an ansatz in sine and cosine series as 
outlined in §3.4 and §4.4. 

5.5 Displacement Boundary Conditions in 2D 

The following "fast" solver for Dirichlet boundary conditions in 2 space dimansions is very si'milar to the 
treatment of Neumann boundary conditions via Schur complements in [5, 9) and earlier capacitance matrix 
methods [2), except that here the inverse in the Schur-formula is a pseudo inverse! The Dirichlet boundary 
value problem for a linear elastic body is: 

cb.u + axxu + axyv = lu in n, 
cb.v + axyu + ayyV = Iv in n, 

u = ° on an u an', 
v = ° on an u an'. 

Due to the nature of the finite differences for the axy term, so far a direct fast inverter for Dirichlet boundary 
conditions has eluded me. For now, I use an iterative procedure that could possibly be used in parallel with 
the EJIIM embedding by stacking. The idea is to embed the body in a periodic domain (see Figure 4) and 
to find the appropriate extension boundary that makes the extended u and v vanish on the extension of n. 
Precisely, the problem is to find u, v, and in addition boundary values for the right hand side f! and fi 
such that the partial differential equation with Dirichlet boundary conditions can be rewritten in terms of a 
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Figure 4: The domain for the Dirichlet problem is 0 (bounded by inner fat lines). The discrete variables for 
the Dirichlet problem live on the 49 inner intersections. 0 is enlarged on the left and bottom to the rectangle 
with periodic boundary conditions. The two rectangles labeled 00' are periodically identified with the opposite 
rectangles, the three unlabeled squares are periodically identified with the bottom left square. 

partial differential equation with periodic boundary conditions 

cAu + oxxu + oxyv = fU in 0, 

cAv + oxyu + OyyV = fV in 0, 

cAu + oxxu + oxyv - ft: = 0 on 00, 

cAv + oxyu + OyyV - fb = 0 on 00, 

cAu + oxxu + oxyv - r: = 0 at 0*, 

cAv + qxyu + OyyV - f: = 0 at 0*, 

u = 0 on 00, 

v = Oon a~, 

u = 0 at 0*, 

v = 0 at 0*. 

A complication arises because the solution of the elastostatic equations with periodic boundary conditions 
on 0 U 00 U 0* exists only if each component of the right hand side integrates to zero. We ensure this by 
setting f:: = - E fu - E ft: and f: = - E fv - E fb' In this case the solution is unique only up to two 
constants. Different from §5.1, we are not interested in the solution that sums to zero in each component, 
but in the unique u and v that vanish at 0*. The conditions that u and v vanish on 0* U 00 determine ft: 
and fb' 

Numerically, we solve the following problem: 

(21) 

The superscript p indicates that the differential operators are discretized with periodic boundary conditions; 
Rb means the restriction of a grid function to values on the boundary (Le. from the periodic domain to 
00 U 0*); EI) is the extension (prolongation) from 00 to 00 U 0 U 0* by zero in 0, assigning F* = - E Fb 
at 0*. Finally, E is the prolongation from 0 to 0 U 00 U 0* by zero in 00, assigning F* = - E F at 0*. 
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The reason for writing (21) is to tal<e advantage of the fast solver for the periodic problem in a Schur
complement. Recall that if 

and All exists, then Ul can be eliminated from the equations via Ul = All(Fl - A l2U2). This elimination 
yields 

(A22 - A2lAll A l2 )U2 = F2 - A2lAll Fl. 

The main difficulty is that the difference matrix for the periodic problem, the upper left 2 by 2 block in 
(21), is not invertible. Since E(EFU) = 0, E(EFV) = 0, E(EbFt:) = 0 and E(EbFb ) = 0 for all FU, F V, 

Ft: and Fb , it is clear that (EFu, EFv) T and (EbFt:, EbFb) T are always in the range of the periodic finite 
difference operator ' 

'A = ( CA1 + D~x D~y) 
Dp AP DP . xy cUh + yy 

For any F in the range of A, At F indicates the vector (U, V) T that satisfies the periodic finite differences 

A (U, V{ = F with vanishing entries at 0*, U* = 0 and V* = o. U and V can be found in q:'nlnn) by the 
technique in §5.1 and subtraction of U*, V* from the solution found there. We rewrite (21) as 

where 

and 

respectively. 

RbU(Ft:,Fb) = -RbU(FU, F V), 

RbV(Fbu,Fb) = -RbV(FU, F V), 
(22) 

(23) 

We solve (22)-(23) for Ft:, Fb via GMRES, a conjugate gradient method. An iterative method is needed 
because we do not explicitly know At, but we can apply it in q:' n In n). 

Theorem 7 There exists a unique solution {U, V,Ft:,Fb} of (21). Furthermore, the restriction of this 
solution to interior points solves the original discrete Dirichlet problem. 

Proof. 

• Existence: Extend the (unique) solution to the discrete Dirichlet problem by zero on 00 U 0* and 
calculate Ft:, Fb , F:: and F;: via periodic finite differences. This explicit form shows that they are 
unique. It is a general property of periodic finite differences that the sum over the output vector 
vanishes, and hence F:: = - E FU - EFt: and, F;: = - E FV - E Fb . But this means that the 
so'-constructed{U, V, Ft:, Fb} satisfy (21). 

• U niqueness:Let (U, V, F,f, Fb) be any solution. Since the entries of both U and V are zero on the 
boundary by the third and fourth block rows in (21), by the prolongation by zero property of Eb the 
entries corresponding to the interior points solve the Dirichlet boundary value problem. Hence they 
are unique, and with them also Ft: and Fb . 

o 
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5.5.1 Example 

To evaluate the performance of the solver for displacement boundary conditions we have implemented the 
matrices of the discretization of linear elastostatics in 2D with essential boundary conditions. The matrices 
were applied to grid functions u and v to obtain right hand sides rand r with known solutions. We used 
GMRES [3] to solve (22)-(23). In Table 1 we see results as the residue for zero initial guess is reduced by 
10 orders of magnitude - the usual mode of using GMRES. 

Table 1: Performance of the Displacement solver for N grid points. 

N Iterations Flops Flop Ratio, N = 4m Mflops Seconds Time Ratio 
15:& 23 3.6e+06 - 1.ge+0 1.9 -
162 23 1.ge+06 - 8.6e-1 2.2 -
172 25 9.3e+06 - 4.6e+0 2.0 -

31:& 31 6.6e+07 - 1.ge+1 3.5 -
322 31 1.1e+07 5.8 3.5e+0 3.1 1.4 
332 32 3.8e+07 - 1.1e+1 3.5 -

63:& 39 1.6e+08 - 2.3e+1 7.1 -
642 39 5.ge+07 5.4 8.6e+0 6.9 2.2 
652 39 2.2e+08 - 2.ge+l 7.6 -

127:& 48 6.5e+09 - 1.1e+2 61 -
1282 48 3.2e+08 5.4 1.2e+l 26 3.8 
1292 48 2.5e+09 - 6.8e+l 37 -

255:& 59 6.8e+09 - 4.5e+l 150 -
2562 59 1.7e+09 5.3 1.1e+l 156 6.0 
2572 59 6.6e+l0 - 1.3e+2 513 -
511:& 72 1.0e+11 - 8.1e+l 1234 -
5122 72 8.7e+09 5.1 1.1e+l 809 5.2 
5132 72 3.7e+l0 - 3.5e+l 862 -

The following points are noteworthy 

• The GMRES iteration count grows very slowly as the mesh is refined. 

• The number of floating point iterations needed depends strongly on the prime factors of the number 
of grid points due to the use of the FFT. 

• The runtimes are less sensitive, because for "bad" prime factorizations the FFT uses the CPU more 
efficiently - at least for the "small" problems in the table. 

• For powers of two, the optimal number of grid points, and due the almost constant iteration count, 
the flops (and runtimes) grow with O(NlnN), just like the solver for periodic boundary conditions. 

6 Conclusions 

We have described the fast solution of Poisson problems on rectangular parallelepipeds in one, two and 
three space dimensions, and reduced the solution of Dirichlet and Neumann boundary value problems to the 
Poisson problem, uSillg appropriate reflections. 

Nonzero Dirichlet"and Neumann boundary conditions were seen as special, grid-aligned cases of the jump 
conditions used in the Explicit Jump Immersed Interface Method. 

The fast solver methodology for periodic 'boundary conditions carried over to the equations of homoge
neous linear elastostatics in the approximation of plane stress and in three dimensions and is being used 
in [7] for general regions with essential, natural and rigid punch boundary conditions in 2D. For "normal" 
boundary conditions, reflection works in 2D and 3D and provides a simple proof of the regularity of the 
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matrix of. the discretization. In 2D, the theoretical performance of O(N In N) was observed £, th £ t 
elastostatlC s?lver for normal boundary conditions in an implementation. or e as 

For t~e DISpla?ement boun~ary conditi~n case, a "singular" Schur-complement technique was develo ed 
that avoIds enlargmg the domam, but reqUIres several periodic solves In this case the numbe f't t'P 
(solves 'th . d' b d . . . " r 0 1 era Ions 

. WI peno.lC oun ary condI:IOns) m GMRES required to reduce the residue b a fixed factor 
detenorates only shghtly as the mesh IS refined. y 
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