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STRUCTURE AND PERTURBATION ANALYSIS OF TRUNCATED' 
SVD FOR COLUMN-PARTITIONED MATRICES 

ZHENYUE ZHANG* AND HONGYUAN ZHAt 

Abstract. We present a detailed study of truncated SVD for column-partitioned matrices. In 
particular, we analyze the relation between the truncated SVD. of a matrix and the truncated SVDs 
of its submatrices. We give necessary and sufficient conditions under which truncated SVD of a 
matrix can be constructed from those of its submatrices. We also present perturbation analysis to 
·show that an approximate truncated SVD can still be computed even if the given necessary and 
sufficient conditions are only approximately satisfied. 

1. Introduction. In many applications, it is desirable to compute a low-rank 
approximation of a given matrix A E nmxn, and the matrix A can be large and/or 
sparse, see (5], for example, for a list of application areas. The theory of singular 
value decomposition (SVD) provides the following characterization of the best low
rank approximation of A in terms of Frobenius norm II ·liP (3]. (Similar results hold 
for general unitarily-invariant norms.) 

THEOREM 1.1. Let the SVD of A E nmxn be A= UEVT with 

E = diag(O'l, ... , O'min(m,n)), 0'1 2: · · · 2: O'min(m,n)> 

and U and V orthogonal. Then for 1 ~ k ~ min( m, n), 

min(m,n) 

L a}= min{ IIA- Ell~ I rank(B) ~ k}. 
i=k+l 

And the minimum is achieved with bestk(A) := Uk diag(0'1, ... , O'k) VkT, where Uk ancj 
Vk are the matrices formed by the first k columns of U and V, respectively. Further
more, bestk (A) is unique if and only if O'k > O'k+l· 

In this paper, we call bestk(A) a truncated SVD of A, which is obtained by 
truncating the expansion 

min(m,n) 

A = 2: O'iUiVr 

i=l 

up to the kth term. Here U = (u1, ... , um] and V = [v1, ... , vn]· Algorithms fot 
computing (truncated) SVD, even in the case when A is large and sparse are well 
established (1, 2, 3]. In this paper we are concerned with an interesting issue which 
is motivated by some of the results developed in (12] where we dealt with the rela
tion of truncated SVD and a special indexing method latent semantic indexing used 
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in information retrievaL We will build on the results obtained in [12] and stud:y 
truncated SVD of column-partitioned matrices in greater generality. We observed 
that in some applications, the A is naturally partitioned into several block columns: 
A= [A1, ... , A.]. In text categorization applications, for example, each column of A 
represents a document in a given text corpus, and A; consists of all the documents in 
the text corpus that are about a particular topic i. In dynamic information retrieval 
applications, A 1 can be the documents from an old text corpus, and A2, ... , A, 
are document collections added dynamically as new documents become available [9]. 
An important problem from those applications is the following: we have computed 
the truncated SVD of some of the A; 's, say, bestk [ A1, ... , At], t < s, and the matrix 
[A1, ... , At] has been discarded and is therefore no longer available. How can we con
struct a truncated SVD of A from bestk(A1, ... , At] and the remaining [At+l• ... , A.]? 
To answer this question we need to study the relation between the truncated SVD 
of a matrix and the truncated SVDs of its submatrices. It turns out that a general 
theory can be developed and the questions we are interested in can be answered by 
certain special cases of the general theory. 

The rest of the paper is organized as follows: In Section 2, we give necessary 
and sufficient conditions that guarantee a truncated SVD of a column-partitioned 
matrix A can be perfectly constructed from truncated SVD's of its submatrices. The 
orthogonality of certain submatrices of A plays an important role in specifying those 
conditions. We also relate the sufficient conditions to a class of matrices with the 
so-called low-rank-plus-shift structure [6, 7, 10]. In Section 3, we expand the results 
in Section 2 to the case where the necessary and sufficient conditions are only approx
imately satisfied by the given matrix A. We show that a truncated SVD of A can 
be approximately constructed from truncated SVD's of its submatrices. Along the 
way, we prove some novel perturbation bounds for truncated SVD of a matrix that 
are of their own interests. The case for matrices with low-rank-plus-shift structure is 
analyzed in some detail, and an improved perturbation bound is also derived. 

2. Necessary and Sufficient Conditions. As mentioned in Section 1, we are 
interested in finding conditions on a column-partitioned matrix A = [Alt ... , A,] 
such that a truncated SVD of A can be constructed from those of the A; 's. At first 
glance, using only truncated SVD's of the A;'s certainly loses some information about 
the original matrix A. Therefore, in general, we can not expect to reconstruct a. 
truncated SVD of A perfectly from those of the A;'s. The goal of this section is to 
find conditions under which this can be done. We first present a general result which 
gives the necessary and sufficient condition for a matrix and its perturbation to have 
the same truncated SVD's. 

NOTE. Throughout the rest of the paper, we will use the following convention: 
whenever bestk(B) is mentioned for a matrix B, it is implicitly assumed that (J'k(B) > 
(J'k+I(B) so that bestk(B) is uniquely defined. 

THEOREM 2.1. Let A= B +C. Then bestk(A) = bestk(B) if and only if 

CTbestk(B) = 0, bestk(B)CT = 0, (J'k(B) > (J'k+I(A). 

Proof We first deal with the "only if" part of the proof which is rather straight
forward. Since 

(A- best~(A)fbestk(A) = 0, 
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it follows from bestk(A) = bestk(B) that 

(A- bestk(B)fbestk(B) = 0. 

Substituting A with B + C and using the equality (B- bestk(B))Tbestk(B) = 0, we 
obtain . 

CTbestk(B) = 0. 

We can similar show bestk(B)CT = 0. Also O"k(B) > O"k+ 1 (A) follows from uk(A) = 
O"k (B) and O"k (A) > O"k+l (A). 

Now we prove the "if" part. Let the SVD of B and C be 

respectively, where E 1 E nkxk and the matrices are partitioned conformally. Then 
bestk(B) = U1 E 1 V1 . Now the conditions CTbestk(B) = 0 and bestk(B)CT = 0 
implies 

U'{ C = 0, CVt = 0. 

Let the SVD of U2E2Vl + C be 

T · - - -r 
U2E2V2 +C = U2E2V2 . 

It is readily verified that [!'{Ut = 0, and VlV1 = 0. Therefore, 

gives the SVD of A. Since O"min(Et) = O"k(B) > O"k+t(A), it follows that O"min(Et) > 
0" max (E2), and therefore 

completing the proof. 0 
REMARK. We notice that the condition O"k(B) > O"k+t(A) does not impose an 

upper bound on the norm of the perturbation matrix C. Even when k = 1, for certain 
C with norm as large as possible the condition can still be satisfied. 

With the above general result, let us now consider A partitioned in various forms. 
First we partition A as A= [A1 , A2], where A; E nmxn,, i = 1, 2. To apply the result 
of Theorem 2.1, we will write A as the sum of two matrices. For example, 

and so on. With these kinds of partitions, the proof of the following corollaries follows 
straightforwardly from Theorem 2.1, and therefore is omitted here. 

COROLLARY 2.2. Let A= [At, A 2]. Then 

if and only if 
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if and only if 

(At - bestk, (At)fbestk([bestk, (At), A2]) = 0, uk([bestk, (At), A2]) > Uk+t(A). 

if and only if 

[At - bestk, (At), A2- bestk, (A2)jTbestk([bestk, (At), bestk,(A2))) = 0, 

uk([bestk, (At), bestk,(A2)]) > Uk+t(A). 

REMARK. The conditions listed in Corollary 2.4 seem to be rather complicated, 
however, in some situations, we may be able to verify some stronger but simpler 
conditions. For example, the following two equalities 

imply the condition 

An example of this is given in Theorem 2.7. 
Now we show another interesting application of Corollary 2.4. 
CoROLLARY 2.5. The equality bestk(A) = bestk ([bestk, (At), bestk2 (A2)]) holds 

if and only if for any t; ~ k;, i = 1, 2, 

Proof We just need to PEove the "only if' part. Let A; = bestt, (A;), i = 1, 2. It 
is easy to verify that bestk,(A;) = bestk,(A;). Now we only need to prove that 

bestk([.At, A2]) = bestk([bestk, (.At), bestk2 (.A2)]). 

Using Corollary 2.4, we need t~ first verify that 

- -- -T - -
[At- bestk, (At), A2- bestk, (A2)] bestk([bestk, (At), bestk2 (A2)]) = 0. 

Since span{.A;- bestk,(.A;)} C span{A;- bestk,(A;)}, the above equality follows from 
the given condition. Next the inequality 

follows from a general inequality about the monotonicity of singular values established 
in [8]. 0 
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The results in Corollaries 2.4 and 2.5 can be generalized to the cases where A= 
[All ... , A.]. We just state the case for Corollary 2.4. 

CoROLLARY 2.6. Let A= [Al, ... ,A.] with A; E nmxn•,andk; ~ n;,i 
1, ... , s. Then 

if and only if for i = 1, ... , s 

(A; - bestk, (A;)fbestk([bestk, (A1), ... , bestk. (A.)]) = 0, 

and 

Matrices with Low-Rank-Plus-Shift Structure. As an application of the 
results established in the above corollaries, we consider a special class of matric~ 
that possess the so-called low-rank-plus-shift structure. This kind of matrices arises 
naturally in applications such as array signal processing and Latent Semantic Indexing 
in information retrieval [6, 7, 10]. Specifically, a matrix has the low-rank-plus-shift 
structure if its cross-product is a low-rank perturbation of a positive multiple of the 
identity matrix (cf. Equation (2.1)). We now show that matrices with low-rank-plus
shift structure satisfies the sufficient conditions of Corollary 2.4. 1 

THEOREM 2.7. Let A= [Al,A2] E nmxn withAl E nmxn, and A2 E nmxn2 • 

Assume that 

(2.1) 

where X is positive semi-definite with rank( A) = k. Partition X as X = (X;j )l,j=l 
with X;; E nn;xn; and let rank(X;;) = k;, i = 1, 2. Then 

and furthermore, 

Proof. For i = 1, 2, we have Af A; = X;; + 0'2 I with X;; positive semi-definite, 
and rank(X;;) = k;. We can write the SVD of A; in the following form 

A; = U; diag(E;, 0'2 I) V;T = [U;1, Ui2] diag(E;, 0'2 I)[Vi1, Vi2f, 

where V; is orthogonal, and 

E,· = (D,· + 0'2 I)l/2, D· _ d. ( (i) {i)) • - tag I-ll ' ... 'I-lk, 

. h {i) (i) 
wtt J-11 ;::: ... 2: J-lk, > 0. Hence 

1 A similar result was also proved in [12]. 
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and we only need to show U'&A2 = 0, and U?;A 1 = 0. To this end, consider the 
symmetric positive semi-definite matrix 

0 E1Ui)U21E2 
0 E1UbUnE2 

D2 

where for the last matrix in the above equation, blank denotes element by symmetrY:. 
Since a principal submatrix of positive semi-definite is still positive semi-definite, we 
obtain 

U'&Un = o, u'ft U22 = o, u'&u22 = o, 
and the rank of the matrix 

A= [ (E1uldnE2V 

equals k. Hence by 

BTB = diag(Vu, v21)(A+cr2 /)diag(Vl~> v2~), 

where B = (bestk 1 (A1), bestk2 (A2)], we obtain 

crk([bestk 1 (AI), bestk2 (A2)]) > cr = CTk+l(A). 

The result of the theorem now follows from Corollary 2.4. 0 
REMARK. The above results can also be generalized to the cases where A = 

(A1, .. . ,A.]. 
REMARK. By definition k1 ::; k, k2 ::; k and k ::; k1 + k2 ::; 2k, and it is easy to 

find examples for which k1 + k2 = k or k1 + k2 = 2k. In some cases, it is possible to 
find a permutation P such that AP = (A1 , A 2] will have Ai with ki, i = 1, 2, that are 
smaller than those of A. For example, 

A=l~ I i ~] 
It is easy to verify that k = 2. If we take the first two columns as A1 and the last two 
columns as A 2 , we have k1 = k2 = 2. However, if we take the middle two columns 
as A1 and the first and last tow columns as A 2 , we have k1 = k2 = 1. This example 
motivates the following questions: is it possible to find a permutation P such that a 
partition of AP = (A1, A 2] with A1 and A 2 having about the same column dimensions 
will give k1 + k2 < 2k? The answer turns out to be no. In the following we show that 
we can find a class of matrices A satisfying 

AT A-cr2I =X 

with X positive semi-definite such that for any permutation AP = [A1, A 2] we will 
have k1 = k2 = k, provided the column dimensions of Ai and A 2 are no smaller than 
k. Let Y E n_kxn be a matrix any k columns of which are linearly independent. Let 

eTC= yTy + CT2[ 

be the Cholesky decomposition of yTy + cr2 I. Set A = QC, where Q is arbitrary 
orthogonal matrix. Then it is easy to see that for any permutation P, a partition of 
AP = (A1, A2] with column dimensions of A1 and A2 at least k will have k1 = k2 = k. 
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3. Perturbation Analysis. In the previous section we give necessary and suf
ficient conditions to perfectly reconstruct a truncated SVD of a matrix from those 
of its submatrices. In this section, we consider the case when these conditions are 
no longer satisfied. ,We first give a general result concerning perturbation bounds 
of truncated SVD. The perturbation bound is so derived such that we get back the 
result of Theorem 2.1 when the necessary and sufficient conditions of Theorem 2.1 
are satisfied. · 

THEOREM 3.1. Let A= B + C with O'k+t(A) < uk(B). Then 

li b t (A)_ b t (B)II < IIAII2(IIbestk(B)CTII + iicTbestk(B)II) IIR CTII 
es k es k _ uZ(B) _ uZ+l (A) · + bestk(B) , 

where Pbestk(B) is the orthogonal projector onto the subspace span {bestk (B)}. 
Proof Let the SVD of B be 

B = U:EVT = [Ut, U2] diag(:Et, :E2)[V1, V2f 

with :Et E Jlkxk and bestk(B) = Ut:Et Vt. Write 

C :::::: uT CV = [ Cu C12 ] 
c21 C22 

with Cu E nkxk, and let 

be the SVD of ur AV with Q11 , D1 and G11 all k-by-k matrices. Then we have 

11~11 

From (3.3) we have 

It follows that 

(3.4) 

= llbestk(A)- bestk(B)II 

= 11 [ ~~~ J Dt [ g~~ r -[ :Et 0 J 11 

=II [ ~~~ ] [Dt,O]- [ ~1 
] [Gu,Gdll 

-:EtGt2 ] II· 

:EtGu + [Cu, C12] [ g~~ ] = QuDt, 

:E2G21 + [C21, C22] [ g~~ ] = Q21D1. 

-G12 ] + [ Cu 
o c21 

$ IIAIIIIGt211 +II [ g~~ ] II , 

-:EtG12 ] II 

] [Gu, Gt2]11 
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where we have used IIGdl = 11021 11. On the other hand from the equations 

we obtain 

Therefore, 

E1G12+[Cu,Cl2] [ g~~] =Q12D2, 

E1Q12 + [GG, Of;] [ ~~~ ] = G12D2. 

and we have 

(O"~(B)- (T~+l(A))IIGdl :::; IIE~G12- G12D~II 

:::; II[Cfl, Cf;JIIIID211 + IIEl[Cu, c12]-ll 

Recall that IID2II = O"k+l(A) < O"k(B). Furthermore, 

IIE1[Cu,Cdll = IIE1U[CVII = IIV{(bestk(B)fCII:::; IICTbestk(B)II 

and 

We obtain 

Substituting the above into Equation (3.4) completing the proof. 0 

8 

REMARK. As mentioned before the condition O"k+l(A) < O"k(B) does not imply 
an upper bound on the norm of C, i.e., certain C with large norm can still produce a 
small perturbation of bestk(B). 

If we ignore the structural relationship between B and C, we can derive the 
following less sharp result. 

CoROLLARY 3.2. Under the same condition of Theorem 3.1, we have 

REMARK. If we write the SVD of A as 

It is easy to verify that 

bestk(B) = U1E1Vt = BPv,, 
- - -r bestk(A) = U1E1 V1 = AP1\, 
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where Pv, = V1 V{ and Pv, = Vi V{ are the orthogonal projectors onto the subspaces 
span V1 and span V1, respectively. Then we can use sin 0 Theorem to obtain the bound 
in Corollary 3.2 (4, Theorem 11.7.2]. 

CoROLLARY 3.3. Under the condition of Theorem 3.1, if furthermore, we have 
BeT= 0, then 

Proof It is easy to see that BCT = 0 implies bestk(B)CT = 0 and Pbestk(B)CT = 
0. Then the result directly follows from Theorem 3.1. D 

Now as we did in Section 2, we now consider A arranged in various forms. We 
partition A as A= [A1 ,A2], and split A as the sum of two matrices A= B + C, for 
example, 

and so on. It is easily verified that for all the splittings used in the following three 
corollaries, we always have BeT = 0. Then the following perturbation results follow 
directly from Corollary 3.3. 

CoROLLARY 3.4. Let A= [A1, A 2] and uk(AI) > O"k+I(A). Then 

where 

CoROLLARY 3.6. Let A= [A1.A 2]. lfuk([bestk,(Ai.).bestk,(Az)]) > uk(A), 
then 

where 

TJ = ji[A1 - bestk, (A1), Az- bestk,(Az)JTbesh([bestk, (AI), bestk, (Az)])ll 

~ max{jj(A1 - bestk, (AI))Tbestk, (Az)II.II(Az- bestk, (Az))Tbestk, (AI) II}-

REMARK. It is easy to see that each of the corollaries following Theorem 2.1 are 
direct consequences of the corresponding corollaries established above. 

Perturbation Results for Matrices with Low-Rank-Plus-Shift Struc
ture. Now we return to matrices with low-rank-plus-shift structure, and we consider 
the case the structure is only approximately satisfied. It turns out that the way this 
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approximation is quantified has direct impact on the perturbation bounds we can 
derive. In the following we provide two theorems one with 0( .Jf:) and the other with 
O(t). The difference in the assumptions for the derivation of these two results is very 
subtle, but it gives rise to qualitatively different results. 

To derive the perturbation bounds, we first need two technical lemmas which were 
proved in (12]. 

LEMMA 3.7. Assume the following equality 

[ A BT] 
B C =X+E 

holds for some symmetric positive semi-definite matrix X Then we have 

IIBII ~ J(IIAII + IIEII)(IICII + IIEII). 

LEMMA 3.8. Let the symmetric matrix Z be partitioned as 

[ A BT] 
Z= B C . 

Then IIZII ~ max{IIAII, IICII} + IIBII. 
THEOREM 3.9. Let A = [Al' A2] E nmxn. Assume that for some integer k < 

min{ m, n} there exists t ~ 0 for which the eigenvalues of X = AT A - 17'
2 I satisfy2 

A.j(X) > 3t + 7], j ~ k, 

IA.i(X)I ~ t, j > k, 

where 1J = 2JIIXIIt + t 2 = 0( .Jf:). Partiton X = (X;j )[,j=l conform ally with that of 
A. Define k; such that 

fori = 1, 2. Then 

A.j(X;;) > t, j ~ k;, 

IA.j(X;;)I ~ t, i > k;, 

Proof By the eigendecomposition of A and the assumptions of its eigenvalues, 
we can write X = Y + E, where yT E = 0, and Y is positive semi-definite with 
rank(Y) = k, IIEII ~ t, and 

On the other hand, using the partition of A, we can write 

2 We assume that the eigenvalues of a matrix X are ordered in nonincreasing order ..\1(X),?; 
... ,..\n(X). 
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Now fori= 1, 2, write the SVD fo A; as follows 

A; = [Un, U;2] diag(:Eil, 'Eil)[V;1, Vi2]T, 

where :Eil = diag(u;1, .... , u;,k.) and E;2 = diag(ui,k;+l> ... , u;,mJ· By definition the 
integers k; are chosen such that 

uli- u 2 > t j ::; k;, 

luii- u2 1::; t j > k;, 

for i = 1, 2. Or equivalently, Aj (AT A; - u2 I) > dor j ::; k;, and IJ..j.( AT A; - u 2 I) I ::; f 
for j > k;. It is easy to see that k; ::; k since u;j ::; O"j (A). 

and 

Next we write A= BWT = [B1, B2]WT, where 

B1 = [Uu'Eu, U21'E21], B2 = [U12'E12, U22:E22], 

w-[Vu - 0 

Without loss of generality, we assume that W is orthogonal. (Otherwise replace W 
and B2 by [W, W 1.] and [ B2, 0], respectively.) Define 

~ = bestk(A) - bestk([bestk, (At), bestk2 (At)]). 

It can be verified that 

bestk[bestk, (At), bestk2 (A2)] = bestk[B1, O]WT, bestk(A) = bestk(B)WT, 

11~11 = llbestk(B)- bestk([Bl, OJ) II. 

Now in order to apply Corollary 3.4, we need to verify the condition uk(Bi) > 
O"k+t(B), and derive a lower bound on uk(Bt) 2

- u~+l(B) and an upper bound on 

IIBf B1ll· (Notice that IIBfbestk(Bt)ll::; IIBf Bdl-) To this end, 
1) we apply Lemma 3.7 twice to obtain an upper bound on IIBf B 1ll· It is easy to 

see that both BT B - u2 I and Bf B2 - u2 I can be written as the sum of a symmetric 
positive semi-definite matrix and a matrix with norm no greater than f. Applying 
Lemma3.7 to 

gives 

IIBf Bdl ::; V(IIBf B1 - U
2 Ill+ f){IIB! B2- u2 Jll€) 

::; J(IIXII + t)(IIBf B2 - u2 Ill f). 

Apply Lemma 3.7 to 

yields 
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where we have used 11El2 - o-2 IllS E. By Lemma 3.8, we obtain IIBf B2- o-2 Ill S 3t: 
and hence 

2) we now give an lower bound on O"k(BI) 2 - o-~+1 (B). Write 

Use perturbation bounds for eigenvalues, we have 

Ak(X) = Ak(BT B- o-2 I) S Ak( diag(Bf B1- o-2 I, sr B2- o-2 I})+ TJ. 

The condition Ak(X) > 3t: + TJ implies 

Ak(Bf B1 - o-2 I) > IIBr B2- o-2 Ill, 

because IIBf B2 - o-2 Ill S 3t:. Thus 

lu~(Bi)- o-~(A}I = I.Xk{Bf B1- o-2 I) - Ak(X)I S liB[ B2ll S TJ· 

It foil ws that 

o-~(Bi)- o-~+ 1 (B) 2 o-~(A)- TJ- o-~+l(A) 2 c + TJ > 0. 

Finally, by Corollary 3.4, we have 

completing the proof. D 
EXAMPLE 1. Lets be small, and for any a-> s, define 

with J = [ 1 

1 

] 
1 ' . 

and D = diag(c1, c2, c3 ). It follows that 

A= k [ D D ] [ s~ -;J ] . 
It can be verified that 

A1,2(AT A- o-2 I) = 1 + s2 > E > I-X1,2(AT A- o-2 I} I, j 2 3 

.X1(AT A;- o-2 I)= 1 + s2(1 + o-2 - s2) > e 2 I-X1,2(AT A- o-2 I} I, j 2 2, 

for i = 1, 2. Hence k = 2, and k1 = k2 = 1. It can be verified that 
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So we have 

and 

THEOREM 3.10. Let A= [A1 , A 2]. If there exists£< u 2 and integer k such that 

for j 2: k + 1, and Ak(Af A;- u 2 I) > £, i = 1, 2. Then 

II(A1- bestk(Al)f A2ll ~ 'f/1, II(A2- bestk(A2))T A1ll ~ 7]2 

and 

(3.5) 

where 

. - ( . I II . 2IIAII3 ) f i = 1 2 
7J,- u + 2IA + ' (ATA 2I) ~· ' ' 

/\k ; i - <T <T + v u- - £ 

( 
2IIAII3) t: 

7J = max{'T/1, 'T/2} = u + 2IIAII + -,-_- . ~· 
/\mm 0" + V u- - £ 

Proof Denote Aj = Aj(AT A- u 2 I), and 

A1 = diag()..l, ... ,>.k), A2 = diag(>.k+l,···,>.n)· 

The the eigendecomposition of AT A- u 2 I and the SVD of A can be written as 

for some orthogonal matrices U and V. Let E = U diag( 0, u I - J A~ + u 2 I). It can 
be verified that IIEII ~ £/(u + Ju2 - <:) = r, and · 

A = A+ E = u diag(.; A~ + (]"2 I,(]" I) vT 

has the low-rank-plus-shift structure. Now partition 
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conformally as that of A. Then IIE;II ~ r. Since 

ATA- u2I = A-TA-- u2I + E-, E- V d. (0 A )VT (E- )2 = 1ag , 2 = i,j i,j=l· 

It can be verified that AT A;- u 2 I= AT A; - u2 I+ E;;, and we have 

Ak(ATA;- u2 I) 2:: Ak(AT A;- u 2 I) -liE;; II 
-T- 2 2:: Ak (A; A; - u I) - E > 0 

It follows that rank(AT A;- cr2 I) = k. By Theorem 2.7, we have 

- - T- - - T-
(Al- bestk(Al)) A2 = 0, (A2- best1<(A2)) A1 = 0. 

Denote ~; = bestk (A;) - bestk(A;) - E;. Then 

11~;11 ~ llbestk(A;)- bestk(A;)II + IIEdl 

It follows from Corollary 3.4 that 

and therefore 

( 
2IIAII

2 
) · 

11~;11 ~ 2 + AJ<(AT A;) T, 

here we have used IIA;II ~ IIAII, IIA;II ~ IIAII, and UJ<+!(A;) =cr. Since 

A;- bestk(A;) =A;- bestk(A;) + ~;, 
we have 

II(Al- bestk(A!)f A21i = ll~i A2- (A1- bestk(Adll 

~ IIA21111~111 + t:TJ<+!(A!)IIE211 

~ ( cr + 2IIAII + 2IIAII3 
/ Ak (Af A1 - cr2 I) )r = T/1· 

We can similarly prove II(A2- bestk(A2))T A11i ~ T/2· Now it follows from 

uk([bestk(A!), bestk(A2)]) 2:: ~axuk(A;), 
•=1,2 

that 

cr~([bestk(A!), bestk(A2)])- u~+l (A) 2:: ~aXAJ<(AT A;- cr2 I)- f = Amax- f. 
. •=1,2 

Finally Corollary 2.4 and the above give (3.5). 0 

14 

REMARK. We notice that in order for the perturbation bound to be of order O(E), 
Amin needs to be of order 0(1). 

EXAMPLE 2. Now we construct a class of matrices that satisfy the conditions 
of Theorem 3.10. For any orthonormal matrices U1 and V1 with k columns, let 
A= diag(Al, ... , AJ<), where A;» u 2 > 0 fori= 1, ... , k. Let 
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where Uf is any orthonormal matrix of k columns that is orthogonal to U1. Define 

It follows that 

Hence, 

AfAr- u 2 I+£ 
A{A1 ] [ A{ A2 -u2 l 

A{A2- u2l 

.Xi(X) 2: 2(.Ai- u 2 + £) » £, j :S k, 

1-Aj(X)I::; f, j > k, 

and by definition k1 = k2 = k. 
REMARK. For the case where k1 < k and k2 < k, if we replace bestk, (At) and 

bestk 2 (A2) by bestk(At) and bestk(A2), the error 

may still be 0(-Jf). For example, in Example 1, we have 

Therefore, 
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