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Summary 

An efficient method to solve three-dimensional (3-D) 
electromagnetic (EM) scattering problems is in great demand 
for practical applications of EM methods. We have derived a 
new formulation of a magnetic field integral equation 
(MFIE) and investigated its theoretical aspects. There are 
several advantages of using an MFIE in obtaining solutions 
of 3-D EM problems since magnetic fields vary more 
smoothly than electric fields in an anomalous body if a non­
magnetic medium is considered. The MFIE, derived from the 
electric field integral equation (EFIE) in a more familiar, and 
physically more meaningful manner, consists of terms 
expressed by an equivalent electric current density and 
magnetic moment source, which are generated by the 
presence of a conductivity anomaly. 

It is also shown that the extended Born approximation to the 
MFIE results in an identity scattering tensor, which indicates 
that the Born approximation is more effective using the 
MFIE than the EFIE. It turns out that the Born and nonlinear 
Born (Habashy et al., 1993) approximations are the same for 
the MFIE. This analysis implies that an MFIE solution may 
be effective for practical 3-D EM modeling. 

Introduction 

Any rigorous numerical modeling method of three­
dimensional (3-D) electromagnetic (EM) problems is time­
consuming and takes a large amount of computer memory. 
As a result, 3-D EM data analysis is very difficult unless the 
algorithm is implemented on a massively parallel computing 
machine or a multiple processor environment (Alumbaugh 
and Newman, 1995). Hence, alternative attempts have been 
made to seek approximate but good solutions, in most cases, 
based on the Born approximations. Alumbaugh and 
Morrison (1993) developed a 2-D iterative Born inversion 
for imaging the subsurface conductivity distribution. The 
Born approximation technique, however, tends to be 
inaccurate for high conductivity contrast and at higher 
frequencies. To overcome these difficulties, Habashy et al. 
(1993) published the extended Born approximation method 
in which the electric fields inside inhomogeneities are 
approximated by the product of a 'scattering tensor' and the 
incident field. 2-D and 2.5-D numerical algorithms have 
been published based on this approximation (Torres-Verdin 
and Habashy, 1994; 1995) and the method has been 
successfully extended to 3-D problems (Tseng et al., 1996). 

Zhdanov and Fang (1996) presented a similar method called 
'quasi-linear approximation' in which the electric fields are 
evaluated by a linear transformation of the primary field. and 
apply this method to inversion. All these methods mentioned 
above utilize the electric field in the formulation of the 
problem. Since the normal component of the electric field is 
discontinuous across the conductivity boundary, the 
effectiveness of the extended Born approximation, for 
example, may be limited. 

Xie et al. (1995) derived a magnetic field integro-differential 
equation solution and Xie et al. (1996) applied Born 
approximations to combined solutions of finite element and 
integral equation schemes in forward and inverse problems. 
Lee et al. (1998) presented a preliminary analysis using the 
MFIE. They showed that the extended Born approximation 
to MFIE is the Born approximation itself and obtained a 
convergent iterative Born approximations to MFIE. In this 
paper, we further modify the MFIE and show that the MFIE 
has a physical representation in terms of how the magnetic 
field and 'anomalous' currents are related through the 
conductivity anomaly in a inhomogeneous medium. 

Magnetic Field Integral Equation 

Using Maxwell's equation and the dyadic Green's function, 
one can find the solution of the EM scattering problem in the 
form of the electric field integral equation (EFIE) (Hohmann, 
1975; Tseng et al., 1996) 

E(r) = Eb (r)- z J ~u (r, r') · ~jl(r')E(r')dr' (1) 

where 
r is the position where the total electric field is to be 

measured, 
r' is a position vector of any point in the anomalous body, 
E(r) and Eb (r) are the total and incident electric fields at 

r, respectively, 

G (r,r') is the electric dyadic Green's ·function which 
=I::l 

relates the electric field at r due to an electric current 
source at r' , 

z(=iOJf.Lo) is the impedivity, and 

~y = y(r')- yb is the admittivity (or conductivity in quasi­

static case) difference between the anomalous body and 
the background medium, and y(r')=o(r')+iOJE(r') is 



the admittivity at r' and yb is the admittivity of the 

background medium, respectively. 

Taking curl of both sides of equation (I), Xie et a!. (1995) 
obtained the magnetic field integro-differential equation, 

H(r) = Hb (r) + S(r) 

-z f l/l(r') ~H/r, r') · V'xH(r') dr' 
(2) 

v 

where 

(3) 

S(r) = zf l/l(r') ~HJ (r,r') ·J E(r')dr'' (4) 
v 

with the impressed electric source current density J E , and 

the conductivity function defined as 

~y(r') 
l/l(r')=--. 

y(r') 
(5) 

Here we assume that the boundary of the anomalous body is 
within the volume, so that the conductivity function at the 
boundary of the volume is zero. For a current dipole located 

at r, with dipole moment /dl, then equation (4) reduces to 

S(r)=zl/l(r)G (r,r)·/dl, 
s =Ill s 

(6) 

which exi'sts only when the conductivity at the source region 
differs from that of background medium. 

Using the identity (Van Blade!, 1984) 

V'xH(r') · { ¢>(r' )~:1 (r, r')} 
= V' ·{ H(r') x ¢>(r' )~:1 (r, r')} 
+ H(r') · V'x{ l/l(r' )~:1 ~r, r')} 

equation (2) is modified as 

H(r) = Hb (r) + S(r) 

-z f V'·{H(r') x ¢>(r' )~:~ (r, r') }dr' 
v 

-z f H(r') · V'x{ ¢>(r' )~~" (r, r')} dr', 
v 

(7) 

(8) 

where superscript T denotes transpose of a dyadic. Applying 
the divergence theorem to the first integral in the right-hand 
side of equation (8), and noting that the conductivity 
function is zero at the boundary, we find 

f V'·{ H(r') x ¢>(r' )~:1 (r, r') }dr' 
v (9) 

Finally, we arrive at the magnetic field integral equation 
(MFIE) (Lee eta!., 1998) 

H(r) = Hb (r) + S(r) 

-zf H(r') · V'x{¢>(r')~:/r,r' )}dr'. 
(10) 

v 

Now, we will further modify equation (10) to a familiar form 
that we can work easily with. We first break the integral into 
two parts, and use the identity (Van Blade!, 1984) 

H(r') · V'x{ ¢>(r' )~:1 (r, r')} 
= {H(r')xV'¢>(r')}·G' (r,r') 

=HJ 
(I I) 

+ {H(r' )l/l(r' )} · V'xG' (r, r'), 
=Hl 

then equation (I 0) can be rewritten as 

H(r) = Hb (r) + S(r) 

-z f {H(r') x V' ¢>(r' )} · ~:1 (r, r' )dr' (12) 
v 

-z f {H(r' )l/l(r' )} · V'x~:1 (r, r') d~'. 
v 

Using the identity of a transpose of a dyadic 

a·G'=G·a (13) 

the first integral on the right-hand side of equation (12) is 
rewritten as 

-z f {H(r') x V' ¢>(r' )} · ~:1 (r, r' )dr' 
v (14) 

= -z f ~HJ (r, r') · {H(r') x V' ¢>(r' )}dr'. 
v 

To modify the second integral of equation (12), we first 
invoke the general reciprocity theorem 



1 
G (r,r') = --Gr (r',r), (15) 
=HJ • =EM z 

which is valid if the following representation 

V' x E = -z(H + M) (16) 

is used to include the magnetic moment M in the derivation 
of the dyadic Green's function. Then the dyadic part of the 
second integral in equation (12) is modified to 

r I 
V''xG (r',r) = --V''xG (r',r). (17) 

=HJ • =EM z 

Now, since the right-hand side may be substituted by the 
relationship 

V''xG (r',r)=-zG (r',r), 
=EM =HM 

(18) 

equation (17) can be further modified to 

V''xGr (r,r') = G (r',r). (19) 
==HJ ==HM 

Again, invoking the reciprocity theorem 

G (r',r)=Gr (r,r'), 
=HM =HM 

(20) 

one arrives at 

V''xGr (r,r')=Gr (r,r'). 
==Hi ==HM 

(21) 

Using equations (21) and (13), in that order, we can finally 
rewrite the second integral of equation ( 12) as 

-z J {H(r' )ip(r')} · V''x~:1 (r, r') dr' 
v (22) 

= -zf ~H)r.r' )· {H(r')ip(r' )} dr'. 
v 

Finally, MFIE (12) takes a familiar form 

H(r) = Hb (r) + S(r) 

-z J ~HJ (r, r') · {H(r') x V'' ip(r' )}dr' (23) 
v 

-z J ~HM (r, r') · {H(r' )ip(r' )} dr'. 
v 

If we identify an 'excess' electric current source defined by 

H(r') xV''ip(r') = JH;(r'), (24) 

and an 'excess' magnetic source 

H(r')ip(r') = M H; (r'), (25) 

then the MFIE can be simplified to 

H(r) = Hb (r) + S(r) 

-z J ~HJ (r, r') · J H; (r' )dr' (26) 

v 

-z J ~H)r. r') · MH; (r' )dr'. 
v 

From the equations (24) and (25), we notice that the 'excess' 
electric current source is normal to the gradient of 
conductivity function, with its amplitude equal to the 
gradient of the conductivity function times the magnetic field 
perpendicular to it. On a boundary between elements of 
different conductivity, for example, the current' is the 
tangential magnetic field times the conductivity anomaly 
normalized by the conductivity itself, and bounded to the 
surface. On the other hand, the 'excess' magnetic moment is 
the magnetic field itself times the conductivity function. It is . 
a volume distribution, and exists whenever there is a 
conductivity anomaly. 

Extended Born approximation to MFIE 

Habashy et al. (1993) suggested an alternate way to linearize 
the EFIE by rearranging equation (1) as 

(27) 

where I;<r) is called the depolarization tensor or scattering 

tensor defined as 

l(r) = [l+zJG (r,r')dy(r')dr']-l· 
= = =EJ 

v 

(28) 

and ! is the 3 X 3 identity dyadic. 

The above non-linear approximation of EFIE is valid only if 
the electric field changes smoothly within the 
inhomogeneity. The electric field, however, can vary 



significantly within the inhomogeneity when there is 
resistivity contrast in the inhomogeneity or electric field 
normal to this contrast boundary exists. Furthermore, a 
conventional Born approximation of electric field breaks 
down when the inhomogeneity is large compared to the 
wavelength or at higher frequencies. In contrast, the 
magnetic field within the inhomogeneity is much smoother 
than the electric field if the medium is non-magnetic.· 

Applying a non-lirrear approximation to equation (10), we 
have 

H(r) = Hb(r)+S(r) 

-z J {H(r')- H(r)} · V'x{¢Cr' )~:/r, r' )} dr' 
v 

-z H(r) · J V'x{ ¢(r' )~:, (r, r')} dr'. (29) 

With the following identity and radiation condition, 

J V'x{ ¢(r' )~:, (r, r')} dr' 
v 

(30) 

equation (29) can be rewritten as 

H(r) =! · [Hb (r) + S(r) 

- zf {H(r' )- H(r)} · V'x{¢(r' )~:, (r,r')}dr'] 
v 

(31) 

If we ignore the last term in the brace as we do in the 
extended Born approximation of EFIE, the depolarization 
tensor in the magnetic formulation becomes the identity 
tensor. In other words, the non-linear approximation is 
equivalent to Born approximation in the MFIE. Lee et al. 
(1998) applied iterative Born approximations to MFIE and 
obtained convergent solution. 

Conclusions 

We have derived a useful representation for the MAE in 
which two distinctive 'fictitious' scattering currents are 
clearly identified and responsible for generating the 
secondary field. It shows that the secondary field is caused 
by excess electric and magnetic currents generated by 
conductivity anomaly and the magnetic field itself. The Born 
approximation to MFIE was shown to be equivalent to the 
extended Born approximation, and preliminary results (Lee 
et a!., 1998) show that application of iterative Born 

approximation to MFIE can be effective for EM modeling. 
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