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Abstract 

We present the analytic solution of the Mode III steady-state crack in a 

square lattice with piecewise linear springs and Kelvin viscosity. We show 

how the ~esults simplify in the limit of large width. We relate our results to 

a model where the continuum limit is taken only along the crack direction. 

We present results for small velocity, and for large viscosity, and discuss the 

structure of the critical bifurcation for small velocity. We compute the size of 

the process zone wherein standard continuum elasticity theory breaks down. 
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I. INTRODUCTION 

The problem of the dynamics of cracks has received renewed interest recently, [1] mo

tivated in large part by new sets of experiments. [2,3] These experiments have called into 

question some of the predictions of the traditional, continuum mechanics approach to frac

ture dynamics. The most striking experimental finding is that cracks exhibit a branching 

instability long before they reach the predicted limiting speed of advance. This instability 

causes increased dissipation and sets an effective limit on the speed of crack propagation. 

Then!! are hints of such an instability in the continuum approach, [4] but a systematic treat

ment remains elusive. [5] 

One avenue of exploration that has proven fruitful is the lattice models of fracture pi

oneered by Slepyan [6,7] and further developed by Marder and collaborators. [9,10] These 

models, especially in the extreme brittle limit, are simple enough to allow comprehensive 

study, both analytically and by numerical simulation. The lattice models exhibit some novel 

effects, not seen in the continuum description. Foremost is the existence of arrested cracks. 

The lattice models also show instabilities at large velocities that may be relevant to the ex

perimentally seen branching instabilities. Thus, it is useful to understand the lattice models 

in as much detail as possible. 

In a previous paper, [11] we embarked on a study of the effect of dissipation, in the form 

of a Kelvin viscosity, [12] on the behavior of steady-state cracks. We solved numerically 

for the dependence of velocity as a function of the driving displacement b,.. We found that 

dissipation acts to lower the velocity and significantly reduces the size of the lattice-induced 

small velocity unstable regime where the velocity is a decreasing function of the driving. 

We also showed that in the presence of dissipation, the stable regime is well approximated 

by a novel x-continuum model, Wherein the lattice structure perpendicular to the crack is 

retained but along the crack is replaced by a naive continuum limit. We also showed that if 

the transverse dimension N is large, th~n at distances of order N the elastic fields are given 

by the results of standard continuum fracture theory. On small scales, however, there is a 
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boundary layer where the discreteness of the lattice in the transverse direction is important. 

This boundary layer structure is all important in d_etermining the velocity versus driving 

relation. However, as our x-continuum model demonstrated, the discreteness in the direction 

of the crack is less crucial, and primarily affects the small velocity regime. 

In this current paper, we study the large-N limit of the theory. We do this first for our 

x-continuum model, where the structure of the theory is simpler. We then extend this to the 

full lattice model. In both cases, we present a formal Wiener-Hop£ solution of the model for 

arbitrary N, and then take the Iarge-N limit. This is in contrast to the work of Slepyan, who, 

for the case of infinitesimal dissipation, solves the infinite-N limit directly. The principal 

advantage of our method is that it allows a discussion of case of large; but finite, N. It also 

allows a comparison between the small-scale and the large-scale structure, whereas Slepyan 's 

method only produces a solution for small to intermediate scales. Thus Slepyan must rely 

on an implicit matching to large scales via the stress-intensity factor, as opposed to ~he 

explicit matching contained in our solution. The Slepyan method, neve~theless, by avoiding 

the neccesity of solving the finite- N problem, is more easily applied to other cases, such as 

the mode-l problem, where the finite-N solution is not so easily obtained. 

The plan of the paper is as follows. In Section II, we describe the lattice model and the 

simpler x-continuum version. In Section III, we lay out our major res)llts. The details of 

the calculation are contained in the following sections, first for the x-continuum problem in 

Section IV, and then for the lattice problem in Section V. The small velocity limit is studied 

in Section VI and the large viscosity limit in Section VII. We conclude with some comments 

in Section VIII. 

II. DESCRIPTiON OF THE MODELS 

The lattice model we study is identical to that described in our earlier work, [11]. We 

have a square lattice of mass points undergoing (scalar) displacement out of the plane. The 

lattice extends infinitely long in the x-direction, with N + 1 rows' in the y-direction. The 
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lattice points are connected by linear "springs", with spring constant 1, to their nearest 

neighbors. The top row is displaced a fixed amount_~- The bottom row is connected to 

a fixed line, with piece-wise linear springs. These springs, with spring constant k, "crack" 

irreversibly if they are stretched an amount f. When k = 2, this model is equivalent to 

a system of 2N + 2 rows, loaded by ±~ from top and bottom, with a symmetric crack 

running down the middle, with extension at cracking of the springs that br~dge the middle 

being 2E. All the (uncracked) springs have a. viscous damping 17· The equation of motion for 

the system is then 

Ui,j = ( 1 + 1}!) ( Ui+l,j + Ui-l,j + Ui,j+l + Ui,j-1 - 4ui,j) 

for j =/= 1 with Ui,N+l = .6.., and 

(1) 

Ui,l = ( 1 + 1] ~) ( Ui+I,j + ui-l,j + ui,2 - 3ui,j) - kO( t - ui,I) ( 1 + 1J :t) ui,l . (2) 

Note that in these units, the elastic wave speed is unity, so all velocities are dimensionless, 

expressed as fractions of the wave speed. 

We are interested in steady-state cracks, described by the Slepyan traveling wave ansatz, 

(3) 

which implies that every mass point in a given row undergoes the same time history, trans

lated in time. We choose the origin at time such that u1(0) = t so that it represents the 

moment of cracking of the spring attached to the bottom row mass point. The equation of 

motion is best expressed in terms of theN x N coupling matrix 

-(m + 1) 1 

1 -2 1 

1 -2 1 

4 

1 -2 1 

1 -2 

(4) 



The steady-state equation then reads 

ui(t)- O(t) ( 1 + q ~) Mi,i'(O)ui'(t)- 0( .:..t) ( 1 + q ~) Mi,i'(k)ui'(t) 

- ( 1 + q ~) (uj{t + 1/v)- 2ui(t) + Uj(t- 1/v)) = 0 (5) 

We will also consider in this paper an x-continuum version of this model, where we 

replace the nonlocal in time coupling along the crack with its continuum analog 

U;(t) - O(t) ( 1 + ~ :t) M;,;•(O)u,•(t) - 0( -t) ( 1 + ~ ~) M;J•(k )ui'(t) 

- (.1 + "'.!!:_) lu ·(t) = o (6) 
dt v2 3 

III. SURVEY OF RESULTS 

. 
In this section, we survey the major results derived in the bulk of the paper. As· the 

derivations are exceedingly technical, it is useful to present the results first by themselves 

. so that they may be appreciated without getting lost in a welter of technical complications. 

We begin by completing the Wiener-Hopf (WH) solution of the continuous x, discrete y 

model, as the results are simpler and are a useful basis for assimilating the more complicated 

results of the full lattice model. The key aspect of the solution is the calculation of ~ as a 

function of the crack velocity v (in units where the wave speed is unity). We find 

(7) 

which expresses~ (normalized to the Griffith value 

(8) 

;•v 
.· . 

at· which the tnicracked state becomes metastable) in terms of the wave vectors corresponding 

to the various normal modes of the problem. If we label the normal mode eigenvalues of the 

y-coupling_ matrix on the uncracked side M(k) by Am, then Ql,m i~ the unique positive root 

of the dispersion relation 
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(9) 

Similarly, q1,m is the unique positive root of the dispersion relation using the normal mode 

eigenvalue Am of the cracked side M(O). 

This formula is fairly complicated, but simplifies tremendously for the case of symmetric 

cracks (k = 2) in the macroscopic limit N >> 1. Then, the product above can be performed 

analytically, with the simple result 

(10) 

where Q1 (1) is the mode associated with the highest frequency y-mode, with A= -4. For 

typical 'f/'S of order 1, Q1 (1) does not vary much from its zero velocity value of 2. The 

resulting curve jj.( v) / /j.G starts linearly at v = 0 ftom 1 with slope "' and diverges at v = 1. 

Thus, in the infinite N limit, the velocity never exceeds the wave-speed. At any finite N, 

however, the velocity crosses the wave speed at a /j. of order N 116 /j.a. Since the divergence 

with N is so weak, crossing the wave-speed barrier may not be as difficult as one would 

naively think. This is especially true for small dissipation, where the critical /j. scales as 

("'N) 116
. This appears a more likely mechanism for explaining the experimental observation 

of supersonic cracks than the time-dependent forcing hypothesis of Slepyan. [16] 

The basic structure is unchanged when we go over to the full lattice model. The essential 

difference is that the lattice dispersion relation is nonpolynomial and has an infinite number 

of positive (real-.part) solutions for each eigenmode m. The /j.- v relationship is 

~ = vkN + 1 II ql,n,m(1 + 'f/VQl,n,m) 

fj.G n,m Ql,n,m(1 + 'f/Vql,n,m) 
(11) 

where now the product extends over all positive real-part roots Q1,n,m of the lattice dispersion 

relation 

(12) 

for each Am (.Xm in the case of ql,n,m)· For a .given m, there is one real positive root, 

Q1,o,m (ql,o,m), and an infinite series of complex-conjugate pairs of complex roots, ordered 
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by increasing imaginary part. For large n, the imaginary part increases by roughly 27r for 

each successive root. 

Again, for symmetric cracks we can evaluate analytically the macroscopic (large N) limit. 

We obtain 

(13) 

where qoo,n is the root corresponding to the highest frequency A = -4 eigenmode and plays 

the role of Q1 (1) of the previous x-continuum result. The q0 ,n are the roots corresponding 

to the A = 0 eigenmode. These do not have a counterpart in the x-continuum calculation 

as then= 0 real solution vanishes, and only the lattice-induced n =I= 0 modes enter. 

As indicated by the way we expressed this result, we can consider it as essentially the 

x-continuum result, Eq. (11), with the real lattice q00,o replacing Q1 (1), modified by a 

multiplicative correction factor involving the complex lattice modes. To understand the 

usefulness of this way of thinking, as well as its limitations, we present in Fig. 1, for TJ = .5, 

the exact numerically computed relationship Eq. (13), along with the x-continuum result 

Eq. (11). In addition, we plot the lattice result, truncated after its n = 0, lnl = 1 and 

lnl = 5 terms. We see that at larger velocities all these results are close, indicating that 

the lattice-induced shift in q as well as the additional lattice modes play little role at these 

velocities. At smaller velocities, the various approximations differ significantly from each 

other and from the exact curve. We see, in fact, that as v approaches 0, more and more 

terms must be included in the product to achieve an accurate result. The calculation of 

the limiting behavior at small velocities requires summing all the terms. The result of the 

calculation is that for all TJ, as v --+ 0, ~ approaches ~lo+ = )1 + Vi~a, the maximal~ 

for which an arrested crack exists. This generalizes the result of Slepyan for infinitesimal 

dissipation. As v increases, "~ decreases linearly with the TJ-independent slope, -Sio+ /2' so 

that the bifurcation from the arrested is subcritical and universal. 

More progress can be made in the large TJ limit. Here, at fixed ~' the velocity goes to 

zero as TJ increases, so th9-t the ratio <P = qv is fixed. In this limit, we can calculate the 
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FIG. 1. v vs. bt./ bt.a in the x-continuum approximation, Eq. (11), and in the exact lattice 

model, together with the lattice result truncated after the n =:: 0 term, Jnl = 1 and lnl = 5 terms. 

infinite product and find 

~ [ 1 ] 1/2 
~a = coth( 2</J) + .J2 (14) 

This infinite-7] result, together with the exact result for various 'f/'s, is presented in Fig. 2. 

We see that this calculation does not reproduce the subcritical bifurcation from the 

arrested crack at small velocities, which is a higher order effect. We can evaluate this 1/'f/ 

correction near the bifurcation at small </J, and find 

(15) 

which reproduces the small v behavior described above and shows that the 7J dependent 

corrections are in fact exponentially small in v. The resulting ~- v curve starts at ~lo+ 

at v = 0, heads back linearly for a short distance of order 1/ "l(ln 7J )2 and then sharply veers 

forward. 

A last result worth noting is that whereas the Kelvin viscosity model analyzed herein has 

a nice macroscopic limit when expressed in terms of ~a, the model with Stokes viscosity, 

where the dissipation in put in the mas~es and not in the bonds, does not have such a limit. 

There an 0(1) Stokes viscosity at the microscopic level changes the continuum elastic fields 

and requires an ever-increasing~/ ~G as the sample is made wider. 
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3 

2 

1 

-- infinite Tl 
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--- ·-- T1=8 

T1=4 
---- ll'=2 
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0 ~--~--~--~--~------~------~ 
1 2 4 5 

FIG. 2. 1JV vs. f:J.j f:J.a for 1J = 2, 4, 8, 16 along with the asymptotic result for large 1], Eq. (14). 

IV. THE x-CONTINUUM MODEL 

We begin our analysis with the solution of the x-continuum model, Eq. (6), introduced 

in Kessler, et. al. [11 ]. It is important to remember that is this model, the lattice structure 

in the y-direction is left unchanged. The solution of the lattice model is similar in structure 

to that of the x-continuum model, but the latter is a simpler context in which to develop the 

necessary techniques. Furthermore, the x-continuu:rn model is an interesting approximation 

in its own right, which captures a significant amount of the structure of the full lattice 

problem. 

In Kessler, et. al. [11], a Wiener-Hop£ analysis of the problem was initiated. In this 

analysis, the key technique is to decompose. all the terms in the steady-state equation of 

motion into terms analytic in the upper- and lower-half planes respectively. However, the 

analysis was not carried to completion, due to the presence of one term whose decomposition 

. ' was n<>t evident. Here Welise a trick to accomplish the decomposition of this last remaining . 

term, and thereby .. complete the solution of the problem. We choose not to reproduce the 

lengthy preliminary stages of this calculation, for which the interested reader is referred to 

[11]. We do however reiterate the definition of the relevant notat~ons introduced there, so 
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that the current ~xposition is minimally self-contained. 

The problematic term, from [11] Eq. (42), is 

ik TI,(K- ix1,1)(K + ix2,1)(K + ix3,1) 
Tim(K- iq1,m)(K + iQ2,m)(K + iQ3,m) 

(16) 

where the x, q, and Q are the roots of a certain family of cubic polynomials. In detail, let 

£~, (l = 1, ... , N -1) be the eigenvalues of the (N -1) x (N -1) coupling matrix MN-1(1) 

defined in Eq. ( 4) above. Define the polynomial specifying the dispersion relation, P(>.., Q), 

by 

(17) 

Then, P(l!.m, Q) has, for each m, three roots, one positive which we denote x1,m, and two with 

negative real parts, which we denote by -x2,m, -x3 ,m, so that all the x's have positive real 

parts. Similarly, denote the eigenvalues of the N x N matrix M N ( k) by Am, m = 1, ... , N. 

Then Q1,m, -Q2,m, and -Q3,m are the roots of P(Am, Q). Likewise, denote the eigenvalues 

of M(O) by Am· Then q1,m, -q2,m, and -q3,m are the roots of P(>..m, Q). 

It is apparent from these brief remarks that the troublesome term in its current state 

involves singularities and poles in both the upper- and lower-half planes. To proceed, we 

rewrite the numerator using the following manipulations: 

IJ(K- ix1,z)(J< + ix2,z)(I< + ix3,t) 
I 

= -.zryv detN-1 (J(K)T + M(1)) (
1 . K)N-1 

2'f/V . 

1 (1 . K)N-1 
. = k -i~:v [detN (f(K)T + M(O))- detN (J(K)T + M(k))] 

= ~ (1_i~~vK) [IT(K- iq1,m)(/{ + iq2,m)(K + iq3,m) 

-·g(K- iQ1,m)(K + iQ2,m)(/{ + iQ3,m)] (18) 

The first line of this chain employed aJl identity from [11], Eq. ( 40), relating the numerator 

to the determinant of a certain matrix f~rmed from MN-1(1) and the identity matrix T 

together with the function 
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(19) 

The second line in this chain, claiming this determinant is equivalent, up to a constant 

factor, to the difference of two N x N determinants can be proven by expanding each of the 

matrices about the first row. The last line reexpresses each of these two determinants using 

more identities from [11], Eqs. (38-39). 

After these manipulations, our term can be written 

.k Ilz(I<- ix1,z)(I< + ix2,z)(I< + ix3,z) 
Z Ilm(/(- iql,m)(J< + iQ2,m)(I< + iQ3,m) 

= q.v [II K- i~1,m _II (I< +_iq2,m)(I< + ~q3,m) l (20) 
1-'- zqvi< m I<·- zql,m m (I<+ zQ2,m)(I< + zQ3,m) 

As the outside factor has a pole at -ifqv in the lower-half plane, the second term only 

has singularities and poles in the lower-half plane and so is in the desired form. The first 

term is still mixed and requires further massaging. The idea is to subtract out the unique 

lower-half plane pole so that what is left has only upper-half plane poles and zeros. Thus, 

TJV II [( - iQl,m _ TJV II 11
1
v + Ql,m _ 

1 . [{ [{ . -1 . [{ 1 + 9 
- ZTJV m - zql,m - ZTJV m 'TIV + ql,m 

(21) 

where now 9- has only upper-half plane poles and zeros. We will not need the explicit 

form of 9- in the calculation. What we have is now sufficient to solve for u+, the Fourier 

transform of the .displacement of the bottom masses in the crack region, u1 ( x )0( x). Using 

[ll], Eq. (42), we find 

O = -+II (I<+ iq2,m)(I< + iq3,m) _ · if:1 II q2,mq3,m 
U m (I<+ iQ2,m)(I< + iQ3,m) [{ + iO+ m Q2,mQ3,m 

+u
1 0 . q.v [II 1 + qvQI,m _II (I< +.iq2,m)(I< + ~q3,m) l 

· ( ) 1- zqvi< m 1 + qvql,m m (I<+ zQ2,m)(K + zQ3,m) 
(22) 

Solving for u+, we find 
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Fourier transforming and, evaluating at X = o+ yields 

so that 

UI (O) = ~IT q2,mqa,m(1 + 7]Vqi,m) 
m Q2,mQa,m(1 + 7]VQI,m) 

Using u 1 (0) = E, ~G = EVkN + 1 and the relations (see [11] Eq. (43)) 

IT ql,mq2,mq3,m = (7Jv)-N 
m 

IT QI,mQ2,mQ3,m = (kN + 1)(7JvtN 
m 

we obtain our desired result 

(24) 

(25) 

(26a) 

(26b) 

(27) 

The primary benefit of this method of solution over the direct approach employed in [11] 

is that for the symmetric crack (k = 2) we can take the large-N limit. To do this, we break 

up the N -fold product into two terms. The first is 

III = IT (1 + 7]VQI,m) 
m (1 + 7]Vqi,m) 

(28) 

We transform the product into the exponential of a sum over logarithms, a sum which for 

N large we can approximate by an integral, via the Euler-MacLauren Summation Formula 

(EMSF) [14]. Thus 

(29) 

Now for k - 2 A - 4sin2(--1!!!L) and ' - 4si'n2(7r(m-I/2)) If we d-e-fine "'= m/N, 
l - ' m - - 2N +I Am - - 2N +I ' "" 

then we see that 

( ) 
' .1 dQI 

q1 a = Q1(a- 1/(2N)) ~ QI(a)- ---
- 2N da 

(30) 

The integral is now a total derivative, and so 
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j .~ . ' 

ln II1 ~ -
2
1 p dadd, [ln(1 + ryvQI,m)] = ~ [ln(1 + ryvQt(1)) -ln(1 + ryvQ1(0))] (31) · lo a , 2 

When a= 1, m =Nand so Am~ -4, and so Qt(1) satisfies 

(32) 

Similarly, when a approaches 0, so does m and so also Am. This in turn implies that 

Qt(O) = 0. So, finally, 

(33) 

The second facto~ is slightly more difficult to treat, since the numerator and denominator 

both vanish as m -t 0. To handle this, we regularize the product by multiplying and dividing 

by Tim J>..mf Am, which we can perform analyti?ally. Then, the regularized product, II~\ can 

be transformed to the exponential of an integral of a total derivative, which can be calculated 

explicitly. In detail, 

IIf =II Ql,mr->:::: 
m ql,mV-Am 

so that 

lniiR ~ {
1 da~_!!_ ln QI(a) 2 lo 2 da J-A(a) 

= ~ [ln(Q1(1)/2) -ln (1/v'1- v2)] 

where we have used the fact that for a small, Q1(a) ~ J-A(a)/(1- v2 ). Thus 

·····Also 
... ' 

. =.' -~ 

, m 

= IIfjdetM(2)jdetM(O) 

--:- II~v'2N + 1 

13 
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(35) 

(36) 

(37) 



so putting all the pieces together yields the simple result 

(38) 

which expresses~ in terms of Q1(1), the wave-vector at the end of the Brillioun zone. 

The most striking lesson of this formula is that ~ diverges at v = 1, the wave speed. 

Thus, while at any finite N, there is no upper limit to the velocity, at infinite N the wave 

speed is an absolute upper bound to the crack velocity. At large ~' v approaches unity 

from below as 1/~4 • A second lesson is that at small. velocity,~"' ~a(1 + qv), so that~ 

approaches ~G linearly, as is generally true for this x-continuum model. A third implication 

is the behavior at large 7J· For fixed~' v decreases as 7J gets large, so that Q1 (1) satisfies 

so that Q1 (1) ~ 2. Substituting this in Eq. {38) gives 

(40) 

or 

(41) 

In this large 7J limit, of course, ~ is a function of the scaling variable qv, which was first 

introduced in [15]. 

We have seen how at infinite N, the crack speed v never crosses unity, the wave speed. 

However, at any finite N, there is a~ for which the crack speed crosses unity, which must 

diverge with N. We now calculate how this threshold scales with N. The key to the 

calculation is II2 , since it is the vanishing of II2 which leads to the divergence of~ at v = 1 

for N infinite. To compute the value of IT2 at v = 1 for finite large N, we need to choose a 

different regularization. We now define 

(42) 
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so that 

(43) 

Now, since Q1(a)/(-A(a))ll3 approaches the finite limit 1/TJ113 as a goes to 0, IIfhas a 

finite limit at v = 1 as N goes to infinity, namely II~~ .jQ1 (1)(TJ/4)1/3 . Using the infinite 

N limit of Ilt from Eq. (33), we get 

~ = v'2N + 1 Ilt "' (N)t/6 [2(1 + TJQt(1))lt/2 
~G II2 . Qt(1) 

(44) 

Thus, the threshold~ scales as N116~a, in accord with the numerical evidence discussed in 

[11]. The coefficient goes to 2 for TJ large, and vanishes as 'T]116 for small TJ. 

Another manifestation of this same phenomenon, the disappearance of the v = 1 crossing 

in the infinite-N limit, is the nonuniformity of the the Iarge-N limit as v approaches 1. 

Working out the corrections to the EMSF, we find that 

Ilt(N) ~ Ilt(N = oo) * (1- y' 1rTJV ) 
. 8 1- v2N 

(45) 

and 

R R TJV 
( 

3 ) 
II2 (N) ~ II2(N = oo) * . 1 + 16(1- v2)3f2N (46) 

Thus, the relative error of the infinite-N approximation is 0(1/N), and diverges as v ap

proaches 1 as (1- v)-312
• It is also interesting to note that the relative erro~ vanishes as v 

goes to zero, son that the infinite-N approximation becomes better at small velocities. 

One last interesting piece of information we can derive from our solution is the size of the 

"process zone", the region where the solution from continuum elastic theory breaks down. 

The leading-order macroscopic solution was derived in [11], and exhibited the classic square

toot singularity at the crack tip, X = 0. This singularity in really present only at infinite 

'N, and is cut off by the upper limit on the Q's, (relative to the smallest Q "' 1/N) at finite 

N. We can determine the structure of the process zone which replaces the singularity by 

studying our exact solution for u+, Eq. (23), forK's of order 1. Usi?-g the EMSF to ev~ute 

the infinite product, similar to the derivations above, we find 
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u+ _ i!:s. (Q1(1)J1- v2(K + iQ2(1))(K + iQ3(1)))
112 

- J2N + 1(K + iO+) 2(K + iQ2(0))(K + iQ3(0)) 

if [ ((1 + 71vQ1(1))(K + iQ2(1))(K + iQ3(1))) 
112

] 
+ K + ij71v 

1 
- (1 + 71vQ1(0))(K + iQ2(0))(K + iQ3(0)) 

(47) 

Using Q1 (0) = Q2(0) = 0, Q3 (0) = (1- v2)j71v, and the result for~' Eq. (38), we get 

-+ . [(1 + 71vQ1(1))(K + iQ2(1))(K + iQ3(l))l 1
/
2 

( 1 1 ) if 
u = u (K + iO+)(K + i(1- v2 )j71v) K + iO+ - K + ij71v + K + ij71v 

(48) 

Examining this expression for small K, we find the expected K-312 singularity, which 

gives rise to the square-root singularity of the outer solution. The coefficient of the K-312 

singularity to leading order in N is ~i312 N-112 (1 - v2
)-

114, which reproduces the same 71 

independent coefficient of the square-root singularity, or equivalently stress-intensity factor, 

found in [11]. The structure of the process zone is governed by the other singularities in 

u+ that lie off the origin. In particular, the size of the process zone is determined by the 

singularity nearest the real line. For small 71, this is at K = -iQ2(1) ~ -2i/J1- v 2 , so 

the process zone is truly microscopic, unless the velocity is very close to 1. For large 71, the 

dominant singularity is at K = -iQ3(1) ~ -ij71v, so the process zone grows linearly with 71 

Ill SIZe. 

V. TIIE LATTICE MODEL 

In this section, we generalize our solution of the continuum model to the lattice model. 

For ease of presentation, we will present the derivation only in the N = 1 case. The case of 

general N follows in a straightforward manner from this derivation and that of the continuum 

finite N model presented in the previous section. 

Our derivation follows directly along the lines of our WH treatment of the continuum 

N = 1 problem in [11]. The equation of motion of the steady-state crack is 

u(t) = (1 + 71!) [u(t + 1/v)- 3u(t) + u(t- 1/v)] - k()( -t)(i + 71 !)u(t) . (49) 
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Upon Fourier transforming, we find 

where u is the Fourier transform of u and u± arethe transforms of O(±t)u(t). We define the 

function 

(51) 

in terms of which 

0 = R( -(1 + k); -iK)u- + R( -1; -iK)u+ + f:,.8(K)- kryvu(O) (52) 

This function, R(>..; Q), which is the lattice equivalent of the polynomial P employed 

in the previous section, has not 3 roots, but in fact an infinite set of zeros in the complex 

plane. We shall label these zeros according to their real parts, Q1 ,n ( q1 ,n) are the zeros of 

R( -(1 + k); Q) (R( -1; Q)) with positive real parts, and Q2,n' (q2,n') are their counterparts 

with negative real parts. The indices n, n' run over the entire infinite set of zeros but are 

otherwise left unspecified for now. We can decomposeR in terms of its zeros 

R( -(1 + k); -iK) = -(1 + k) II (1 + i ~{ )(1- i QK ) 
n,n' l,n 2,n1 

R(-1; -iK) =- II(l- i!!._)(l + i K ) 
n,n' ql,n q2,n1 

(53) 

Using this, we rewrite the equation of motion: 

(54) 

As in the last section, the hard part is to decompose the last term. The trick is the same, 

rewriting the numerator as the difference of R's. 

k II 1 - 1 R( -1; -iK)- R( -(1 + k); -iK) 
I (1 - i...!L )(1- i__K_) - 1 - iryvK n ,(1- iL)(l- i__K_) n,n q1,n Q2,n1 n,n ql,n Q2,n' 

= 1 + k II ql,n(K- iQl,n) _ :l. IJ Q2,n1(K + iq2,n1
) ( 55) 

1 - iryvK n Ql,n(K- iql,n) 1 - iryvK ri/ q2,n'(K + iQ2,n') 
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As before, the second term is now fine, but the first term is still mixed. Again we subtract 

out the unique pole in the lower-half plane which is ~hat we need to find u+. 

1 + k II ql,n(K- iQt,n) _ 1 + k II ql,n(;i;; + Ql,n) _ 
1- iTJVK n Ql,n(K- iqt,n) - 1- iTJVK n' Ql,n(

11
1v + iqt,n) + g 

(56) 

where g- only has poles and zeros in the upper-half plane. Separating out the pieces analytic 

in the upper-half plane yields 

0 = -II Qz,n.'(K + iqz,n') u+ 
n' qz,n1 (K + iQz,n') 

iD. [ 1 + k II ql,n(;i;; + Ql,n) 1 II Qz,n'(K + iq2,n1
)] ( 57) 

+ K + iQ+ - TJVU(O) 1- iTJVK n Qt,n(:v + iqt,n) - 1- iTJVK n' q2,n1(K + iQ2,n1 ) 

Solving for u+ yields 

Fourier transforming and evaluating at x = o+, we find 

so that 

D.= Ut(0)(1 + k) II ql,n(1 ~ TJVQt,n) 
n Qt,n(1 + TJVqt,n) 

As D.a = Ut(O).Jf+k, we obtain our desired result 

(59) 

(60) 

(61) 

As there is exactly one real positive root of R(>..; Q), it is convenient to assign this the index 

0 and to label the complex roots in order of imaginary part, so that for example Q1,n and 

Ql,-n are complex conjugates. It is clear tlie basic structure of the lattice result is similar to 

the continuum result Eq. (27) above, ~ith the continuum Q1 ,1 , q1 ,1 replaced by their lattice 

counterparts Q1,o, q1,o, and multiplied by a correction factor due to the additional infinite 

hierarchy of complex Q, q's which solve the lattice dispersion relation. 
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The generalization to. finite N is straightforward and is left as an. exercise to the reader. 

The result is the direct generalization of the N = 1_ result. At finite N, there is a set of 

zeros with positive real part of R(Am; Q), (R(.Xm; Q)), for each m = 1, ... , N, now labeled 

CJI,n,m ( ql,n,m)· Then 

~ = vkN + 1 II ql,n,m(1 + TJVQI,n,m) 
flo n,m Ql,n,m(1 + TJVql,n,m) 

(62) 

is the solution to the lattice problem at finite. N. It of course reduces in the limit 1J -+ o+ 

to the result of Marder and Gross (9]. 

As in the continuum, this rather unwieldy formula simp~ifies tremendously in the sym

metric crack case k = 2 as N goes to infinity. The procedure for evaluating the limit is similar 

to the continuum calculation and so we do not present the details. What enters again are 

Q1,n(o:), at the two extremes of the Brillouin zone o: = 0, 1. If we label QI,n(1) = qoo,n, 

QI,n(O) = qo,n then they sa~isfy the dispersion relations 

0 = R( -4; qoo,n) = (1 + TJVqoo,n)( 4 sinh2
( q00,n/2) - 4) - v2q~,n 

0 = R(O; qo,n) = (1 + 1JVqo,n)( 4 sinh2
( qo,n/2)) - v2q~,n 

In terms of these q's, the infinite N limit solution is 

(63a) 

(63b) 

(64) 

Again, this is very essentially similar to its continuum counterpart, with the real lattice wave

vector qoo,o playing the role of the continuum wave vector Q1(1), and with a multiplicative 

correction due to the presence of complex lattice wave-vectors. It should.also be noted that 

'this result reduces to that of Slepyan (6] in the TJ -+ o+ limit. 

VI. THE SMALL VELOCITY LIMIT 

We begin our explorations of the content of our key result, Eq. (64) by examining the 

1J fixed, v -+ o+ limit. It is not sufficient to simply set v = 0, since as v gets smaller, 
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more and more terms contribute significantly to the infinite product, as seen in Fig. 1. The 

proper treatment is to replace the infinite product by _an infinite sum of logarithms and then 

approximate the infinite sum by an integral via the EMSF. Note that for v = 0, qoo_,n satisfies 

sinh2 q";,n = 1, with the solution 

v=O 2 · qoon = 1r'tn +w, 
' 

where w is the unique real root of the equation, namely w = 2ln(1 + .J2). Similarly, 

v=O 2 · qo,n = · 1rzn. 

(65a) 

(65b) 

As we discussed above, we need to consider v-+ 0, n-+ oo, a_ 21r7JVn fixed. Then, writing 

Similarly, 

2 
• 2 Wo a 

smh 2 ~- 47]2 (1 + ia)' 

We can now easily approximate the first infinite product, 

yielding 

ITt = fr 1 + 1]Vqoo,n 
n=-oo 1 + 1]Vqo,n 

ln Ih ~ 100 

-

2
d_a_ [ln(1 + ia + 7JVW00 ) -ln(1 + ia + 7JVWo)] 

-oo 1r1JV 

1
00 da W 00 ~ wo 

~· ----
-00 21r 1 + ia · 

(66) 

(67) 

(68) 

(69) 

(70) 

The second product is somewhat trickier, because a naive expansion diverges at small a. 

We define a regularized product 

(71) 
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so that (using the product formula for sinh, and the fact thatsinh(w/2) = 1) 

II2 = II~ IT 2?rin :+ w 
n:;i=O 2?rzn 

_ sinh(w/2) IIR 
- w/2 2 

- ~IIR - 2 
w 

Out regularized product is now easily approximated, 

ln II~~ 100 

__!:!!_ [ln (i~ + WooTJV) -ln (ia ~ WoTJV)] 
-oo 2?rTJV . za + WTJV za 

~ 100 da W00 - w - Wo 
-oo 2?r ia 

Using the identity 

1
00 w 

da = ?rw, 
-oo 1 + ia 

. we obtain our desired result 

~lo+ = [ 2IIt ]
112 

~G qoo,oii2 

~ ew 4 exp -I 
(

i 100 daw00 - w- Wo) 
2 -oo 2?r a(1 + ia) 

. (72) 

(73) 

(74) 

(75) 

This result is, as desired, explicitly independent of v, but would appear to depend on TJ 

through the very nontrivial TJ dependence of W 00 and w0 under the integral. It is possible to 

explicitly evaluate the integral for small and large TJ· For large TJ, W00 - w "' 0(1/TJ2
} and 

w0 ,...., 0(1/TJ ), so the integral vanishes and so 

(76) 

For small TJ [6], w00 -w0 ·is, c~:mcentrated at small a ,...., O(TJ }, so it is appropriate to convert the 

integral into a principal value integral and do the w integral immediately. In the remaining 

integral, we change variables to {3 = a/2TJ. Then, the denominator in the integrand reduces 

to 1/ {3, so only the odd (i.e. imaginary) part of W 00 - w0 contributes. For {3 ~ 0 we find 
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and 

0 {35:1 

1mw00 =21m sinh-1(y'1- (3 2) = 2sin-1-Jf32 -1 1 5: (3 5:2 

7r (3?.2 

17.;; { 2 sin -
1 

(3 
Jmwo =21m sinh-1 (y-p-) = . 7r 

f3s1 

(3?.1 

The integral thus becomes 

1
00 da W00 - w ....,. w0 iw ·11 df3 sin -l (3 . j2 df3 sin -1 y' (32 - 1 - 1r /2 ----- = - - 2z · + 2z ------::----'--

-oo 27r a(1 + ia) 2 o 1r (3 1 1r (3 

= iln(1 + v'2)- iln2 + ~ln( 3 +
4 
y'S) 

=0 

(77) 

(78) 

(79) 

So, again the integral vanishes, and the re~mlt for large and small 17 is the same. One is 

lead to guess that in fact the integral vanishes for all 17, as indeed a numerical computation 

confirms. This is physically reasonable, since ~lo+ should be nothing other than the maximal 

~ for an arrested crack, which was previously found numerically [11] to be approximately 

1.55~a. This maximal arrested crack ~ is the result of a static calculation, and is of course 

completely independent of "7· The vanishing of the integral can be demonstrated analytically 

and is the result of the fact that the integral has no singularities in the lower-half-plane. 

One can then close the contour there and the result is identically zero. 

To see this, one has to study the analtyic structure of the functions w00 (a), wo(a). 

Consider first wo(a) = 2sinh-1 (y(a)), where y2 (a) = -a2 /(4ry2 (1 + ia)). Since sinh-1 (y) = 

2ln( /(y 2
) + y'1 + y2 , w0 has a branch cut singularity along the line y2 = -r where 1 > r > 0; 

Working out the algebra, in the complex a plane this works out to be, for 'fJ > 1, two separate 
'· ' .. 

curves. The first is a segment along the upper imaginary axis from a = 2iry( 17 - Jry 2 '- 1) 

up to a= 2iry(ry + y'ry2 - 1). The secoJ:!d is the circle of radius 1 centered at the point 17 = i. 

Similarly, Woo has branch cuts for 2 > r > 1, which are two finite segments along the positive 

imaginary axis extending above and below the w0 branch cuts. For .../2/2"7 < 1, the branch 



cut for wo is a sector of the circle, while the branch cut for w00 is the rest of the circle and 

a finite piece of the the entire imaginary axis extend~ng centered about 2i. For 'TJ < V'i/2, 

the branch cuts are confined entirely to a part of the circle. Thus, the singularities for all . 

'TJ lie entirely in the upper-half plane and, as advertised, the integrand is analytic in the 

lower-half-plane and so the integral vanishes. 

The next step is to extend this calculation to next order in v. There are two sources 

for this first correction in v. One comes from the higher-order velocity dependence of q00 ,n, 

qo,n· The other comes from the EMSF correction to the replacement of the infinite sum by 

an integral. The calculation of the first piece is similar in structure to the leading order 

calculation, just more involved. We expand qs,n ~ 2?rin + Ws + vo-8 , where the subscript 

s = oo, 0, and find 

aws 2i- a 
O"s = 2q sinhws 1 + ia2 • 

(80) 

It is straightforward, though tedious, to substitute this in llt, II~ and expand, giving a 

multiplicative correction factor of 

iv joo da [ 0"00 - O"o . 2 2 1 + 2ia · . w
2

] 1 + 2 -oo 27r a(1 + ia) + zq(woo- wo) 2a2 (1 + ia) 2 - 't'TJ 2a2 
(81) 

The integrand is again a very nontrivial function of 'TJ and a, but again a miracle occurs 

and the integral vanishes identically (as seen by numerical computation) for all q! The same 

analytic argument as above can be used to prove this point. 

This leaves us with only the second source for a 0( v) correction, namely the first endpoint 

EMSF correction to the integral. There are only exponentially small corrections to the 

integral representation of lib but since II~ does not include an n = 0 term, 'we need to 

subtract the n = 0 limit of the summand, namely 

. 2?rin 1 
hm ln( . ) =In(-. -) ~ -v, 
n-+0 2?rm + wo 1 + v 

(82) 

from In II~. This gives a multiplicative correction factor of ( 1 + v) to II~, so we find that 

for small velocity 
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FIG. 3. v vs. !:J.f !:J.G for TJ = 0.5, 1, 2 along with the asymptotic result for small v, Eq. (83). 

~,...., ~lo+(1- v/2) (83) 

Thus the leading small v behavior of~ is completely independent of TJ· However, it has ~ 

as a strictly decreasing function of v. As we shall see in the next section, the turnaround 

for larger v is a nonperturbative effect. For now, we will conclude this section by showing 

in Fig. 3 a plot of the small velocity region of the graph for various fJ's, together with our 

analytic approximation .. We see that the analytic result is confirmed. 

VII. LARGE TJ LIMIT 

We now turn to a study of the large 'rJ limit. In this limit, as first pointed out by Pla, et. 

al. [15], the relevant variable is TJV. Thus, we study the limit 'rJ ---+ oo, v ---+ 0, <P = TJV fixed. 

As we shall see, this calculation will shed much light on the small v results we obtained in 

the previous section. 

To begin the calculation, we need the qoo,n's and q0,n's at v = 0 that we obtained in the·. 

previous section, Eq. (65). Then 

Ill= :fi 1 + TJVqoo,n = Ji: 1 + <P(27rin .+ w) = si~h(~) 
n=-oo 1 + TJVqo,n _00 1 + <P(2nn) smh( 2q,) 

(84) 

Similarly, 
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IT ....:: II qoo,n _II 27rin +w _ 2 . h(w) _ 2 
2- --- --sm ---

n;i:o qo,n n;i:O 27rin w 2 w 
(85) 

Thus, 

.Ll [ 2IT1 ]
1
1
2 [sinh(~) ]

112 
[ 1 rn] 1

/
2 

A = IT - si'nh(-21_,_) = coth(2J + v2 
UG qoo,O 2 '~' o/ 

(86) 

We can invert this relation, solving for ¢> in terms of Ll, which yields 

[ 
(fit>a)

2 ~ v'2 + 1]-1 

¢> = ln -'----::....:....,;2~---(fa) -v'2- 1 
(87) 

For large Ll, this approaches~ [(.Ll/.Lla)2- v'2] .. This asymptotic result, which is also 

presented in Fig. 2, is to be contrasted with the result of our continuum calculation, where 

we found ¢> = ~ [(.Ll/.Lla)2 -1]. Thus, the continuum infinite-7] calculation for all Ll es

sentially reproduces the large-.Lllimit of the lattice calculation, with the correct functional 

dependence, but with the graph just shifted down slightly. It is also worth noting that in-

eluding just then= 0 term, instead of the whole infinite product, also gives the same result, 

with an intercept of 2/w which is intermediate between the continuum calculation and the 

exact asymptotic result. As Ll decreases, the true 1] = oo curve falls below the asymptotic 

result, so as to intercept the Ll-axis at .Lllo+. The approach is singular, as can be seen by 

looking at Eq. (86) for small a. We find 

(88) 

with an essential singularity at small ¢>. 

Examining Fig. 2 more carefully, we see that our infinite 1] result has failed to capture 

one of the most salient features of the finite 1] data, namely the subcritical nature of the 

bifurcation from the arrested state. Instead, it possesses a (very-) marginally supercritical 

onset of the moving crack. To /reproduce the subcritical bifurcation from our analytics, we 

need to generate the next order correct~on in 1/7]. 

We begin by generating the next order correction to the q's. We find that q00 ,n does not 

change to this order, but now q0 ,n ~ 21rin + w0 where 
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(89) 

This induces a multiplicative correction to 6. of 

1 _ L Wo 

n:FO 41rin</>(1 + 21rin</>) 
(90) 

We are interested in the effect of this correction at small¢, in which case we are again free 

to replace the sum by an integral. If we add in the n .= 0 term to the sum, the error will be 

exponentially small in 1/¢. So, up to exponentially small terms, the correction for small¢ 

is (defining a = 21rn</>) 

1 </> {'>O da 1 _i tan-1 a 

- 217 +J_oo 21r 17(1 + a 2 ) 114 (1 + ia) e 
2 (91) 

The integral vanishes, as can be seen by a substitution of variables x = (1 + a 2
)-

114
. In 

fact, the integral is nothing more than the first-order expansion in 1/17 of the integral in Eq. 

(75) which we found vanishes identically in 17· We are thus left with a correction factor of 

simply (1- </>/217) = (1- v/2) up to expon~ntially small terms. This is precisely the small 

v correction we found in the previous section. The full behavior to this order for small ¢ is 

thus 

(92) 

This has the subcritical bifurcation we are seeking. As </>increases from 0, 6. decreases from 

6.lo+ due to the influence of the second factor, until the exponential kicks in and causes 6. 

to turn around and start increasing. The¢ at which the turn-around occurs is, for large 17, 

of order 1/ln17 (translating to a velocity of order 1!"7ln17) which goes to 0 as 17 goes to oo, 

but very slowly. Thus at infinite 17 there is no turnaround and 6. strictly increases with ¢ 

as we found in the zeroth-order calculation at the beginning of this section. The minimum 

6. lies, for large 17, an amount of order 1/17(ln 17 )2 below 6.lo+· 

Thus we see that it is the subdominant pieces that are responsible for the increase of 
' 

6. with v, while the perturbative pieces give rise to the subcritical bifurcation. Analyzing 
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the subdominant pieces jn a little more depth, it is easy to see that for 'fJ > V2/2 the 

leading subdominant piece goes as exp( -1/TJv). For ~maller TJ, the subdominant piece falls 

less rapidly, and has an oscillating component, due to the off-axis branch cut assuming 

dominance. This picture is consistent with the numerical evidence. 

VIII. STOKES VISCOSITY 

It is worthwhile to contrast the behavior we have seen for Kelvin viscosity with that 

which obtains for Stokes viscosity, where the dissipation is associated with the mass points 

and not the bonds. The calculation in this case is much simpler, since the troublesome 'fJ 

term is not present. For our purposes, it is sufficient to consider our x-continuum theory, as 

the conclusions we obtain carry over to the full lattice model. The result for u+ is 

u+ = if::l. II q2,m(K + iQ2,m) 
K + iO+ m Q2,m(K + iq2,m) 

where now the Q's satisfy the dispersion relation 

(93) 

(94) 

(and the q's the parallel form with >.m) and b is the Stokes viscosity. This can be seen by a 

simple limiting procedure applied to Eq. (23), or by replaying the derivation leading up to 

Eq. ( 41) of [11] with b instead of 'f/· This form of the solution can be shown to be equivalent 

to that obtained by Marder and Gross [9]. This result leads to the solution for b..: 

(95) 

We are interested in the large-N limit, which we obtain be defining the renormalized product 

·(96) 

since the Q2 's are linear in A for smaltA. Applying the EMSF, we find that for large N, 

(97) 
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so that 

(98) 

The key difference between this formula and the parallel one for 1J is that jj.f € is proportional 

to N, and not N 112 as before. The reason for this is that the Stokes viscosity is most 

effective at damping small wavelengths, and so affects the macroscopic stress fields. The 
I 

Kelvin viscosity does not damp out small wavelengths and only acts on short wavelengths. 

Another way to see this is to compute the .stress intensity factor, which in the Stokes case is 

inversely proportional to Vb. The driving force required to propagate the crack is thus much 

larger in the Stokes case. In particular, in the Stokes case there is no macroscopic scaling 

limit, where th)ngs just scale with the Griffith driving, /j.G· For these reasons, we feel that 

the Stokes viscosity is not a good model of dissipation for studying crack propagation. 

The only way to obtain a nice macroscopic limit where /j. scales like /j.G is to artificially 

scale b with N so that b = b0 jN. However, this procedure has no physically satisifying 

motivation, especially when the Kelvin viscosity model suffers none of these defects. 

IX. CONCLUDING REMARKS 

We close by making a few comments about this work and prospects for future extensions. 

First it is important to note that the present work is limited to a consideration of the 

steady-state crack. Thus, aside from general issues of the size of the process zone, the major 

output of this problem is the velocity-driving relation. Here the most striking qualitative 

effect of Kelvin viscosity is near threshold, reducing the extent of the backward bifurcation. 

Significantly above threshold, the major role of viscosity is to provide a velocity scale, so 

that the crack velocity becomes inversely proportional to the viscosity. It is important to 

understand how viscosity impacts on the stability of the crack. It is clear, as Marder and 

Gross have pointed out [9], that the steady-state crack is unstable in the regime of the 

backward bifurcation. The more interesting question is in the higher-velocity regime. Here, 
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no systematic studies have been done to examinne the role of viscosity. It is not clear that the 

piecewise-linear model considered here is altogether appropriate for studies of stability, as 

instabilities can be masked by inconsistencies of the steady-state solution. We look forward 

to reporting o.n work in, this direction soon, along with generalization to the problem of 

Mode I cracking. 
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