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Equation of state for thermodynamic properties of chain fluids near-to 
and far-from the vapor-liquid critical region 

Jianwen Jiang and John M. Prausnitz a) 

Department of Chemical Engineering, University of California, Berkeley and Chemical Sciences Division, 

Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 

Upon incorporation of contributions from long-wavelength density fluctuations by 

a renormalization-group theory, a crossover equation of state is developed for 

describing thermodynamic properties of chain fluids. Outside the critical region, the 

crossover equation of state reduces to the classical equation; inside the critical 

region, it gives non-classical universal critical exponents. The crossover equation of 

state correctly represents phase equilibria and p VT properties of chain fluids in both 

regions. Good agreement is obtained upon comparisons with computer simulations 

for square-well chain fluids. As obtained from experimental vapor-pressure and 

density data, the square-well segment-segment parameters for n-alkanes from 

ethane- to eicosane are linear functions of molecular weight. Calculated 

thermodynamic properties agree well with experiment for n-alkanes from methane 

to hexatriacontane. 

•> To whom correspondence should be addressed. Electronic mail: lindar@cchem.berkeley.edu 



I. INTRODUCTION 

Thermodynamic properties of fluids at high pressures are of much interest in a variety of 

chemical industrial processes, notably for separation processes in natural-gas and gas-condensates 

production, for supercritical extraction, and for fractionation of petroleum.1
'
2 Some of these 

separation processes encounter critical conditions. 

Following the van der Waals equation of state (EOS)3
, dozens of similar phenomenological 

EOS have been proposed; those by Redlich and Kwong4 and by Peng and Robinson5 are the best 

known. These equations can describe fluid properties reasonably well far away from the critical 

point; however, it has been long recognized that, because they are based on the mean-field 

assumption, they do not yield the correct limiting properties at the critical point. These classical 

EOS implicitly assume that pressure may be expanded about the critical point in a Taylor series in 

density and temperature; such expansion leads to the conclusion that the liquid-vapor coexistence 

curve is quadratic near the critical point, in disagreement with experiment. Experimentally, the 

compressibility along the critical isochore approaches infinity at the critical point with a noninteger 

exponent y = 1.33 , in disagreement with classical EOS theory where y = 1 ~As pointed out,6•
7 the 

failure of classical EOS theory follows from neglect of long-wavelength density fluctuations. In the 

1970's, Wilson8
•
9 developed a renormalization-group (RG) theory using a phase-space cell 

approximation to incorporate contributions from long-wavelength density fluctuations. RG theory 

gives non-classical critical exponents in agreement with experiment. A recent high-level review of 

RG theory is given by Fisher. 10 However, RG theory is only valid asymptotically close to the 

critical point and cannot be implemented outside the critical region; it does not reduce to the ideal 

gas law at low density. Therefore attention has been given by several authors, 11
"
20 notably by 

Sengers,21
-
23 to combine non-classical and classical theories to represent fluid properties both 

close-to and far-from the critical point. This work is one more effort toward that goal; however, 

this work is directed specifically at the properties of chain fluids. ·While the work discussed here 

may not be as rigorous as those of others, it has an important advantage: only a few adjustable 

parameters are required. The procedure outlined here, therefore, is promising for application to real 

systems where experimental data are scarce. 

Based on Wilson's phase-space cell approximation, White and coworkers24
-
27 developed a 

global RG theory that extends the range of the original RG_theory and that can be applied beyond 

the critical region. In their work, the Helmholtz energy is divided into repulsive and attractive 

parts. The repulsive part does not make an appreciable contribution to the long-range correlations 

of a fluid; RG methods are therefore applied only to the attraction part. White's theory is expressed 
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in a recursion form for the Helmholtz energy density; it reproduces experimentally observed 

critical exponents, and is capable of describing the p VT properties and phase behavior inside and 

near-outside the critical region for simple spherical molecules, like argon and methane. 

Following White et al., Lue and Prausnitz28
•
29 enhanced the accuracy and range of White's RG 

transformation through an improved Hamiltonian. Good representation of thermodynamic 

properties and phase equilibria were obtained for square-well (SW) model fluids, simple real fluids 

and their mixtures. A similar method was also used by Tang30 to study the global behavior of 

Lennard-Jones fluids. All previous publications have been directed to fluids containing simple 

spherical molecules. 

In recent years, remarkable progress has been made toward a classical theory for chain fluids. 

Hu, Liu and Prausnitz31 established an equation of state for chain fluids (EOSCF) through an 

approximation of the cavity-correlation function of chains; this approach has been further adopted 

to study charged chain fluids that can serve as a simple model for polyelectrolytes. 32 Better known 

is the work of Chapman and coworkers33
•
35 who developed the statistical associated fluid theory 

(SAFT) originally proposed by Wertheim.36 These theories provide a molecular-based EOS 

retaining a relatively simple form. As shown recently,37
-
47 both EOSCF and SAFT have become the 

most widely-used EOS for calculating phase equilibria for a wide variety of complex chain 

systems. However, the mean-field nature of these EOS limits their success to the region far from 

the critical point. 

To yield better results in the critical region, some authors4446 have suggested rescaling the 

molecular parameters in the EOS to fit experimental critical constants. Although this suggestion 

yields a better representation of fluid behavior near the critical point, it cannot reproduce the global 

features (cf. Figure 2 in ref. 44). Rescaling provides a simple mathematical method but it does not 

incorporate density fluctuations. On the other hand, Adidharma and Radosz47 have adopted the 

crossover method ofKiselev et al. 16 to improve SAFT's representation inside the critical region and 

indeed, better results are obtained. However, a large number of adjustable parameters is required. 

The purpose of this work is to present a global EOSCF combining White's RG theory with the 

original EOSCF (EOSCF+RG) to represent the behavior of chain fluids outside and inside the 

critical region. Toward that end, we give in Sec. II expressions for the original EOSCF for a fluid 

of square-well chains. In Sec.III we give a EOSCF+RG equation. Sec. IV gives results for 

thermodynamic properties and phase equilibria of model square-well chain fluids and real n-alkane 

fluids; these results are, respectively, compared with those from computer simulation and from 

experiment. The last section gives some concluding remarks. 
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II. EOSCF EQUATION OUTSIDE THE CRITICAL REGION 

The chain fluid is represented by a freely tangent-joined SW chain with m chain segments. The 

interaction potential between segments in the chain is given by 

(1) 

where r is the center-to-center segment distance and u hs is a short-ranged steep hard-sphere 

repulsive potential, taken as a reference potential; .usw is the perturbed SW potential: 

u"'(r,o-)={~ 

u~(r,A)={~e 

r<a 

r>a 

r<a 

a<r<A-a 

r>A-a 

(2) 

(3) 

where a is the segment diameter; A, and & are, respectively, the reduced width and depth of the 

SW interaction potential. 

Without loss of generality, but with a view towards fitting experimental data, we assume that 

& depends on temperature T as proposed by Chen and Kreglewski, 48 

(4) 

where &0 and e are constants; k8 is Boltzmann constant. Interaction parameter & is for segments 

(not for molecules);· Following Huang and Radosz,40 we set e I k8 = 5K throughout. Following 

Barker-Henderson (BH) theory,49 the temperature dependence of the effective diameter a is 

(5) 

where a 0 is a temperature-independent diameter and f3 = 1 I k8 T . C is an integration constant; 

following Chen and Kreglewski,48 we set C = 0.12. 

·· The Helmholtz energy density f, i.e., the Helmholtz energy per unit of volume V, is obtained 

from the general form ofthe EOSCF31
•
32 

(6) 

The contribution of the ideal gas is given by 

(7) 

where p is the number density of molecules, and A denotes the de Broglie thermal wavelength 

depending only on temperature and molecular mass. 

The hard-sphere interaction is given by the Carnahan-Starling equation50 
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f hs = k Tm 41J- 31J2 
B p (1_

17
)2 

where 17 is the packing fraction defined by 

1l 
1J = - mpa 3 

• 
6 

(8) 

(9) 

For the contribution from the perturbation SW potential, we adopt the second-order BH 

perturbation theory49
'
51

'
52 that follows from the high-temperature expansion of Zwanzig, 53 

(10) 

The mean-attractive energy a1 is given by a compact expression from the mean-value theorem, 54 

(11) 

where the contact value of the pair correlation function for hard spheres is estimated at an effective 

packing fraction 1Jerr, 

with 

hs( ) 1-TJerr/2 
g a,1Jeff = (1- )3 

1/eff 

2 3 
1/err =Ct1J+C21J +c31J · 

Coefficients c n are calculated by the matrix 54 

(

C1 J ( 2.25855 -1.50349 0.249434 ]( 1 J 
c2 = - 0.669270 1.40049 - 0.827739 A. 

c3 10.1576 -15.0427 5.30827 ...1? 

(12) 

(13) 

(14) 

The second perturbation term a 2 describing fluctuations of the attractive energy is given by 

{1-1J)4 & aat 
a2 = 

2(1 + 41J + 41J 2
) 81J 

(15) 

Eqs.(8) and (10) refer to monomers, not chain molecules. It is necessary to include a chain 

term to correct for chain connectivity. Following previous work,31
•
32 the cavity-correlation function 

of chains can be approximated as the product of two contributions: a chemical contribution 

(1- a)m dependent on the degree of association a, and a physical contribution expressed by the 

product of nearest-neighbor effective two-particle cavity-correlation function y~ff (j = i + 1): 

m-1 

Y~···m(rl2,r23•····rm-t,m) = (1-a)m fJy~ff (ru) 
i=l 
j=i+l 

(16) 
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where y'ft (j = i + 1) in this work is the cavity correlation function for SW monomers at contact: 

ysw (a)= gsw {a)exp(-c/ kBT) 

gsw (a)= 1-17 I 2 + f3 (8a1 _ ~ 8a1 ). 

(1- 17)
3 4 a17 317 aA. 

When a = 1 , the Helmholtz energy due to chain connectivity can be derived as, 

/chain = kBT p(1- m)lnysw (a). 

(17) 

(18) 

(19) 

In Eq.(19), if ysw (a) is replaced by yhs(a), i.e., the contact value of the cavity correlation 

function for hard spheres, the above EOSCF reduces to the original SAFT33
-
35 equation. Figure 1 

compares EOSCF and SAFT with computer simulation results55 for SW chain with m = 4 and 

A,= 1.5 where r• = 11 f3c is reduced temperature. Yhs denotes SAFT; sw1 refers to EOSCF with 

the first-order SW term ( a 2 = 0 ), in contrast to sw2 that includes also the second-order SW term. 

As expected, EOSCF is better than SAFT; EOSCF-sw2 performs somewhat better than EOSCF

sw1, but all are seriously inadequate inside the critical region. 

III. EOSCF+RG EQUATION INSIDE THE CRITICAL REGION 

Far from the critical point, conventional (classical) theories perform well because the 

correlation length is small; only correlations between a few near-by molecules contribute 

significantly to the Helmholtz energy. However, approaching the critical point, the correlation 

length increases, and long-wavelength density fluctuations become important, diverging to infinity 

at the critical point. Large correlation lengths imply that the system is not homogeneous near the 

critical point; correlations between larger and larger numbers of molecules make an increasingly 

significant contribution to the Helmholtz energy. Because most mean-field theories are not able to 

describe accurately correlations between large numbers of molecules, they perform poorly in the 

critical regime where RG theory provides the only known way to yield correct fluid behavior. 

Wilson's phase-space cell approximation takes into account fluctuations successively with larger 

and larger length scales, up to the correlation length. ,_ 

For an open system at temperature Twith particle number N, volume V and chemical potential 

J.l , we can write the grand canonical partition function as56 

E = LZ(T,V,N)exp(Nf3p) (20) 
N 

where Z(T,V,N) is the canonical partition function: 
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Z(T,V,N) = 
1 

JN f ·· Jexp[-"'f3u(r; -rj)l2]dr1 ... drN 
N!A v bF.j 

(21) 

where the integral is over all possible space. In contrast to Eq.(21), Eq.(20) can take into account 

fluctuations in the system. The transformation of the grand canonical partition function into a 

functional integral is57 

E = f.Bp(-)D¢(·)Erer[i¢]exp{fp,up(r)dr-i fp(r)¢(r)dr-t fp(r)v(r -r')p(r)drdr' (22) 

where p(r) and ¢(r) are integration variables; p(r) is the instantaneous density distribution and 

¢(r) is the potential field; v(r) is the reduced perturbed potential, here equal to f3usw (r); zrer is 

the grand partition function for the reference fluid: 

zrer = exp(N~:) f .. fexp[-"'f3uref(r; -rj)l2]dr1 ... drN. 
N!A v ;"'j 

(23) 

For the hard-sphere reference system considered here, we have only small contributions from 

density fluctuations of very short wavelengths. 58 We assume that this contribution is taken fully 

into account in the Helmholtz energy calculated for the reference system. 

Due to a very steep repulsive potential, the potential of the reference system does not affect the 

fluctuations of long wavelengths. However, the attractive intermolecular interaction of limited 

range (in this work, the SW perturbation potential) can have a strong effect on long-wavelength 

density fluctuations. For our purposes, only the contribution from SW attraction is required. 

Following White et al.24
-
27

, we incorporate density fluctuations of all wavelengths, including short 

wavelengths and those that are asymptotically long. 

We first ·divide the contributions from the attractive potential into two parts, a short

wavelength part vs, and a long-wavelength part v1 
,
59

-
61 

(24) 

where the carets denote Fourier transforms. The choice of vs and v 1 is somewhat arbitrary 

provided that V5
-

1 
(q) approaches v-1 (q) rapidly when q > 2tr I L; and v1

-
1 
(q) approaches v-1 (q) 

rapidly when q < 2tr I L . It is assumed that contributions from density fluctuations of wavelengths 

less than cutofflength L can be accurately evaluated by a mean-field theory. 

Following Lue and Prausnit.z,28 we use the following long-wavelength potential, 

(25) 

where a is the interaction volume with unit of energy-volume and w refers to the range of the 

attractive potential. They are given, respectively, by 
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1 f 21C a=-- usw (r)dr = -e(A.a)3 

2 3 
(26) 

(27) 

Because of Eq. (24), the density distribution p(r) can be divided into two contributions, 

p 1 (r) corresponding primarily to long wavelengths, and ps (r) corresponding primarily to short 

wavelengths. With these new variables, Eq. (22) can be rewritten as 

E=--4 fi5p 1(·)exp{fP,u/(r)dr-t fp 1(r)v1(r-r')p 1(r')drdr' -F 5 [p1
] 

Q 

where 

exp{- F 5 [p1]}= g f.Bps (-)Dt/J(·)x Eref[it/J]exp{Jp,ups (r)dr 

-i j[p1(r)+ p 5 (r)]t/J(r)dr-t fp 5 (r)v 5 (r-r')p 5 (r')drdr' 

Q= Ji5p(·)exp~t jp(r)v(r-r')p(r')drdr' 

Q1 = Ji5p(-)exp~t jp(r)v1(r-r')p(r')drdr' 

. Qs = Ji5p(·)exp~t fp(r)vs (r- r')p(r')drdr' 

(28) 

(29) 

(30) 

(31) 

(32) 

Functional F s is the contribution from short-wavelength fluctuations alone; it may be estimated by 

the local-density approximation, 

(33) 

where fs is the Helmholtz energy density for a homogeneous system with density p; fs can be 

calculated using mean-field theory, such as the original EOSCF equation. However, because fs 

only includes short-wavelength density fluctuations, we should subtract the contributions of long-

wavelength fluctuations from EOSCF equation, which we approximate as - ap2
, then, 

(34) 

This approximation gives only the contribution for the limiting c.ase q = 0 ; more accurately, the 

approximation should account for contributions in the range 0 ~ q < 21r I L . 

Substituting Eq. (33) into Eq. (28) gives 

(35) 
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When the system approaches the critical 'point where more and more molecules are coupled, longer 

and longer wavelengths make significant contributions; there is then no analytical solution for 

Eq.(35), requiring a numerical solution. We first evaluate the zero-order solution lo by the saddle

point approximation, 57 

lo = fs -apz 

with Eq. (34), we have 

lo = IEOSCF. 

(36) 

(37) 

We adopt White's RG method24
-
27 to incorporate the contributions from density fluctuations 

with longer and longer wavelengths yielding the following recursion relations to estimate the 

Helmholtz energy density: 

In (p) = ln-1 (p) + 0 In (p) (38) 

ot,(p)=-K In.a;(p) o 12 
n n .Q~(p)' 5, P < Pmax (39.a) 

oln(P) = 0, Pmax 12 5. P < Pmax (39.b) 

where .Q~ and .Q,~ refer to the density fluctuations for the long-range attraction and the sliort

range attraction, respectively. Pmax is the maximum possible molecule density indicated by 17 = 1 

giving Pmax = 6 I ;rma-
3

• Coefficient Kn is defined by 

.a: (p) = .( exp(-G: (p,x)/ Kn)dx, 

2G: (p,x) = 1: (p + x) + lna (p- x)- 2]na (p)' 

J: (p) = ln-1 (p) + ap 2 

lns (p) = fn-1 (p) + ap
2 2~~:2 

a =s,l 

a =s,l 

(40) 

(41) 

(42) 

(43) 

(44) 

Parameter lP is the average gradient of the wavelet function lf/(r) ; the recursion relations are 

established in terms of lP .62 

lP = Jvlf/(r) · Vlf/(r)dr. (45) 

lP only depends on lj/(r) , not on the molecular interaction potential; therefore it is an adjustable 

parameter, in addition to cutofflength L. 
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The above recursion procedure can be interpreted as the calculation of the ratio of non-mean

field contributions to mean-field contributions at gradually increasing by long wavelengths. We 

perform the calculations numerically with a density step Pmax I 500, and smooth the resulting 

Helmholtz energy density by a cubic spline function. In principle, the recursion should be 

performed until n approaches infinity; however, in our calculation we find that n = 5 is sufficient 

to obtain good final results. 

After we calculate the Helmholtz energy of the system, the chemical potential and pressure are 

obtained by 

p-(8/J 
8p T,V 

(46) 

P=pf.i-f (47) 

and the critical point can be evaluated from the standard critical criteria: 

(aP) = 0 
av T 

(a
2pJ = 0 

av 2 

T 

(48) 

IV. RESULTS AND DISCUSSION 

Square-well chain fluids 

Before applying our above-described EOSCF+RG theory to practical systems, we compare our 

theory for model square-well chain fluids to results obtained by computer simulation. We consider 

SW chains with width A, = 1.5 because there are several systematical studies55
•
63

•
64 for this case. 

We set the cutoff length L = 20" and choose C/J to fit the simulated critical temperature. Table I 

presents C/J, reduced critical temperature r; and critical packing fraction· 1Jc for SW chains with 

length m = 1, 2, 4, 8, 16 estimated from simulation, EOSCF and EOSCF+RG. As expected, 

EOSCF overestimates r; but underestimates 1Jc. Although we adjust C/J only to fit r; but not 1Jc, 

EOSCF+RG gives good predictions for 1Jc. Optimized C/J rises with chain length. Critical 

pressures are not presented here because they were not calculated by simulation except for m = 1 . 

Figure 2 shows vapor-liquid coexistence curves for several square-well chain fluids. The 

circles are computer simulation results;55
•
63

•
64 the dashed lines are predictions from EOSCF and the 

solid lines are those from EOSCF+RG. For m = 1, EOSCF underestimates the saturated liquid 
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density exhibiting a narrower coexistence curve. With rising chain length, EOSCF overestimates 

the saturated liquid density but underestimates the saturated vapor density, and the coexistence 

curve becomes broader. Outside the critical region, EOSCF+RG theory gives results similar to 

those from EOSCF. However, after incorporating contributions from long-wavelength fluctuations, 

EOSCF+RG shows large improvement inside the critical region where EOSCF fails. The longer 

the chain length, the greater the deviations for both EOSCF and EOSCF+RG from the simulation 

"experiments", especially for EOSCF. This result suggests that more effort is required to describe 

chain fluids. EOSCF theory is a first-order thermodynamic perturbation theory (TPTl) that 

accounts only for the correlations between nearest-neighbor segments in the chain, but not for 

higher correlations between other in-chain segments. However, suggestions for such revisi()n are 
• 31 64 . 66 67 

prov1ded by Hu's work , SAFT-D, TPT-D , TPT2 . 

Real fluids: n-alkanes 

The thermodynamic properties and phase behavior of n-alkanes are of particular interest in the 

fossil-fuel industries. We model n-alkanes as square-well chain fluids and examine the capability 

of EOSCF+RG theory to describe their thermodynamic properties. The square-well segment

segment parameters for methane (CI) to n-eicosane (C20) are determined as follows. Because the 

carbon-carbon bond length for n-alkanes is about 113 of the diameter of CH4, a simple empirical 

relation between chain length m and carbon number C is m =1 + (C-1)/3.68
•
69 Parameters for the 

interaction potential s0 , segment diameter a 0 and interaction width A. are optimized to fit the 

experimental data outside the critical region. For C1 to C4, we used experimental vapor pressures 

and saturated liquid densities70
'
71 at temperatures 20% below critical temperature Tc, and 

experimental isotherms (pV1)71 at temperatures 20% above ~. For C5 to C20, we used vapor 

pressures and saturated liquid densities70
'
72 at temperatures 20% below Tc. To incorporate 

contributions from long-wavelength density fluctuations inside the critical region, we set the cutoff 

length L = 11.5 A and select a suitable parameter f1> to fit the measured ~. If the resulting critical 

pressure Pc does not agree with that measured, we change the parameters and fit again. Table II 

lists the optimized segment-segment parameters. 
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Compared with the others, C1 exhibits anomalous behavior with extremely low Eo but a higher 

l/J than those for Cz. The interaction potential E0 , segment diameter a 0 , interaction width A. and 

average gradient l/J tend toward asymptotic constant values upon increasing the carbon number. 

Figure 3 shows the optimized square-well segment-segment parameters for C1 to C20 as a 

function of molecular weight Mw. Except C~, these parameters are well behaved and can be 

expressed by linear functions ofMw as: 

m = 0.6190 + 0.0238Mw 

mE0 I k = 93.5976 + 4.6987Mw 

mag = 19.4039 + 1.6399Mw 

mA. = 0.8903 + 0.0429Mw 

ml/J =OJ 151 + 0.2711Mw 

(49.a) 

(49.b) 

(49.c) 

(49.d) 

(49.e) 

As discussed below, such relations are useful for extrapolating to heavier n-alkanes where 

experimental data are rare. 

Table III gives measured73-75 Tc, ~ and critical density Pc and those predicted from EOSCF 

and EOSCF+RG, respectively, for C1 to Czo. As expected, EOSCF overestimates 1;; and ~ and 

underestimates Pc. By contrast, EOSCF+RG gives satisfactory results. 

Figure 4 shows vapor-liquid coexistence curves for several n-alkanes from C1 up to C20. The 

circles are experimental data,70'71 while the dashed and solid lines are from EOSCF and 

EOSCF+RG, respectively. Because EOSCF gives an incorrectly high critical temperature, EOSCF 

cannot predict the correct phase behavior inside the critical region; however, EOSCF+RG repairs 

this inadequacy because density fluctuations are reasonably incorporated. Outside the critical 

region, EOSCF+RG theory reduces to the original EOSCF where the latter is reliable. In general, 

EOSCF+RG gives good agreement with experiment in both regions. 

Figure 5 shows vapor pressures for several n-alkanes from C1 to C20. For each fluid, EOSCF 

overestimates both the critical temperature and critical pressure. Below the observed critical 

temperature, EOSCF underestimates the vapor pressure. However, good agreement with 

experiment is observed for EOSCF+RG. Figure 6 shows a Clausius-Clapeyron plot where 1nP is 

given as a function of liT. 

Based on the linear functions Eqs. (49.a)-(49.e), we extrapolate the segment-segment 

parameters for heavier n-alkanes, as shown in Table IV, from docosane (C22) to hexatriacontane 

(C36)- Table V gives the-corresponding predicted critical constants from EOSCF+RG and EOSCF, 
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respectively. Satisfactory predictions are found from EOSCF+RG when compared with limited 

measured or estimated data74-76
• 

Figures 7, 8 and 9 show the critical temperature Tc , pressure ~ and critical density p c as 

functions of carbon number from c) up to c36· 

Finally, Figures 10, 11, 12 and 13 show supercritical isotherms for CH4, C2H6, C3H8 and n

C4H8, respectively. In general, EOSCF+RG theory gives reliable pVT properties for density up to 

1.4pc; it gives better results than those of EOSCF, especially near the critical temperature .. 

However, at high temperatures, both EOSCF+RG and EOSCF nearly coincide. At very high 

densities, significant deviations from experiment are observed for both. These deviation may result 

from the inadequate description ofEOSCF for chain fluids or from the rough approximation in Eq. 

(34) but not from the RG method itself. On the other hand, it may be that accurate representation of 

the properties of n-alkanes at high densities requires consideration of many-body interactions n-so in 

addition to two-body interactions. 

V. CONCLUSION 

Combining the original EOSCF with a global RG, we have developed a relatively simple 

crossover EOSCF+RG theory that is able to describe the properties of chain fluids both inside and 

outside the critical regions. Outside the critical region, where the correlation length is small, the RG 

correction is negligible and EOSCF+RG reduces to the original EOSCF. However, inside the 

critical region, the original EOSCF fails due to its meart-field nature. Accounting for the 

contributions from long-wavelength fluctuations, the inadequacy of EOSCF can be significantly 

reduced by EOSCF+RG. 

We apply EOSCF+RG to n-alkanes modeled as square-well chain fluids. The segment

segment parameters for C1 to C20 are correlated by fitting EOSCF results to experimental vapor 

pressures and saturated liquid densities outside the critical region. Two additional parameters in 

EOSCF+RG are chosen to represent experimentally observed critical temperature and critical 

pressure. Starting with CzH6, linear relations exist between the segment-segment parameters and 

molecular weight. For heavier n-alkanes from C22 to C36, the extrapolated segment-segment 

parameters give good predictions of critical properties. Although the real systems studied here are 

n-alkane oligomers, for polymers like ~polyethylene, polypropylene and polystyrene etc, the 

expressions of thermodynamic properties provided above are identical and can be used directly. 
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In general, EOSCF+RG theory gives' satisfactory critical constants, phase equilibria and pVT 

isotherms, much better than those from original EOSCF, especially near the critical point. 

Deviations from experiment for p VT isotherms at high densities are not due to the RG method; 

rather, they follow from other inadequacies: neglect of higher-order correlations between the 

segments in the chain (because EOSCF is a first-order perturbation theory) and from our rough 

approximation to subtract contributions from long-wavelength density fluctuations in EOSCF; and, 

perhaps, from many-body interactions that are not taken into account. 
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TABLE I. Critical constants for several square-well chain fluids. The reduced square-well width 

A,= 1.5; the cutofflength L = 2a. a: from ref. 63; b: from ref. 64; c: from ref. 55. 

m r· lJc r· lJc r· lJc (fJ c c c 
Simulation EOSCF EOSCF+RG 

1 1.22 a 0.157 1.33 0.138 1.22 0.153 12.0 

2 1.59 b 0.147 1.74 0.137 1.58 0.144 12.0 

4 1.90 c 0.134 2.14 0.131 1.91 0.132 13.2 

8 2.13 c 0.12 2.47 0.114 2.15 0.117 13.3 

16 2.33 c 0.11 2.72 0.091 2.33 0.108 13.8 
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TABLE II. Optimized square-well segment-segment parameters and (j) for n-alkanes (from C1 to 

C2o). 

n-a1kane m &0 I k(K) CT0 (A) A. (/J 

CI!t 1.00 133.14 3.591 1.575 6.96 

C2H6 1.33 173.91 3.710 1.634 6.16 

C3Hs 1.67 180.38 3.800 1.665 7.40 

CJIIO 2.00 183.68 3.853 1.690 7.83 

CsH12 2.33 186.32 3.903 1.703 8.38 

C6H14 2.67 187.15 3.921 1.716 8.74 

C7HI6 3.00 187.63 3.940 1.728 9.00 

CsH1s 3.33 188.82 3.950 1.733 9.39 

C9H2o 3.67 189.59 3.967 1.738 9.54 

CIOH22 4.00 190.20 3.981 1.745 9.65 

CI2H26 4.67 191.23 3.998 1.753 9.90 

C14H3o 5.33 191.99 4.011 1.759 10.08 

CI6H34 6.00 192.58 4.021 1.764 10.25 

C1sH3s 6.67 193.06 4.029 1.767 10.35 

Czol!t2 7.33 193.45 4.035 1.770 10.44 
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TABLE III. Critical constants for n-alkanes (from C1 to Czo) from experiment (ref. 73-75), from 

EOSCF and from EOSCF+RG. 

n-alkane Tc (K) Pc (MPa) Pc (molldm3
) 

Exp. EOSCF+RG EOSCF Exp. EOSCF+RG EOSCF Exp. EOSCF+RG 

CH4 190.6 190.4 203.7 4.60 4.57 6.25 10.16 10.34 

C2H6 305.5 305.8 331.3 4.91 4.87 6.90 7.07 7.07 

C3Hs 370.0 369.9 400.3 4.26 4.29 6.28 5.11 5.32 

c~w 425.2 424.6 460.3 3.80 3.83 5.79 3.93 4.22 

CsH12 470.4 469.5 510.4 3.37 3.40 5.29 3.23 3.49 

C6H14 507.9 507.0 552.8 3.03 3.08 4.91 2.73 3.01 

C1H16 539.7 539.7 590.2 2.74 2.79 4.54 2.34 2.60 

CsH1s 569.4 568.4 623.3 2.50 2.58 4.24 2.04 2.31 

C9Hzo 594.6 593.3 651.6 2.29 2.40 3.94 1.84 2.02 

CwH22 617.9 618.3 681.3 2.12 2.21 3.68 1.66 1.86 

C1zHz6 658.2 658.8 729.6 1.82 1.92 3.25 1.39 1.51 

C14H3o 693.6 692.7 770.1 1.62 1.68 2.89 1.21 1.32 

c1~34 722.6 720.7 805.6 1.42 1.45 2.60 1.06 1.15 

C1sH3s 747.7 745.1 834.8 1.32 1.30 2.36 0.94 1.01 

Czo~2 767.5 765.8 861.6 1.11 1.13 2.15 0.85 0.91 
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EOSC 

9.17 

6.27 

4.69 

3.73 

3.05 

2.60 

2.24 

1.97 

1.74 

1.56 

1.29 

1.09 

0.93. 

0.82 
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TABLE IV. Extrapolated square-well segment-segment parameters and l/J for heavy n-alkanes 

from Eqs.( 49). 

n-alkane m &0 I k(K) O'o (A) /L (/J 

c22lit6 8.00 193.77 4.041 1.774 10.52 

C24Hso 8.67 194.05 4.045 1.776 10.59 

C2sHss 10.00 194.49 4.052 1.779 10.69 

C3oH62 10.67 194.67 4.055 1.781 10.74 

c32H66 11.33 194.82 4.058 1.782 10.77 

c36H74 12.67 195.10 4.062 1.784 10.84 
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TABLE V. Critical constants for heavy n-alkanes from experiment (re£ 74-76), from EOSCF and 

from EOSCF+RG. Experimental critical densities are not available. 

n-alkanes Tc (K) Pc (MPa) Pc (molldm3
) 

Exp. EOSCF+RG EOSCF Exp. EOSCF+RG EOSCF EOSCF+RG EOSCF 

C22~6 785.6 784.7 887.8 0.98 0.99 1.97 0.82 0.65 

CzJiso 799.8 800.6 908.8 0.87 0.88 1.82 0.73 0.58 

CzsHss 827.4 827.5 945.1 0.66 0.68 1.57 0.65 0.48 

C3oH62 838.3 840.2 962.2 0.59 0.60 1.46 0.59 0.45 

C32H66 847.9 849.8 976.7 0.53 0.52 1.37 0.53 0.41 

c36H74 864.0 868.4 1002.7 0.43 0.42 1.21 0.46 0.36 
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FIG. 1. Vapor-liquid equilibria for a classical square-well chain fluid with m = 4 and 

A= 1.5. Circles: computer-simulation data (ref. 55); dotted line: SAFT; dashed line: EOSCF 
with the first-order SW term; solid line: EOSCF with both first and second-order SW terms. 
These results do not include corrections for density fluctuations. 

FIG. 2. Vapor-liquid equilibria for several square-well chain fluids with A= 1.5 and chain 

length m = 1, 2, 4, 8, 16. Circles: computer-simulation data (ref. 55, 63, 64); dashed lines:· 
EOSCF; solid lines: EOSCF+RG. 

FIG. 3. Molecular-weight dependence of square-well segment-segment parameters for n

alkanes. 

FIG. 4. Vapor-liquid equilibria for several n-alkanes. Circles: experiment (ref. 68, 71); 
dotted lines: EOSCF; solid lines: EOSCF+RG. 

FIG. 5. Vapor pressures for several n-alkanes. Circles: experiment (ref. 70-72); dotted lines: 
EOSCF; solid lines: EOSCF+RG. 

FIG. 6. Clausius-Clapeyron plot: lnP as a function of liT for several n-alkanes. Legends as 
in Fig.5. 

FIG. 7. Critical temperatures for n-alkanes. Circles: experiment (ref. 73-76); dotted lines: 
EOSCF; solid lines: EOSCF+RG. 

FIG. 8. Critical pressures for n-alkanes. Legends as in Fig. 7. 

FIG. 9. Critical densities for n-alkanes. Legends as in Fig.7. 

FIG. 10. Isotherms for methane at 200, 400 and 1 OOOK. Circles: experiment (ref. 70); dotted 
lines: EOSCF; solid lines: EOSCF+RG. 

FIG. 11. Isotherms for ethane at 310, 400 and 500K. Legends as in Fig. I 0. 

FIG. 12. Isotherms for propane at 380, 500 and 600K. Legends as in Fig. I 0. 

FIG. 13. Isotherms for n-butane at 430, 500 and 600K. Legends as in Fig.lO. 
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