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Abstract 

By assuming the existence of a novel multi pronged string state for D-particles interact­

ing with D-brane intersections in type IIA string theory, we are able to derive a quantum 

mechanical description of supersymmetric Reissner-Nordstrom black holes. A supersym­

metric index calculation provides evidence for this conjecture. The quantum mechanical 

system becomes two decoupled conformal quantum mechanical systems in the low energy 

limit. The conformal quantum mechanics has expected properties of a dual description of 

string theory on AdS2 x S 2 . 
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1. Introduction 

Following work describing the near horizon geometry of certain string (M.) theory black 

holes composed of solitonic branes as the maximally supersymmetric product of Anti de 

Sitter space and a sphere (AdS x S) with a conformal theory on the boundary [1], work 

that identified certain of the solitonic black holes as Dirichlet(D)-branes [2], work deter­

mining the low energy theory of D-branes to be a nonabelian gauge theory [3] known to be 

conformal in certain cases, and work showing that calculations of the properties of D-brane 

black holes could be performed successfully in the conformal theory for an appropriately 

large number of D-branes [4][5]; there was a conjecture [6] that supergravity or string (M) 

theory in the near horizon AdS geometry of the soli tonic (D-) branes was equivalent to 

the conformal theory on these branes. Further work gave a recipe for comparing the two 

theories and provided some evidence for the conjecture's validity in the supergravity limit 

[7] [8]. Whether or not all of the interesting aspects of string theory can be reduced to a 

field theory, one can at least derive some useful relations between the two theories following 

the above works. 

The aim of this paper is to extend the relation to four-dimensional black holes with 

a near horizon geometry of AdS2 x S2. We will show that the two-dimensional conformal 

theory descriptions of the onebrane-fivebrane black hole [4] and generalizations [9][10][11] 

are alternatively described at low energies by a quantum mechanics that becomes conformal 

in the very low energy limit. Evidence will be presented that this quantum mechanics 

contains the degrees of freedom responsible for the ground state entropy of the black holes. 

The quantum mechanics will not describe completely the moduli space of the transverse 

six-fold, for we will assume that the local geometry of the D-particle is flat, and we will 

also neglect background fields. A two-dimensional description [12][4][11] may be better 

suited for this purpose although one could further complicate the quantum mechanics. On 

the other hand, to understand macroscopic features of the four-dimensional black hole, 

this quantum mechanics may be a reasonable approach. In the course of obtaining the 

quantum mechanical theory, we will propose some novel string states occurring at. the 

intersections of D-branes. We hope that this proposal leads to a better understanding of 

these intersections. The rules we will develop are somewhat ad hoc but seem to lead to a 

sensible description. 

The outline of the rest of this paper is as follows. In section two we will review 

some macroscopic properties as well as the microscopic effective string formulation of the 
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black holes to be discussed. In section three we will present the novel string states that we 

believe to capture the low energy degrees of freedom of the black holes and a prescription for 

obtaining these states from the intersections of D-branes. In section four we will calculate 

the index of supersymmetric ground states [13] of the quantum mechanics in the simplest 

theory containing these states. We will extrapolate from this result a conjecture for the 

degeneracy of the large number of intersections case. The resulting ground state entropy 

will agree with the macroscopic and string formulation predictions. In section five we will 

derive the quantum mechanical system describing the black holes. We will take the low 

energy limit and obtain a conformal quantum mechanics. What is interesting here is that 

in this limit we appear to have two decoupled conformal quantum mechanical systems, 

a "Coulomb" branch with manifest S0(3) symmetry and a "Higgs" branch with a large 

internal symmetry. However, these two branches are coupled in the full non conformal 

theory. In section six we present our conclusions and directions for further research. 

2. Black Holes and Effective Strings 

2.1. Review of Macroscopic Black Holes 

The four dimensional black holes we will consider in this paper are all extremal and 

of the Reissner-Nordstrom type. The metric takes the following form: 

(2.1) 

where Ti = (1 + Qi/r)-1 and the Qi are positive. There are electric and magnetic fields, 

(2.2) 

The mass of the black hole is 

(2.3) 

with GN the four-dimensional Newton constant. For equal charges Q the Ricci scalar 

vanishes and 

R R p.ll- 4Q4 
P." - (r + Q)4 

so there is no singularity in the extremal limit. The extremal entropy is 

s = 7r( Ql Q2Q3Q4)
112 

GN 
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In the near horizon Reissner-Nordstrom reduces to AdS2 x S2 with metric 

2 1/2 . 
d 2 = -r dt2 + (Q1Q2Q3Q4) d 2 + (Q Q Q Q )112dn2 (2.6) 

SNH ( 1/ 2 2 'r 1 2 3 4 2 
Q1Q2QaQ4) r 

while the metric at infinity is flat. The Ricci scalar of AdS2 is R = (Q
1
Q

2
Q:Q

4
)1/2, and 

the cosmological constant is A= !R while Rs2 = 2A8 2 - -RAds2. There are numerous 

papers that have studied the Reissner-Nordstrom metric as a solution of string (M) theory. 

In type liB string theory in a purely threebrane background, the equation to solve is 

(2.7) 

where we have distinguished four-dimensional and six-fold indices in an obvious way, and F 

is the five-form field strength. In the simplest case (a six-torus), one can reverse the signs 

of some components of the field strength while retaining a solution of the low energy field 

theory. Some of these reversals will break supersymmetry, arid it is interesting to consider 

these black holes. We will comment on the consequences of breaking supersymmetry in 

this way in the next section. 

2.2. D-branes and Microscopic Strings 

The paradigmatic extremal onebrane-fivebrane black hole [4] is five-dimensional with 

near horizon geometry AdS2 x S3 . Upon compactification on a circle the geometry is again 

Reissner-Nordstrom. This black hole has three charges. In the D-brane approach, these 

charges are the number N5 of fivebranes wrapped on K3 x S 1 , the number N1 of onebranes 

wrapped on S 1 , and the momentum p = No/ R with R the radius of the S1 and No an 

integer. At low energies there is an effective conformal theory on S1 x time with central 

charge c = 6N1 N5 • The momentum N0 corresponds to the eigenvalue of the Virasoro 

generator Lo. The sign of N 0 is not crucial here as the theory is left-right symmetric, 

but the signs of N 1 and N5 are correlated. The entropy has been calculated [4] in the 

limit of large charges using the metric of the supergravity solution and alternatively the 

asymptotic microscopic formula for the degeneracy [14], 

{i\i;; 
d(No, c) = exp21ry 6 (2.8) 

where d is the degeneracy, and the entropy S = lnd = 21r ~· The two calculations of 

the entropy agree. The K3 can be replaced by a T 4 [15][16] with similar results. For the 

T 4 case one can choose any combination of signs for the three charges. 
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By a sequence of U-duality operations we can convert the T 4 case to an M theory 

configuration. Compactify on a circle to four dimensions. Perform a T -duality on three 

directions-the newly compactified direction and two directions of T 4 (avoiding the mo­

mentum circle). Interchange theM theory circle and the momentum circle. The result is 

N 1N 5 fourbrane intersections on a two-torus and No zerobranes. We presum~bly can play 

the same game with K3 using mirror symmetry but the analysis seems more complicated 

for this case. In the latter part of this paper we will derive an effective quantum mechanics 

for the D-particles at the intersections. 

The other prototypical Reissner-Nordstrom black hole solution of string theory has 

been discussed by [9][10] and many others. In type liB string theory the four charges Ni 

are due to threebranes wrapped on a T 6 so that any two sets (i,j) intersect in a string while 

three or four sets intersect in a point. There are therefore six strings along each direction 

(T(~) nT(3i)) of the six-torus and a total of N1 N2 N3N4 intersections on Ttl) nTt2 ) nTt3) nTt4).· 

The supersymmetries which are preserved satisfy the following conditions: 

ruf.R=€R 

r~abcf_ =±it:. 

(2.9) 

where r 11 = r 0r 1 ... r 10 with r a a ten-dimensional Clifford algebra matrix, r~abc 

r 0 r arbr c where a, b, c are the directions on T 6 on which the Ni branes are wrapped, €£ 

and €R are the two supersymmetries of type liB from left and right movers of the string, 

and € = €£ + iER· The sign of the last relation depends on the sign of Ni. The ri commute 

and satisfy r 1 r 2r 3r 4 = ±1, and the number of preserved supersymmetries is 

(2.10) 

Thus, N = 4 or N = 0. Regardless of the signs, any triple intersection preserves super­

symmetry, and supersymmetry can be broken only on quadruple intersections. Since the 

nonsupersymmetric case solves the low energy equations of liB with Reissner-Nordstrom 

geometry, one might hope to find a conformal quantum mechanical dual for the near 

horizon geometry. Unfortunately, an analysis [17] reveals that the nonsupersymmetric 

configuration does not minimize the energy and is expected to be unstable. 

By T-dualizing this configuration we obtain N2 N3N4 intersections of M theory five­

branes on an effective string with N 1 units of momentum. With the proper normalization of 
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charges, the entropy has been calculated macroscopically {2.5) to be S = 21rVN1N2N3N4, 

and arguments have been given that this result holds microscopically [9][10]. By deforming 

the degenerate fivebranes into a smooth fivebrane, one can use the prescription of [11] to 

determine the microscopic entropy. One finds that C£ = CR = 6N2N3N4 up to a negligible 

correction for large charges, and the entropy agrees with the macroscopic prediction. The 

left side is almost entirely bosonic, whereas the right side is supersymmetric. Because of 

the asymmetry of left and right movers, we can view the nonsupersymmetric instability 

·associated with the wrong sign momentum as a tachyon. From the type IIA perspective 

the momentum is. equivalent to N 1 D-particles whose quantum mechanics we will derive. 

We expect that this quantum mechanics will apply to any supersymmetric black hole with 

a Reissner-Nordstrom metric when one ignores corrections based on the transverse six-fold 

geometry. The full geometry possibly can be incorporated in this quantum mechanics, but 

the analysis is not within the scope of this paper. 

3. Multistrings at D-Brane Intersections 

In this section we conjecture that the states describing D-particle interactions at the in­

tersections of D-branes are multi pronged fundamental strings that attach to the D-particle. 

In string theory novel states are sometimes required in special compactifications such as 

the twisted open strings discovered [18] in the context of certain orientifolds. The idea 

of multipronged strings (multistrings) previously found an application in type liB string 

theory to describe certain BPS states [19][20] including states responsible for exceptional 

gauge symmetries [21] and nonperturbative states preserving one-quarter of the supersym­

metry in N = 4 Yang-Mills theory [22]. The context in which we are proposing these 

objects is novel. The considerations of this section are the most conjectural of this paper 

as we will not at this time try to prove the existence of these objects. Our main argument 

for invoking these states is that they lead to a quantum mechanical description that sat­

isfies many requirements of a dual to supersymmetric string theory in the background of 

a Reissner-Nordstrom black hole. Another argument is that we expect the low energy de­

grees of freedom to carry the charges of all the branes at the intersection. A perhaps more 

prosaic consideration is that an index theory calculation similar to that of section four was 

attempted by assuming the presence of the usual DO-D4 matter at these intersections. Not 

only was the calculation formidably impossible (for me) but also an upper bound on the 

integral seemed to be too low. By contrast, the calculation with these states is a piece 
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of cake and yields the desired result. The natural assumption is that multistrings are the 

bound (BPS) states of the intersection. 

Let us now describe these states. We assume that n D-branes of the same dimension d 

intersect along some locus such that any two D-branes are orthogonal to each other (can at 

most intersect in less than d dimensions) and some supersymmetry is preserved. The BPS 

state that we conjecture has n + 1 prongs, one end on aD-particle and one end on each 

of the n branes. Our assumption is that there is always such a string with an endpoint 

carrying charge lql = 1 under the U(1) gauge group of the D-particle. By symmetry each 

of the n D-branes must contribute lql = 1/n to this charge. Such a string will have at 

least three prongs (the case n = 1 is the usual case) and break the supersymmetry from 

32 to no more than 4 supercharges. We then assume that other states for n 2:: 3 can be 

obtained by reversing the orientations of an even number of then strings attached to the 

n different branes. 

We show these states for n = 2 and n = 3 in figure one. If the string entering the 

D-particle carries no charge, the state can be deformed to one that does not interact with 

the D-particle and should not be considered in the quantum mechanics. Although we have 

drawn the strings with finite size for clarity, these states are massless and can shrink to 

a point as appropriate for low energy modes of the quantum mechanics. We assume that 

the rule requiring the number of orientation changes to be even is related to the fact (2.10) 

that supersymmetry is broken for an odd number of brane orientation changes for n 2:: 3. 

Here we are fixing the D-particle orientation. 
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FIGURE 1 

Multistrings At Intersections 

a. b. 

-1 

-1/3 

-112 

+1 
+113 

+112 

+112 

-1/3 

0 

-1/2 

+1/2 

Fig. 1. a. Multistrings localized at an n = 2 intersection. b. Multistrings at an n = 3 

intersection. There are 3 multistrings with charge +1/3. 

When the intersection of pairs of D-branes has dimension greater than zero, we assume 

that there is a multistring at the intersection with ends on each of these intersections 

such that lql = 2. Again we can change an even number of the (n~d)!Z! orientations to 
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obtain other states as shown in figure two for n = 3. We can iterate this process to 

higher intersections which are possibly significant for compactifications to less than four 

dimensions, but in four dimensions the process ends with pairs. Our main consideration 

here is that the minimal set of objects required by symmetry between the branes is invoked. 

There are two overall signs both here for the charge and in section four for the index. The 

overall sign for the charge will not affect the calculation. We are assuming a specific 

choice of overall sign for the index that yields a result consistent with expectations for the 

supersymmetric Reissner-Nordstrom black hole. 

FIGURE2 

Multistrings At Intersections Of Intersections 

-2 

+2/3 

-2/3 

-2/3 

-2/3 

+2/3 

Fig. 2. There are 3 +2/3 charged multistrings. 

Let us further argue for the plausibility of the multistring states. If one considers two 

fourbranes intersecting in a membrane, the gauge theory on the membrane is U(l) x U(l) 

with hypermultiplets charged concurrently under the two U(l)'s. This theory is the same 
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as that for a membrane transverse to a R 4 /Z2 orbifold in type IIA. This observation 

suggests an analogy between intersections of D-branes and orbifolds. If one thinks about 

the intersection of two fourbranes as a degenerate limit of one smooth fourbrane, the 

curvature of this fourbrane is not well-defined at the intersection locus. This locus is 

analogous to the collapsed two-cycle at the Z2 fixed point of the orbifold. At a Z2 fixed 

point one can obtain half-integer values for the Neveu-Schwarz antisymmetric two-form. 

Branes which lack moduli to move away from the fixed point can be interpreted as branes 

with two extra dimensions wrapped around the collapsed two-cycle at the fixed point. The 

"dimensional" reduction of couplings of the gauge field strength and two-form in the two 

"extra dimensions" can induce a half-integral charge for the endpoint of a fundamental 

string on a brane that is stuck at the fixed point. An endpoint that can move away must 

be integrally charged (the image brane must exist at the fixed point). If a string endpoint 

does carry half-integral charge, there must be another endpoint stuck at the fixed point 

carrying half-integral charge by charge conservation. 

Interpreting the intersection locus as a fixed locus of an orbifold, we are freezing 

all moduli that move D-branes of spatial dimension greater than zero away from this 

locus. (One can also make an analogy between string worldsheet orbifolds ( orientifolds) 

and D-brane worldvolume orbifolds.) Before adding the D-particles there are no fractional 

charges, and one has the usual theory of the intersection. The D-particles add magnetic 

flux (the D-particle is an instanton in each of the intersecting branes) to the intersecting 

fourbranes which is localized at their position. At the intersection there is a Z2 symmetry, 

exchanging the intersecting branes. The orbifold analogy suggests that the instanton flux 

due to the D-particle can take half-integral values in each one of the intersecting membranes 

at the intersection so that the endpoints of the multistring at the intersection carry half­

integral charge. The Ramond-Ramond gauge field on the D-particle couples to the total 

instanton flux from the intersecting branes. Since the D-particle is a point, the other 

endpoint of the multistring must provide a cancelling flux. This argument is sensible when 

all the endpoints are at the intersection. We might expect that massive charged states 

in the D-particle quantum mechanics do not respect supersymmetry. The analysis of the 

"Coulomb" branch in section four confirms this expectation. The D-particles must couple 

to uncharged combinations of multistrings in leaving the intersection. 

One can generalize the above remarks to the case of three fourbranes intersecting in a 

point where the intersection is invariant under s3 permutations of the intersecting branes. 

Because of this symmetry, it is plausible that the instanton flux of the intersection and 
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therefore the charge can be quantized in units of 1/3. The main point is that intersections as 

a singular limit of smooth D-branes should contain possibly extra massless states localized 

at the singularity just like what has been found for the other singularities of string theory. 

We now come to a crucial distinction between the n = 2 and n = 3 cases. A super­

symmetric massive deformation of the n = 2 multistrings along the compact directions is 

possible since there are two multistrings of opposite charge. The orbifold analogy suggests 

that the Z2 symmetry of the intersection should be preserved in this deformation. Note 

that in this deformation only the endpoint attached to the D-particle leaves the inter­

section. (Figure 1a is a little misleading.) The n = 2 case corresponds to two fourbranes 

intersecting along a two-torus. Assume that brane one is wrapped on Ttl) x T(22) while brane 

two is wrapped on T(2l) x T(23). Let the intersection have complex coordinates Y2 = Y3 = 0. 

There is a BPS deformation direction obtained by requiring IY2I = IY31· The mass will 

be determined by IY2I so there is an extra S1 that decouples in addition to Yl· This S1 

degenerates at the intersection which seems to pose a problem for the counting of states. 

We will show in the next section that this apparent problem does not exist. Note that 

having obtained this result, the BPS spectrum of the D-particle for the U(1) case is almost 

identical to that for the DO /D4 bound state problem. The counting of states in the next 

section will be facilitated by this observation. 

Our "rules" give nice results for the counting of states and seem to be logical, but we 

cannot rule out a different set of states giving equally nice results and being the correct 

states. If this turns out to be the case, we are consoled by the fact that the "Coulomb" 

branch of the conformal quantum mechanics (to be derived in section five) should be 

unchanged. It will be interesting to see whether one can put the existence of these multi­

pronged IIA strings at brane intersections on a firmer footing (perhaps by relating them 

toM theory membranes ending on fivebranes). 

4. Bound States at Threshhold and Counting of Microscopic BPS States 

In this section we will calculate the index of supersymmetric ground states in the 

simplest versions of the theories we have postulated in the previous section. Our result will 

provide evidence for the formulas we will conjecture for the general case. The calculation 

will involve bound states at threshhold, and some of the previous relevant work includes 

[13], [24-33]. Our calculations will be similar to the ones given in [27][28][29]. 
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4.1~ Setting up the Calculation 

We will study the case of one D-particle interacting with one intersection of fourbranes 

having n = 2 or n = 3. By our proposal of section three, this theory is a quantum 

mechanics with four supercharges which can be obtained from the dimensional reduction 

of theN= 1 Yang-Mills theory in four dimensions. ·The formulas of (34) are particularly 

useful in this regard although we will make some changes in their conventions following 

[27). Let us first deal with the n = 2 case. This theory is a U(1) gauge theory with two 

chiral multiplets having charge q = ±1. There is also an uncharged chiral multiplet that 

interacts with the charged multiplets via a superpotential. Additionally, there are some 

decoupled degrees of freedom. In calculating the index the gauge coupling constant e can 

be set to any nonzero value .as it scales out of the index calculation. For the purpose of 

this computation we will set e = 2 in the Lagrangian of (34). The Lagrangian also depends 

on another coupling constant g for the superpotential term. Unlike the case of [27) we are 

considering the dimensional reduction of an N = 1 not N = 2 theory so the value of g is 

not set by supersymmetry. Nevertheless, the calculation of the index cannot depend on 

this value so long as it is nonzero, and the calculation is simplest when we choose g = v'2 
as in the N = 2 case. We have argued in section three that g should be nonzero. With 

these choices the Hamiltonian takes the following form after replacing the nondynamical 

variables D and F (34) by the values that solve their equations of motion . 

. _1 i i t t t. 1 t t 2 
H -2p P + PyPy + P+P+ + P-P- + 2(Q+Q+ + Q_Q_) 

+(xi xi+ 2yyt)(Q+Qt + Q-Q~) + HF 

HF = xi(M!aiM+- M!aiM-) + -J2(yM_uM+- ytM!uM!) 

+ v'2(Q+M!uLt- Q~M+uL- Q-M!uLt + Q~M_uL) 

+ v'2(Q_M+uN + Q+M-uN- QtM!uNt- Q~M!uNt) 

iCs = Q~p~ - Qtp~ + Q+P+- Q-P-

CF = M-i.M+- M!M-

(4.1) 

(4.2) 

(4.3) 

(4.4) 

where the momenta are pi = Jf. , etc. , xi are the spatial components in the reduction of the 

four-dimensional gauge fields, O"i are the usual Pauli matrices, u = -iaz, y is the complex 

scalar in the neutral chiral multiplet, Q± are the complex scalars in the charged chiral 

multiplets with charges q = ±1, and Cs, CF are the bosonic and fermionic constraints 
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generating gauge rotations ( tio = C B + C F). We have used t as hermitian conjugate or 

complex conjugate depending on the context, and we have chosen the gauge A0 = 0. The 

complex two-component fermions L, M+, M_, N satisfy the anticommutation relations, 

(4.5) 

Next let us consider then = 3 case. This theory is a U(1) gauge theory with three 

chiral multiplets of charge +h three with charge+~, one with charge -1, and one having 

charge -2. Note that as a four-dimensional theory there would be an anomaly, but this 

anomaly is irrelevant for the quantum mechanics. A priori we have the possibility of a 

superpotential coupling together three chiral multiplets of U(1) charges !, ~' and -1. 

This superpotential could lift some or all of the flat directions of the "Higgs" branch. 

We will assume here that the superpotential is absent. One reason is that the coupling 

together of these charges presumably can be deformed into an object not localized at the 

intersection. Another reason is that the index calculation becomes extremely difficult with 

a superpotential. Actually, we will have a more concrete statement about a superpotential 

when we discuss the index calculation. Once we have turned off the superpotential, we 

are guaranteed by supersymmetry in four dimensions that there will be no perturbative or 

nonperturbative (for the U(1) case) corrections. In the quantum mechanics holomorphy 

should also ensure that this coupling remains zero. The Hamiltonian and constraints for 

the n = 3 case then are 

m m (4.6) 

m 

(4.7) 
m m 

iCs = L qmQmPm- h.c. (4.8) 
m 

(4.9) 
m 

where m indexes the chiral multiplets, qm is the charge, and h.c. is the hermitian conjugate. 

We can write the supersymmetries as 

m 
( 4.10) 

m m 
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where 

(4.11) 

and 

(4.12) 

We now outline the index calculation. Following [13] the goal is to calculate the 

supersymmetric index or partition function with the insertion of ( -1)F, 

I= lim I(f3) = lim Tr( -1)F e-f3H = nB- nF. 
/3-+= /3-+= 

(4.13) 

This index computes the number of bosons minus the number of fermions in the super­

symmetric ground state where F is fermion number. The sum is only over gauge invariant 

states. If the. spectrum were discrete, there would be no dependence on {3. When there is 

a continuous spectrum above the ground state, the density of bosonic and fermionic states 

can differ and depend on f3. The usual procedure is to calculate the index as a sum of two 

terms, I= I(O) + 6.I where 

1= d 
6.I = 0 df3 I(f3). ( 4.14) 

The partition function can be constructed perturbatively in powers of f3 so that the f3---+ 0 

limit is easily taken. The boundary correction 6.I is more subtle. The bosonic potential 

has noncompact (flat) directions along which this potential vanishes. Near these directions 

the hamiltonian is a supersymmetric harmonic oscillator in the transverse directions. The 

frequency of the oscillator increases linearly with distance from the origin along a flat 

direction, but the ground state energy of the supersymmetric oscillator vanishes. One 

can therefore have finite energy scattering states along these directions so that the index 

depends on {3, and there is a possible correction 6.I. 

One includes a projection onto gauge invariant states fu(I) d()eiBC where C = CB+CF 

so that 1({3) becomes [27] 

1({3) =! d()Jdx(xiTreiBC(-1)F e~f3Hix) = { d()Jdx(gxiTriT(g)(-1)F e-f3Hix) 
U(l) lu(I) 

(4.15) 

where x denotes the totality of scalar fields, g( B) is a gauge transformation, II(g) = eiBCp, 

and the volume of U(1) is normalized to unity. Then one obtains 

I= lim! d() J dx(gxiTriT(g)( -1)F e-f3Hix) + 6.I. 
/3-+0 U(l) 

13 
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It has been shown [27][29] that the correction or boundary term of the index takes the 

form 

6.1 = lim 1 dx(gxl xRi f Trwi( -1)F Qt H-1 II(g)lx) 
R-+oo lxi=R Ju(1) 

(4.17) 

where H-1 , the inverse of the Hamiltonian, is defined to be zero on the kernel of H, 

wi is the fermion coefficient of the derivative term in the supercharge Q, and x is the 

flat direction with boundary lxl = R. We will not attempt to rigorously prove that this 

· term vanishes for the cases considered here but instead will argue that it provides a small 

correction needed to ensure that the index is integral. 

4.2. The Calculation 

The caiculation of the index for then = 2 case is identical to that presented in [27], and 

we will not belabor the details. There it was established that the index of supersymmetric 

ground states is one for the one-dimensional U(1) gauge theory. There are also some 

zero energy modes decoupled from the gauge theory. These include modes associated 

with the two directions on the intersection of fourbranes and the zero mode S 1 discussed 

in section three. We obtain a total of four fermionic states and four bosonic states for 

each supersymmetric ground state of the gauge theory. We need to make sure that the 

degeneracy of the S 1 at th~ intersection does not mess up the counting. By cutting off the 

lower bound on the y integration at E, we can see that there is a vanishing contribution to 

the principal index (I(O)) from the intersection. (There are no inverse powers of IQ±I2 in 

the integral over the charged scalars in the correction of order € to this cutoff.) We have 

also taken y to be noncompact to simplify the index calculation. 

There are a couple of new details in then = 3 calculation. Fermions from the con­

straint Cp are necessary to saturate the fermion zero modes in ( -l)F. We consider Cp 

as another component of the CY • x term in H F in the exponent. The justification is that 

the commutator terms from rearrangements are higher order in f3 and vanish in the f3 -t 0 

limit as discussed in [28][29]. The integrand in the xi and(} integrations is then a function 

of r'2 =xi xi+ (}2 • Let us present the details of this computation. We start with 
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where Vis the bosonic potential, qm is the charge of a complex scalar Qm, and the trace 

is over fermions. Rescaling all scalars by (3-1/ 4 yields 

lim dxdQ - e-8 LJ.,.,. qmiQrnl /{3 e-VTr((-l)F ei8CFe-f33 4HF). I ! rr d(J (3-d/2-3/4 2"' 2 2 3/2 I 

{3-+0 -'Tr 27r (27r(3)d+3/2 
( 4.20) 

We might worry that higher order terms in (} should be included for the qs = -2 term. 

We have explicitly verified by a change of variables for (} to extract the contribution near 

(} = ±1r that this contribution vanishes. We then rescale (}by (3314 and combine CF with 

HF to get 

Now by including the appropriate number of fermions, we find that the (3 dependence has 

disappeared, 

After a calculation we obtain for the fermionic trace the result 

(4.23) 
m m 

where there is an ambiguity for the overall sign that we are taking to be positive as 

discussed in section three. Combining the xi and (} integrations gives 

We get 
4 Tim q~r(d + l)7r2 I dQ (Em qmiQml2)2 -;1 <E.,.,. q.,.,.IQml2)2 

(27r)(d+3/2)+1 (Em q~IQml2)d+l e . 
(4.25) 
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The remaining integration is done by substituting Qm = ~(Qmr + iQmi) and rescaling 

Qm by ....L so that the integration is over real Qmn Qmi, and the Ilm q! factor disappears. 
qm 

The remaining computation is straightforward. 

We used the computer program Vegas written by G.P. Lepage. Our computation 

involved 105 integrand evaluations per iteration and 10 iterations. We obtained the result 

for the n = 3 case, 

1(0) = 6.0097 ± .0053. ( 4.26) 

Given that the principal contribution is very close to 6, we expect a negligible boundary 

contribution. There are two flat directions, Qm = 0 all m or xi= 0 and Em qmQmQtn = 0. 

An intuitive argument for ignoring the "Coulomb" boundary term is that the charged 

multiplets become very heavy along this direction leaving a free U(l) theory. Unlike the 

case of [28] [29] we are not starting from a nonabelian theory so there is no left over Weyl 

invariance, and the boundary term should be [28] the negative of the principal term for 

U(l) which vanishes. Without a superpotential, we cannot ignore the "Higgs" boundary. 

We will follow somewhat the analysis presented in [29] to determine the asymptotic 

Hamiltonian in the flat directions for the ground state of the massive modes. To this level 

of approximation, we will show that the boundary term is appropriately small. We will 

not "prove" that the total index is 6. 

Let us look at the "Coulomb" direction. By a unitary transformation of the Mm 

fermions we can write the first term of H F as 

(4.27) 
m 

where r = ~. We decompose the ground state wave function as 

(4.28) 

where 

(4.29) 

and' 

(4.30) 
m 
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where am = t ( 3 + 1:: 1 ) . Thus, the supersymmetric harmonic oscillator part of the Hamil­

tonian vanishes on these states. Next we add up the other contributions. It is convenient 

to use harmonic oscillator operators 

(4.31) 

with Qm = ~(Qmr+iQmi) and [ama,a~b] = 8ab8mn· Note that for WFlat = 1, ('I!I8ri'I!) = 
0. The net result is that 

1 d(d + 2) d+d-
HFlat = -2~x + Sr2 - 2;2 (4.32) 

where d is the number of chiral multiplets, d+ the number of positively charged ones, and 

d_ the number of negatively charged ones. We follow (29] in realizing that we can lower 

the ground state energy by a redefinition 

( 4.33) 

We then have 
H _ -~~ d(d- 2) _ d+d-

Flat - 2 x + 8r2 2r2 ' (4.34) 

ignoring terms oflower order in 1/r. For our cased+ = 6, d_ = 2, HFlat = -t~x, and 

the U(1) argument (28] for a vanishing correction is a good one. 

To analyze the "Higgs" boundary we first choose a gauge in which Q1 is real. Then 

we make the following change of coordinates: 

QI,Qm-+ x0 ,Q~ 

0 2:mqmiQml2 

X = ----;.~~~=;=::::==~ 
J2 2:m q~IQml2 

• 
( 4.35) 

Q~ = Qm, m > 1 

The "Higgs" branch corresponds to xi = x 0 = 0, and the boundary corresponds to v -+ oo 

with v = J2 2:m q~ IQm 12 • Under the change of variables 

2 o o2 
""'t_1 x""'3 2 x ""'4 200 
L..JPmPm- (2-~ L..JqmiQml + v4 L.JqmiQml )p P 
m m m 

_ .(2:mqm _ ~""' 31Q 12 _ X
0
""' 2 + 3x

0 2: 41Q 12) o 
Z 3 L..J qm m 2 L..J qm 4 qm m p • 

1/ 1/ 1/ 1/ 
(4.36) 

m m m 

m m 
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Note that Em qm = 0 here. We have not converted all the sums to primed variables. To 

lowest order in x0 and 1/v, the bosonic Hamiltonian in the massive directions becomes 

( 4.37) 

Again we decompose the ground state as 

(4.38) 

where 
v(Q~) _va:~'a:~' 

WHo= e 2 
1f 

( 4.39) 

and 

.IF)= ~[1- V: LqmQ~M~uLt + :2 (LqmQ~M~uLt)2]!0). (4.40) 
m m 

Unprimed sums are converted to primed sums by the substitution 

( 4.41) 

to zeroth order in x 0
. By supersymmetry M 1 is no longer an independent fermion on the 

"Higgs" branch. We find that (HHo ~ H})w = 0 where H} is the term of HF depending 

on the Q~ (x0 = 0). Also, the a· x term of HF gives zero contribution ((w!H}Iw) = 0). 

There are many other contributions of order -\from the Hamiltonian. In addition to the v 

terms in the change of variables, the Hamiltonian contains some other correction terms, 

and we find 

(4.42) 

2X
0 
"' 2 (QI I 0 Ql t I t 0) "' I I t - ---;}2 L.J qm mPmP + m Pm P + L.J PmPm 

m m 

where we have ignored vanishing or lower order terms. After some calculation we have 

obtained the following result for HFlat, 

(4.43) 
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where q2 = q3 = 1/3, q4 = qs = q6 = 2/3, q1 = -1, and qs = -2. On the other hand, 

. The constraint that Qi ~ 0 implies that no Q~ can have order greater than v. Thus, 

the term in brackets has order ; 2 • We note that the potential V(Q') > 7 x;~-s where 

r = vl:m IQ~I2 • 
The calculation of the boundary term is complicated by this correction as well as 

the constraint that Qi ~ 0. Taking HFlat to be the free Laplacian, we apply again the 

argument of [28],1 

(4.45) 

The correction computed this way turns out to be 

!:l.I = ±0.2104. ( 4.46) 

The potential is positive definite and can only decrease the boundary contribution given 

that there are no tachyons in this theory. Also, the c~nstraint that Qi ~ 0 significantly 

decreases the boundary contribution. Given that the total index is integral and our ap­

proximations, we have provided strong evidence that 

In=3 = I(O) + !:l.I = 6. (4.47) 

We also note that no other integer is consistent with these results. There is a Z6 singularity 

along Q~ = r, and the U(1) .= S 1 becomes an RP1 there. This situation makes the direct 

boundary calculation more difficult. This singularity does not contribute to the (3 -+ 0 

calculations. Had we chosen coordinates with Q8 -+ x 0
, we might have avoided this 

problem. We are somewhat baffled by the role of this singularity in the "Higgs" branch. 

1 I am grateful to A. Konechny for reminding me of this argument. 
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We have recalculated the boundary term by interchanging Q1 and Qs, neglecting the 

asymptotic potential. We need to compute 

(4.48) 

Using Vegas we obtain the result 

!:!.I= ±0.03270 ± .00004. (4.49) 

As expected this result is significantly lower than ( 4.46), and we expect a further decrease 

by properly determining the propagator. 

A possible heuristic argument for the "Higgs" boundary term being negligible is as 

follows. Suppose we introduce a superpotential with infinitesimal gauge invariant cubic 

and quartic couplings. Including the D term there are enough constraints on the eight 

chiral multiplets to lift all of the flat directions so that the "Higgs" branch is massive 

and introduces no boundary correction. Does this superpotential change the principal 

index? Since these couplings only multiply the superpotential terms, we cannot do a 

universal rescaling to make them large. These couplings have the dimension of mass to 

some power and are negligible in the high temperature ({3 -7 0) limit. Also, the limit that 

the couplings vanish does not produce a singularity in the principal index calculation. In 

conclusion, we argue that the boundary correction from the "Higgs" branch produces a 

very small correction in the principal index so that the index is integral. 

4.3. Counting BPS States 

In the last section we have calculated the index of supersymmetric ground states in 

the simplest examples of the n = 2 and n = 3 theories. We will now use this result 

along with some plausible assumptions to count the BPS ground states and determine the 

entropy. Our first assumption is that the index actually counts the ground states in these 

theories. In any case it counts states that will remain massless under smooth deformations 

of the theory. The degeneracy of states will be bounded from below by the degeneracies 

determined from the index. We have seen in section two that the Reissner-Nordstrom 

metric is asymptotically flat. At large distances from the intersections, the D-particles 

experience flat ten-dimensional spacetime. We therefore assume that there is a unique 
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bound state of N D-particles for every N (as has apparently been shown as an index [33]). 

Our final assumption is that the D-particles and their bound states can interact with any 

of the N1N5 intersections for n = 2 or N2N3N4 intersections for n = 3 to form the same 

number of bound states that we have obtained in the one intersection case. 

The n = 2 index calculation indicates that there are four massless bosonic modes and 

four massless fermionic modes for aD-particle interacting with one intersection. With the 

above assumptions we write down the following generating function for the degeneracy of 

N0 D-particles interacting with N1 Ns intersections, 

(4.50) 

In the above product n indexes the number of D-particles that are bound together. The 

maximum n is No. For large No this formula implies d(No) "'exp(21rJNoN1Ns), exactly 

the result obtained from the onebrane-fivebrane system in previous calculations [4][15][16]. 

Then= 3 calculation reveals six massless bosonic modes for aD-particle interacting 

with one intersection. Using our assumptions we determine the generating formula for the 

degeneracy of N1 D-particles interacting with N2N3N4 intersections to be 

z = rr(1- qn)-6N2NaN4 = Ld(N!)qNl. (4.51) 
n N1 

The maximum n is N1. Again, we have the previously determined result that d(N1 ) "' 

exp(21ry'N1N2N3N4) [9][10][11]. Now that we have a little confidence in our theories, we 

will see in the next section what they imply for the quantum mechanics of four-dimensional 

black holes. 

5. The Quantum Mechanical System 

5.1. Generalities 

Let us first write down Lagrangians for then= 2 and n = 3 theories following from 

dimensional reduction of four-dimensional theories [34]. Note again that the n = 3 theories 

are the dimensional reduction of anomalous four-dimensional theories. 

For the n = 2 case we will again assume the superpotential is that given by N = 2 

supersymmetry in four dimensions (although this is not essential) .. We denote neutral 

scalars in the adjoint of U (No) by Z p. = Z~Ta and charged scalars by Aap-y, A a ,B-y, Ba,B-y, 
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and B~p'Y where the first (gauge) index runs from 1 to N0 , the second has N1 values, and 

the third Ns values. We single out the three components of the four-dimensional gauge field 

in the dimensional reduction as Xi. The superpartners of the charged scalars are '1/JA and 

'1/JB while those of the neutral scalars are A£ and AN. Our hermitian generators (Ta)a fJ 

of U(No) satisfy [Ta, Tb] = ifabcrc and tr(TaTb) = toab where fabc are the structure 

constants of SU(No) (The U(l) generator is (TN°)a P = A-Nooa P.). 

The Lagrangian is written as follows in the A0 = 0 gauge. 

1·a·a '-• .:.... 2 2 
Cn=2 = 2 z~tz~t + AA + BB- 9 tr([Z~t, Zv] ) 

2 

- 92(IZ~tAI 2 + IZ~tBI 2)- ~ (ATa A- BTa B)2 
__:. 292 IBTa Al 2 

+ i>.[)£ + i).N)..N + i{;At}A + i{JBt}B 

- 9>.L[a · x, AL]a- 9).N[o- · x, AN]a- 9{;Ao- · x'l/JA + 9{JBO" · XT '1/JB (5·
1
) 

- h9('1/JBuy'!fJA- {JAufi{JB) 

+ h9(ATa'l/JAuA£- >.£u{;ATa A+ BTa{;Bu>.£- A£u'l/JsTa B) 

+ h9(ATa >.Nu{;s- '1/JBuANTa A- BTa Af.ru'l/JA + {;Au>.NTa B) 

where y, fj are the components of Zll transverse to Xi, and we have suppressed most of the 

indices. The a and Jl indices should be summed over. The Gauss' law constraints are 

G~=2 = -2i9[Z~t, Z~t]a + i9 :t (ATa A- BTa B) 
- - - - T 

- 29[A£, AL]a- 29[AN, AN]a- 9'1/JATa'l/JA + 9'1/JBTa '1/JB 
(5.2) 

The n = 3 Lagrangian is a little easier to write. We are not including superpotentials 

in our analysis here though they may be significant at higher energies. The charged scalars 

are QmafJ'Y 6 , Rn a_fJ'Y6 and hermitian conjugates where the first (a:) index is a U(N1 ) gauge 

index and the {3, /, and o indices are indices for the fundamental representations of U(N2 ), 

U(N3), and U(N4); m runs from 1 to 6 where the upper (dual) index can be any of the 
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last three indices; and n runs from 7 to 8. The charged superpartners are 1/Jm and 1/Jn. 

2 

-l(L q~ 2 lxfTaQml2 + L q:2 IRnxfTal 2
)- ~ (L q~QmTaQm + L q:RnTa Rn)2 

m,a n,a m·,a n,a 

a m n 

a m,a n,a 

m,a n,a 
(5.3) 

where the q: = ~ for a =/= N1, q~1 = qr with r = m or n, and the qm, qn have been 

previously given in section four. The Gauss' law constraints are 

. a:=3 = -2ig[xi, Xi]a + ig ~ (L q':nQmTaQm + L q:RnTa Rn) 
m n 

m n 

The supersymmetries of this action are 

8T/Aa = ~90"ij[Xi, Xj]a?J- ig(L q':nQmTaQm + L q:RnTa Rn)?J 

8T/Qm = -v'2iryu'l/Jm 

8T/Rn = -v'2iryu'l/Jn 

m n 

8T/'l/Jm = L -igq':n v'2o- · xaTaufiQm - v'2ufiQm 
a 

8T/'l/Jn = L -igq:v'2o- · xaTaT ufiRn- v'2ufiRn 
a 

(5.4) 

(5.5) 

where one needs to use the equations of motion to cancel terms, and 71 is a two-component 

complex constant fermion. We have written these Lagrangians in detail for future refer­

ence. Our analysis from this point will concentrate on the n = 3 case with some relevant 

comments about the n = 2 case. 
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5.2. Reduction to a Conformal Quantum Mechanics 

We will generalize the methods used by [35] for reducing a matrix model to a multidi­

mensional Calogero type model [36]. We were inspired in our research by the proposal 

of [37] that the one-dimensional Calogero model described the near horizon Reissner­

Nordstrom extremal black holes. We were unable to confirm their proposal but found 

evidence from the multistrings leading to a generalized Calogero model. Rewriting the 

bosonic part of the n = 3 Lagrangian with some Lagrange multipliers gives the following 

result, 

A 1 ""' ·a ·a ""' !... • ""' !... • • (1) 1 (1)
2 

£n=3 = 2 L..Jxixi + L..JQmQm + L..JRnRn +tr(zAij [xi,Xj]- 4 2Aij ) 
a m n 9 

- L q~ 2(QmxaTa ·A~)+ A~)t · xaTaQm)- L q~2 (RnxaTa · A~)t + A~2) • xaTa Rn) 
m,a n,a 

+ -;-(L IA~)I 2 + L IA~2)1 2 ) 
9 m n 

- Lq~QmA(3)aTaQm- Lq~RnA(3)aTaRn + 2~2 L(A(3)a)2 
m,a n,a a 

(5.6) 

where again most of the indices are suppressed. Integrating out the A's gives the bosonic 

part of the previous Lagrangian (5.3). 

We derive the following equations of motion. 

x~+i[A~~) x·]a+qa2Q- TaA(2~+qa2A(2~tTaQ +qa2R TaA(2)t+qa2A(2)TaR =0 (5.7) 
' lJ ' J m m mt m ml m n n nt n .nt n 

Qm + L q~ 2xaTa ·A~)+ L q~A(3 ) aTaQm = 0 (5.8) 
a a 

(5.9) 
a a 

Note that 9 2 has the dimension of (mass) 3
• The low energy limit corresponds to ignoring 

the terms of £~=3 with coupling ; 2 • Doing this, we are left with some constraints. 

[xi, x;] = 0 (5.10) 

L q~ 2xfTaQm = 0 
a 

(5.11) 

a 

(5.12) 
m n 

The "Coulomb" branch corresponds to setting all the Qm and Rn to zero, whereas the 

"Higgs" branch corresponds to setting Xi and the D constraints (5.12) to zero. 
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5.3. The "Coulomb" Branch 

The bosonic Lagrangian on the "Coulomb" branch is 

(5.13) 

We follow [35] in deriving a three-dimensional "spin-Calogero" [38] model. Due to the 

global U(NI) symmetry, there is a conserved matrix, 

(5.14) 

Using the constraint (5.10) to diagonalize the Xi by a time dependent unitary matrix U, 

one obtains 
Nt - -

1 ""' ....; 2 1 ""' Va,a V,aa 
Lcoul = 2 ~ qa + 2 ~ I ""'a _ ... l2 

a=1 a=l-.8 q qp 

where V = uvu-1 and the ifa &re eigenvalues of x. 
One also has the relation 

v;- '(... ... )2A a,B = Z qa - qp a,B 

where A= iJu- 1 • This model becomes supersymmetric with the additional term 

F . "'- -
.Lcoul = 2ztr( A.DtA) 

(5.15) 

(5.16) 

. (5.17) 

where ); = UA.LU- 1 and Dt = Ot- [A, ]. The supersymmetries which leave the action 

invariant are 

(5.18) 

where one needs the equations of motion to cancel terms, and the specific form of J71 U is 

not required. 

The model is invariant under the conformal symmetry SL(2, R) with action 

, at+ b 
t =--­

ct+d 

q~'(t') = q~(t)(ct + d)-1
• 

ad- be= 1 
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There is also an S0(3) symmetry (or SU(2) including fermions). The conserved angular 

momentum is Jij = Ea(q~q~- q~q~). The bosonic symmetry of AdS2 x S 2 is SL(2,R) x 

S0(3). Since g"' (a')-314 where the string tension is (21ro:')-1 , the near horizon o:' ~ 0 

limit in the supergravity corresponds to the g ~ oo limit that we have taken to derive 

this theory: There is an added result that we can remove one particle far from the others 

(lit I>> I~ I, o: > 1) and obtain a one particle Calogero model, 

(5.20) 

where L2 is the angular momentum operator for S 2 • This result has previously been 

obtained by considering a charged particle in the supergravity background of AdS2 x S 2 

[39]. Note that the relativistic corrections found in [39] should result from an a' expansion 

of the multistring theory. These corrections might give a clue to stringy excitations of the 

multistrings. Their results also indicate that we should have a nonlinear realization of the 

supersymmetry. 

The bosonic Hamiltonian takes the form 

N - -
1 ~ ...,.2 1 ~ Va,aV,aa 

Hcoul = 2 LJPa + 2 LJ 
1 

.... a _ .... 12 . 
a=l a-=/-,8 q q,a 

One can write the generators of SL(2, R) as 

H = Hcoul 

D -1~ ........ 
= T LJPa ·qa 

a 

satisfying the classical Poisson bracket relations 

{H,D}PB = H 

{K, D}PB = -K. 

{H,K}PB = 2D 

Classically, we also have the following Poisson bracket relations for V, 
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(5.25) 

Let us try to· supersymmetrize this Hamiltonian. There is a problem here in that the 

variation of the constraint under the original supersymmetries of the "Coulomb" branch 

is nonzero when the constraint is applied. 

(5.26) 

Supersymmetry requires that 

(5.27) 

or that X01 f3 = 0 for a i= {3. Examining the original Lagrangian (5.3) with Qm = Rn = 0, 

we see that we can satisfy the constraint (5.10) with nonzero fermions in the conformal 

limit by imposing another constraint on the fermions 
<::.8 -t 

[.\ , .\ J0101 = 0 (5.28) 

all a where s, t are SU(2) spinor indices. The Gauss' law constraint (5.4) implies V = 

-[~,X]. The internal spin symmetry will be determined by the fermions, and one will 

obtain different models depending on the representation. Supersymmetry thus implies 

that the interaction V = 0. We have another option. By taking a linear combination of 

the supersymmetries that breaks the SU(2) symmetry, we can obtain a zero eigenvalue of 

the analog of (5.27) and partially preserve the supersymmetry with nonzero interaction. 

This is not an option if we are to describe a conformal dual theory to quantum gravity on 

AdS2 x S2 : There may be a way to realize a nontrivial supersymmetry nonlinearly which 

is not clear at the moment. 

One can rewrite the V's as SU(q) quantum spin degrees of freedom [40]. One sets 

va = 2::~=1 'l/J"fnOIT:;{3'1/Jm{3 where { '1/JmOI, '¢!{3} = 8mn801{3· By defining 
. q ' 

s~n = '1/J':nOI'l/JnOI- ~(2::: '¢!01'1/JsOI)&mn 
q s=1 

(5.29) 

and using the constraint V0101 = 0 to set 2::!=1 '¢!01 '1/Jsa = l with l an integer, the Hamiltonian 

becomes 

H _ ~ ~ --2 _ ~ ~ 2tr(S 01 Sf3) + l(l- q)fq 
Coul- 2 6p01 2 6 4l""'a- _. 12 . 

01=1 01¢{3 q q{3 
(5.30) 

The spins are in the [-fold antisymmetric representation of SU(q). One can also obtain an 

antiferromagnetic interaction by using bosonic oscillators. 

The n = 2 case differs from the n = 3 case by extra global U(1)2 symmetry. This 

symmetry originates from the extra BPS deformation directions for then= 2 multistrings. 
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5.4. The "Higgs" Branch 

The bosonic Lagrangian on the "Higgs" branch is 

(5.31) 
m,a n,a 

where the D constraints are enforced by A (3). The Gauss' law constraints are 

i! ('I:J q:nQmTaQm + L q~RnTa Rn) = (L q:n~mTaV;m + L q~1/JnTaT V;n)· (5.32) 
m,a n,a m,a n,a 

If A (3 ) were time independent, this system would be a simple harmonic oscillator. One can 

see that A (3) has the dimension of (mass )2. For this action to be conformally invariant, 

we require that A (3) transforms as 

(5.33) 

If we redefine the chiral multiplets by a time dependent unitary matrix that diagonalizes 

A (3 ) and introduces a covariant time derivative, we have an interpretation of the square 

roots of the N 1 eigenvalues as time dependent inverse scale sizes of the N1 D-particles in the 

transverse dimensions. To supersymmetrize the "Higgs" branch, one can perform a change 

of coordinates that is similar to ( 4.35) (assuming 8N1 N2N3 N4 > Nf) so that the complex 

dimension is 8N1 N2N3 N4- N[. The remaining massless modes have superpartners with 

the Lagrangian 

m n 

The action is invariant under the supersymmetries 

of/Qm = -../2iryuV;m 

o11 Rn = -hiryu'I/Jn 

of/V;m = -hui]Qm 

o11 V;n = -../2ui]Rn 

(5.34) 

(5.35) 

In the limit in which the entropy estimate of section 4.3 is valid, N 1 » N2 N 3 N4 so the 

"Higgs" branch is massive. In the g -+ oo limit the "Coulomb" and "Higgs" branches 

appear to be decoupled from each other. At higher energies the two branches are coupled 

through the harmonic oscillator modes that have been ignored in the conformal limit. 
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6. Discussion 

We have conjectured that D-particles at D-brane intersections form multistrings and 

that these multistrings are the relevant degrees of freedom of black holes formed from these 

intersections. An index calculation shows that the counting of states is correct for one D­

particle interacting with one intersection. With several assumptions, one sees that these 

multistrings can account for the ground state entropy of the black hole. We have derived 

from the multistring theory a conformal quantum mechanics, the "Coulomb" branch, that 

exhibits some of the expected properties of supergravity on AdS2 x S 2. We have also 

derived another conformal quantum mechanics, the "Higgs" branch, that describes part of 

the moduli space of D-particle-D-intersections. These two theories are coupled at higher 

energies. We expect also at higher energies stringy corrections to the low energy multistring 

theory will play a role though we currently don't know how to describe these excitations. 

A future goal is to determine the full effective theory of the multistrings. 

It would be interesting to see whether one could reproduce the BPS spectrum of 

supergravity on AdS2 x S 2 [41] from the conformal mechanics.2 The bosonic symmetries 

are the same, and it remains to see how and whether supersymmetry can be realized. 

It would also be interesting to compare correlation functions in the two theories. An 

even more interesting and current project is to see whether the full quantum mechanics 

describes the dynamics of the nonextremal Reissner-Nordstrom black hole at low energies 

where stringy corrections can be neglected. 
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