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Abstract 

We examine the cosmology of the two recently proposed scenarios for a five dimen­
sional universe with localized gravity. We find that the scenario with a non-compact 
fifth dimension is potentially viable, while the scena:rio which might solve the hierarchy 
problem predicts a contracting universe, leading to' a variety of cosmological probiems. 
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The main theme of the first 20 years of the hierarchy problem has been to modify parti­
cle physics around the Te V scale. In the past two years it has become evident that another 
successful route to solving the hierarchy problem is-to modify the nature of gravitational 
interactions at distances shorter than a millimeter [1, 2, 3]. This modification can be most 
simply achieved by introducing compact extra dimensions. One recent proposal which at­
tracted enormous attention is to lower the fundamental Planck scale M* all the way to the 
TeV scale, by introducing large extra dimensions [2]. The observed Planck scale is then just 
an effective scale valid for energies below the mass scale of the Kaluza-Klein (KK) excita­
tions. The consequence of this proposal is that the necessary size of the extra dimensions is 
determined by the KK reduction formula 

(1) 

where M* is the fundamental Planck scale of the order of 1 TeV, Mp1 = 1018 GeV, and n is 
the number of extra dimensions. Applying this formula for one extra dimension one obtains 
R ""' 1013 em, which would immediately suggest that this possibility is excluded because 
gravity would be modified at the scale of our solar system. For n 2: 2, R is sufficiently 

· small so that this scenario is not excluded by short-distance gravitational measurements. 
However, Randall and Sundrum recently realized [4, 5] that the case of one extra dimension 
is very special, and the naive KK reduction formula (1) may not be applicable in this case. 
The basic reason behind this is that in this scenario the standard model fields have to be 
confined to a three-dimensional wall ("three-brane"), and such branes act like sources for 
gravity in the extra dimensions. The behavior of Green's functions in one dimension is 
dramatically different from the case of two or more dimensions. Indeed, in one dimension 
Green's functions grow linearly, while in the case of more than two dimensions there is an 
inverse power law 1/rd-2 (and logarithmic growth for d = 2). Thus branes act like small 
perturbations on the system for the case of two or more extra dimensions, and one expects 
the KK reduction formula (1) to be applicable. For just one extra dimension, however, the 
presence of branes can significantly alter the bulk gravitational fields, which may invalidate 
arguments based on the naive KK reduction formula. 

Indeed, Randall and Sundrum (RS) have presented a new static classical solution to 
Einstein's equations with one extra dimension (taken to be S1 /Z2 ), and branes with non­
vanishing tensions placed at the orbifold fixed points [4]. In this solution, for large brane 
separations, the effective four-dimensional Planck scale is independent of the size of the 
extra dimension, in agreement with the expectation that (1) is invalid for the case of one 
extra dimension. For their solution to work RS found that the brane tensions must be of 
opposite sign, and that there must be a negative bulk cosmological constant which stabilizes 
the system. 

Two possible applications of this solution have been proposed [4, 5]. In one case (which 
we refer to as RS1 ), our universe ("the visible brane") is the brane with negative tension, and 
the exponential "warp-factor" appearing in the RS solution will yield a natural new solution 
to the hierarchy problem [4]. In the second (RS2) proposal [5], the visible brane is the one 
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with positive tension. In this case the hierarchy problem is not solved, however, the second 
brane can be moved to infinity, thus providing an exciting example of a non-compact extra 
direction [6], which nevertheless correctly reproduces Newton's law on the visible brane. 

Binetruy, Deffayet and Langlois (BDL), however, have pointed out recently [7] that five 
dimensional theories with branes. tend to have non-conventional cosmological solutions, once 
matter on the walls is included.* In this letter; we apply the results of BDL to the models 
presented by RS. We find that the equation for the scale factor on the visible brane (for small 
matter densities) coincides with the conventional Friedmann equation, up to the overall sign 
of the source terms. This sign depends on the sign of the cosmological constant (tension) on 
the visible brane. In the case of negative brane tension the source terms of the Friedmann­
like equation have the opposite sign from standard cosmology. The change in sign implies 
that the universe would collapse on a timescale on the order of the Hubble time at the start 
of the expansion, for any matter with energy density p, pressure p, on our wall with an 
equation of state p = wp and w < 1/3. So whereas in the radiation-dominated phase the 
universe expands as in the conventional cosmology, after the transition from the radiation­
dominated to matter-dominated (or quintessence-dominated) epoch when the universe was 
a few thousand years old, the universe would not expand as in conventional cosmology, but 
would rather collapse within a few thousand years. As we argue, this conclusion relies on 
knowing the expansion rate during the era of matter-radiation equality, which is provided· 
by the success of the standard big-bang nucleosynthesis (BBN), and the current baryon and 
radiation densities. So in order to avoid this conclusion this scenario requires either a non:­
standard BBN or a modification of the RS1 solution, for example through the introduction 
of additional fields. We emphasize that crucial to these conclusions is the fact that we live 
on a negative-tension brane, and that there is only one extra dimension. Both of these facts, 
however, are also crucial ingredients to the solution to the hierarchy problem presented by 
RS. For the case of the positive brane tension, howev~r, the conventional expanding solution 
is reproduced in this model. 

We begin by summarizing the work of BDL [7]. The scenario considered here is a five­
dimensional spacetime compactified on the line segment S1 JZ2 • The bulk coordinate is 
labeled by y, which is taken to be in the interval -1/2 ::; y ::; 1/2, where the points -1/2 
and 1/2 are identified. In this notation the coordinate y is dimensionless. The Z2 symmetry 
identifies the points y and -y, so we can restrict ourselves to 0 :::; y ::; 1/2. Two three­
branes are placed at the fixed points of the discrete symmetry, y = 0 and y = 1/2. In our 
notation, the visible brane is located at y = 0, and a hidden brane is located at y = 1/2. The 
compactness of the extra dimension requires the existence of two branes, since each brane 
must absorb the gravitational flux lines from the other. 

The most general metric for a five-dimensional spacetime which preserves three-dimen­
sional rotational and translational invariance is given by 

(2) 

Note that here we use the metric signature ( +, -, -, -, -). The induced metric on the visible 

*For other recent results on the cosmological aspects of theories with large extra dimensions see [8-16]. 
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brane is obtained by evaluating the metric tensor at y = 0. The tnetric. is determined by 
solving Einstein's equations in the presence.of some energy density in the ;bulk and on the 
three-branes. A solution which describes a static four.;dimensional Lorentz invariant universe 
is given by a( r, y) = n( r, y) = f(y ). This still allows for a non-trivial dependence of the 
metric-on,the bulk coordinate. This is the key ,point· in the.soluti-6mof [4]. to the hierarchy 
problem, for localizing gravity in the bulk {4, 5], and: for obtaining a. non-.aompact~ fifth 
dimension with a conventional Newton's force· law [5]. For an exJ>anding four-dimensionc:~,l 
universe, however, we must have a :/= n. The metric is determined by solving Einstein?s 
equations 

(3) 

Here A, B = 0, 1, 2, 3, 5, and K2 is the five-dimensional Newton's constant, which is related 
to the five-dimensional Planck scale by M; = K-2 . The components of the Einstein tensor 
GAB with the above ansatz are given in (8)-(11) of (7]. 

The five-dimensional stress-energy tensor TAB is the sum of contributions from the bulk 
and from the two branes. The width of the branes is neglected since it is 0(1/M*), which is 
much smaller than the distance scales of cosmological interest. Thus the stress-energy tensor 
is approximated as 

TAB(x,y) = 'fAB(x,y) + S~~(x) o(y) + S~~(x) o(y -1/2), 
· bo(r) b112(r) 

(4) 

where b0(r) = b(r,O) and b112(r)- b(r,1/2). Here 'fAB is the stress-energy tensor in the 
bulk, and S~~ (S~~) is the 4-dimensional stress-energy tensor of the visible (hidden) brane: 
S~vis = (p, -p, -p, -p, 0) and S~hid = (p*, -p*, -p*, -p*, 0). At this point the composition 
of the energy density on the walls is completely general. 

Using the above energy-momentum tensor BDL derived an equation for the scale factor 
on the visible brane which is independent of the details of the global solution to Einstein's 
equations t: 

lio (ito) 2 
K

2 
- K

4 

-+ - =--2 Tss--p(p+3p). 
ao ao 3b0 36 

(5) 

The time derivatives which appear are with respect tot, where dt = n(r,O)dr, and a0 (t) = 
a( r, 0) is the scale factor on the visible brane. There are several important features of this 
equation. First, the energy density and pressure of the second brane do not appear. This 
follows from the local nature of Einstein's equations (17]. Second, as noted in [7], the Hubble 
parameter H = a0 / a0 ex: p rather than VP as in the conventional cosmology. Finally, this 
equation depends only on a0 • In the case that T~ is-time-independent (as will be the case 
later), this equation completely determines a0(t). Therefore it is not necessary to determine 
the solutions to Einstein's equations for the whole bulk. 

tThis equation can be derived [7] by first calculating the discontinuities in the derivatives of the functions 
a and nat the position of the branes by matching the o-functions in Einstein's equations. This information 
about the discontinuity of the derivatives together with the discontinuity and the average value of the 5,5 
component of Einstein's equation results in (5). 
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We assume that no energy is flowing from the bulk onto the brane so that T05 = 0. 
Then the discontinuity in the G05 = 0 equation (7] gives the usual conservation of energy 
condition: 

. ao ( ) p+3- p+p = 0. 
ao 

(6) 

Thus for p = wp, p ex: a-3(w+l) as in standard cosmology. The conservation of energy 
equation (6) and' the Friedmann-like equation (5) are the central equations which are used 
in what follows. 

Now we briefly review the solution presented by Randall and Sundrum (4, 5]. In their 
scenario the two branes have some tension, Vvis, Vhid, and the bulk contains a cosmological 
constant A. In terms of our earlier notation, p = -p = Vvis, p* = -p* = Vhid, and 
T;i = A(1, 1, 1, 1, 1). A static Lorentz invariant solution is obtained with a(r,y) = n(r,y) = 
eu(y), and b(r,y) = b(y) = b0 = const., the latter having been obtained by a coordinate 
transformation on y. Then the 5,5 component of Einstein's equation gives 

2b2 
a'2 - -~A - 6 . 

Thus A < 0 is required. It is then convenient to introduce 

"'2 
m2 =--A. 

6 

(7) 

(8) 

Therefore a = ±mboiYI· (The absolute value is required so that a" is singular at y = 0, 
matching the a-function sources in Einstein's equations.) The discontinuity equation for 
either a or n then requires that 

(9) 

We note that the case in which Vvis =/= - Vhid leads to the brane inflating solutions found in 
(8]. Since we are interested in non-inflationary solutions, we assume that the tensions of the 
two branes are adjusted to satisfy (9). Since sgn(Vvis) is crucial in determining the expansion 
rate of our wall discussed below, we emphasize that the correlation betw~en the sign of the 
tension of the visible brane and the growth of the scale factor away from the visible brane 
IS: 

RS1 : n(y) = a(y) = e+mboiYI {::::::? Vvis < 0, 

RS2 : n(y) = a(y) = e -mbo IYI {::::::? Vvis >. 0. 

(10) 

(11) 

For RS2, gravity is localized about our brane (5]. This allows for a non-compact fifth di­
mension that is consistent with the short-distance force experiments. By contrast, case RS1 
with Vvis < 0 provides a potential solution to the hierarchy problem (4]. The reason for this 
is the following. The metric on the distant brane contains a conformal factor embo in units 
where the conformal factor on our wall is one. This implies that mass scales on our wall and 
the distant wall are then related by ?"tvis = e-mbol2mhid, so that a large hierarchy of mass 
scales is possible if mhid rv Mpz rv M* and mb0 rv 100. 
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This non-trivial scale factor significantly modifies the naive relation Mj,1 "' M;bo between 
the fundamental and derived Planck scales. The correct relation for mb0 ~ 1 is in fact [4J 

1 Yi,4 

8rrGN = M 2 = Yi.
2
m = -

6 
IVvisl· 

Pl . 
(12) 

It is remarkable that this is independent of the size of the extra dimension. For RS1 the 
coupling of the KK excitations of the graviton to matter are given by"' erribo/2 /m [5]. Since 
these excitations would appear as resonances in collider experiments, this coupling must be 
O(TeV-1) or smaller, thus implying m"' Mp1 (since embo/2 "' 1015). Therefore a satisfactory 
resolution to the hierarchy problem requires m "' r;,-213 

"' MPI· 

However, both of these solutions to Einstein's equations are static and do not describe 
a universe with time-dependent scale factor a. While some work has been done on inflating 
solutions (8], we will attempt to uncover cosmological solutions which reproduce the successes 
of the usual Friedmann equation for a flat universe. This seems difficult at first thought, 
given the earlier statement that in five-dimensional brane models H oc p. However, we will 
see that the presence of large background cosmological constants changes this conclusion, 
and the usual Friedmann equation is reproduced, up to the sign of the source term. 

We begin by perturbing the RS solution by placing an additional energy density on the 
two branes without a compensating ,change to the bulk cosmological constant. That is, 
we consider p = Vvis + Pvis and p = - Vvis + Pvis where Vvis is given by (9) and Pvis, Pvis 
are the energy density and pressure measured by an observer living on the visible brane, 
with equation of state Pvis = WPvis· Key to our results will be that we work in the limit 
Pvis « IVvisl· Given that IYvisl ""' Mj,1 in these models, this limit is the correct one for 
describing our (post-inflationary) universe. Substituting these expressions for p and p into 
(5) gives, for either RS1 or RS2, 

(13) 

The O(A) and O(r;,4 ~~s) terms cancel using (8) and (9). Note that the presence of the back­
ground energy density allows for H2 oc Pvis as in conventional cosmology. This differs from 
the observations of BDL because here the brane matter is a perturbation to the background 
RS solution. It is also clear that the presence of the prefactor Vvis in (13) implies that for one 
of RS1 or RS2 solutions, (13) will have a negative sign relative to the conventional Friedmann 
equation. In fact, we find that the "wrong-signed" Friedmann-like equation corresponds to 
RS1, the solution with Vvis < 0. To see this, substitute the formula for the Planck mass, 
(12), into (13): 

ao (ao) 2 4rrGN r;,
4 

. 
RS1 : ao + ao = 3 (3Pvis - Pvis) - 36 Pvis(Pvis + 3Pvis)· (14) 

For small densities (Pvis « Mj,1) we can neglect the second term on the RHS, since r;,4 
""' 

1/ M$1• The first term on the RHS contains a negative sign relative to the Friedmann equation 
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in the conventional cosmology. Obviously this sign is flipped in the RS2 scenario and we get 
the correct Friedmann equations up to small corrections. 

It is interesting to note that for a radiation-dominated (RD) universe this sign problem 
has no effect: since Pvis = Pvis/3 the first term on the RHS of (14) identically vanishes, and 
one obtains the same equation for both RS1 and RS2. It is then important to see whether 
the conventional RD solution is obtained in this case. The approximate solution for the scale 
factor can be easily found. We take 

·· ( ao(t)) -
4 

Pvis(t) = Pvis(ti) ao(ti) , (15) 

then 

(16) 

Thus at late times this reduces to the evolution of standard RD cosmology. Note, that 
this solution is different from the a0(t) "' t 114 solution presented in [7] (even though (5) 
reduces to exactly the same equation in the case of a RD universe). The reason is simply 
that a non-linear second order differential equation can have more than one solution, and 
the initial condition will determine which is the relevant one. Since (16) reproduces the 
standard RD cosmology, it is plausible that the potential problems with BBN found in [7] 
are in fact solved by the existence of the extra solution (16). From the solution (16) we can 
see that both RS1 and RS2 reproduce the conventional RD solution. Since for RS2 (13) gives 
the conventional Friedmann equation for any type of matter (up to small corrections), we 
conclude that the RS2 solution is viable. Therefore in the following we will only concentrate 
on the RS1 solution. 

What is the effect of the wrong sign in the Ftiedmann equation for the RS1 solu­
tion? Assume that after some time teq the energy density of the universe is dominated 
by a component with an equation of state having w < 1/3. In what follows, the subscript 
"eq" will denote quantities measured at time teq of matter-radiation equality. Then, e.g., 
Pvis(t) = Peq(ao(t)fao(teq))-3(w+I). Next, for w =/:- 1/3 and energy densities Pvis « Mj,17 the 
second term on the RHS of (14) is subdominant to the first, so it is neglected. It is then 
convenient to introduce new variables i = Heqt and x(t) = a0(t)ja0 (teq), where H(t) is the 
Hubble parameter. The initial conditions at t = teq are then x(teq) = 1 and :i:(teq) = 1, where 
the overdot denotes a derivative with respect to l. Then in these units (14) is 

x x 2 A 1 
; + (;) =- 2 x3(w+I)' (17) 

where the dimensionless constant A = 87rGNPeq(1- 3w)/(3H~q) is introduced. Note that 
for w < 1/3 one has A > 0. (One obtains conventional cosmology by the replacement 
A --+ -A.) Also note that if H2 = 87rGNp/3 were the correct flatness constraint equation 
then A = 1 - 3w. Since it is expected that H2 

rv GNp, then A "' 0(1). Multiplying the 
above equation by y = x 2 then gives 

~ = -Ay-(3w+l)/2. (18) 
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That is, the expansion of our universe is described by the one-dimensional motion of a 
particle in the classical potential 

V(y) = 2 ).y(l-3w)/2. 
· 1-3w 

(19) 

For w < 1/3 this describes an attractive potential. Fr6m. tl,lls WfP understand that the universe 
reaches a maximum size, and then collapses. This is one·of the m.a.ln pbints ofthis letter: this 
result is in conflict with our current understanding of cosmology from several viewpoints. 
At the very least, observationally the universe seems to be accelerating [18] rather than 
decelerating. (We will examine a sharper conflict with BBN and the age of the universe 
below.) By contrast, in conventional cosmology there is an extra negative sign on the RHS 
of (18), so for w < 1/3 the potential is inverted and the universe expands forever (since 
curvature terms have not been included). In the RS1 scenario, the period of this oscillation 
is 0(1) in these dimensioruess units if>.,....., 0(1). In fact, for w = 0 (non-relativistic matter), 
the solution is 

l = J xdx = 2_ (1 + >.- >.x - 1 - >.) v'1 + >.- >.x. 
v'1 + >. - >.x >.2 3 

(20) 

In RS1, the period tu of oscillation (i:e., the age of the universe)for A= 1 is then tu = 20/3. 
-So in the original units tu ,....., H;;/ as expected. By inspection the maximum size of the 
universe is Xmax = 1 + 1/ >.for w = 0. Finally, note that for the conventional MD cosmology 
(>. = -1) the above formula correctly reproduces l,....., x 312

• 

In the RS1 scenario, the classical-potential (19) determines a first-order equation for x, 
in other words, it determines H 2 = H:qx2 jx2

• In fact, 

(21) 

This contains an arbitrary integration constant E = 2 + 2>./(1 - 3w). Note that the above 
equation (21) together with the conservation of energy (6) implies the Friedmann equation 
(14) for arbitrary values of the integration constant E. In conventional cosmology>. = 
-1 + 3w so E = 0, and there is an obvious extra minus sign in the second t~rm, reducing 
(21) to the usual flatness equation. In RS1 (21) is the analog of the flatness equation. In 
what follows, we assume that Pvis > 0, which implies 

E 161rGNPeq O 
> 3H2 > .. eq 

(22) 

The preceding arguments indicate that in the RS 1 scenario, after the time of matter­
radiation equality, the universe collapses on a timescale given by H;;/. The expansion rate 
Heq is obtained as follows. Assuming standard BBN, we know the radiation temperature 
TBBN ,....., MeV, and expansion rate HBBN during BBN. We use the present-day values of 
the radiation and baryon energy densities, together with conservation of energy and (16) 
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describing the RD cosmology, to determine Heq· We use a "'t112 from (16) rather than the 
solution a "' t 114, which is known to have difficulties with the He4 abundance [7]. Then 

(23) 

The first equality follows from energy conservation, and the last two equalities fto:rn {16). 
Next, conservation of energy is used, together with the present-day value p-yj Pcrit "' 10-5

, 

and Tnow "' 2.7 K, to give Teq "' 5 eV. Inserting this result, together with TBBN "' MeV, 
and HBBN"' T~BN/MPl"' 10-21 MeV, into {23) gives Heq,...., 10-32 MeV (the standard BBN 
result). Therefore, a standard BBN cosmology implies in the RS1 scenario that an MD 
universe collapses on a time scale of tu ,...., H;;/ ,...., few X 103 years. It is clear from these 
arguments that the age of the universe has not been used as an input, so this last result may 
be viewed as the RS1 standard BBN cosmology prediction for the age of the universe. 

In order to evade the previous arguments RS1 requires some non-standard version of 
nucleosynthesis. In particular, in order for the universe to exist for billions of years, the 
Hubble parameter at the start of MD must be orders of magnitude larger than in standard 
BBN: H';q "'103 x ( 8;GNPvis)· 

To conclude, we have considered'the cosmology of five-dimensional theories with local­
ized gravity on a three-brane introduced in [4, 5]. We have found that the solution with a 
non-compact extra dimension is potentially viable, since it reproduces the conventional cos­
mological solutions. However, the solution which may solve the hierarchy problem predicts a 
contracting universe with a lifetime of a few thousand years (assuming standard BBN). One 
way to avoid this difficulty might be a non-conventional BBN. But it seems more likely that 
these problems could be avoided by introducing additional matter fields in the bulk (which 
are anyway required to stabilize the radius of the extra dimension). The difficulty with this 
possibility will be maintaining the features which led to the solution of the hierarchy problem 
in the first place. 
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