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Maps for distributions and their time evolution 

Etienne Forest 
High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, lbaraki 905-0801, .Japan 

DavidS. Robin* 
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, Califomia, 94720, U.S.A. 

Many dynamical stochastic processes occur "on top" of a deterministic process. We present a 
method which uses the trajectory of the deterministic process as basis functions for quasi-arbitrary 
distributions. A map for the stochastic process can then be computed. This may have applications 
in electron storage rings or other devices perturbed by a small stochasticity. In this paper we will 
look only at the most elementary applications of the method. 

I. INTRODUCTION 

Predicting the time evolution of a distribution, even when all the mathematical properties of the 
system are known, can be a very difficult task. In this paper we present a method which assumes 
that the stochastic map is "near" the symplectic map and thus uses the invariants of the symplectic 
map as support functions for a quasi-arbitrary distribution. 

We limit the core of the discussion to one-degree of freedom. We do this for two reasons. First it 
is simpler to introduce a new method in a simpler setting and, in this setting, it is even beyond the 
scope of this introductory paper to address all the potential applications. 

The second reason is more problematic: we are not capable at this point to extend the method 
"correctly" in a multidimensional setting. Of course in accelerators this might be the most important 
case. We hope the reader will nevertheless get useful ideas from this paper, if not for ring dynamics, 
maybe for other fields. 

We acknowledge at the onset that this method was first proposed by Gerasimov Ill to Pauluhn and 
Mais at DESY and that Pauluhn 121 did a preliminary testing in her thesis. This was fortunately 
unknown to us when we started the work because it might have discouraged us from going any 
further. 

II. THEORETICAL DESCRIPTION OF THE METHOD 

To introduce this new technique it is best to limit ourselves first to one degree of freedom processes, 
that is to say, to two dimensional systems. We will also present a true one dimensional example to 
illustrate the relative merits of the brute force, Irwin 131, and map methods of this paper. 

One has to be honest here: although some two degrees of freedom systems can be handled easily 
by this method, in general there are severe complications. This is not the case of the brute force or 
Irwin's method which extend to higher dimensions rather easily. 

Furthermore we will assume that the stochastic process under consideration does not depend on 
the distribution itself. This invalidates processes involving intra-beam scattering such as Touschek 
although they can be included in the method. 

A. The map for the distribution 

First consider an initial distribution /o in the phase space variables z = (x,p). Let iJs assume 
that, in the absence of any stochastic process, it evolves under the action of a symplectic one-turn 
mapm: 

•This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences 
Division, of the U.S. Departement of Energy, under Contract No. DE-AC03-76SF00098. 
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if z 1 = m(zo) 

then Vz /l(z) = fo(m- 1(z)). 

Since we will deal explicitly with functions, it is worth noticing that the action of the map m on 
the function f is equivalent, in the symplectic case, to the action of the symplectic map M- 1 as 
defined by Dragt (see reference 141 for explanations) . 

h = Jo om-1 = M-1 fo. 

In the literature the map M is called the "Koopman" operator. Furthermore, the process of finding 
a basis forM which is then usually truncated, is called "Koopmanization." Standard perturbation 
theory whether expressed in terms of Lie operators or whatever, amounts to representing the map 
M in a monomial basis truncated at certain degree. Hamiltonian perturbation theory does the same 
thing on the generator of the map M, the Hamiltonian of the system. The nonperturbative methods 
of Warnock et al. also amount to representing M in a special basis more suitable to problems near 
the short term dynamic aperture (very nonlinear). In the case of perturbation theory, the truncation 
of the matrix representing M leads in general to an asymptotic series as one tries to find invariants 
of the motion, that is to say, eigenvectors of unity. For these reasons the choice of the basis for the 
expansion of M is critical to the search of well-behaved quasi-invariants. 

The operator which transforms a distribution is M- 1 in the symplectic case. In the case of an 
arbitrary map, it is called the Frobenius-Perron 151 operator (F-P) and it acts in a space dual to the 
Koopman operator. It should be said that an expansion of the Koopman Min terms of monomials 
is equivalent to a representation of the (F-P) operator in terms of moments. It is well known in 
accelerator physics that a moment expansion is notoriously inadequate for the study of lifetime or 
even equilibrium issues. Therefore in this paper, in effect, we will propose a better expansion set 
for the F-P operator in the presence of stochasticity and small damping. 

Thus, let us imagine that the ray z is modified by a stochastic variable D. 

z=z+l:l.. 

and that D. is governed by a distribution p(D.., z). Then the distribution after one turn can be written 
as 

Ufo(z) =/l(z)= J fo(m- 1 lzD..I)p(D..;zl:l.)dD... 

This map is so-far exact. It should be noted that, if the stochastic process happens all along the 
ring, one can rigorously integrate (or sum) along longitudinal positions where stochastic kicks occur: 

Ufo (z) = h (z) = t:o J fo ( mO,! lzD..I) Ps (D.; zl:l.) db. ds. 

In this paper we will use Eq. (4) without loss of generality because the function p can represent the 
integrated effect of Ps over one turn or more. 

B. The expansion set for the map 

This is very nice and completly useless so far. The F-P map is truly a monstrous integro
differential equation; so what can we do? Traditionally, it is customary to convert this equation into 
a differential equation neglecting higher order moments of the random variable D.. The resulting 
equation is the Fokker-Planck equation. Indeed, if we include first and second order moments of D., 
we will get a differential equation for the function f or equivalently for the F-P operator U. The 
Fokker-Planck equation will look like the Vlasov equation except for additional terms proportional 
to second partial derivatives in the distribution. These terms will lead to diffusion. 

The Fokker-Planck equation is neither simple 161 to set up nor to solve in the general case. However 
the dimensionality of the problem can be further reduced if one assumes that the final distribution 
will sit on the invariants 171 of the symplectic map. This is done, formally, by introducing a new set of 
variables ( </>, J) to replace the original vee tor z = (x, p ). It is assumed that the set ( </>, J), consisting 
of one angle and one action, totally normalizes the map m or equivalently the Hamiltonian which 
gave rise to this map. Thus we have 

MJ= Jom= J. 
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Moreover if we denote by a. the canonical transformation connecting (x, p) to ( 4>, J) at position "s", 
then the resulting map no,. in the new variables has the form 

if no .• = a; 1 o mo .• o ao 
and (t/>, J). = (as;l(x,p),as;2(x,p)) 

then { no,s;l ( t/>, J) = r/J + /l{J,s ( J) 
no,s;2(t/>, J) = J 

This map propagates a normalized ray from an arbitrary positions= 0 to a final positions by ad
vancing the phase 4> an amount /l<l,s(J). Obviously if "s" is a continuous length along some reference 
curve, this will induce changes in the Hamiltonian or the associated Fokker-Planck equation. Indeed 
that Hamiltonian part of the Fokker-Planck equation (Vlasov) will leave invariant the function of J. 
If we further average over the canonical angle r/J, then the resulting Fokker-Planck equation depends 
on J only (see Sect. IV C 3): Obviously, by construction, the resulting distribution will depend on 
the invariant function J(x, p) only. This is justified when the average phase advance coming from 
the stochastic term /::;. is small compared to the tune J-L· Generally this means that the damping 
must be small compared to the tune. 

There are three problems associated with this formulation. First of all, as usual, we still have to 
solve a messy differential equation while our most reliable model for the symplectic (and nonsym
plectic) dynamics comes in the form of a tracking code. Hence just writing down an equation for. 
(x,p) is already a pain of major proportions. Secondly we must still find the invariant coordinates 
(4>, J); this is no small task especially if they are to be fed into a differential equation in s, the 
longitudinal position around the ring. Thirdly, and most fundamentally, in the presence of islands 
the variables (r/J, J) are, at best, only locally defined. While we can check by tracking a large number 
of rays (or a ray for a very long time) that the equilibrium distribution will sit very nearly on invari
ant trajectories, we cannot find a canonical transformation a that will work over the entire phase 
space. Within each islands (and within tiny islands inside the islands) one could get an approximate 
canonical transformation a, but these transformations cannot be smoothly interpolated. This is the 
kiss of death for any method based on a differential equation that tries to take advantage of the local 
existence of an invariant J. 

In the case of a differential equation, it is important to have a grid which is indexed in a continuous 
manner. For example if the invariant J represents concentric curves around the origin, then a 
discretization may work as follows: first we decide that the largest action will be J. This value 
is picked by assuming that the distribution is almost null at this large amplitude. Secondly, we 
decide to slice phase space into N orbits for the purpose of discretizing the differential equation. 
The concentric curves will be labeled by an integer i ranging from 1 toN. For example, Ji, the ith 

trajectory can be given by iJ jN. In this case, the derivatives with respect to J that are needed in 
the solution of the Fokker-Planck equation will be obtained by taking divided differences. In the 
case of an integral equation, we will see that this is not necessary. We are free to label values of J 
used in the discretization scheme in a completely arbitrary manner. 

Fig. 1 displays an example with islands. A continuous indexing scheme is not possible for the 
same reasons that a globally defined J is topologically impossible. The phase space is divided into 
three regions: below the islands, in the islands, and above the islands. The trajectories are labeled 
as follows i = 1, 10 are below the islands, i = 11,20 in the islands, and finally i = 21,30 are 
the trajectories above the island chain. It is important to realize that this labeling is now totally 
arbitrary. One could randomly scramble the relationship between the index i and the topological 
features (trajectory in this case) on the plot. 

Now we are in a position to describe a distribution whose contours are the symplectic trajectories. 
Let us again denote by N the number of trajectories plotted. Then an arbitrary distribution f can 
be projected onto this contour by a yet undefined projection operator 7r: 

N 

7r(/) = L vdi. 
i=l 

The quantities Ji represent unit distributions concentrated1 on the ith trajectory. In otherwords, 
the distribution f = 1000J4 is a distribution of 1000 particles evenly distributed in the local phase 

1They are Dirac-delta functions in the variable J. 
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</> on the fourth trajectory. Thus a distribution of 10,000 particles with 1000 on the first trajectory, 
8000 on the second, and 1000 on the fourth would be given by 

1000 Jl + 8000 h + 1000 J4 

or, equivalently by the component vector v = (1000, 8000, 0', 1000,0, 0, ... , 0). Again we must repeat 
that, while it is convenient that the index i progresses more or less monotonically as we go away 
from the origin, it is not necessary. 

Finally we must say a few words about the projection n. If we take any distribution f that depends 
oniy on J, then due to the coarseness of the grid, it will not be possible to represent it exactly. 
The best we can do is to project f by some approximate scheme onto the grid {Ji li = 1, N }. This 
projection is done with a prescription denoted by 1r. Since an arbitrary distribution can be written in 
terms of sharply peaked (Dirac delta functions) distributions, we only need to define 1r on individual 
phase space point. Thus if a particle lands at coordinates zo between the trajectories Ji and Jk, 
we will then assume that this ray contributes to both Ji and Jk using a particle number preserving 
algorithm. For example, suppose we determine that the "distance" between the trajectories Ji and 
Jk is d, then a ray (Dirac delta distribution) falling a "distance" d; from Ji will result in a new 
distribution 

("( _ >> _ ld - d; I Ji + dJk 
7ruZ zo - d . 

The details of the projection 1r will turn out to be quite irrelevant. If the reader needs a concrete 
model, he can imagine that in the case of the Ji 's being concentric circles, the distance between 
them could be measured along the radial direction. 

In summary, we have a rather coarse phase plot as our support grid and a projection operator 1r 

which allows us to project a delta function distribution on the neighboring trajectories. 

C. The map restricted to the grid 

It is instructive to make an analogy with quantum mechanics. The symplectic map divides 
the phase space into energy levels. Indeed the Bohr-Sommerfeld quantization rules would involve 
precisely the action J. However this J is only locally defined, thus we need several "quantum" 
numbers: first we need an integer describing the region of phase space we are sitting in. In the 
example of Fig. 1, the index takes the values 1,2, and 3. Secondly, within each region, a second 
index ranges from 1 to 10 in the example of Fig. 1. Thus we could label our support set { Ji li = 1, N} 
by an equivalent set { Jkl ik = 1, k; l = 1, lk }. In our example, k is 3 and lk is 10 for all k's. This new 
set is useful when discussing connection with the continous case. The index k specifies a canonical 
transformation ak which locally assigns a numerical meaning to the action variable. If we follow this 
analogy further, we can translate the entire computation of the map into a quantum equivalent. Our 
goal will be to compute the probability that a state Jk1 jumps to a new state Jk'l'· The probability 
of the jump is governed by the function p (~; z) or, more appropriately, by the projection of this 
function onto a space consisting of J-dependent distributions only. 

Physically this is not a bad approximation even far from equilibrium. Suppose we inject a beam 
off axis, then two things will happen. The beam, due to nonlinear shear (filamentation} will evolve 
rapidily towards a J-dependent distribution. However, even in the linear case when filamentation is 
null, the beam will visit the entire length of the trajectory due to the phase advance. This means 
that the ergodic average over a few turns will mimic the effect of an evenly distributed density in 
the phase </> associated to the local action J. Thus two effects rapidly combine so as to vindicate 
our choice for the grid. 

We now proceed to restrict the map U on the grid using our quantum like notation. This will 
temporarily permit us to retain a connection with the continous case. It will be dropped later. We 
start with an arbitrary distribution on the grid as in Eq. (8} 

k lk 

!o (J,j) =,L 2:::>k18 (J- Jkl) 8;k· 
k=l 1=1 

In this expression, the variable J is a true action in the jth region of phase space. Thus the function 
8 (J- Jk!) is a Dirac delta function while 8ik is a Kronecker delta. We substitute this result into 
Eq. (4) for the operator U: 
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k lk 
Ufo (¢, J,j) = J L L Vkz8 (J- Jkl- D..J) 8;-'-ll.i k 

k=1 !=1 

p (D.¢, D..J, D..j; ¢- D.¢, J D..J, j - D..j) db.. 

We can now sum/integrate in the variables (D..J, D..j), 

k lk 
Ufo (¢, J,j) = LL J vkzp(D..¢,J- Jkz,j- k;¢- D..¢,Jkz,k)dt:.¢. 

k=l l=l 

Let us change the integration variable from D.¢ to a quantity </>kl = ¢ - D.¢: 

Finally, under the assumption of this paper, a distribution which is uniform along a trajectory stays 
uniform. Thus we must have approximately 

:4> J p (¢- </>kl, J- Jkz,j- k; </>kz, Jkz, k) dc/Jk.l ~ 0 

J p (¢- </>kz, J- Jkz,j- k; </>kZ. Jicz, k) d</>kl ~ U(J,j; Jkz, k). 

We substitute the operator U in Eq. (14) 

k lk 
Ufo(¢,J,j) = LLU(J,j;Jkz,k)vkz. 

k=l 1=1 

Eq. (16) is extremely simple to interpret: The kernel element U(J,j; Jkz, k) connect a discrete 
distribution on the support grid denoted here by the double index (Jkz, k) onto the potentially 
continuous set of trajectories ( J, j). In reality we must project this information on the grid and this 
is where the projection 1r comes into play. The result 

k >•,. 
1r(U(J,j;Jkz,k)) = LLU,.,>.;kz8(J- J,.,>-)8;,., 

tt=l.\=1 

is now substituted into Eq. (16) 

k lk k >.,. 
1rUjo(¢,J,j) = LLLLU,.,>.;kl8(J -J,.,>.)8;,.,Vkl· 

k=1 !=1 tt=l .\=1 

At this stage the pretense of a continuous theory can be dropped and we can replace the double 
indices kl and K-A by single indices a and b. Thanks to the projection 1r the map U has been restricted 
to the grid, we can extract a transfer matrix Uab for the map: 

N 

Wa = L UabVb or 
b=l 

N 

where w = L w,J, and 
i=l 

w=Uv 

N 

v= l:viJi. 
i=l 

D. Actual computation of Uab 

Let us start with the main process leading to an equilibrium distribution namely radiation. We 
will assume that a computer code exists which can provide us reliable simulations without radiation 
(symplectic), with classical radiation, and with Monte-Carlo stochastic corrections to the radiation 
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process. We further assume that this code has a GUI interface so that the user can select the grid 
and erase undesirable trajectories as he goes along. 

The first challenge is to map out the symplectic trajectories on a relatively course grid and to 
select points on these trajectories which are equally spaced in phase. Suppose we are looking at the 
bth trajectory in an attempt to compute Ua&· This trajectory is started by clicking on an initial ray 
z0 on the screen. We keep tracking until the trajectory has finished painting an area on the screen. 
At this point, after T& iterations, the trajectory is recurrent as far as the pixel resolution of the 
screen is concerned. It has completly filled the invariant torus on which it is assumed to sit. The 
total trajectory is given by a set J1, = {z• li = 0, T&} where iterates are listed consecutively. Now 

consider the subset l& = {zm" jk = l,N6; mk < T&} which represents N& particles equally space 
in phase. Furthermore, by ploting these separately or using a very different color, we can insure 
that they also populate the torus more or less evenly. The computation of the matrix element Uab 

will use these particles. How does this work? Let us assume that the map U represents a q-tum 
operator. Furthermore we now introduce the map mE, the stochastic extension of the symplectic 
map m, and we build a new set I~·M using the subset h. At every point z E l& we launch the map 
mE for q iterations and we repeat this stochastic experiment M times. We then obtain a new set 
IZ•M, the union of all our experiments, 

To evaluate Ua& we use the projection 1r on a single ray (Dirac delta distribution) as we hinted in 
the previous section. We take a ray z E I~·M and project it on the grids using Eq. (10). In general, 
a ray will distribute itself onto (two) neighboring grid points as in Eq. (10): 

N N 

1r lzl = '2:: d'.['k Ji with L d'['k = 1. 
i=l i=l 

We then sum all contributions from the set 1:·M: 

The process is repeated for all support curves so that b runs from 1 to N. In the example of Fig. 1 
we would repeat this process 30 times. 

Let us say a few words about the curve with the largest amplitude. Usually we can select a 
trajectory at a large amplitude which encompasses all the other support grid points. We can call 
this curve the Nth trajectory. A particle landing outside this trajectory poses a boundary condition 
problem. In this paper we opted to make this last boundary absorbing, that is to say that rays 
falling outside are assigned to JN. 

III. SOME PROPERTIES OF THE MAP 

In this section we examine some properties of the map. Rigorous statements will be made only 
for the map restricted to the grid. The reader will notice that many of the statements will apply to 
a general grid instead of a grid made of symplectic trajectories. 

- A. The existence of a fixed point 

The map restricted to the grid must have a least one fixed point. We know that the particle 
number Q(v) is preserved by construction 

N 

Q(v) = L Vi = Q(Uv). 
i=l 
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In addition, we also know that U will preserve the positive nature of the components vi's. Thus if 
we start with a physical distribution v; ~ 0, not only will the particle number stays constant but 
so will the positive definite nature of the distribution. Thus. the set of all distributions with a given 
number of particles Qo 

is also preserved under the action of U. 
It is easy to show that this set is a convex compact set. By Brouwer's fixed point 181 theorem the 

map U, provided it is continuous, must have a fixed point. 
Finally we will (almost) prove later that the map is contracting; it will converge to the equilibrium 

distribution although it may not be unique. To illustrate this consider a strange process for which 
radiation is present only on the inner trajectories. For example, looking at Fig. 1, we assume that 
damping is present on trajectories 1 to 10 around the origin. We also assume that fluctuations are 
present from trajectory 1 to 9 with a zero probability of making a jump to the lO'h. It is easy 
to construct such an imaginary system. It is clear that the inner particles would settle on some 
equilibrium orbit and that the outer orbits would be on the symplectic trajectories. Essentially the 
outside would be a proton beam with infinite degeneracy while the inside would be "electron" in 
behavior. 

The reader must remember that the existence of an equilibrium orbit is proven here on the grid; 
in some cases the result is totally unacceptable. This usually will reflect the fact that the grid is 
no longer adequate. For example, if only diffusion is present, the beam will slowly crawl out until 
it bounces around the maximal grid trajectory J N. This is unphysical; in the real system it keeps 
diffusing for ever2

• 

All of this implies that if we spend time proving theorems for our grid system, it may not be 
applicable to the real thing. Nevertheless we will give proofs of the various assertions since they 
teach us a lot about the nature of the system we constructed. 

The existence of a fixed point has already been mentioned and is the result of Brouwer's fixed 
point theorem. This results extends to the case of a p dependent U, i.e., a nonlinear3 U. Indeed 
if we add density dependent diffUsion and construct the projection 1r so as to preserve the particle 
number, the conditions for the application of the tl).eorem will still be satisfied and thus there must 
be a fixed point. The next important question is whether or not the map is contracting. From now 
on the discussion focuses on the linear case. 

B. Contraction: all eigenvalues are :S 1 

The issue is this: will an initial distribution settle down on an equilibrium or oscillate? First we 
prove that the eigenvalues have a modulus less or equal to one.4 

Suppose that vis an arbitrary real vector. It can be written as 

v.= V+- v_, v+i = max(O,v;), V-i= max(O, -v;) 

The two vectors are orthogonal, (v+, v_) = 0, and non-negative: v+ ~ 0 , v_ > 0. Nonzero 
components of v + correspond to zero components of v _ and vice versa. Also, 

l:)Uv); = LI(Uv+)i- (Uv_);l = L v;, 
i i 

because U on non-negative vectors conserves particle number. 

2Well not really ... there has to b~ a beam pipe somewhere! 

(24) 

(25) 

3We mentioned that the map U was dual to the map M in the symplectic case. One may asked how can a matrix of infinite 
dimension become "nonlinear" once more ... Of course this happens because the original problem had a greater dimensionality 
then first contemplated since the nonlinearities in U came from the interactions between the particles- intra-beam scattering. 

4 The following corrected proof was graciously provided by an anonymous reviewer; he also pointed out that .>.. = -1 prevents 
contraction to take place. The same thing was pointed out by Bob Warnock. 
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Now suppose that v is an eigenvector with eigenvalue .>.. Then by the preceeding result, Li Vi = 
.>. Li Vi· Either (a) .>. = 1 , or (b) Li Vi = 0. Let us pursue (b) in the case of real .>.. The 
corresponding eigenvector may be assumed to be real, since real and imaginary parts, if linearly 
independent, would simply amount to two real eigenvectors with the same eigenvalue. Now we can 
write 

Uv+ =v~+~v~, (*) 

where v~i f=. 0 iff V+i f=. 0 and ~v~i f=. 0 iff v_i f=. 0. If Vi = 0 we arbitrarily set ~v~i = 0, and 
notice that v~i may possibly5 be non-zero. That is, U v+ may have a non-zero component where 
neither v+ nor v_ does. Now, since Uv+ ~ 0, we have v~ ~ 0 and ~v'_ ~ 0. Of course, we also 
make the analogous breakup of U v_. 

Now we have, 

We cannot, however, always draw the conclusion that 

since, as mentioned above, v~ may have non-zero components in positions where V+ has none. Such 
components must be cancelled, however, by corresponding components of v'_, in order that Eq. (26) 
be satisfied. Let us then define V+i = v~i if v; f=. 0 and V+i = 0 if v; = 0. Then we have 

and the corresponding equation for particle numbers, 

But by (*) above we also have 

hence by (**) that 

Thus, we conclude that the modulus of the eigenvalues must be less or equal to one. 
Now it is obvious that the map will contract to the subspace spaned by the eigenvalues of unit 

modulus. Secondly only the eigenvectors corresponding to .>. = 1 can be physical stationary distri
butions. Unfortunately it is not possible to reject the possibility that a linear combinatition of the 
other eigenvectors be present. In that case, the final distribution will oscillate in time so that its 
ergodic average will be the "equilibrium" distribution. Consider the following case 

(
0 1 0) 

U= 0 0 1 
1 0 0 

for which all the eigenvalues are on the unit circle. The eigenvectors are 

-1+iv'3 -1-iv'3 
Vt = (1, 

2 
, 

2 
) 

-1-iv'3 -1+iv'3 
V2 = (1, 

2 
, 

2 
) 

V3 = (1, 1, 1). 

This map could represent a symplectic map with a third order island chain. Obviously if we start 
with one particle in island number 1 

vo = (1,0,0) 

5This is what we completely overlooked and the reviewer fixed for us. 
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then it will jump to island 3 and then island 2 and finally back to 1. 

n 1{i2lm ~} 111 U v 0 = 3 e 3 v1 +e 3 v2 +{3'3'3). 

Therefore the ergodic average will be given by the compon.ent along the eigenvector of unit eigen
value. 

It should be pointed out that we will not see anything like that in our simulation since we 
purposely lump the islands together. Therefore we can safely assume {on physical ground) that 
there isn't any eigenvectors of modulus 1 other than equilibrium distributions. In which case the 
map is contracting. The existence of .>. = -1 eigenvectors can always be checked on the map itself. 

C. Uniqueness of the equilibrium distribution: connected grid 

To prove the uniqueness of the equilibrium distribution, we must assume that the grid is connected. 
We say that the grid is fully connected by the map U if a distribution on the grid Jk will eventually 
diffuse to an arbitrary grid Jm after forward or backward propagation under the action of U. If we 
denote the nth power of U by un then we say that the map connects all of phase space if 

\:fk \:fm 3n =f. 0 such that u;:.k =f. 0. 

The prime example of a totally disconnected grid is the original symplectic map described on the 
Jk 's. In this case the map U is just the identity and thus there is no communication between the 
various support distributions. 

Our goal is to prove that the equilibrium distribution is unique when the map U satifies condition 
{32}. First we prove that an equilibrium distribution v of the form given by Eq. (25} must be such 
that v+ or v_ vanishes, i.e., the equilibrium is physical. We start by assuming that condition (32) 
is satisfied and thus there exists a power of U for which a part of the vector v + gets mapped into 
V- and/or vice versa. Thus, for this map, Eq. (27) applies with.>.= 1: 

Since at least one oCthe vector is assumed to make connection with the other (let us say v+), then 
it must be true that 

from which we can immediately conclude that 

which is obviously a contradiction. 
Thus, since we assumed that the map is connected, it follows that a fixed point must be physical 

(all positive components). 

D. Uniqueness in the connected case 

Uniqueness is proven by assuming the existence of two fixed points and constructing a situation 
contradicting what was just proven in the last section. We assume that there exist at least two 
equilibria v and w. 

1. Case v · w = 0 

This leads to an immediate contradiction: it suffices to consider the new equilibrium v- w which 
has exactly the form given by Eq. (25). We know that such a distribution cannot exist as proven 
in section III C. 
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2. Case v · w i= 0 

We construct a vector g perpendicular to v 

V•W 
w=g+--v, 

V•V 

and notice that g itself must be an equilibrium. From the results of the previous section, the 
components of g must be all positive or all negative. Thus either g or -g is physical. But notice 
that g · v = 0, this leads to a contradiction with the first case. 

Therefore the equilibrium is unique. Q.E.D. 
We conclude, that in the case of the map U, there must be at least once fixed point. In the linear 

case, the map must be contracting and thus reach an equilibrium. Finally, if the map is connected 
as defined in section III C, the equilibrium is unique. 

These results are in. agreement with our intuition. As we said before, we do get an unphysical 
result when only diffusion is present or equivalently when our last grid J is not located far enough 
so as to enclose most of the beam. The reader might wonder why the "connectedness" includes 
backwards propagation: a linear map with damping alone does has one equilibrium, the origin, but 
connectedness is realized only with backwards propagation. The same is true with maps which have 
limited diffusion. If there is an upper limit to the magnitude of the random kick a particle receives, 
then it is possible to show that the equilibrium distribution vanishes at a certain amplitude. This 
amplitude corresponds to a region where the maximum change due to a stochastic kick is always 
less then the damping towards the origin. In the purely damped case, the backwards connectedness 
is essential to prove the unicity of the distribution. 

Finally it is intuitively obvious that, for a disconnected case, the number of connected regions 
will·determine the degeneracies in the final distribution. Again the purely damped case with islands 
is a good example to think about. 

E. Conclusion on the theoretical digressions 

We have set down the basic features of the map we intend to construct. Nevertheless this paper 
is truly worthless without reproduceable examples. One needs to get a feel for the adequacy of the 
method and indeed its failures. 

As mentioned before we restrict ourselves to systems in one degree of freedom or approximately 
reduceable to one degree of freedom. We believe that there is a lot to learn about this technique 
and its relationship with other methods even in this restricted environment. 

IV. EXAMPLES AND RESULTS 

In this section we will present first a simple beam-beam map where, we the authors, control all the 
aspeets of the simulation. We will then simplify even further and produce a ridiculous (unphysical) 
one dimensional map. This map will permit us to understand the relationaship between different 
methods of calculation, namely the brute force method, the Irwin method and the method presented 
here. 

Next we will present an example extracted from the Berkeley Advanced Light Source (ALS). This 
example presents some challenges even when restricted to one degree of freedom. 

A. A little beam-beam map 

We will show here some tracking results of the original beam-beam map suggested by Hirata. 
This map consists first of a rotation r which mimics the ring: 

r1 (x, p) =cos (tLo) x +sin (tLo) p 

r2(x, p) =cos (tLo) p- sin (tLo) x . 

Then it is followed by a one-dimensional beam-beam kick b: 
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b1(x,p) = x 

exp (-x2 /2) - 1 
~(x,p) = p+87r{--'---'--'-

x 

The variable { measures the first order linear tune shift .(in revolution unit} resulting from the 
beam-beam force. 

The complete map for the symplectic system denoted by ID in the previous sections is just 

ID=bor. 

The ''radiative" map was constructed by adding a damping map d given by 

d(x,p} = >.(x,p) = e-"'(x,p}, 

followed by a stochastic map E 

E(x,p} = (x + ~.p). 

The variable ~ was chosen naively to take the values ±o with equal probability. The constant o can 
be related to the nominal beam sizes of the linear map. For example the equilibrium emittance of 
the linear map is 

and the nominal beam size (or nominal sigma) is just 

0 0 
(]' = J2 (1 - .>.2 ) ~ 2fo" 

The complete stochastic map IDE, entering in Eq. (20}, is the composition of all these maps 

IYlJ. 
....--"-, 

IDE =Eodobor . .._,_, 

In Eq. (44) we also introduce the damped deterministic map ID.>.. This map, which contains the 
main component of classical radiation, is deterministic. It allows us to check the assertion that the 
full map does not destroy the symplectic structure too much. For example, in order to increase the 
speed of the simulation, one is tempted to increase the damping and the fluctuation components of 
IDE, this cannot be done if the damped map ID.>. changes dramatically the island size. In practice 
it means that big islands, under a small damped forced, become basins of attractions for their 
respective elliptic points. This can be totally destroyed for larger damping decrements. 

B. Where is the beef? 

Let us now bite some into some real simulations using the little map of Sect. IV A. The parameters 
of the map were selected as follows. 

f..LO 
Vo = 

2
7r = 0.23 

{ = 1.5 w-2 

.>. = 1-10-3 

o =9 w-2
• 

The first stage in our method consists in producing a phase space portrait of the support distri-
bution. · 

In Fig. 2 we see 55 trajectories which will be used to support the distribution. The reader will 
appreciate that the computation of a one-turn map is extremely inaccurate because the actual map 
would depend critically on the projection operator 1r that projects an arbitrary distribution on the 
chosen grid. The reason for this is simple: in one turn particles do not migrate far as they stay in 
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the immediate neighborhood of the support distribution from which they originate. For this reason 
we selected here a 200 turn map, i.e., a map representing about 20% of a damping time. 

In the calculation of the map U we arbitrarily launch M N& = 1000 trajectories twice. These are 
denoted by the label "1" and ''2" in Fig. 3. We also did a ''manual computation." By this we mean 
that we watched' the various coefficients Uab for a fixed b being plotted as they are computed; we 
then stopped the execution when the logarithmic bar plot ~med to settle down. We found out that 
this took between 2000 and 4000 trajectories. This is shown in curve number 3. The agreement is 
quite good and, in particular, the agreement is equally good (or bad) in the core and the tail. In 
fact the core presents a special problem: at small amplitude the damping will always be too small 
and thus the details of its effect depend on the projection algorithm 1r. 

We can see the tail results in the logarithmic plot of Fig. 4. 
The reader notices that we made two brute force simulations: one simulation with 3.3 billion 

turns and a simulation with 330 million turns. We present both numerical results so as to gauge 
the accuracy of the brute force simulation. The results appear to be quite good. 

In the next section we investigate the big island case; as we will see it is very hard to obtain 
reliable results. 

C. Big islands: study with the beam-beam map 

When the nominal beam size becomes small compared to the size of the islands we can expect 
the beam to split into what appears to be two independent distributions: one distribution in the 
main island centered around the origin and one distribution around the secondary islands - the 
fourth order islands in Fig. 2. In such a case the equilibrium distribution may be very hard to 
compute (see Sect. IVE). In particular brute force tracking may fail as the test particles spends an 
eternity in one island. Indeed the separatrix is now situated in the ''tail" of this distribution and 
thus particles seldom reach it. It is also our belief that the Irwin method may also failed unless it 
is modified to include two cores; this will be examined in Sect. IVD. 

Indeed the brute force and the plain Irwin method will fail qualitatively unless a prohibitive 
number of turns and/or particles are used. On the other hand our method will always produce good 
qualitative results but will have a hard time nailing down the exact ratio if the islands are truly 
very big. 

Let us look at two cases of the beam-beam map. In both cases the deterministic parts of the 
maps are identical 

but the fluctuation is different 

{
case 1 
case2 

vo = J.Lo = 0.24 
211' 

~ = 1.5 10-2 

), = 1-10-3 , 

8 = 9 10-2 

8 = 3 w-2 
(T = 1.42 
a= 4.74 w- 1 

The support grid for our simulations is given by Fig. 5. 
The next plot shows a tridimensional plot of the brute force simulations for both values of the 

fluctuation parameters. 
The important number to consider here is the transfer rate between islands. Since the brute force 

method tracks a particle for a large time, it is important that it visits all the allowable phase space. 
Once the islands start separating as the fluctuation strength diminishes, then the probability of 
crossing from one island to the other also diminishes. In the case of 8 = 0.03 we see that a particles 
transfered on average once every 370 thousand turns, while in the case of 8 = 0.09 the transfer rate 
is greatly enhanced at one transfer per 5300 turns. 

1. Back of the envelope explanation of the results 

To understand what is going on here let us reverse the problem. Let us think of two distribu
tions siting at equilibrium very far from each other; we assume that each one sits around its own 
equilibrium center. This can be realized mathematically by inventing a system with a discontinuous 
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behavior around a boundary which separates phase space into two identical linear regions. 6 This 
is a little bit what happens in the presence of islands. Furthermore if the random kick has a finite 
maximum value (as in our case), then the distribution will fall to zero at some maximum amplitude. 
Let us call these this amplitude a. In addition if we assume that the center of each distributions are 
separated by" a distance greater than 2a, then there is no contact possible between each region and 
the two equilibria are centered around their respective fixerl points. The map U for such a system 
would have two eigenvectors with unit eigenvalues. 

If we reduce the distance between the fixed points below the critical value of 2a, then we expect 
the distribution to start mixing until a single equilibrium is reached. Because of the symmetry, we 
expect the equilibrium distribution to have an identical numbeF of particles namely N, ~N2 where 
N, is the initial population of the ith region. Parenthetically it is interesting to see how the two 
independent eigenvectors must combine so has to produce one physical distribution with eigenvalue 
one and one unphysical distribution with an eigenvalue less than one and a population of zero. 
Remember that all the eigenvectors of the map U must have a population of zero unless they are 
equilibrium distributions. Thus before contact, the two independent vectors are centered around 
their respective fixed points. For an infinitesimal contact, a single equilibrium distribution is formed 
as the sum of the two previous equiblibria with equal population. The other eigenvector, with an 
eigenvalue infinitesimally below one, is made of the difference of the two previous equilibria with 
equal population. In actual physical cases, such as those displayed in Fig. 6, one does get indeed a 
second eigenvector, with components of opposite signs in each islands as is shown in Fig. 7. 

The first question to ask is how big is Ci? For our simple stochastic distJ;ibution it can be computed 
exactly in the case of a linear map. However let us just say that it is bigger than the nominal a of 
Eq. ( 43) and that it is typically of order a/ fo. Therefore for a damping of a = 0.001 we expect 
that a be about 30 times larger than a. The exact ratio 191 depends on the details of the linear map 
and the stochastic process. 

Calling the distances between the two fixed points 2D, then we can say that for values of D a 
bit smalleF than a it would take an astronomical time to reach equilibrium. However if we bring 
them suddenly into closer contact, we can assume that the two distributions are nearly Gaussian 
and estimate the relaxation time. The rate of change (per turn) for the population of a Gaussian 
distribution is given at large amplitude by the approximate formula 110,71 

dN 2ac- ac- ( c ) - =N-exp(-c/co) = N-exp -- . 
dn co a 2 2a2 

For example at a radius .,fi = 5a, the relaxation time (approximately N/dN), is 

N 1 (25) 7 T = dN = w-325 exp 2 ~ 1.07 10 . 

This large number indicates that the two distribution will take more than 10 billion turns to reach 
equilibrium. This is at the limit of our calculational abilities. Let us look at the plot of Fig. 5 and 
estimate the surface enclosed by the separatrix. In the units of the graph, we get an area of 10.25 
for the quasi-rectangle around the origin. This is equal to 'Ire, and thus for o = 0.03 

c 10.25 ~ 19 
a 2 ~ 1r (0.414)2 

' 

leading to a relaxation time 

This number is not inconsistent with the transfer rate found for the case o = 0.003 despite the 
handwaving we used: we assume that the islands are of equal size and we neglected distortions of 
the linear dynamics. In any event we just wanted a "ball park" number. 

6 We will study such a fake system in Sect. IVD. 
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2. Explanation of the results using the eigenvectors 

It is very interesting, in the light of the discussion of Sect. IVC 1, to plot the eigenvectors of the 
map. In particular, let us look at the case o = 0.03. It is given in Fig. 7. 

The first curve depicts the equilibrium distrib.ution whic}) goes nearly to zero between the islands. 
The second curves show the second eigenvector, the one with an eigenvalue closest to one. (Please 
notice that the equilibrium is thus the "zeroth" eigenvector" on Figs. 7 and 8.) As expected it is 
made of a linear combination of the first island and the second island distribution. The fourth and 
fifth curves show the same eigenvector with two different normalizations. The reader will notice 
that the fourth curve follows the first bump of the equilibrium distribution very well while the fifth 
curve is almost on top of the second bump; thus this calculations vindicates what was said in the 
previous section. 

The third curve represents the second eigenvector. The reader will notice that it looks very 
much like a derivative of the equilibrium distribution. This eigenvector would have been the leading 
eigenvector in a more conventional monotonically decreasing distribution. The local maxima of the 
distribution have a population close to zero with a high gradient while the region of high gradient 
are now fiat. In the case of a simple system and under the Fokker-Planck approximation, it can be 
proven that the eigenvectors are related to the Laguerre polynomial of order zero and do have an 
increasing number of zeros as their eigenvalue decreases. 

We can therefore say that the rate of transfer between islands is controlled by the eigenvalue .A1 
while the mixing within each island is controlled by .A2. In a case without a big isolated island, then 
.A2 becomes .A1. In Fig. 8 we display again the first three eigenvectors. The reader will notice that, 
despite the clear existence of a populated island, the second eigenvalue has a rather messy shape. 

In the case of o = 0.03, the first eigenvalue (for one turn) was computed to be .A1 = 1-1.14710-5. 
Therefore, if we assume (incorrectly), that the probability of jumping from one island to the next 
is given by P,1 = 1 - .A1 = 1.147 10-5 and that the number of jumps obeys a Poisson distribution, 
then we can expect a jump every J.£1 1 turns, that is every 87000 turns. 

In the next section, we show how the Fokker-Planck treatment gives a similar result in the linear 
case. 

3. The Fokker-Planck treatment 

In this paper, we have avoided the Fokker-Planck treatment completetly. Nevertheless it is in
teresting to see how the eigenvectors come out of the linear problem in cases which we can solve 
analytically. 

The idea here is to derive a stochastic operator for U in differential form rather than the more 
correct integral form. Let us look at the effect of the map Eo d of Eq. (44) on an arbitrary 
distribution f. It is given by the exact relation 

f = i e2
<> f(e 0 x- 6.1, e0 p- 6.2) p(2S.)d2S.. 

Equation (53) refers only to the stochastic part (damping included) of the map. To this we must 
add the map m which is purely deterministic: 

- { { 2o o o - -} 1 Uf=fom= Jt>. e f(e x-6.1,e p-6.2)p(6.)d6. om- . 

Let us C<)ncentrate on the stochastic part. If we assume that the damping and the stochastic kick 
are small, we can expand the integral as follows: 

We can now perform the integral over the stochastic kick 

deterministic part stochastic part 

where we assumed (LS.) = 0 
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We have introduce the time-like parameter "n" to denote the turn number. Obviously we can 
integrate this equation with respect to "n" and this will not change the results to leading order: 

We can now express the full one tum map U as 

or 

where M-1 f d!f:! f om - 1
. 

The map M-1 is the usual symplectic map which can be expressed in terms of Poisson bracket Lie 
operators. 

Now let us perform a phase average. Since we have gone through the trouble of writing a propa
gator for our map, let us perform a canonical transformation on it: 

AUA- 1 = AM- 1 exp (i:) A- 1 

= AM-1_A-1 Aexp (i:) A-1 

n-1 

= n-1 exp (Ai:A -1) 
By assumption the canonical transformation turns the symplectic map into a rotation. Now let us 
compute the effect of A on the stochastic operator f:. Let us start by examining the transformation 
properties of a regular deterministic vector field. They are given by the formula (repeated indices 
are summed over) 

Next we should examine the transformational properties of a diffusion operator of the type Diiaiai. 
In general, if the canonical transformation A is nonlinear, then the diffusion operator will transform 
into the-sum of a diffusion operator and a deterministic vector field. The formula is given by 

ADijaiajA-1 = Dijaiaj + D/3i 

Dij = { Da&Baai18&aj 1
} o a 

Di = { Dab8a8bai1
} o a 

Let us assume that the map m is just a good ol' linear map and thus it can be normalized by a 
regular Courant-Snyder transformation: 

If we substitute this transformation into Eq. (61), we get the following results: 

Ai:A-
1 

= ~ {~ai+ [~ (~~) +P(~~) +2a(~1~2}] a~ 
D~l n;2 

+ [ (~1~2}-+ ~ ( ~i)] 8182} +a {2 + x · V} 

D~2 
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This operator of Eq. (63) is two dimensional and completly equivalent to the original operator. 
However we would like to average over the phase of the symplectic motion. This is best done by 
introducing another (nonlinear) transformation into the action angle variables (c/>, J). The transfor
mation analogous to that of Eq. (62) is just 

-1( ) -1X1 c1 x1, x2 = -tan -
X2 

-1 xi +x~ c2 (x1, x2) = --
2
--

or equivalently 

c1(x1,x2) = .J2X;"cosx1 

c2(x1,x2) = -.J2X;"sinx1. 

Since we are going to ignore any angle dependence, we need only to compute the D2 and D22 terms 
of Eq. (61). After some algebra, we obtain the results 

D2 = D~1 +D~2 
D22 = 2J (D~ 1cos2 cj> + D~2sin2 cj>- D~2 sin 24>) 

We may now substitute the results of Eq. (63) into Eq. (65) and average over the phase cj>. The 
total averaged map (U) becomes 

(U) = exp (;J { 2aJ + ~ J :J}) 
D = 'Y ( t..i) + 2a ( t..i t..2) + {j ( t..~) . 

The symplectic part of the map R-1 leaves any function of J invariant and thus is just the identity 
once we average over cj>. It is interesting to investigate the eigenfunctions of the operator (U): 

a { v a} aJ 2aJ + r;:l aJ Wk = .>.kwk 

Let us first look at the equilibrium distribution which must obviously obey 

and have a finite integral. The answer can be easily found to be 

D 
where Jo = 

4
a. 

The next step consists in writing a general eigenvector as the product of an unknown function p and 
the equilibrium wo. The resulting equation for p is 

Fp+ (1- JfJo)p = 2~k p. 

The solutions are expressible in terms of the Laguerre polynomials: 

.>.k = -2ak k = 0,1,2,··· 

The Laguerre polynomials can be obtained from the recursion relation 

r ( ) 1 x dk { -x k} 
'--k x = k! e dxk e x . 

The reader will notice that the eigenvector w1 has a single zero at Jo and thus looks like the derivative 
of wo with respect to the radius r = V2J. (Not exactly since the zero of the derivative is at J0 f2.) 
Finally, we see that the eigenvalues of the exponential operators are given by the formula exp (.>.k) 
or exp(-2ak). 

Therefore as one would expect in a one-island situation, the modes damp at a rate consistent with 
the damping of the deterministic motion. This is why we often track a distribution of the order of 
a few damping times to get a general idea of the core equilibrium distribution. Obviously this must 
fail in a large island case. 
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D. Big islands: a one-dimensional fake map 

The following question arises. When the islands are separated beyond the ability of brute force 
tracking to work what can we expect from our map method, what can we expect from the Irwin 
method? , 

To understand the relative merits of all the methods, we will create a true one dimensional 
problem. Consider the following system defined for positive x only: 

"'x > 0 _ m(x) = x 

d(x) = >.x if X< Xmid 

= X2D- A (X2D- x) if X2D >X> Xmid 

E(x) = x + ~; ~ = ±<5 
if x + ~ < 0 then E(x) = -~- x 

and if x + ~ > x then E(x) = 2x- x - ~-

First let us look at the case Xmid = x2v = x = oo. This corresponds to an attractive fixed point 
at the origin. Thus in the absence of a stochastic force, the equilibrium distribution will be a delta 
function at the origin as all particles are inexorably attracted towards x = 0. 

If we tum on the fluctuation, then the beam will settle near the origin. The reader can check 
that all the even equilibrium moments can be exactly comput~. For example we have 

2 l? 
(x t, = 1- ).2' 

while the odd moments depend on the distribution 

8 (8- x) 8 (1li ) (x}00 = 
1 

_ .>. 
0 

Poo(x) - 8-dx < 1 _ .>.-

This simple model can be simulated easily by brute force, Irwin method, and our method. We 
should point out that our method is (unfairly!) rigorous in this one dimensional problem because it 
must be true that the distrubution sit on the trajectories of the unperturbed problem (points on the 
real axis). However we selected this simple problem because all methods are easily implemented. 

For the case X1nid = x2v = oo, we will see that all the methods ''work" in the sense that they 
produce good results. The Irwin method will actually produce extremely good results. In fact the 
Irwin method can be shown to be a rigorous extension of the brute force method in such a case. 

Now what can be said of the case Xmid < x2v < x = n(x~/12 ? The reader notices that this 
system has two fixed points: one at zero and one at x 2v. We will find that the Irwin method has 
serious troubles if the islands are far apart; it is reduced to brute force. Let us describe in words 
the implementation of these 3 methods. 

1. Brute force 

Let us discretize the space into N points 

.X2D 
Xj=JN j= l,N. 

Now we simply track a ray for a large number of turns M and record the visiting frequency of each 
intervallxj,Xi+ll· 

Obviously this method suffers from the usual disease: to know the tail with a good accuracy one 
needs to waste enormous amount of time building the core to a ridiculous accuracy. Therefore the 
number of turns needed becomes prohibitive 

2. The Irwin method 

The Irwin method is a clever trick which allows one to keep a constant accuracy from core to 
tail. Suppose we determine that to know to the core with a 1% accuracy or better, it is necessary 
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to track 10000 particles. (Let us define the core as the region near the origin containing 90% of the 
particles.) Then the Irwin method proceeds as follows: 
Step 0: track 10000 particles until they seem to settle to an equilibrium. 
Step 1: Locate the surface Xgo that determines the limit of the core; the position below which 90% 
of the particles are. Record the population distribution of that core; this will be the equilibrium 
core. 
Step 2: (Useless in one dimension) Now track the 10000 for a few more damping time and record 
where the particles cross the Xgo boundary. Obviously in one degree of freedom, they all cross at 
the same place. Store this flow information for future usage. 
Step 3: Start 10000 particles in the region x > x90 • 'frack as in step 0. However, each time a particle 
falls below Xgo, put a particle back on the surface Xgo using the flow information computed at step 
2. (In one degree of freedom, simply put back at Xgo). This step clearly assumes equilibrium. 
Step 4: Go back to step 1. Now the word core applies to this new region. 

This algorithm is looped around as many times as necessary. In the case when 90% is selected, we 
slowly advance towards the deeper part of the tail, each iteration looking into a region 9 times less 
populated than the previous iteration. The accuracy, it is hoped, remains approximately the same, 
and more importantly, the number of particles needed for each region is the same for a constant 
accuracy. 

This method, originally due to Irwin, has been very successful and is not limited to 1 or 2 
dimensions. Furthermore, unlike brute force, it permits the exploration of tails for most problems 
(but not all as we will see) with a good degree of accuracy. 

It should be pointed out that the ergodic hypothesis, which is behind Irwin's method and brute 
force, allows us to replace the tracking of a core (10000 particles for example) by the tracking of a 
single particle as in the brute force method. This point, apparently not in Irwin's original paper, 
grealty simplifies the work. It also permits a unification of the brute force method and the Irwin 
method. The Irwin Method is a clever extension of the brute force method rather than a competing 
algorithm. We will use it on the one dimensional map of Eq. (73). 

3. The map method 

The map method is trivially applicable to this one dimensional problem. The support trajectories 
are simply the grid points Xj. The 1r projection can be selected as in Eq. (10). As usual a number 
of turns equal to a substancial fraction of the damping time must be used. The end result will be a 
map U propagating a distribution supported by the "points" xj's. 

4· No islands: Xmid = X2v/2 = oo 

Here we performed a brute force simulation with 280,000,000 particle-turns. We also performed an 
Irwin calculation with 14 steps of 20,000,000 particle-turns. At each step we advance by increments 
of 90% deeper in the tail. Finally we did a map calculation with 101 entries. A 100 turns map was 
computed with 28,000 thousands stochastic experiments for each entry. In the language of Eq. (20), 
the map calculation was done with 

q = 100 

Nb = 1 

M= 28,000. 

The parameters for the map were selected as follows 

>. = 0.999 and 

with a total grid over the region 

x E [o,100(x
2

)
112

], 

6 =0.09, 

This interval was divided into 100 small intervals and thus into 101 points for the map computation. 
For the sake of comparison, the binning algorithm used the projection 1r of the map algorithm both 
in the brute force and in the Irwin calculation. We can see in Fig. 9 that the map method agrees 
in the tail with the Irwin method up to the point where the Irwin method starts to fall apart. 
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. . ~ ( 2 )1/2 5. W~th islands: Xmid < X2D < X = n X 00 

In this case we considered the following "tough" case: 

( 
2)1/2 

Xmid = 6 X , ( 
2)1/2 x2v = 10.5 _x , and. 

The Irwin method was tried with with 20 million as welt as 200 million particle tracking per iter
ation. Each iteration attempted to built the distribution in increments of 50% which is of course 
conservative. 

The map method was also used and the results were far more constant indicating that it probably 
settled to an answer closer to the correct one. Why do we get these bad results? It has to do with 
the sudden appeareance of a core-like region at large amplitude. As we built the tail, this region is 
invisible; no particles what so ever have yet entered it. Intrisically there is nothing wrong with this 
because the same is true in a regular monotonically decreasing distribution. However in the case 

of a big island, the center of "gravity" of the tail abruptly jumps as particles start populating this 
island. In our example it was typical to see a jump of the last Irwin surface from 25% of x to about 
70%. In otherwords the Irwin algorithm suddenly finds out the existence of a second beam orbiting 
around the island centered around x2v and starts building the outer tail of that island. The inner 
tail between the central island and outer island is badly represented. 

One way to fix this problem would be to increase the number of particle turns, but this is a return 
to brute force. The second possibility would be to device a two-core Irwin method and match at 
the inter-island boundary. 

To show how thin~ get better as the islands approach each other, we also simulated the following 
case 

( 
2)1/2 

Xmid = 3.75 X , ( 
2)1/2 

X2D = 7.5 X , and 

We simulated "brute" force with 280 million particle-turns. The particle visited each region 105 
times and thus the brute force results must be sensible. The reader will notice that there is an 
excellent agreement between the brute force simulation and the Irwin method. Of course in the 
extreme tail, as the logarithm plot shows, the Irwin method agrees much better with the map 
method. Let us look at the case 

( 2)1/2 ( 2)1/2 ~ ( 2)1/2 
Xmid = 5 X , X2D = 10 X , and X = 10 X • 

This case must have by symmetry equal population in both islands. So, for the purpose of making 

things a little asymetric, two grids were chosen. In one case 100 intervals separated 11 ( x2) 
112 

rather 
than 10. 

This places the midpoint between the 45th and 46th grid point, at 45.45 to be precise. We also 

tried to put the center point at 45.25 using 100 intervals over a distance of about 11.0497(x2) 
112

-
it is interesting to see if this affects the total population of the two islands. The results are displayed 
on Fig. 12. The distribution is very symmetric as one would expect. Actually the percentage of the 
total population occupying the first island are found to be 51.4%, 48.4%, 47.9%, 50.0%, and 49.8% 
for the five simulations shown on Fig. 12. 

Our last example, with this one dimensional map, concerns the case of a large island with a small 
population. The parameter are 

( 2)1/2. ( 2 )1/2 ~ ( 2)1/2 
Xmid = 5 X , X2D = 7.5 X , and X= 10 X . 

We selected 100 grid points over 11.0497 (for no particular reasons in this case). The results are on 
Figs. 13 and 14. 

This case shows how the Irwin method, which works beautifully in a monotonic case, seems to 
have trouble with even small islands. The basic problem is the sudden population increase as one 
reaches the outer island. 

E. An Advanced Light Source (ALS) case 

The Berkeley Advanced Light Source (ALS) is a 12-fold triple bend achromat ring. An experiment 
was conducted "to gauge" the amount of beam present in the main island as well as in the third 
order islands shown in Fig. 15. 
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At first it was thought by us that these islands were perhaps populated by gas scattering or other 
long range phenomenon. It appears that the ordinary radiation process is sufficient to cause the 
outer islands to populate. In any event, this is a good example of the method with its pluses and 
minuses. 

The first hurdle is the dimensionality of the problem. The full problem requires certainly a 
multidimensional calculation. If we ignore the vertical direction, there still remain the synchrotron 
oscillations. However, if we go to a dispersion free point right at the symmetry point where insertion 
devices are normally put, the equilibrium beam will be "one dimensional." By that we mean that the 
equilibrium quadratic moments will be proportional or consistent with the existence of an equilibrium 
emittance whose shape is given by the one-dimensional Courant-Snyder theory. Therefore, using the 
beam envelope 111,121 formalism, we check this assertion and concoct a one-dimensional stochastic 
kick which will give us the correct horizontal moments at the symmetry point. There is a lot of 
hand waving, but it does reduce the dimensionality of the problem to a one-degree of freedom case. 

For better or worse here is how the fudging proceeded. First let us assume a one-dimensional 
problem. It is easy to show that the average moments are given by 

The quantity (c:} is the average value of the Courant-Snyder invariant. Therefore if the beams sizes 
at the dispersion free point "appear" one-dimensional, we expect 

The moments were computed using a six-dimensional beam envelope formalism. We found these 
ratios to be constant within better than one part in a thousand. The next step consists in generating 
a random kick in the x direction which will reproduce the correct moments. The formula for the 
quadratic moment of that kick (82

) is gotten by equating the stochastic change in the Courant
Snyder invariant with the change due to damping: 

The stochastic kick as well as the damping parameter ,\ are input to a one-dimensional tracking of 
the ALS. 

At this stage we can link our favorite tracking code with our GUI program and track element by 
element as we normally do. Of course since the beam is rather small we are tempted to generate 
a Taylor series map using truncated power series algebra {TPSA or DA) and perform symplectic 
tracking with an adequate method. It should be said that this is a perfect problem on which to 
try the TPSA map tracking. We found out that the phase space of Fig. 15 can reproduced with a 
fifth degree Taylor series map. The map was factorized and its nonlinear part was tracked using a 
characteristic function. 

Damping was added by a general multiplicative factor of 

,\ = exp ( -4.143 10-5
) 

acting on the matrix part of the map. The stochastic kick was added as before on the variable 
x. To speed up tracking the damping was increased to ,\ = e< -1.14 10-

4 
) • We checked that the 

deterministic damped map had similar basins of attraction. The stochastic fluctuation was increased 
so has to keep the nominal beam sizes constant. C'\ 

For the case of Fig. 15 the islands were close enough to be obtainable by brutet!90racking. We 
tracked 500 million turns and recorded the visitation frequency. We also recorded the number of 
times the particle moved from the middle of the main island to the middle of the outer island. We 
found that this happened 350 times. This implies that the relative population is probably known 
quite accurately by brute force tracking. The result is plotted on Fig. 16 where both a linear and 
logarithmic plots are displayed. Numerically we found that the population of the center island to 
3.9% of the total population. 

We found out that the map method does a particularly bad job at estimating the relative popu
lation. We are not comparing with the-experiment but simply comparing brute force with the map 
method on a given representation of the experiment. For example, if we select the grid support 
displayed on Fig. 15, we can estimate the center island population to be at about 7.5% using a 
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10,000 turn map. Reducing the number of turns to 5000 increased this estimate to 9%. Pushing it 
to 20,000 turn gave us the more correct 4.5%. What is going on here? 

First of all it is clear that if we insanely push the number of statistical experiments towards brute 
force numbers (per trajectory!), we will obtain the brute force result. The map, of little value, will 
simply indicate that all initial distributions tend towards the equilibrium distribution. Therefore 
we should not be surprised to see the results improving as 'the number of turns represented by the 
map U increases. 

Why are the results so hard to obtain? We think that the large size of the islands create a 
substantial region of slow tune. Fig. 17 shows again the logarithmic plot where we have enhanced 
colors and shadows to reveal the asymmetry of the equilibrium distribution. Around the fixed points 
the equilibrium distribution does not follow the symplectic trajectories very well. Furthermore this 
region is rather large, but more disturbing to our method is the importance of that region in a 
weakly populated tail. Indeed the relative population of the islands is determined by the transfer 
rate between support trajectories in the very close neighborhood of the separatrix if a small number 
of turns is used. Clearly this can be a serious problem if the support trajectories have no relationship 
with the equilibrium distribution. Using a larger number of turn is a way to fuzz out our ignorance 
and still get a map of some value. 

We presented this example of the ALS to show that things are not always simple even under the 
best circumstances. Nevertheless the map method does produce reasonable numbers. 

V. CONCLUSION 

We presented a method which uses the symplectic trajectories as support functions for represent
ing a quasi-arbitrary distribution. It is quite clear that there are serious limitations preventing a 
total generalization of the map method. However there are also several topics we did not have the 
time or space to discuss which present potentially useful areas of applications. 
1. The estimate of life time, i.e., the creation of a map that has an aperture and thus does not 
conserve particle number, 
2. The study of rare events such as gas scattering. This can be done by comp~ting a map for the 
rare event alone and "adding" it to the ordinary radiative map. There are a lot of tricks involved 
including the calculations of one-turn maps by taking the nth root of a map. It is a large topic on 
its own, 
3. The study of injection efficiency which combines some of the tricks needed above, 
4. Nonlinear effects: the map is a function of the distribution. We never tried anything along those 
lines but it should be possible. 

Of course our ability to produce simple maps and perform some transformation on them may 
be needed as we try to study problems of higher dimensionality. For example, we cannot always 
evaluate the map at a dispersion free point, but we can do certain canonical transformations on the 
6d map which will reduce the synchrotron sloshing on the fixed point. 

So we conclude on both a note of hope and despair. There are obviously applications for this 
method, but there are also fundamental limitations. 
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FIG. 1. Support grid with three regions 
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FIG. 5. Support grid for the big island case 
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FIG. 8. The three leading eigenvectors for 8 = 0.09 
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FIG. 16. Results of 500,000,000 turns of brute force tracking of ALS 

FIG. 17. Another view of the logarithmic plot for ALS 
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