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Abstract

FFT-based fast- Poisson and fast Helmholtz solvers on rectangular parallelepipeds for periodic boundary
conditions in one-, two and three space dimensions can also be used to solve Dirichlet and Neumann boundary
value problems. For non-zero boundary conditions, this is the special, grid-aligned case of jump corrections
used in the Explicit Jump Immersed Interface method.

Fast elastostatic solvers for periodic boundary conditions in two and three dimensions can also be based
on the FFT. From the periodic solvers we derive fast solvers for the new “normal” boundary conditions
and essential boundary conditions on rectangular parallelepipeds. The periodic case allows a simple proof
of existence and uniqueness of the solutions to the discretization of normal boundary conditions. Numerical
examples demonstrate the efficiency of the fast elastostatic solvers for non-periodic boundary conditions.

More importantly, the fast solvers on rectangular parallelepipeds can be used together with the Immersed
Interface Method to solve problems on non-rectangular domains with general boundary conditions. Details
of this are reported in the preprint The Explicit Jump Immersed Interface Method for 2D Linear Elastostatics
by the author.

Keywords: Fast Helmholtz solver, fast Poisson solver, fast elastostatic solver, boundary conditions.




1 Introduction

We derive fast solvers for the finite difference discretization of the equations of homogeneous linear elas-
tostatics, also known as homogeneous small displacement elastostatics. We consider the approximation of
plane stress or plane strain,

AU+ Oggu + Opyv = Y,

1
CAv + Oyyv + Oyyu = f?, M)

as well as the discretization of the equations of homogeneous linear elastostatics in three dimensions

cAu + Ozzu + a:cy'vk'l' Og W = fuv
CA'U + ayy'v + aymu + ayz'w = f'U, (2)
cAw + azzw + 0y + azy'u = fwa

on rectangular parallelepipeds. The fast elastostatic solvers can be used in an embedding approach to solve
elastostatic problems with traction, displacement and other boundary conditions on multiply connected,
non-rectangular domains, which is the application of Schur-complement methods for Poisson problems
on irregular domains by Buzbee, Dorr, George and Golub[l] and Proskurowski and Widlund [2] to the
elastostatic equations. The main benefit of this approach is that it avoids mesh generation while allowing
us to rapidly solve finely discretized problems in arbitrary domains in [7].

To introduce the notion of FFT-based fast solvers and our treatment of boundary conditions, we first
consider discretizations of

(A +K)u=— Zaz+nu £ (M =1,2,3), (3)

i.e. the Poisson equation (x = 0) and the Helmholtz equation (x > 0), with periodic, Dirichlet or
Neumann boundary conditions.

We then write fast solvers for the elastostatic equations with periodic and “normal” boundary con-
ditions and a somewhat slower approach for pure displacement (essential) boundary conditions.

For the purpose of exposition, all equations are approximated by a second order centered difference
discretization with equidistant mesh (Az = hy = h, Ay = hy, Az = h3) in one, two or three space
dimensions, i.e. on [0, h1N1], [0, A1 Ny] x [0, halN3] or [0, h1N1] x [0, ke N3] X [0, hg N3], where N; € N and
h; > 0. But the derivation of the solvers is not limited to second order discretizations.

The basic idea is to find discrete analogies of solving differential equations via Fourier transforms. Recall
that for z € R®, u : R® — R and F the n—dimensional Fourier Transform, we have

2
F (%‘I) =it Fu), F ( afz gm'a) = —&a¢3F(u), ete.

Thus, the Helmholtz equation
—Au+ru=f

becomes

(g +x)Fw =7

in Fourier space, where it is solved easily as

B (i%ﬁ) . @

In the discrete case, it turns out one can replace F by the discrete Fourier transform (DFT); the work lies
then in finding the appropriate divisors in the discrete equivalents of (4)—they depend on the discretization
and boundary conditions—and dealing properly with the case x = 0. Dirichlet and Neumann boundary
conditions.can be reduced to the periodic case.




In §2 we describe an approach that uses DFTs to solve the periodic Poisson and Helmholtz problems in
O(NInN), where N = N1NzN3. The ideas can be found for example in Schwarztrauber [4], but go back
much further, see the references in [4], e.g. [1, 2]. The solution of the Poisson problem (x = 0) with periodic
boundary conditions exists only for f with [ f = 0 and in this case is unique only up to constants. Since
these properties are inherited also by the discretized problem, we choose the solution to lie in the subspace &

~of grid functions whose entries sum to zero. This choice is natural as S is both the range and the orthogonal
complement to the Nullspace of the (symmetric) discretization A}, of the Laplacian with periodic boundary
conditions, so that A} is invertible on S.

Using tables of sines and cosines, it is easy to write fast sine-transform and fast cosine-transform based
algorithms for the Neumann (§3) and Dirichlet (§4) problems (see also [4]). Because we had available a very
efficient DFT (the FFT), but no comparable DCT or DST, we instead obtain solutions for Neumann and
Dirichlet boundary conditions using the periodic solution on a larger domain which is results from reflection
in each dimension.

The reflection approach deals naturally with the Nullspace of the discretization of the Neumann problem.
For the Neumann problem with Schwarztrauber’s discretization of the boundary conditions, the Nullspace
of the discretization is also S, but the range consists of vectors that sum to zero under a convention that
boundary points on the relative interior carry half the weight of interior points. Corners in 2D and edges in
3D carry. a quarter of the weight of interior points and corners in 3D carry an eighth of the weight of interior
points. This is consistent with the reflection approach, where boundary points are duplicated differently
from interior points, and depending on their position on the boundary. ’

The main points of this paper are in §5. There we consider the linear elastostatic equations for periodic
boundary conditions in the approximation of plane stress (§5.1) and in 3D (§5.2). "We describe fast solvers for
what we will call normal boundary conditions in 2D (§5.3) and in 3D (§5.4). Normal boundary conditions
mean given normal displacement and normal derivative of the tangential displacement; Our treatment of
pure Dirichlet (displacement) boundary conditions in §5.5 avoids enlarging the domain at the cost of several
fast solves, and shows how to deal with the “inverse” of the singular submatrix that arises when Dirichlet
boundary conditions are treated via Schur—complement as a perturbation of periodic boundary conditions.

The fast solvers for second order centered finite difference approximations are shown to be useful also
for non-rectangular regions in[7], and may turn out useful as preconditioners for homogenization approaches
to structural topology design or as fast transform subdomain perconditioners in domain decomposition
approaches. ' '

2 Fast Poisson and Helmholtz solvers for periodic boundary con-
ditions

Here we describe the use of FFTs for the fast inversion of the linear systems of equations resulting from the
discretization of the Laplacian with periodic boundary conditions by centered second order differences. Upper
case variable names indicate one-dimensional Fourier transforms, bars and hats mean Fourier transforms in
the first two and all three variables, respectively. Due to periodicity, all arithmetic on the indices is modulo
Nji, Ny and Nj in the first, second and third variables, respectively. The moduli are calculated as if we let
the indices range from 0 to IN; — 1 instead of 1 to N;. We use 1 to N; for closer correspondence with our
implementation — the programming language does not allow the index 0. Throughout we write 4 = /—1.

2.1 One space dimension
Discrete Fourier Transform (DFT):

Ny X
Uk = Zunexp ( ZTF'Z(]C N:)(n 1)) 1 S k S N1.

n=1

Inverse DFT":

Ny o B
unzizwcexp (2m(k 1\1ﬁ)(n 1)) 1<n< Ny,

S

also
1 i‘{jth amitk— -1\ | . o n )
fn—mk=1 1P exp N, <n< N
Finite differences for (3):
_Unt1 _ 2 Un—1 _
fn— h% (h%'l"f')un'l"h%
Ny ,
1 " 2mi(k~ 1)(n — 1) 2n(k—1) .4 —2mw(k—1) } _
7&?7\7—1 ; Ui exp ( N, exp N, 2 — hik + exp N

Ny ,
1 2k — 1)\ . 2 2ni(k — 1)(n — 1)
-E?'N-l- kil Uk {2 Ccos (—-——]V-l—) -2 hll‘-', exp N1 .
Comparing coefficients of this Fourier series with the one in (5), we find
{2 cos (_____27r(k — 1)> -2- h%n} Uy, = hiF;.
N

The left hand side is zero for k = 1 in case of the Poisson problem. In order for a solution to exist, we
need F; = 0, which means simply Y f, = 0. In this case, we set Uy = 0. For 2 < k < Ny, (1 <k < Ny for
k> 0) let

h2F,
2 cos (-2-”(—1’;—1_1)) - 2-h3k

U = (6)

Finally, recover uy, via inverse DFT. For = 0 the choice U; = 0 ensures Do Un=0.

2.2 Two space dimensions

Now we use
o Untly  Yngrr (2 2 U1y, Umgo1 _
frg = 72 + 3 w2 + 72 + K)Un,j + w2 + i
Ny .
—_ - -1 2n(k—1
hzhlz 7, 2 Uki exp (m(k ]\1,1)(’% )) {2h§ cos (-"—(NI—Z> — 2K — 2R} — h%hgn} +
1124Vt = _

Ny

Ny . .
1 2mi(k — 1)(n — 1)) 1 <2m(k —1)(n— 1))
- 1 ex U . i
TN, kz=1U’“’J+1 eXp( N YA kZ=1 k=1 XD, A

This decouples into N; periodically tridiagonal linear systems indexed by k = 1,2,...Ny. For fixed k, the
system is given by

cos (w:—lz) -2

Uk Z 2 Ui =12, N 7
" .|_ — R K¢ Upj+ h2 ‘k,,, or? v2,...,Ns. ‘ (7

We could continue with a Fourier transform in the second variable. This idea is described for the 3D case
in the next section. Alternatively, one can solve the periodically tridiagonal system (7) for each k. Due to
the special structure of the matrices, this is possible in O(Nz). For k = 0 and k = 1, the matrix is rank
deficient—it is simply the one dimensional periodic centered difference operator considered in §2.1. Right
hand sides with sum zero are in the range of this matrix. In that case, we set Uy1 = 0 and solve the
(N — 1) x (Ny — 1) system which is obtained from (7) by scratching the first row and first column for Uj 1,
fori =2,3,..., N,. Finally, Ny inverse FFTs of length N, give u. As in §2.1, for k& = 0 the choice of U1 =0
ensures that u € S. . ' '




2.3 Three space dimensions
We do a DFT on the first index, and find (for fixed n)

- un+11.71l un’j'l'l:l Un,j,l+1 - _%_ __2_ 3_ . un—l,j,l un»j_lyl | unrjrl"'l .
fn,], h2 + h% + h% (h% + h% + h% + K unh,,[ + h% + h% + h% -

2r(k—1
) 2cos (—"%Wl) -2 9
h% k3 h3

Ny ,
1 ' 2mi(k — 1} (n — 1)

Ny : N. :
1 : 2mi(k — 1)(n —1) 1 2mi(k — 1)(n — 1)
+ == Uk,j+1,1 - :
RN, ; (ot )e"p( M TN ;U’“" H ex"( M ) *

. Ny i N

1 2mi(k —1)(n — 1) 1 M ik — 1)(n — 1)

+ = U. . . . |
hZN, E_l k,jil+1 €XP < T M + RN, ’; Uk ji-1€xp < 7 )

Comparing Fourier coefficients,

2a(k—1)\ .
Usgirt | Ukgier 20°S( N ) 2 2 2 wbu o Teimnt | Ukgi-n _
h3 n3 % 3~ B3 Y hy TR

Denoting the variables transformed in the first two indices by bars, we get (for fixed k)

2w (k—1
2 cos (._Z"_(Nl_)> -2 2 2

Ukt | Ukgger Ukj-11 | Ugji-1
Mot Th Tt W B GG I
2m(k—1) 2 -
_1_-%?:(7 o <2ﬂ(m—1)(k—-l)) 2cos( N ))—2 2008(———5,—2"("12 1 ) -2 9
Ny £ Jhmt P Ny 72 TR R

Ny . N.
1 - 2mi(m — 1)(k - 1) 1 A - 2mi(m — 1)(k — 1)
—— U
N mZ;l ym,d-+1 €XD ( A t W :4:’1 T m,i—1 €xp ( o ) .

Thus we get N1 Ny tridiagonal systems, indexed by k =1,2,...N;, m=1,2,..., Na,
2 cos (Lﬁ"u) -2 | 2 cos (33—(’—”"—11) -2
1

Um 141 Ny
2 72 + 72 T

7 ﬁk m,l—1 =
Uk,m, —hg-—— = Fim,i-

These tridiagonal systems can be solved as before, but clearly another DFT (in the third variable, denoted
by hats) reduces this to
2m(k—1

2cos (Ll\rl) -2

2 cos (2" 1’:;;1)) ~92  2cos (21@:9) -2
% +-

N3 b ~ a
) h2 — kK Ukvmvp = Fk)m’p'
2 .

+
h3

" Theleft hand factor is zero for k =0 and k = m = p =1, so that we need to require (1,1 »1) = 0 and set
o, 1 ,1) =0 just as in the one dimensional case. Otherwme, for (k,m, p) # (1 1,1) (any (k;m p) if k> 0),

j = Eym,p
o 2005(%;—11)-—2 ZCOS(M’N"—_—H)-—z 2cos(-JN——227r p-1 )—2

Finally, N1 N, inverse DFTs of length Ns, Ny N3 inverse DFTs of length Ny and NaN3 inverse DFTs of
length Ny give the answer, u, j;. As in §2.1, for k = 0 the choice of Uy,1,1 = 0 ensures that u € S.

Remark 2.1
o Equations (6) and (8) are the discrete analogies of (4) in 1D and 3D, respectively.

o For clarity of exposition, we have assumed that each DFT is one-dimensional in nature. Of course the
formulas can also be used with two— and three—dimensional DFTs.

e We assume that a Fast Fourier Transform will be used, and hence the procedure works fastest if Ni,
Ny and N3 are powers of 2.

o It is clear how to generalize to fast poisson solvers in N dimensions for N > 4.

3 Poisson and Helmholtz equations with Neumann boundary con-
ditions
3.1 One space dimension

Recall that in one space dimension, we write Az = h for hy. Schwarztrauber [4] discretizes the Poisson
Problem with centered differences and Neumann beundary conditions using ghost values

U—1 = Uy,

UN{+1 = UN;—1.
The ghost values are used to modify the standard centered differences for the boundary points.

27.1,1 - ZUQ = hzf(),

2un,—1 — 2un, = h2fn,.
This discretization of Neumann boundary eonditions is characterized by the following features
¢ The boundary is grid aligned.
¢ The equation holds and f is known all the way up to including the boundary.

o Using the fictitious point, the standard second order centered discretization of the differential equation
can be used on the boundary.

¢

¢ The second order centered discretization of the Neumann boundary condition is also written using the
fictitious point.

o Between these two equations, the solution value at the fictitious point is eliminated, resulting in a
combined equation for the boundary value instead of the discretization of the boundary condition and
the discretization of the differential equation.

e In 1D, the resulting tridiagonal system is solved directly, in 2D a tridiagonal system is created by
making an Ansatz in a Cosine series, as in §3.4.

We proceed s1m11arly, but wish to find solutions in an exponential series, in order to use the DFT.
Schwarztrauber’s discretization results in a singular matrix, with kernel consisting of the constant vectors,
and the range consisting of all vectors whose weighted sum is zero. Endpoints in 1D as-well as interior side
points in 2D and 3D carry the weight 1/2 in the summation, corners in 2D and edges in 3D carry the weight
1/4 and corners in 3D carry the weight 1/8.

Suppose u = [ug, u1,... ,un,}T consists of values of a solution at the left boundary, at the interior grid
points and at the right boundary, in this order, for some right hand side f = [fo, f1,... , fNy—1, fn,]¥ that
satisfies the weighted sum condition.




Theorem 1 The solution of the periodic problem on 2Ny grid points with right hand side

f={fo,f1, s o1, fs fvg=t, -+, fil, (9)
18

@ = [, ¥1, ..., UN;—1, UNy, UNy =1, - - - , U1, | (10)
where ug = —h2fo/2 — w3 and uy = ~hfy, /2 — up, -1

Proof. The symmetric continuations of u and f satisfy the periodic equations (index arithmetic modulo
2N; — 1) on the enlarged domain

fing1 — 20 + gy = h2f, forn =0,1,2,... ,2N; — 1, (11)
and also the centered discretizations_ of the Neumann boundary conditions,
- g — -1 =1 — fian, -1 =0,
Ny 41 — Uny;—1 = 0.
O

The weighted sum condition on f ensures that f lies in the range of the periodic operator, the Neumann
boundary value problem is reduced to the methods of the previous section for both the Laplace and Helmholtz
operator.

3.2 Non-—zero Neumann data

Now consider non-vanishing Neumann data, u;(0) = by and u;(Ni) = by,. These values appear in the
discretization of the derivative,

Uy — U1 = 2hb0,
UN;+1 —UN; -1 = 2th1)

and thus as sources in the combined equation. The solution i tends to a continuous, but not differentiable
function as the grid is refined. Schwarztrauber’s values at the fictitious points do not agree with our
symmetric extension (10) , but are instead “corrected® by jumps in the first derivative of the magnitude of
the Neumann boundary value. So (11) for n = 0, N; becomes

~

iy — 2ip + @iz, —1 = h? fo — hluglo- — hluslo+, (12)
ANy +1 — 20N, + Ny —1 = B2 fN, — Blug)(vy)- — hlus) v+ (13)
where [um]o- = [u$]0+ = bo and [u’w](N1)" = [uz](N1)+ = -—-le.

The factor h in the corrections results from the fact that the jump occurs exactly at the grid point; this is
also the reason why each jump is needed to correct only a single equation. In the other equations corrected
by the jumps, the corresponding factor is zero. More explicitly comparing with the Explicit Jump Immersed
Interface Method (c.f. {9, equations (5) and (6)]), (11) for n =1, Ny — 1, N7 + 1,2N; — 1 results from

| o g — 20 + fip = W2 fi — Ofug]o,
“Gio = 2MgNy -1 + HaNy-2 = 2 fany -1 = Ofug]o-»
ANy 2 — 20N 41 + BNy = B fy g1 = Ot (vyy+
Uy — 2Ny -1 + UGNy -2 = B2 a1 — Ofug](ny)--
No second order corrections are needed due to the continuity of the extension of f to f y Le. [ugg] = 0.

A nonzero Neumann botindary condition yields an example of EJIIM corrections in the special case of a
discrete single layer potential occurring at a boundary point.

[P

oty
+ ¥y 10}
e [ !
sk
+ + sote,
® ®
+ +
] 0 [}
+ +
® )
+ to et
,5 o
*
®
+ -10
@ o
0 1 2 3 4 § 6 X 0 1 2 3 4 5 6
a) b)

Figure 1: The extended solutions @ in a) and right hand side f in b), for f(x) = —4sin(2z) and N = 5,10,20
(stars, circles and crosses). As the grid is refined, the values of f at 0 and 7 tend to oo in such a way that
the kinks in @ remain the same. The Poisson solver fixes the constant ¢ so that > i; = 0. The discrete
solution values converge rapidly to the exact solution (solid line).

3.2.1 Example'

The function u(z) = sin(2z) — ¢ solves u; = —4sin(2z) with u,(0) = 1 and u,(7) = 1 for any c. The
“singularity” of f can be clearly seen in Figure 1 b). As the grid is refined, the values at 0(= 2#) and 7 tend
to *oo in such a way that the kinks in % remain the same. The Poisson solver fixes the constant ¢ so that

i = 0.

3.3 Higher dimensional issues

The extension to d space dimensions for the periodic solver as well as non-zero Neumann boundary conditions
is straight forward. The reorderings of the extensions are indicated symbolically below. The letter f and its
reflections (typewritten letters mean that the third index is reflected) indicate the d-dimensional array of
interior grid values. Solid lines mean appropriate boundary values for f are filled in.

1D f it
f 1
2D
\ §
f i £ E
3D |
\ S x :

In 3D, there is also a layer of boundary values below the left and between the two 3D arrays.




The reflection ansatz has the drawback that the size of the problem is increased like 2¢. Schwarztrauber
[4] and §3.4 shows how an ansatz in sine series can avoid this growth. However, for clarity of exposition, for
analogy with the elastostatic case, to observe connections with the Immersed Interface Method mentioned
in {7], and because we have a fast DFT but no fast discrete sine transform in Matlab, we prefer the ansatz
in exponential series. :

3.4 Neumann boundary conditions solved on the original domain

Consider the one-dimensional problem with Schwarztrauber’s discretization, i.e. with right hand side given

at the left endpoint, fo, at interior points, f,, n =1,2,... ,N — 1 and at the right endpoint, fn. Recall the
periodic transform on N points,

N .
Fk=anexp<—2m(k—'—1)(n—1)> 1<k<N.
n=1

N .

We use the indexing convention fl = fo, fz;' = f1,..4, fN.H = fn, fN+2 = fN=1y «e+, f2N = f; and write
out the transform on the periodically extended domain, ‘

2N .
B, = anexp<—2m(k ;All)(n—l)) 1<Ek<2N.
n=1

We observe that fn = f2N~n+2 for 2 <n < N, and also

exp (—m‘(k ~1)(n— 1)) +oxp (-—27rz'(k ~1)2N-n+2- 1)) — 5o (27r(k ~1)(n~ 1)) ,

N N N
o 2k —1)0Y _ ’
—27rie(kp—<1)(N “IJ‘V]. - 1)> . 1 (k—1)
Xp ( N ) = (-1) .

Thus

om(k — i)(n ~1)
N

N
Fy=Ffi+ 0Dy +2) facos <

n=2

) 1<k<2N.

Finally, since

cos (ZW(k —V(n - 1)) — cos ‘(27r(k -1 - n)) — cos <21r(2N —k+2-1)(n~ 1))

N N 1%
and
(_1)(k—1) — (_1)(2N—k+2—1),
we also get
Fo=Foy_pt2 1<k<N.

Together ‘with the symmetry of the denominators in (6), (7) and (8), the Neumann boundary problem can
thus be solved on the original domain with cosine and inverse cosine transforms.

4  Poisson and Helmholtz equations with Dirichlet Boundary Con-
ditions

4.1 One space dimension

To solve Uz, = f, with zero Dirichlet.boundary conditions, observe that uy, = 0 and suppose that u =
[, u2,. .. yun;~1]T solves the discrete problem with zero Dirichlet boundary conditions (the matrix for the

Dirichlet problem is obtained from the periodic one by scratching the last row and column) and right hand
sidef=[f1,f2,... ,le—l]- »

Theorem 2 The solution of the periodic problem on 2Ny grid points wz’thﬁght hand side
f= {1 =00, fufore o s fNu-1,0, = FNy—1, =Ny =2+ — F1]T
18
= {ﬂi};'-"_l__vo—l = [0,u1, U2,y . -+ UN;~1,0;, —UN; —1) ~UN; =21+« - —ul]T.
Proof. The equations clearly hold at interior grid points and we need to check only at the boundary points:

Uy — 2dip + flaN—1

h? =0
follows from dioy—_1 = —1 and g = 0.
o N1 —2UN +UN-1 _ 0
h2
follows from fin..1 = —fiy-1 and Gy = 0. O

The compatibility condition for the periodic system is satisfied, i.e. > @; = ) f; = 0, and again the problem
is reduced to the methods of §2.

4.2 - Non—zero Dirichlet data

For non-zero Dirichlet data, the boundary values are placed in f as usual, and the method works as it is.
Denote the boundary values on the left and right by @, and @y, respectively and use the second order
singular right hand side. According to our convention from §2, b = h; and N = Nj.

Fn-1=fn-1—Tn/H?,

Fni1 = —fn-1+an/h?,
fi = fi — 6o/ 12,

fon-1=—f1 +u0/R>.
The solution f tends to a discontinuous function as the grid is refined. On the original boundary, 1 is zero,
while quadratic extrapolation from interior points to the boundary results in the desired boundary values,
and their negative on the other (extended) side. This is the discrete analogue of a double layer potential

and the special case of two corrections in the EJIIM sense (c.f. [9, equations (5) and (6)]) occurring at each
boundary gridpoint, infinitesimally close on the two sides:

Fve1 = fn-1- [uln-/h2,
Fn =0+ [uln-/h? — [uln+/h?,
Fver = —fn-1+ [uln+ /B2,
f’zN—1 =-fi+ [ulo- /h?,
fo =0+ [u]o+ /1? = [ulo- /1,
_ fl =f1— [u]0+/h2.

4.2,1 Example

The function u(z) = cos(2z) solves ugze = —4cos(2z) with u(0) = 1 and u(r) = 1. The “singularity” of f
can be clearly seen in Figure 2 b). As the grid is refined, the values at grid points just to the left and right
of 0(= 2r) and 7 tend to 0o in such a way that the discontinuities in % remain the same. Note that on all
grids due to-%(0). = @(r) = 0, the discretization “has four discontinuities”.
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Figure 2: The extended solutions i in a) and right hand side f in b), for f(x) = —4cos(2z) and N = 5,10,20
(stars, circles and crosses).” As the grid is refined, the values of f at grid points just to the left and right
of 0(= 2m) and 7 tend to oo in such a way that the discontinuities in % remain the same. The discrete
solution values converge rapidly to the exact solution (solid line).

4.3 Higher dimensional issues

The extension to d space dimensions is clear. The reorderings of the extensions are indicated symbolically
below. The letter f and its reflections (typewritten letters mean that the third index is reflected) indicate
the d-dimensional array of interior grid values. Vertical solid lines indicate columns and horizontal lines
indicate rows of zeros.

1D f -1
f -3
2D
- !
f ;X -f 3
3D
- { 3 | -1

- In 3D, there is also a layer of zeros below the left and between the two 3D arrays.
4.4 Dirichlet boundary conditions solved on the original domain

Consider the one-dimensional problem with right hand side given at the interior points, fp,n=1,2,... ,N—
1, and antisymmetric extension by zeros on the boundaries and —f. Recall the periodic transform on N
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points,

N .
Fi=Y faexp (‘27”(’“ ;]é)(” — 1)) 1<k<N.
n=1 ’

We use the indexing convention fl =0, fo= —f1y ey fN = —-fn_1, fN+1 =0, fN+2 = ~fn-1, fN+3 =
~fn=2, ..., fan = f1 and write out the transform on the periodically extended domain,

2N ,
Fo=Y o (ZHEJEZD) achcon,
n=1

We observe that fn = - fg N-nt2 for 2 <n < N, and also

oxp <—21rz'(k: —1)(n— 1)) _'exp (;m’(k — 1)(2N —n+2- 1)> — 2sin (—27r(k' —1)(n— 1)) .

N N N
Thus

., .
B, =2iansin(~27r(k —;)(n—1)> 1<k<2N.
=2

Finally, since

in (—27r(k —A;)(n - 1)) ~ _sin (—Zﬂk —];)(1 - n)) . <—27r(2N —k ;2 ~1)(n— 1)) ’

we also get
Fo=-Fon_kya 1<Ek<N.

Together with the symmetry of the denominators in (6), (7) and (8), the Dirichlet boundary problem can
thus be solved on the original domain with sine and inverse sine transforms.

5 Fast elastostatic solvers on rectangular parallelepipeds:

Throughout this section, (2 is the rectangle [0, N1h] x [0, Nah], where h = Az = Ay is the uniform meshwidth
and Ny and Ny are numbers of grid points in a discretization with periodic boundary conditions. The
equations are discretized by centered second ordered finite differences (see (14) and (15) below), Dirichlet
and Neumann boundary conditions are imposed by finite differences as for Laplace’s equation in §4 and §3.

5.1 Periodic boundary conditions in 2D

Consider the equidistant (Az = Ay = h) discretization of

cAu+ Ogatt + Ogyv = f* in Q,
AV + Byt + Oyyv = ¥ in Q;

with u and v periodic. The boundaries z=0 and z = Nih are identified by periodicity as are the boundaries
9 =0 and y = Nyh. We write out second order finite differences in detail for the point (nh, jh).

Clint1,j + Cln,j4+1 — 4CUn,j + CUn_1,5 + CUm;jo1 + Uny1,j — 2Up,j + Un—1,; +
2
+ Unt1,541/4 = Vn-1,j41/4 = Uns1,j-1/4 + Vn-1,5-1/4 = h*fy; (14)
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and
CUnt1,j + CUn,jt1 = 4CUn 5 + CUn—1,5 + CUnj-1 + Vn,j+1 — 20p,j + VU j1 +
+ Uni1,j+1/4 = Un-1,541/4 — Unt1,j-1/4 + Un-15-1/4 = B*fy ;. (15)

As before the discrete Fourier transform (DFT) in the first variable (recall that ¢ = 1/~1) is indicated by
upper case variables

. Ny~ / .
Uk,j = tin,j €Xp ( 2mifk N:)(” 1)> 1<k <Ny,
n=1

and the inverse DFT is

(27ri(k—]\}l)(n—1)> 1 <n< N, (16)

R
Up,j = J-—-Vl— ;UM exp

We use this notation also foz_' the right hand side, for example the DF'T in the first variable reads

Ny .
—2mi(k -1 (n—-1
F’C,] = an’] exp( Wz( Nl)(n )> 1 S k S Nl.

n=1

To indicate the discrete Fourier transform in both variables, we write bars:

Ny . .
. -2 — —
Uk,m = Z Uk,j exp ( Wl(mNzl)(J 1)> 1 <m S Nz.

=1

The following theorem states that the methodology for the discretized Laplace equation with periodic
boundary conditions can also be applied to discretized homogeneous linear elastostatics.

Theorem 3 For1<k<Nj; andl <m <Ny, but km>1

_ A, mFi m — bkymFE oy

_ R, 17
fom eymem — O 1 4
= ak,ka m ~ bk ka m 2
= h 18
kim (273 mdk,m bk m ( )
where
@y = —4c — 2+ 2(c + 1) cos n(k—1) + 2ccos 2—W(M,
N1 N2
L 2n(k—1) . 2r(m—1
b,m = —sin (N1 )'sm (N2 ),
2 - -1
dkm = -4c—2+2ccos—71(—u +2(c+ l)cos%ﬂ-—(m———).
! N1 ) N2

Proof. Define

en = oXD (27ri(k: —J;I)(n - 1)> '

After a transform in the first variable and substltutmg (16) for n, n+1 and n—1 into (14) we get for fixed!
n, 1 <n < N

1
N1 ek,n( de— 2+ 2(c+ 1) cos (N1 ))Uk,j+—Zekn(Uk,J+1+Uk, 1)+
k=1
Ny
. 2m(k—1) h?
+2iN1,;ek,nsm—T—( Viks1 + Vip-1) = 5 Zekn g

1Recall that index arithmetic is modulo grid size.
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and

L5 —4dc—2 2nk—~1)Y e+l v y
'N—lzzlek,n ¢ — 2+ 2ccos ——+ A kgt A gekm( i1+ Viejo1) +

1 A om(k—1) e &
+2ilez=:lek,nsm———N———( Uit + Up 1)—N Eekan,

By the independence of the Fourier modes, for fixed k and n:

2m(k —1 '
(—40 —2+2(c+1)cos LNl——)-) Uk,j + ¢(Ur,j+1 + Urj-1) +

1, 2n(k—-1
-+ g sin —(N—I—-Z (Vi1 + Vig-1) = B2 F;

and
2n(k -1
(—40 — 24 2ccos %) Vie,j + (c+1) (Vi jg1 + Viej—1) +
1
o 2n(k—1
+§;Sl ———————(N )( Uje41 + Ujp— 1)-h Fg

By the same argument, after a transform in the second variable, for fixed 1 <k < Nyand 1 <m < Ny

2n(k—1) -, 2n(m —1)

h2ﬁ,§"m = —sin N, sin N Vieym + (19)
- 2 - _
+ —4c—2+2(c+1)c0321r—(k--—-—1—)+20cos—zr—(m—1) Uk,m
‘ N Ny !
_ 2n(k—1) ., 2mx(m —1)
27v
h*Fy,, = —sin N, sin N Uk,m + 7 (20)
ok —
+ —4c—2+2ccos—7r-(k—u+2(c+ 1) cos ——= 2r(m —1) Vie.m
Ny . N

The inversion of (19) and (20) for U, V with k, m such that km > 1 yields just the formulas in the theorem.
o .

Remark 5.1 For k = m = 1, the derivation of the system for F* and F" in the theorem remains valid,
but in this case a = b=d = 0. By (19) and (20), the solution of the 2D elastostatic equations with periodic
boundary conditions exists only if F*(1,1) = F¥(1,1) = 0. In this case, the solution is not unique. We can
choose arbitrary values for U(1,1) and V' (1,1). In the implementation we set them to zero. This means that
the finite difference operator with periodic boundary conditions is invertible on the subspace of grid vector
fields (g*, g*) whose first and second components each sum to zero.

5.2 Periodic Boundary Conditions in 3D

In 3 space dimensions, the same technique also yields a fast elastostatic solver for perlodlc boundary condi-
tions. We dlscretlze the equatlons of elastostatics (2) as follows

(1 + ) Unt1,5,6 + Un,j4+1,6 + Un,je+1 — (4 + 20)Un je + (L + C)tn—1,5, + Un,j—1,6 + Un,j,e-1

(4] [+ C [4]
+ =Upp1,54+1, + TVn—1,5-1, — TVn—1,j+1,6 — TVUn+1,j~1,2
4 4 4 4

e ¢ c c "
+ g WntLerl T 7 Wn-1,56-1 = TWn-14,0+1 ~ 7 Wnilje-1 = Tnge
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Unt1,4,e + (L4 )Vnjaie + Vnyjert — (44 26)0n5,0 + V1,40 + (1 + €)Vn,j-1,6 + Unje-1
C [4] [ (44
+ JUn L1, + Fln-1,j-18 = FUn-1,41, = FUn+1,5-1

c c c c e
+ 1Wni+1e+1 + FWng-16-17 FWng+1e-1— 1 Wni-1.641 = fade

W15, + Wngt1,e + (1 4+ )Wnje41 — (4+ 2€)Wn 5.0 + Wno1j,e + Wn,j-1,6 + (1 + C)wn 51
C (] C C
+ Zun'l-l,j)e'*'l + Zun—l,j,l—l - Zu""l'lyj;e"l - Zun"‘l»j’l‘l'l

c c c c _ w
+ qun,j+1,£+1 + Z'Un,j—l,e—l - Z'Un,j+1,€—-1 - Z'Un,j—l,£+1 = fn,j,e'

Theorem 4 For 1<k< Ny, 1<m <Ny andl <p< Ng, but kmp>1

Ak,m,p 'bk,m'p 9k,m,p l?k,m,p Ii."g,m,p
'bktmyp dkym)p eksm)p . Yk)m)p = h Eg,m,p ’
9kmp Ckm,p femp Wem.p annm
where
2rr(k —1) 2r(m —1) 2m(p —1)
akm,p = —(4+ 2¢) + 2(1 + ¢) cos N + 2 cos N + 2cos N
. 2n(k—1) , 2r(m—1)
bitym,p = —csin N ST
~ —csin 2m(k — 1) 21r(p -1)
Gk,m,p = Nl N ? ( )
2n(k—1) 2m(m — 1) 2r(p—1
dym,p = f(4 + 2¢) + 2 cos ——= , +2(1 +c¢)cos A +2cos —N
_ . 2n(m — 1) 27r(p -1)
€k,m,p = —CSIn N N
2n(k—1) o oo 2Mm 1) om(p — 1)
=- ———=42(1 —_—
frmp = —(4+2¢) +2c0s ——=—= N, oA +2(1+¢) .
Proof. The proof is completely analogue to 2D. Hats denote 3D FFTs, e.g. W is the 3D Fourier transform
of the displacement w in the third spacial variable z. (|
For completeness, we note that (here short @ = axmp,--.,f = fk@,p)
1 df —e* —bf+ge be—gd
-1

=——— | -bf+ge af—9g%? —ae+bg],
det(4) be—gd —ae+bg ad- b

and det(A) = adf + 2bge — ae? — fb* — dg®. Whenever kmp > 1, we have det(A) # 0. For kmp = 1 the
derivations for the theorem still hold, but all coefficients in A are zero. In that case we require F1 1,1 =

F1’1,1v=,F1,1,1 = 0 and in that case choose U1,1,_1 = V1,1,1 = W1,1,1 = 0.

5.3 Normal boundary conditions in 2D

Neither Dirichlet nor Neumann boundary conditions can be solved by reflection because of the different
nature of the second order centered differences for first and second derivatives. The symmetric differences
for 85 and Jyy keep the same SIgn under reflection, while the antisymmetric differences for 95, change signs
under reflection.
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To avoid this difficulty, we consider “normal” boundary conditions.

’U.«(O,y) = 'U:(N]h, y) = 0$ Y& [Oa N2h]v
vg(0,9) = vs(N1h,y) =0, y € (0, N2h),
v(z,0) = v(z, Naoh) =0, z € [0, Nih],
uy(z,0) = uy(z, Nah) =0, z € (0, N1h).
Using Schwarztrauber’s discretization of the normal boundary condition (c.f. §3) and a symmetry—based

implementation of Dirichlet boundary conditions results in (Ny + 1) x (N3 + 1) discrete variables each for
u, and v. The system of linear equations is reducible. We find a total of five blocks, two in u variables on

‘the two vertical sides with Dirichlet boundary conditions, two in v variables on the two horizontal sides with

Dirichlet boundary conditions, and one for all the interior variables and variables with Neumann boundary
conditions. The subsystems on the Dirichlet boundaries all four have solution zero as expected.

To take advantage of the fast periodic solver, we use antisymmetric reflections for u and f* in z and v
and fY in y, and symmetric reflections for v and f* in y and v and f¥ in z, with extension by zero at all
four corners for both f* and f*.

Theorem 5 The solution of the discretization of homogeneous linear elastostatics in 2D with normal bound-
ary conditions exists and is unique. The extension (@,7) as described above solves the periodic system on
(2N1) x (2N3) points with right hand side (f*, f*).

Proof. Solutions to the reflected system exist and are unique up to an additive constant each for % and ¥
by Theorem 3 since Y, f* = ). f¥ = 0. By symmetry of f* and f°, preservation of symmetry under the
DFT (c.f. §3.4 and §4.4) and symmetry properties of the ag m, bk,m and di m, the solution (&, ) (choosing
the solutions with ﬁ1,1,1 =0 and 171,1,1 = 0) has the claimed form. Inspection shows that the appropriate
restriction of the solution to the upper left quarter satisfies the difference equations and “normal” boundary
conditions. , ’ ' ' .o

The reorderings of the extensions are indicated symbolically below. Between sign changes and at the four
corners, fill in zero. Between same size quantities, fill in appropriate boundary values.

fo fY -9y oy
2D

'\.s\‘ - 'Sc.n = 'n,a[ - n.a[

Remark 5.2 Nonzero Dirichlet and Neumann boundary conditions have a similar interpretation in terms
of the EJIIM as we showed for Laplace’s equation.

Remark 5.3 The quadrupling of the domain can be avoided using an ansatz in sine and cosine series as
outlined in §3.4 and §4.4.

5.3.1 Example

To get an idea of what the benefits of the fast elastostatic solver can be, we implemented the matrices of
the discretization of linear elastostatics in 2D with normal boundary conditions. Figure 3 visualizes linear
and cubic. growth (dots) as well as the solution times of Matlab’s “slash” operator (a direct method, crosses)
applied to these sparse matricesand the fast elastostatic solver (circles) in a loglog plot against the size of the
linear system of equations. Note that the fast solver does not require the matrices! On the horizontal axis,
we show the number of variables for “slash”,N = 2(N; + 1)(N2 + 1). Due to the reflections the fast solver
performs two FFTs and two inverse FF'Ts of length 4N; N. We see cubic behavior for the direct solver, and
N log N behavior for the fast solver. We have chosen values of IV so that the dependence of the performance
of the FFT on the prime decomposition of N shows. For large N, we could not perform the direct solve in
memory - (without swapping), and consequently show only the data for the fast solver for such V.
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Figure 3: ‘Solution times of the fast elastostatic solver (circles, up to N = 261121) and Matlab’s “slash”
operator (a direct method, crosses, only up to N = 16641) in o loglog plot against the size of the linear
system of N equations solved by the direct method. We plot dots at N/1024 and (N/1024)3 to compare with
linear and 'cubic growth.

Remark 5.4 This fast solver is used in [7] to solve problems on arbitrary domains with esséntial, natural
and rigid punch boundary conditions.

5.4 Normal boundary conditions in 3D

In 3D, “normal” boundary conditions are -

u(0,¥, 2) = u(N1h1,y,2) =0, y € [0,N2hsg], z € [0, N3hg],
vz(0,9,2) = vz(N1h1,y,2) =0, y € (0,Nzhg),z € (0, N3hs),
we (0,9, 2) = we(N1h1,9,2) =0, y € (0, Nahs),z € (0, N3hs),
v(z,0,2) = v(z, Noho,2) =0, =z € [0,N1h1],2 € [0, N3hs],
Uy (2,0, 2) = uy(x, Naho, 2) = 0, z € (0, N1hy), z € (0, N3hsg),
wy(z, 0, 2) = wy(z, Nah2,2) =0, z € (0,N1h1),z € (0, N3hs),
w(z,y,0) = w(z,y, Naha) =0, = € [0, Nihal,y € [0, Nahs),
/uz(a: y,O) = uy(z,y, N3hg) = z € (0, N1h),y € (0,Nzh2),
i@y, 0) = vz(m Y N3hg) =0, ze (0 Nihi),y € (0, Naho).

Usmg Schwarztrauber s dlscretlzatlon of the normal boundary condition. (cf §3). and a symmetry—-based
implementation of Dirichlet boundary conditions results in (N +1) x (N2 +1) x (N3 +1) discrete variables
each for u, v and w. As in the 2D case, the system of linear equations is reducible. We find a total of
seven blocks, two in u variables on two opposite vertical faces with Dirichlet boundary conditions, two in
v variables on the other two vertical faces with Dirichlet boundary conditions, two in w variables on the
two horizontal faces with Dirichlet boundary conditions and one for all the interior variables and Neumann
boundary variables. The subsystems on the Dirichlet boundaries all six have solution zero as expected.
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To take advantage of the fast periodic solver, we use antisymmetric reflections for v and f* in z, v and
f? in y and w and f¥ in z, and symmetric reflections for v and f* in y and 2, v and fY in z and z and v
and f* in « and y, with extension by zero at the twelve edges and eight corners for f¥, f¥ and fv.

Theorem 6 The solution of the discretization of homogeneous linear elastostatics with normal boundary
conditions exists and is unique. The extension (i, ¥,%W) as described above solves the periodic system on
(2Ny) x (2N3) x (2N3) points with right hand side (f*, 2, f*).

Proof. Solutions to the reflected system exist and are unique up to an additive constant each for 4, 4 and @
by Theorem 4 since ¥ f* = >, fr= f“’ = 0. By symmetry of f* f¥ and f*, preservation of symmetry
under the DFT (c.f. §3.4 and §4.4) and symmetry properties of the Tk, m,p by, ) dkmpy €km,ps fomp
and gg,m,p, the solution (&, ¥,w) (choosing the solutions with U =0,V =0and W = 0) has the claimed
form. Inspection shows that the appropriate restriction of the solution to the upper left quarter satisfies the
difference equations and “normal” boundary conditions. . O

We indicate symbolically the reflections needed for the “normal” boundary conditions in 3D. As before,
the f* and their reflections indicate a 3-dimensional array of values of the right hand side of the respective
the elastostatic equation. Typewritten f indicates reflection in the third index.

fe  fv fu B S | £U Y _fW _ui ey _wy

3D

.\m "'\'..n .\'.m 'n.f' '(L.f m..f I -Es ,':Emr “aF ~aF ~adF

There are also two layers of boundary values (in f* and f¥) and a layer of zeros (in the £ slots) below the
left and between the two volumes.

Remark 5.5 The octupling of the domain can be avoided using. an ansatz in sine and cosine series as
outlined in §8.4 and §4.4.

5.5 Displacement Boundary Conditions in 2D

The following “fast” solver for Dirichlet boundary conditions in 2 space dimansions is very similar to the
treatment of Neumann boundary conditions via Schur complements in [5, 9] and earlier capacitance matrix
methods [2], except that here the inverse in the Schur—formula is a pseudo inverse! The Dirichlet boundary
value problem for a linear elastic body is:

AU + Opztt + Ogyv = f“ in Q,

AV + Oyyts + Byyv = f¥ in Q,
u =0 on 8 UG,
v =00n 0Q UK.

Due to the nature of the finite differences for the d,, term, so far a direct fast inverter for Dirichlet boundary
conditions has eluded me. For now, I use an iterative procedure that could possibly be used in parallel with
the EJIIM embedding by stackmg The idea is to' embed the body in a periodic domain (see Figure 4) and
to find the appropriate extension boundary that makes the extended u and v vanish on the extension of (2.
Precisely, the problem is to find u, v, and in addition boundary: values for the right hand side f" and f°
such that the partial differential equation with Dirichlet boundary conditions can be rewritten in terms of a
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Figure 4: The domain for the Dirichlet problem is @ (bounded by inner fat lines). The discrete variables for
the Dirichlet problem live on the 49 inner intersections. 2 is enlarged on the left and bottom to the rectangle
with periodic boundary conditions. The two rectangles labeled 8SY are periodically identified with the opposite
rectangles, the three unlabeled squares are periodically identified with the bottom left square.

partial differential equation with periodic boundary conditions

CAU + Oyt + Ogyv = f* in Q,
cAv + Opyu + Byyv = f¥ in Q,
cAu + Ozt + Ozyv — fif =0 on 0Q,
CAV 4+ Ogyu + Oyyv — fy = 0 on 01,
cAu + Oggu + Ozyv — ff =0 at QF,
cAv + Opyu + Oyyv — fY =0 at QF,

u = 0 on 91,
v = 0 on 9%},
u =0 at QF, )
v =0 at Q*.

A complication arises because the solution of the elastostatic equations with periodic boundary conditions
on QU 0 U Q* exists only if each component of the right hand side integrates to zero. We ensure this by
setting f¥ = =Y f* =S f# and f? = — 3 ¥ — 3 f?. In this case the solution is unique only up to two
constants. Different from §5.1, we are not interested in the solution that sums to zero in each component,
but in the unique v and v that vanish at *. The conditions that u and v vanish on Q* U 0Q determine f
and f?. , . :

Numerically, we solve the following problem:

0 U EF®

eAR+ DR, DB —~Ey
Ry 00 Fp 0 !
0 Ry 0 0 Fp 0

The superscript p indicates that the differential operators are discretized with periodic boundary conditions;
Ry means the restriction of a grid function to values on the boundary (i.e. from the periodic domain to
QU Q*); By is the extension (prolongation) from 99 to 0QU Q U Q* by zero in Q, assigning Fy, = — > F}
at Q*. Finally, E is the prolongation from € to QU QU Q* by zero in 89, assigning Fy = — " F at Q*.
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The reason for writing (21) is to take advantage of the fast solver for the periodic problem in a Schur—

complement. Recall that if
Au Ap\ (U _ (R
A1 Any ) \Uy Fy

and A1_11 exists, then U; can be eliminated from the equations via Uy = A7 (Fy — A12U2). This elimination
yields

(Aze — A Ay A12)Us = Fy — Ay  ATLF.
The main difficulty is that the difference matrix for the periodic problem, the upper left 2 by 2 block in
(21), is not invertible. Since Y} (EF“) = 0, >(EF?) = 0, Y (EpFY) = 0 and Y (EpFY) = 0 for all F*, Fv,

Fg* and FY, it is clear that (EFY, EF”)T and (Eng‘,Eng’)T are always in the range of the periodic finite
difference operator

A cAb + D Dy,
Dz, cA} + Dy, /-

For any F' in the range of A, AF indicates the vector (U, V)T that satisfies the periodic finite differences

A(U, V)T = F with vanishing entries at Q*, U* =0 and V* = 0. U and V can be found in O(nlnn) by the
technique in §5.1 and subtraction of U*, V* from the solution found there. We rewrite (21) as

RyU(Fy, Fy) = ~RyU(F¥, FY), (22)
RyV(Fy', F}) = —RyV(F*, F*), = (23)
where ’
U(F™, F?) = 4t EFv
V(F* F%)] — EFv
and
U(Fg, FY) = 4 EyFy
V(ELFY)) 7 \BoFy )’
respectively.

We solve (22)—(23) for F*, F? via GMRES, a conjugate gradient method. An iterative method is needed
because we do not explicitly know Af, but we can apply it in O(nln n).

Theorem 7 There exists a unique solution {U,V,F¥, F'} of (21). Furthermore, the restriction of this
solution to interior points solves the original discrete Dirichlet problem.

Proof.

* Existence: Extend the (unique) solution to the discrete Dirichlet problem by zero on 8Q U Q* and
calculate Fy', Fy, F{! and F} via periodic finite differences. This explicit form shows that they are
unique; It is a general property of periodic finite differences that the sum over the output - vector
vanishes, and hence Fy = —3 F* — 3 F and, FY = —) FY ~ 3" F?. But this means that the

- so=constructed {U, V, F*, FY} satisfy (21). 2 = B SRR

¢ Uniqueness: Let (U, V, F,FY) be any solution. Since the entries of both U and V are zero-on the
boundary by the third and fourth block rows in (21), by the prolongation by zero property of Ey the
entries corresponding to the interior points solve the Dirichlet boundary value problem. Hence they
are unique, and with them also F and FY. :

O
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5.5.1 Example

To evaluate the performance of the solver for displacement boundary conditions we have implemented the
matrices of the discretization of linear elastostatics in 2D with essential boundary conditions. The matrices
were applied to grid functions u and v to obtain right hand sides f* and f¥ with known solutions. We used
GMRES [3] to solve (22)—(23). In Table 1 we see results as the residue for zero initial guess is reduced by
10 orders of magnitude — the usual mode of using GMRES.

Table 1: Performance of the Displacement solver for N grid points.

N | Tterations Flops Flop Ratio, N =4™ Mflops | Seconds Time Ratio
152 23 3.6e+06 —  1.9e+0 1.9 -
162 23 - 1.9e+06 —  8.6e—1 2.2 —
172 25 9.3e4+06 . — 46e4+0|. 20 —
312 31  6.6e+07 —  1.9e+1 3.5 —
322 31  1.1e+07 5.8 3.5e+0 3.1 14
332 32  3.8e+07 — lle+l 3.5 —_
632 39 1.6e+08 —  2.3e+1 7.1 —
642 39 5.9e4+07 54 8.6e+0 6.9 2.2
652 39  2.2¢+08 —  2.9e+1 7.6 —
1272 48 6.5e+09 — 1l.le+2 61 —
1282 48 3.2e+08 54 1.2e+1 26 3.8
1292 48  2.5e+09 _ —  6.8e+1 37 —
2552 59 6.8¢+09 —  4.5e+1 150 —
2562 59 1.7e+09 53 l.le+l 156 6.0
2572 59 6.6e+10 —  1.3e+2 513 —
5112 72 1.0e+11 —  8.1e+l 1234 =
5122 72 8.7e+09 5.1 1l.le+l 809 5.2
5132 72 3.7e+10 —  3.5e+1 862 —_

The following points are noteworthy
o The GMRES iteration count grows very slowly as the mesh is refined.

e The number of floating point iterations needed depends strongly on the prime factors of the number
of grid points due to the use of the FFT.

e The runtimes are less sensitive, because for “bad” prime factorizations the FFT uses the CPU more
efficiently — at least for the “small” problems in the table.

e For powers of two, the optimal number of grid points, and due the almost constant iteration count,
the flops (and runtimes) grow with O(N In N), just like the solver for periodic boundary conditions.

6 Conclusions

‘We have described the fast solution of Poisson problems on. rectangular parallelepipeds in one, two and
three space dimensions, and reduced the solution of Dirichlet and Neumann boundary value problems to the
Poisson problem; using appropriate reflections. - R TR

Nonzero Dirichlet and Neumann boundary conditions were seen as special, grid-aligned cases of the jump
conditions used in the Explicit Jump Immersed Interface Method.

The fast solver methodology for periodic’boundary conditions carried over to the equations of homoge-
neous linear elastostatics in the approximation of plane stress and in three dimensions and is being used
in [7] for general regions with essential, natural and rigid punch boundary conditions in 2D. For “normal”
boundary conditions, reflection works.in 2D and 3D and provides a simple proof of the regularity of the
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matrix of the discretization. In 2D, the theoretical performance of O(N In N)
elastostatic solver for normal boundary conditions in an implementation.

For t.he Displacement boundary condition case, a “singular” 'Schur—complement technique was developed
that avoids enlarging the domain, but requires several periodic solves. In this case, the number of iteratilgns

(solves with periodic boundary conditions) in GMRES requi
. equired to reduce th i
deteriorates only slightly as the mesh is refined. ¢ the residue by a fixed factor

was observed for the fast
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