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Measurement of Critical Contact Angle 

in a Microgravity Space Experiment 

P. Concus, R. Finn, M. Weislogel 

Abstract Mathematical theory predicts that small changes in container shape or in con­

tact angle can give rise to large shifts of liquid in a microgravity environment. This phe­

nomenon was investigated in the Interface Configuration Experiment on board the NASA 

USML-2 Space Shuttle flight. The 'experiment's "double proboscis" containers were de­

signed to strike a balance between conflicting_ requirements of sizable volume of liquid 

shift (for ease of observation) and abruptness of the shift (for accurate determination of 

critical contact angle). The experimental results support the classical concept of macro­

scopic contact angle and demonstrate the role of hysteresis in impeding orientation toward 

equilibrium. _ 

1 Introduction 

When planning space-based operations, it is important to be able to predict the equilib­

rium locations and configurations that fluids will assume in containers under low-gravity 

conditions. Currently available mathematical theory applies completely, however, to only 

a few particular configurations, such as a partially filled right circular cylindrical container 

with liquid simply covering the base. Behavior in space for such a configuration, although 

different from what is familiar in common experience with a terrestrial environment, is 

at least consistent with that experience. For more general containers, however, fluids in 
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reduced gravity can behave in striking, unexpected ways. 

The classical theory, according to the Young-Laplace-Gauss (YLG) formulation, charac­

terizes fluid locations as equilibrium configurations for the surface-plus-gravitational me­

chanical energy. Using this point of view in a mathematical study, we have shown that for 

a cylindrical container of general cross-section in zero gravity the surface change arising 

from small changes in geometry or contact angle can be discontinuous or "nearly discon­

tinuous," leading to large shifts of the liquid mass. Attempts to observe this behavior 

experimentally can be valuable as tests of validity of the concept of macroscopic contact 

angle used in the classical theory, and thereby of the theory's effectiveness in predicting 

fluid behavior. 

The principal mathematical result underlying the behavior is that for particular cylindrical 

sections a discontinuous kind of change can be realized as the contact angle 1 crosses a · 

critical value 'Yo intrinsic to the container. (In this paper we shall restrict subsequent 

discussion, without loss of generality, to be in terms of a partially wetting liquid (0 < 

1 < 1r /2), which is the case for the materials used in the space experiment.) When 1 is 

larger than 'Yo there exists an equilibrium configuration of liquid that covers the base of the 

cylindrical container simply, while for contact angles smaller than 'Yo no such equilibrium 

configuration is possible. In the latter case liquid moves to the walls and can rise arbitrarily 

high along a part of the waJl, uncovering a portion of the base if the container is tall enough. 

By simple physical observation of bulk behavior of the liquid, one can thereby determine 

whether the contact angle is larger than or smaller than the critical value for the container. 

A practical challenge in this connection is to design cross-sections for which a large enough 

portion of the liquid will rise up the walls for ease of observation as the critical value of 

contact angle is crossed, without the containers being unrealistically tall, and so that the 

change will be abrupt enough to allow accurate determination of critical contact angle 

value. 

By using two or more containers corresponding to appropriately chosen values of 'Yo, dif­

fering, say, by the accuracy desired for contact angle evaluation, one can determine the 
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value of the critical contact angle to lie within a particular interval. In some cases, ge­

ometries can be "combined" into a single container for determining such an interval. For 

our Interface Configuration Experiment (ICE) on the second United States Microgravity 

Laboratory (USML-2) Space Shuttle flight STS-73 these two approaches were conjoined. 

The experiment was conducted in the Glovebox, a multi-user facility developed by the 

European Space Agency /ESTEC, Brunei Institute for Bioengineering (United Kingdom), 

and Bradford Engineering (The Netherlands) for experiments on Spacelab missions or in 

the Shuttle middeck. Originally designed to handle biological experiments, the Glovebox 

has I?een adapted to handle fluids, combustion, and materials science experiments and has 

served well in providing a rapidly accessible, inexpensive platform in which to conduct 

experiments in space. ICE utilized the Glovebox primarily as a staging area and a level of 

containment in the event of a fluid spill. 

Mathematical and computational results that form the basis for ICE, as well as results of 

pre-flight drop tower experiments, are described in (Chen et al. 1997). Some of these results 

are included here for convenience, primarily in Sec. 2 and the figures therein. Further 

mathematical background and historical information are given by Finn (1986) and by 

Concus and Finn (1974, 1990). Related work on discontinuous behavior in a corner, using 

a more physical approach, is given by Langbein (1990, 1995) and associated parabolic-flight 

low-gravity experiments by Langbein et al. (1990). Results of drop tower experiments for 

a rounded trapezoidal cylinder, a container precursor to those for ICE (see Concus and 

Finn 1990), are given by Smedley (1990). In addition to the containers reported below, 

ICE included also a movable wedge container, the results for which we plan to discuss in 

a separate study. 

2 Mathematical and computational background 

2.1 Canonical proboscis containers 

The "double proboscis" containers used in the USML-2 experiment derive from the "canon-
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Figure 1. Wedge container. 

ical proboscis" containers introduced by Fischer and Finn (1993). These, in turn, can be 

thought of as generalizations of a basic wedge container (Fig. 1), a cylindrical container 

whose section n consists of a circular arc and a smoothly joined protruding corner of 

interior angle 2a. For the wedge container the transition at the critical contact angle 

/'o = 1r /2 - a is sharp. For 'Yo ::; I' < ~ and for liquid volume sufficient to cover the 

base, the height of the free surface S can be given in closed form as a portion of a lower 

hemisphere meeting the walls with the prescribed contact angle 1. Thus for given volume 

of liquid the height is bounded uniformly in I' throughout this range. For 0 ::; 1 < 'Yo, 

the liquid will move to the corner and rise arbitrarily high at the vertex P, uncovering the 

base regardless of liquid volume. The behavior for the wedge domain is thus discontinuous 

at I' = /'o· Physical procedures for determining critical contact angle in this container 

can give very good accuracy for larger values of 1 (closer to 1r /2) but may be subject to 

experimental inaccuracy when 1 is closer to zero, as the part of the section over which the 

liquid accumulates when the critical angle 'Yo is crossed then becomes very small and may 

be difficult to observe. 

The canonical proboscis containers provide a way of overcoming the above experimental 

difficulty. These containers are cylinders whose cross-sections consist of a circular arc 
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Figure 2. Proboscis container section showing three members of the continuum of extremal 
arcs. 

attached symmetrically to a (symmetric) pair of curves described by 

x + C = V Ro 2 - y2 + Ro sin 'Yo ln J Ro 2 - y2 cos 'Yo - y sin 'Yo 
Ro + ycosf'o + VRo2

- y 2 sin 'Yo 
(1) 

and meeting at a point P on the x-axis, see Fig. 2. Here R 0 , as well as the particular points 

of attachment, may be chosen arbitrarily. The continuum of circular arcs r o, of which three 

are depicted by the dashed curves in Fig. 2, are horizontal translates of one such arc, of 

radius Ro and with center on the x-axis, and the curves of Eq. (1) have the property that 

they meet all the arcs r 0 in the constant angle 'Yo. The radius p of the circular boundary 

arc can be chosen in such a way that 'Yo becomes the critical contact angle value for the 

container. Specifically, one can show mathematically that a solution of the YLG equations 

governing the equilibrium liquid free-surface can exist inn if and only if I'> f'o, and that 

the liquid height rises unboundedly as I' decreases to 'Yo, precisely in the region swept out 

by the arcs r 0 (the entire proboscis region to the right of the leftmost arc r 0 shown in Fig. 

2). Furthermore a unique value of p can be obtained for any prescribed proboscis length, 

and there holds R 0 cosf'o < p < 2R0 . Thus, the behavior is not strictly discontinuous as 

for the basic planar wedge container-the liquid shifts increasingly toward the proboscis 

wall as I' decreases to 'Yo-but it can be "nearly discontinuous". 

Numerical solutions depicting such behavior are given by Concus et al. (1992) for some 

canonical proboscis containers. For these containers the rise height in the proboscis can 
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be relatively modest until 1 decreases to values close to 'Yo, and then becomes very rapid 

as 1 decreases still further. Since the proboscis can be made relatively as large a portion 

of the section as desired, the shift can be easily observed for a broad range of 'Yo. Through 

proper choice of the domain parameters for the cases considered, an effective balance can 

be obtained between conflicting requirements of a sharp near discontinuity (for accurate 

measurement) and a sizable volume of liquid rise (for ease of observation). 

2.2 Double proboscis containers 

The double proboscis containers for ICE are similar to the single proboscis one of Fig. 

2, except that there is a second proboscis diametrically opposite to the first, in effect 

combining two single proboscis containers into one. The values of 'Yo in Eq. (1) differ for 

the left and right proboscides, whose values of 'Yo we denote by /L and /R, respectively. 

Similarly, we denote the values of R0 for the left and right proboscides by RL and Rn. 

These satisfy Rn cos /R = RL cos 'YL· The critical value for the container is the larger of /L 

and /R· For the discussion here; we shall take /R > /L, so that the critical contact angle 

'Yo for a container is equal to 1 R. 

The container cross-sections for the experiment, superimposed on one another, are shown 

in Fig. 3. They have been scaled so that the circular portions all have radius unity. The 

meeting points of the vertices with the x-axis are, respectively, a distance 1.5 and 1.6 from 

the circle center. For the sections depicted in Fig. 3 the values of/Land/Rare respectively 

20° and 26° for the outermost section, 30° and 34° for the middle section, and 38° and 

44 o for the innermost section. 

For these containers the explicit behavior has not been determined mathematically in 

the complete detail that it has for the single proboscis containers. However, numerical 

computations and the known behavior of the single proboscis solution surfaces indicate a 

predicted behavior as follows: For contact angles 1 ~ /R, as 1 decreases to /R the liquid 

will rise higher in the right than in the left proboscis, with the rise becoming unbounded 
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Figure 3. Three superimposed double proboscis container sections. From outermost to 
innermost, the pair of values of /o for the left and right proboscides of each section are 
20°/26°, 30°/34 o, and 38°/44 o. 

in the right proboscis at /R· For contact angles between /L and IR the liquid will rise 

arbitrarily high in the right proboscis, but the height in the left will still be bounded. 

For smaller contact angles the liquid will rise up both probosCides arbitrarily high. By 

observing the liquid shift, one can then bracket the contact angle relative to the values of 

IL and /R· For a practical situation in which the container is of finite height with a lid on 

the top, the liquid will rise to the lid along one or both of the proboscides in the manner 

described above (provided the liquid volume is adequate); in some cases, liquid may then 

travel along the corner at the lid and flow into the other proboscis from the top. 

The selected values of /L and /R for the three containers are based on the value of approx­

imately 32° measured in a terrestrial environment for the contact angle between the ICE 

experiment liquid and the acrylic plastic material of the container. The spread of values of 

contact angle covered by the three containers is intended to allow observation of possible 

effects of contact angle hysteresis, which is not included in the classical theory. 

2.3 Computed surfaces 

The mathematical equations governi~g the free surface were solved numerically for the 

three double proboscis container sections depicted in Fig. 3, for a range of contact angles ')', 
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Figure 4. Computed equilibrium interface for the 30°/34° (upper-half) double proboscis 
section for contact angles 60°, 50°, 40°, and 35 o, ')'o = 34 o. 

to obtain details of the anticipated liquid behavior. It was adequate to compute solutions 

for the upper-half domains only, because of the reflective symmetry. The adaptive-grid 

finite-element software package PLTMG was used (Bank 1998). 

The numerically calculated equilibrium solution surface for the upper half of the 30°/34 o 
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domain is shown in Fig. 4 for four values of contact angle, 60°, 50°, 40°, and 35°. (The 

critical value for the domain is 'Yo = 34° .) The three-dimensional views of the surface are 

color-shaded by PLTMG to indicate contour levels, grayscale versions of which are shown 

in the figure. The viewpoint for each surface is the same. Generally, the computations 

indicate that as 1 decreases toward the critical contact angle, liquid moves toward and up 

the two proboscis walls, with the local maximum heights, as calculated by the program, 

at the proboscis tips. The heights at the right are higher than the corresponding ones at 

the left. The surfaces for the 20°/26° and 36°/44° proboscis domains behave similarly. 

One sees that the numerically computed rise height in the container is modest until 1 gets 

close to the critical value. The computations indicate that using containers of sufficient 

height (five for our containers), one could distinguish between the critical value 'Yo for the 

container (liquid in right proboscis rises to the lid) and a contact angle value one degree 

greater (liquid rise height less than five). 

3 Experiment apparatus and results 

All double proboscis vessels flown were similar in construction; the 38°/44 o vessel is de­

picted in Fig. 5. The primary vessel components are a two-piece acrylic-plastic (transpar­

ent) body, an aluminum piston and control dial, a stainless steel drive screw, an aluminum 

valve, and an aluminum base for securing the vessel to the experiment platform. 0-ring 

seals are employed throughout. The internal surfaces of the proboscis vessels were preci­

sion milled on a numerically-controlled machine using a diamond tipped cutting tool; the 

coordinates were computed from Eq. (1), all dimensions being scaled to correspond to a 

circular boundary arc of radius 1.5 em. The (interior) height of the vessels is 11.1 em. The 

critical surfaces were finished by an extremely light polish ("wipe") using a dry cloth. The 

vessels were fabricated in halves divided by the plane of symmetry, and the two halves 

were fused without corruption of the interior corner at the joint. 

The interior surfaces of the vessels ~ere cleaned by first flushing with an aqueous 80% 
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Figure 5. 38°/44° proboscis vessel (flight unit, ICE-P3): 1 proboscis container, 2 control 
dial, 3 piston/plunger, 4 reservoir valve, 5 fill passage. 

ethanol solution and then rinsing with continuously flowing distilled water for several 

minutes. Afterward the vessels were dried in a vacuum oven at low temperature (120° F). 

The uncertainties in the cut for the fabricating mill were less than 2.5 f-Lm. As a rough 

comparison with this uncertainty, one calculates that if a 34°/30° container section were 

replaced by a 33.9°/30° one having the same left and right extremities (Fig. 3) , then the 

intersection point of the right proboscis with the circular portion of the boundary would 

move a distance of about 8 p,m. The error associated with the fusing of the two half-vessels 

was estimated by a post-fabrication calibration that revealed a mean tolerance upper bound 

of 76 p,m for the proboscis shapes, as determined by the distance of the container wall to a 

measured cylinder axis. Uncertainties associated with absorption of water by the container 

material and thermal expansion during flight were estimated to be an order of magnitude 

less. 
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The general experimental procedure for ICE during the USML-2 flight was to partially fill 

the selected vessels with prescribed volumes of fluid and to record with video cameras the 

fluid interface configurations that resulted. The crew procedures for carrying out the ex­

periment consisted primarily of the steps: (1) unstow equipment, (2) set up Glovebox and 

vessel, (3) charge vessel/activate, (4) observe stable surfaces, (5) disturb surface configura­

tion(s), (6) observe resulting surfaces, (7) repeat (5) and (6), and (8) reverse fill procedure 

and stow. For the three vessels a total of approximately ninety minutes was required. The 

Spacelab Camcorder and a Glovebox full-color 1:1 video camera were utilized. Devices for 

the measurement of ambient Glovebox temperature and local acceleration levels were also 

used. Fig. 6 shows crew member Fred Leslie conducting the experiment in the Spacelab 

Glovebox during the mission. 

To begin the experiment, a crew member retrieved the Spacelab Camcorder (Hi-8mm 

format) and unstowed the ICE vessel to be tested. A diffuse backlight panel provided 

illumination for the video photography. 

The test liquid for all the double proboscis vessels was an aqueous ethanol solution, 50% 

by volume. This particular concentration was selected for the specific wetting conditions 

desired. A red dye was added to enhance observations. The longtime "equilibrium" contact 

angle for this liquid mixture on acrylic plastic in the presence of ethanol saturated air was 

measured by the sessile drop method to be 32° ± 2°. The largest range measured for static 

contact angle hysteresis of the liquid on a machined, lightly-polished acrylic surface cleaned 

in the same manner as the experiment vessel was 18° for the receding value and 43° for the 

advancing value by the tilt-slide method. Mean values were 20° and 41 o, respectively, with 

an equilibrium value of r eq = 32°, all values producing a consistent uncertainty of ±2°. The 

density, kinematic viscosity, and surface tension for the dyed aqueous ethanol solution were 

measured respectively, using standard laboratory buoyant-bulb densiometer, viscometer, 

and Du Noiiy ring, to be p0 = 896 kg/m3
, v = 2.75 x 10-6 m2 /s, and 0' = 0.0308 N/m at 

room temperature (approximately 72° F). 

To carry out the fill procedure, the crew member pulled open the reservoir valve and turned 
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Figure 6. Crew member Fred Leslie conducting ICE-P2 test in Spacelab Glovebox facility: 
1 video monitor, 2 Glovebox, 3 proboscis vessel, 4 Spacelab camcorder. 

the control dial, displacing the entire liquid contents of the reservoir into the double pro­

boscis container (see Fig. 5). The liquid then assumed a particular "static" configuration 

(not necessarily an equilibrium configuration; a static configuration of an interface implies 

a possibly metastable state, common in partially wetting, contact-line-dominated situa­

tions exhibiting significant contact angle hysteresis; see Kistler (1993, p. 328)). Time was 

allowed for the configuration to stabilize (up to 5 min) . The crew member then disturbed 

the surface by tapping the side of the container with his finger, lightly at first and then 

subsequently with increasing force . The tapping was generally of the order of 10-2g or 

10-1g, substantially larger than the background steady g level ( < 10-4g) and spurious 

disturbances (10-4g to 10-3g). All new surfaces that formed in the container during the 

tapping process were given time to stabilize and were captured on video. The tapping, 

which led eventually to larger scale rocking and sloshing, produced different results for 

each of the three containers. These results are discussed below. 
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Figures 7a- b. Static interface shapes for ICE-Pl (20° /26°) vessel. 7a (left): after comple­
tion of fill; 7b (right): after disturbances by crew member. 

3.1 Vessel ICE-Pl 

The first vessel tested was ICE-Pl, the 20°/26° vessel, as depicted in Fig. 3. Both pro­

boscides for this vessel are subcritical for the 'Yeq = 32° liquid. Fig. 7 shows two static 

interface shapes for the vessel: Fig. 7a was taken shortly after the fill procedure was com­

pleted, and Fig. 7b was taken after significant disturbances to the vessel had been imparted 

by the crew member. Very little change in the interface can be distinguished between ini­

tial and final states, even though significant disturbances were imparted. This is in accord 

with the mathematical predictions, as the measured equilibrium contact angle 32° ± 2° is 

greater than the critical angles for both proboscides. A somewhat elevated surface in the 

righthand 26° proboscis is anticipated, relative to the lefthand one, as its critical angle is 

closer to the value 'Yeq = 32° (cf., Fig. 4). Imparting larger disturbances might possibly 

have "released" the liquid to end up with a somewhat larger height difference between 

the two probscides, as in, say, the 40° case in Fig. 4, but, generally, the video indicated 

much more stable behavior for this vessel than for the subsequent ones described below. 

For vessel Pl, and also for vessels P2 and P3, the initial static interface shapes prior to 

the initiation of disturbances were observed to be largely the same as the terminal ones 
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observed in the pre-flight drop tower tests reported in Chen et al. (1997). 

3.2 Vessel ICE-P2 

The lefthand/righthand proboscides for this vessel are the 30°/34° ones, so that the left­

hand proboscis is subcritical with respect to /eq = 32°, while the righthand one is super­

critical. A series of static interfaces formed during the test sequence is shown in Fig. 8. 

Fig. 8a is taken shortly after completion of the fill procedure. Figs. 8b, 8c, and 8d are 

images of static interface configurations after successive disturbances to the vessel by the 

crew member. For this test, once the liquid fill was completed, light taps on the side of 

the container produced small, high frequency surface waves , but did not lead to observable 

bulk reorientation of the liquid. As the disturbances were increased in magnitude, however, 

instead of returning to the initial state of Fig. 8a (as was the case for vessel ICE-P1 in 

Fig. 7) the liquid rose noticeably and somewhat equally in the proboscides (Fig. 8b). After 

allowing sufficient time for stabilization, the crew member repeated the disturbances to the 

vessel, but not increasing thein in magnitude. Each disturbance was imparted by a single 

"push" (impulse) to the top lefthand side of the vessel which acted to rock the interface 

with a mean amplitude A of approximately 4 mm over a 0.4 s interval td. Thus, a mean 

dynamic Bond number Eo = p0 aR2 
/ O" • 0.33 may be computed, where a is the effective 

acceleration of the disturbance (a · 2Ajt~, assumed constant) and R is a characteristic 

dimension of the container, in this case the radius of the circular portion of the boundary 

(0.015 m) . The interface responded to the impulse disturbance with approximately 1.3 Hz 

damped oscillations that decayed within 10 s. The interface was allowed time to stabi­

lize between each disturbance. (The imparted disturbances for this vessel and for Vessel 

ICE-P3 are described more fully in Sec. 3.4.) 

As seen in Figs. 8c and 8d, subsequent, larger disturbances , carried out to explore further 

the initial liquid rise, led to an increased rise only in the 34 o right hand supercritical 

proboscis. The penetration of the liquid into the righthand proboscis took place not only 

when disturbances to the cell were applied to the top righthand but also to the top lefthand 
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Figures 8a-d. Static interface shapes for ICE-P2 (30° /34°) vessel. 8a (upper left): after 
completion of fill; 8b (upper right), 8c (lower left), and 8d (lower right): after successive 
disturbances by crew member. 

side of the vessel. This result indicates, somewhat emphatically, that the slight differences 

in proboscis fabrication, which were designed to produce unbounded flow up the righthand 

proboscis only, do influence fluid behavior strongly, even in the presence of hysteresis. In 

practice, however, significant disturbances ( · 0.05 m/s2
, Eo · 0.3) were necessary in 

order to overcome contact angle hysteresis and to bring about the large shifts of liquid 

depicted in Figs. 8c-d. (Remark: Wh(m Bo?:1, destabilization and break-up of the surface 

can be anticipated experimentally, as described by Masica et al. (1964). For the inverted 
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circular cylinder, numerical studies by Concus (1968) indicate similar stability limits.) It 

is remarkable that although the hysteresis range for the test liquid is 20° ::::; 1 ::::; 41 o, 

the interface behaved in a manner that is in accord with the mathematical predictions of 

discontinuous type of behavior based on the idealized YLG theory using a value /eq = 32°. 

It is striking also that the uncertainty of ±2° for /eq did not mask the effect on this 

behavior of the subtle differences in the left and right proboscides designed for the 30°/34° 

critical angles. It would be of interest, of course, to repeat the experiment to confirm the 

behavior for this vessel and to rule out random or other effects that may have influenced 

it. The results are striking, but they cannot be considered absolutely conclusive in view 

of the hand-held nature of the experiment, for which applied disturbances could not be 

controlled precisely. Nevertheless, until additional experiments can be done, there remains 

the record of the compelling results that were obtained. 

3.3 Vessel ICE-P3 

Both proboscides for the third vessel, the 38°/44 o one, are supercritical for the test fluid. 

Therefore, the mathematical predictions are that the liquid should rise spontaneously to 

the lid in both left and right proboscides. Because the right proboscis is more supercritical 

than the left, greater/faster rise may be anticipated there. A series of images, similar 

to those in Figs. 8a-d, are presented for vessel ICE-P3 in Fig. 9. Fig. 9a shows the 

interface after completion of the fill procedure, and Figs. 9b, 9c, and 9d show interfaces 

after subsequent disturbances to the vessel. Again, each image displays the liquid in a static 

state. Disturbances to this vessel caused large shifts of the liquid up both proboscides, 

with more up the righthand proboscis. The liquid continued to penetrate higher in each 

proboscis regardless of the direction of the impulse disturbance. These results are in 

accordance with the predictions, except that the liquid did not move spontaneously­

significant disturbances (Bo?:0.3) were necessary to bring about equilibrium-type behavior 

within the approximately 20 minutes allowed for the experiment. 

After completion of the ICE-P3 procedures (Fig. 9d), the crew placed the vessel (delicately) 
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Figures 9a-d. Static interface shapes for ICE-P3 (38° /44°) vessel. 9a (upper left): after 
completion of fill; 9b (upper right), 9c (lower left), and 9d (lower right) after successive 
disturbances by crew member. 

in the aft end cone of the Spacelab module, where it was allowed to remain for seven days. 

During this time it was observed that the liquid continued to creep, though very slowly, 

toward the end state configuration of Fig. 10, which was photographed with a 35 mm 

camera at the end of the seven days. The lighting is not as favorable here, but the liquid 

free surface can still be easily identified. The liquid is seen to have risen further in the 

left hand proboscis ( cf., Fig. 9d), while the liquid in the righthand proboscis rose to the lid, 

covered it, at least partially, and then started advancing down the lefthand proboscis. The 
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Figure 10. Static interface shape for ICE-P3 (38° /44°) vessel one week after that shown 
in Fig. 9d. 

YLG equilibrium theory requires that the base, lid, and entire length of both proboscides 

be wet by the liquid. (The isolated drop in the lower left quadrant of Fig. 10 was present 

prior to the long-term storage (see Fig. 9d).) 

These findings suggest that the idealized theory can indeed be successful in predicting 

fluid behavior, if sufficient time is available to establish equilibrium. The time required to 

reach the configuration in Fig. 10 may have been lessened by existing mechanical and ther­

mal disturbances, the latter hastening migration of the liquid toward equilibrium through 

successive evaporation and condensation, a process (associated with Kelvin energy) not 

included in the YLG theory. Figs. 9d and 10 show that the fluid bulk remained connected 

and that condensate drops on the container walls, common in many partial wetting sys­

tems subject to temperature cycling on Earth, were not present. We note that liquid near 

the proboscis tip in the cases for which the theory predicts that the liquid still should be 

advancing (right proboscis in Figs. Se-d, both proboscides in Figs. 9c-d) resembles the 

convex shape computed by Weislogef and Lichter (1997) for the tip of a spreading liquid 

drop in a wedge. 
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Figure 11. Time sequence of disturbance accelerations a (right scale) and resulting fluid 
heights (left scale) for vessels ICE-P2 and ICE-P3. Solid circles denote heights at the 
right proboscis tip, open circles heights at the left. Upward pointing triangles denote 
accelerations imparted primarily to the right proboscis, downward pointing ones to the 
left. 

3.4 Remarks 

Although detailed instrumentation was beyond the scope of the resources available for the 

experiment, it is possible to obtain from the video recordings an approximate indication 

of the perturbing accelerations imparted by the astronaut and resulting fluid rises. These 

are shown in Fig. 11 for Vessels ICE-P2 and ICE-P3 over the time period when the larger 

perturbations were being applied. The rise heights, solid circles denoting the right and 

open circles the left, are measured at the proboscis tips. The accelerations were calculated 

by dividing the measured distance traversed after an impulse was applied by half the time­

of-travel squared. A triangle pointing upward denotes a rocking motion that imparted an 

acceleration primarily to the right proboscis and a downward pointing one an acceleration 

primarily to the left. The large impulse for Vessel ICE-P2 at time 225 s is the one that 
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drove the fluid a substantial distance up the right proboscis. The liquid continued to rise 

up the right subsequently, nevertheless, even for disturbances applied to the left. We note 

again that the shape of the surface near the proboscis tips give the clearest representation of 

what was revealed on the video tape-the convex shape indicates liquid that is advancing, 

the more concave shape, as in Figs. 4 and 7, liquid that is not. 

The results of the experiment provide insight into the role of container geometry, contact 

angle, contact angle hysteresis, input disturbances, and length of time in predicting inter­

face configurations. What is clearly established is the role of hysteresis near critical values 

for which slight changes in container geometry result in large changes in interface config­

uration. Hysteresis is found not to prevent the predicted behavior, but only to noticeably 

impede it. Significant perturbations to the interface are necessary to "encourage" the fluid 

to behave as predicted in reasonably rapid time. 

4 Conclusions 

The USML-2 ICE experiment shows in a striking way the discontinuous type of behavior 

for the double proboscis containers at the predicted critical angles. Even though hysteresis 

was large and surface friction impeded reorientation of the liquid, the mathematically 

predicted behavior at critical contact angle was observed. This lends credence to the 

validity of the concept of macroscopic contact angle and its YLG formulation as tools for 

predicting fluid behavior. 

Acknowledgments 

We wish to thank Fred Leslie for the highly skilled manner in which he carried out the 

space experiments. We thank also the reviewers for their insightful comments. This 

work was supported in part by the National Aeronautics and Space Administration under 

Grants NCC3-329 and NAG3-1941, by the National Science Foundation under Grants 

DMS-9400778 and DMS-9401167, and by the Applied Mathematical Sciences Subprogram 

20 



of the Office of Science, U. S. Department of Energy, under Contract Number DE-AC03-

76SF00098. 

Appendix 

One of the referees requested a discussion in terms of pressure difference of the statement 

in Sec. 3.3 that a greater /faster rise in the right proboscis for the 38°/44 o container could 

be anticipated. We give such a discussion here. 

The radii RL and RR are critical values, reflecting singular behavior (unbounded rise height 

in a proboscis) that manifests itself at the corresponding critical contact angles 'YL = 38° 

and 'YR = 44° . For either of them (say RR ) we have, according to the theory described 

in (Chen et al. 1997), 

with a corresponding (critical) pressure jump oPR = 2a / RR across the arc r R when 

'Y = 'YR; 101 is the area of the container section and II; I the length of its boundary I;. 

At a contact angle 'Y < "fR, the pressure jump occurs across an arc r of radius R that 

meets the proboscis boundary I;R in angle 'Y· Denoting by TR the inclination of I;R at the 

contact point with r R and the container section circular arc, we have 

R = RR cos(TR + "fR). 
cos(TR +"f) 

Thus, the pressure change across r will be 

oPR = 2a II;I COS"(R cos(TR + 'Y) . 
101 cos( TR + 'YR) 

An analogous formula holds for the left proboscis, whenever 'Y < 'YL· 

Using Eq. ~1) one can then calculate~ that oPR > oPL for all contact angles less than or 

equal to 'YL = 38°, and in particular for the value 'Yeq = 32° for the experiment liquid. 
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