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Monte-Carlo simulation for the potential of mean force between ionic 

colloids in solutions of asymmetric salts 
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Abstract 

A new technique for Monte-Carlo sampling of the hard-sphere collision force has been 

applied to study the interaction between a pair of spherical macroions in primitive-model 

electrolyte solutions with valences 1 :2, 2:1, and 2:2. Macro ions of the same charge can 

attract each other in the presence of divalent counterions, in analogy with earlier 

observations for planar and cylindrical geometries. The attraction is most significant at 

intermediate counterion concentrations. In contrast to the entropic depletion force 

between neutral particles, attraction between macroions is of energetic origin. The 

entropic contribution to the potential of mean force is generally repulsive at conditions 

corresponding to aqueous colloids with or without salt. For systems with divalent 

counterions, the potentials of mean force predicted by mean-field approximations like the 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or the Sogami-Ise (SI) theory are 

qualitatively different from that observed in the simulations. However, for systems with 

monovalent counterions, predictions of DL VO theory are in fair agreement with 

simulation resuJts. 



I. Introduction 

Physico-chemical properties of colloidal suspensions (e.g. solutions of latex 

particles, proteins or micelles 1"
2
) are essentially controlled by electrostatic macroion/ 

macroion interactions. Due to the large practical importance of colloidal solutions, 

interactions between macroions in electrolyte solutions have been extensively studied for 

many years. In· numerous application-oriented situations electrostatic repulsion among 

colloids of like charge was essential for the apparent stability of the dispersion. The 

destabilizing effect of multivalent ions has traditionally been ascribed to the strong 

screening of the macroion/macroion repulsion in multivalent electrolytes. There is, 

however, considerable experimentae-s and numerical evidence6
"
9 of electrostatic 

attraction between like-charged plates or cylindrical particles surrounded by divalent 

counterions. This attractive interaction is inconsistent with widely-used mean-field 

calculations using the Poisson-Boltzmann theory1
• Although several theoretical 

investigations10
-
12 suggested that similar attractions may exist between spherical 

macroions, direct experimental evidence for such attractions has not yet been established. 

Attraction between colloidal spheres has been observed in confmed ionic colloids 

but not in a homogeneous medium13
-
14

. At finite macroion concentrations, theoretical 

calculations15
-
19 and measurements16

-
17 of pair-correlation functions for like-charged 

macroions often reveal oscillating distributions with attractive and repulsive domains. 

This apparent attraction is, however, partly due to correlations among many repelling 

macroions, and that is very different from the interaction between two isolated macroions 

in a saline solution. To eliminate the many-body effect from many macroions, we 

consider here a sole pair of interacting macroions in a salt-containing medium. 
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A recent Monte-Carlo simulation of a pair of macroions and neutralizing 

monovalent counterions revealed attractions at e~tremely low dielectric constanf0
; 

however, the origin of the attraction observed. in this system was different from that 

reported in other simulated geometries (plates and cylinders) and in established 

theoretical models10
"
12

• Moreover, because of the low permittivity of the medium, 

conclusions regarding attractions observed in the above study are not directly applicable 

to aqueous systems~ Related simulations for macroions surrounded by multivalent salt 

ion~1 or by divalent counte~ons22 revealed attractive Coulombic forces between isolated 

colloids in a water-like medium. Strictly speaking, the counterion-only case22 necessarily 

implies a non-zero macroion concentration; electrostatic screening due to the counterions 

alone is not sufficient to exclude many-body interactions among the colloids. These 

calculations appear more suitable for studies of the osmotic behavior than for a rigorous 

calculation of the potential of mean force between a lone pair of macro ions. Addition of a 

screening electrolyte removes this limitation. Furthermore, the presence of salt is 

important because of its prevalence in biophysical and technological systems and because 

of its practical utility for regulating colloidal interactions by varying salt concentration 

and composition. 

In a recent preliminary report21
, we have shown that spherical macroions of the 

same charge can attract each other when immersed in a solution of .a symmetric divalent 

electrolyte. We found that the attractive· force derives from the internal-energy 

contribution of counterion mediation. In this work, we prmide a detailed description of 

our simulation method and extend the calculations· to different concentrations and salt 

valences. New calculations reinforce the evidence of attractive interactions between 
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macroions in multivalent electrolytes and elucidate the role of counterion and coion 

charge and concentration. We present results for potentials of mean force between like-

charged macroions in electrolyte solutions of valences 1 :2, 2: 1, and 2:2 at several 

concentrations. The univalent (1:1) electrolyte case has been considered earlie~2 . Further 

simulations for the univalent system have not been carried out since its behavior appears 

to be successfully explained by classical methods1
,2. In the presence of divalent ions, the 

attraction between inacroions is most prominent at moderate salt concentrations. While 

the attractive force between macroions is mainly of electrostatic origin, hard-sphere 

collisions can also induce weak attractions at certain intermediate macroion-macroion 

separations. In general, we find that the mechanism responsible for the attraction between 

like-charged colloids in ambient aqueous solutions is different from that considered by 

Allahyarov and coworkers.20 

II. Model and Methods 

11.1 Model 

For the sake of simplicity, as well as for easier comparison with analytic results, 

we represent macroions and electrolytes using the primitive model for ionic solutions23
. 

In the primitive model, the solution is considered to be an ensemble of hard spheres of 

different charge and size dispersed in a dielectric continuum whose permittivity 

corresponds to that of the solvent. The pair potential, qJ !i ( r) , between ionic particles i 

and j separated by the center-to-center distance rij is given by 

(1) 
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where u; and q; stand for the diameter and charge of ith species; 

s0 = 8.854·10-12 C2 I ( Jm) is the permittivity of vacuum, and s the dielectric constant 

of the medium. In the present work, the primitive model, along with canonical Monte 

Carlo simulations, is used to study colloidal interaction in electrolyte solutions. The mean 

force between two macroions surrounded by small ions comprises three distinct 

contributions: 

(2) 

where the angular brackets denote the ensemble average, r is the separation between two 

macro ions and riM is the distance between a small ion and a macro ion; subscript M 

denotes a macroion. The first term on the right side of Eq. (2) is the direct Coulomb 

interaction between macroions; this term is always repulsive for like-charged macroions. 

The second term accounts for the Coulombic force exerted on either of the macro ions by 

all small ions. The last term represents the mean force resulting from the collisions 

between hard-sphere macroions and simple ions. In view of the impulse form of the 

collision force, this term cannot be directly sampled in a Monte Carlo simulation. At non-

zero macro ion concentrations, it is usually easier to determine the total potential of mean 

force from the macroion-macroion distribution. If separate contributions are of interest, 

the collision force can then be calculated as the difference between the gradient of the 

potential of mean force and the Coulombic interaction. In systems containing a single 

pair of macroions in a sea of small ions, however, calculation of the radial distribution 

function between two macroions can become prohibitively slow, first because of poor 

statistics obtained by sampling a sole pair of particles and second, because of extremely 
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low acceptance of macroion moves due to collisions with highly concentrated 

counterions in the ionic atmosphere of the macroion. Below, we describe a novel method 

for the calculation of the collision force at fixed separation between the two 

macroparticles. 

11.2 Hard-Sphere Collision Force 

According to traditional methods, the collision force can be calculated from the 

pressure exerted on the surface of the macroparticles by surrounding small molecules20
'
24

• 

In the present context, the small molecules are salt ions surrounding the macroions (water 

is represented by a continuous medium). The procedure requires calculation of contact 

densities for all salt ions with subsequent extrapolation of the distribution functions to the 

macro ion surfaces. In anisotropic geometry, the situation is exacerbated because the 

contact densities have to be determined as functions of the position on the contact 

surface. The mean hard-sphere collision force ( F ) between two macro-spheres 

(macroions) in a sea of small spheres (small ions) shown in Fig. 1 is evaluated using the 

contact theorem25 

frhs = -kT f p(S)ndS, (3) 

where k stands for the Boltzmann constant and T for temperature; n is the outward 

normal unit vector at the surface; p( S) is the contact density of small spheres on the 

surface of the macro-sphere, and dS is an infinitesimal area element on the surface. The 

integral in Eq.(3) runs over the macro-sphere surface. Due to the symmetry of the system, 

the direction of the force coincides with the vector connecting the two macrospheres 

(Hereafter, we omit the vector notation of the force). The unit vector n in the integrand 
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of Eq.(3) determines the direction of collision force at a given point on the 

macrosphere/small-sphere contact plane. 

Although Eq.(3) is exact, a numerical application of this equation in a nonplanar 

geometry is time-consuming because of the inhomogeneous distribution of small hard 

spheres. For adjacent macrospheres or ionic colloids, p{S) depends on the orientation 

angle B and on the separation between the two macro-spheres. Figure 2 illustrates a 

typical distribution of counterions and coions around adjacent colloids obtained in our 

simulations. When the contact theorem is used in a simulation, extrapolation is needed to 

determine contact densities for a multitude of orientation angles on the macrosphere 

surface resulting in time-consuming computations._ 

We now describe a new technique for the calculation of the hard-sphere collision 

force that bypasses the sampling ofthe anisotropic distribution of small-solute molecules. 

We consider a general situation where-two large hard-sphere solutes are surrounded by 

small hard-sphere solutes. In addition to the hard-sphere interactions, we allow other 

forces to exist among the large solute and small-solute molecules. For macroions in 

electrolyte solutions, other forces arise from electrostatic interactions among macroions 

and small ions. The total intermolecular potential t/J can be divided into two additive 

terms, 

(4) 

where ([Jhs is the total hard-sphere potential that is zero if there is no overlap among hard 

spheres and infinite otherwise. t/J' comprises all the remaining interactions. For 

macroions in a primitive-model electrolyte solution that we discuss later, t/J' represents a 
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pairwise sum of Coulombic interactions among all charged particles. The mean force 

between two solute molecules at separation r is 

F( r) = _ BA = kT a In Z 
Br Br 

(5) 

where A= -kT In Z is the Helmholtz energy. The configuration integral, Z, is given by 

(6) 

where P = I I ( kT) ~ dfN = df1 ~ · · · dfN, and N is the number of small-solute molecules. 

Substituting Eqs (4) and (6) into Eq. (5) gives 

F(r) = kT _!_ J dfN ae-P<P 
z ar 

p<P•·' 
kT 1 J -1=N -P<P' Be- 8(/J' = - ur e +<---> 

Z Br Br 
(7) 

1 J e-P<P ( e-P.t:.<P'' -1) 8(/J' 
=kT/im- dfN +<---> 

.t:. r--.o z L1r Br 

< e-P.t:.<P•' -1 > 8(/J' 
= kT lim + < --- > 

.t:.r--.o L1r Br 

The limit in Eq. (7) depends on the sign of L1r; when L1r > 0, Eq. (7) gives the collision 

force from the opposite side of the other solute molecule leading to an effective 

attraction; and for L1r < 0, the collision force points outwards leading to an effective 

repulsion. The net collision force stems from the imbalance of the two contributions: 

< 1- e-P.t:.<t>•• > < 1- e-P.t:.<P•' > 8(/J' 
F(r)=-kT lim -kT lim +<-->. (8) 

L1 r--.o• L1r .t:.r--.o- L1r Br 

Equation (8) implies that the average collision force can be effectively separated from all 

other forces. 
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Equation (8) indicates that the magnitude of the force depends on the probability 

of collisions between the large solute and the small solute. Consider first the case when 

all small-solute molecules are identical. When one of the solute particles is shifted by 

L1r, (1- e-PLI~') equals unity if the move results in one or more collisions with small-

solute molecules, and vanishes otherwise. The average < 1- e-PLI"'h' > is therefore the 

probability of at least one collision for given Llr . Let LIN c be the number of small-solute 

molecules that collide with the large solute molecule during a trial displacement, · L1r . The 

probability of at least one collision is given by one minus the probability of no collision, 

I.e., 

(9) 

Eq.(9) can be extended to the conditions where the small solute comprises several 

components. In that case, LIN c is the total number of collisions between a large solute 

molecule and all small-solute molecules due to a trial displacement. The hard-sphere 

force is therefore directly related to the average number of collisions due to a small 

displacement of a large solute molecule. Substitution ofEq.(9) into Eq.(8) yields 

. < N > < N > BC/J' 
F(r)=-kT lzm c -kT lim c +<-->. 

Llr--+0+ L1r Ll r--+0- L1r ar (10) 

The number of collisions due to a small displacement of a solute molecule can be 

conveniently calculated in a Monte-Carlo simulation. For each macroion-macroion 

separation, a series of small L1r should, in principle, be used to obtain the limit in Eq. (8). 

However, we find that the ratio <LlJ'!c>l Llr is insensitive to L1r as long as Llr is small 

enough. At the conditions of the present work, the optimal magnitude of Llr corresponds 
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to the average collision probability of about 10-15%. If Llr is much bigger, the average 

collision force deviates from the limiting value of vanishing Llr ; on the other hand, if Lir 

is too small, the statistics of sampling becomes less accurate and the simulation time must 

be increased. A trial displacement about two orders of magnitude smaller than the 

macroion diameter provides a good initial estimate of Llr in most of the situations 

considered below. 

Eq.(8) can also be derived by considering the change in the volume accessible to 

small-solute molecules in calculating the configuration integral Z. As a small 

displacement is applied to one of the large-solute molecules, the large-solute molecule 

occupies some free volume of the small-solute molecules; at the same time, the 

displacement creates some new free volume. The difference in the number of particles in 

these two small volumes leads to the overall hard-sphere force on the large-solute 

molecule. 

To test the above procedure, we repeated some ofthe calculations of the solvation 

force between neutral hard spheres immersed in a dense fluid of smaller spheres 

described by Dickman et al.25
. Figure 3 shows the comparison between our calculations 

and reported results25
• At identical simulation conditions, our new sampling method 

reproduces the results of Dickman et al. using about ten times shorter production runs 

than those reported in the earlier study25
. This improvement is significant because very 

long runs, up to a million per particle, are often required for sampling the hard-sphere 

collision force. 

The main purpose of this work is to investigate interactions between a pair of 

macroions in electrolyte solutions. The collision force is an important part of this 
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interaction. Before terminating this section, we review briefly a simple phenomenological 

theory of Asakura and Oosawa26 for interactions between a pair of neutral macrospheres 

in a solution of smaller spheres. That theory is based on a simple geometrical argument. 

As the excluded volumes of two macrospheres overlap, the overall free volume available 

to small spheres increases which yields an increase in the translational entropy of small 

spheres. The resulting attraction is given by 

(11) 

where p is the bulk density of small spheres, r is the center-to-center distance between 

two macrospheres, aM and us are, respectively, diameters of macro and small spheres. 

The range of the attractive force is limited to separations below u M +us. While integral-

. equation theory27 and simulations25 reveal the propagation of the potential of mean force 

to greater distances, this simple theory26 yields a qualitatively correct prediction for the 

short-range interaction between hard macrospheres. The underlying assumption of 

uniform small-sphere density is, however, not applicable to the ionic-colloid case where 

the distribution of the small ions is strongly nonuniform. As will be shown shortly, for 

present solution conditions, the collision force due to small ions is generally repulsive in 

contrast to the predictions of the Asakura-Oosawa theory26 and simulation results28 for 

the solvation force, i.e. the force mediated by water molecules in aqueous colloids. 

11.3 Details for Calculation of Mean Force Between Macroions 

To calculate the mean force between a pair of macroions in a primitive-model 

electrolyte solution, we use the standard NVT ensemble Monte-Carlo simulations29 for 

selected electroneutral combinations of small.ions and two identical macroions at a fixed 
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separation r. For each set of solution conditions, separate simulation runs are required 

for all considered macroion-macroion distances r. In principle, interaction between a pair 

of macroions in an electrolyte medium should .be solved using simulations at constant 

chemical potentials of small ions rather than at constant number of particles in the 

system24
'
30

• Using the.canonical ensemble, we assume that the variation in the numbers of 

small ions in the simulation box at various macroion separations has a negligible effect 

on sampled colloidal forces. The validity of this assumption has been verified by a 

comparison of simulation results for different sizes of simulated systems. Significantly 

increasing the simulation box produced no visible differences in any of the relevant 

calculated quantities. The system size we used was therefore sufficient to reduce any 

related effect below the statistical un~ertainty of the simulation. 

During each run, the two macroions separated by distance r were fixed along the 

box diagonal while the small cations and anions were free to move throughout the 

simulation box. Trial moves of the macroions were used to determine collision 

probabilities. The classical Ewald-sum method was applied to account for long-range 

electrostatic interactions29
'
31

. To test the reliability of the code and the sampling 

technique for interparticle forces, we first considered the mean force between two 

identical small ions in a colloid-free 1:1 electrolyte solution. Here, the mean force 

between two ions can be calculated from the pair correlation function, g( r) 

(12) 

that is easily obtained by a conventional Monte-Carlo simulation for simple electrolyte 

solutions. Because a simple electrolyte solution contains many identical small Ions, 
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Eq.(12) is more efficient than the direct sampling based on Eq. (10). Comparison of mean 

forces from Eq.(10) with that from Eq. (12) therefore provides a critical test of our 

simulation algorithm. Figure 4 shows a comparison between the forces calculated using 

Eq.(12) and those from Eq. 00). The two different methods are in excellent agreement. 

Table I lists some common simulation parameters used in this work. In general, 

the length of the simulation box is more than an order of magnitude larger than the 

Debye-screening length to make sure that interactions between macroions in different 

simulation boxes can be ignored. The Debye-screening length, 1 I K , is defmed by 

(13) 

where P; is the number density of small ions (counterions and added electrolyte). For 

each macro ion separation, the system reaches equilibrium after about 105 configurations 

per particle, while up to a million configurations per particle are used to calculate the 

mean forces. At small macroion separations, the relative statistical uncertainty in 

calculated forces is small, about 1-2%. However, because the absolute fluctuation in the 

calculated force depends only weakly on macroion separation, the relative statistics are 

better at short distances where interactions are relatively strong. The electrostatic term 

generally converges much faster than the collision contribution. 

The total internal energy is also sampled in our simulations. The statistical 

uncertainty in the internal energy is generally small (<0.01%). 

IV. Results and Discussion 

We have investigated interac~ions between a pair ofmacroions ofvalence ZAF-20 

and diameter O'J.F2 nm in aqueous solution of 1:2, 2:1 and 2:2 electrolytes at different 
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concentrations. Here, the first number represents the valence of the cation and the second 

corresponds to the valence of the anion of the salt. The diameter of small ions is 0.4 nm. 

Short-range attractions are found between two like-charged macroions in electrolyte 

solutions containing divalent counterions (2: 1, and 2:2 electrolytes for negatively charged 

macroions). However, at ambient conditions, the interaction is always repulsive in an 

aqueous solution containing monovalent counterions. 

IV.l Mean force between macroions in asymmetric electrolyte solutions 

Figure 5(a) shows the reduced total force between two negatively charged 

macroions in a 1 :2 electrolyte solution, along with the hard-sphere and electrostatic 

contributions ( r is the center-to-center distance between the macro ions, and aM is the 

macroion diameter). The Bjerrum length, !8 = e2 I (4tr&0&kT), represents the distance 

between two unit charges (e) where the pair potential equals thermal energy kT . The 

total force, as well as its electrostatic and hard-sphere contributions shown in Figure 5(a), 

are repulsive at all distances. For ionic strength 0.28 M, both the hard-sphere and 

electrostatic interactions become insignificantly weak at center-to-center distances 

beyond about 2 macroion diameters. The electrostatic force decays monotonically with 

the separation, as expected from DLVO theory. The hard-sphere term, however, displays 

a weak maximum at small inter-macroion separation, and then decreases monotonically 

at larger distances. The maximum is associated with the existence of a region where the 

small ions are sterically excluded when the distance between the two macroion surfaces 

falls below the diameter of the ions (0.4nm). This exclusion results in the reduction in the 

collision force between adjacent macroions, a mechanism already discussed in context of 

Asakura-Oosawa theory26
• Nevertheless, the overall hard-sphere collision force between 
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ionic colloids is quite different from that observed in uncharged systems. At short 

distances, the solvation force between neutral hard-sphere particles is generally attractive. 

However, for like-charged inacroions dispersed in a simple electrolyte solution, because 

of electrostatic attraction, the concentration of the counterions in the accessible region 

between adjacent macroions is much higher than that in the bulk solution and also 

exceeds the ion concentration at the macroion surface opposite the neighboring macroion 

(see Figure 2). As a result, the net hard-sphere collision interaction is by-and-large 

repulsive, albeit reduced by the short-range exclusion-volume effect. 

Figure S(b) presents the force between two negatively-charged macro ions in a 2: 1 

electrolyte solution at about the same ionic strength as that considered in Figure S(a). In 

this case, the counterions are divalent. An attractive force is observed within a range of 

small separations between the macroions. For macroions near contact, the net force is 

strongly repulsive due to both electrostatic and hard-sphere interactions. The electrostatic 

force declines quickly with the distance and reaches a negative minimum at about 1.2o-M, 

a separation sufficient to accommodate a monolayer of counterions between the two 

macroions. As the separation increases further, the force begins to decay and becomes 

insignificant. The attractive electrostatic force can be attributed to two combined effects: 

an attraction from the intervening counterion layer, and an attraction due to the correlated 

density fluctuations in the double layers surrounding the two particles. While the same 

mechanisms operate in solutions with monovalent counterions, the net force remains 

repulsive in this case due to a higher entropic penalty associated with localization of the 

screening monovalent counterions. Further, Figure S(b) shows that the fluctuations in the 

local charge density are more pronounced in double layers with divalent counterions 
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because the charge-density fluctuation is proportional to the square of charge numbers. In 

either case, the mean force becomes undetectable ~hen the distance between the two 

macroion surfaces exceeds about twice the Debye screening length. The hard-sphere 

collision force in the 2:1 salt is, again, predominantly repulsive at short separations, but 

displays weak oscillations with attractive minima at intermediate distances. This behavior 

resembles the excluded-volume effects observed for neutral hard spheres. The attractive 

hard-sphere force first appears when the separation between macroion surfaces exceeds 

the small-ion diameter, a-s whereas in the neutral case the attraction is strongest when 

that separation is less than as . This difference results from the strong electrostatic 

attraction between the macroions and the counterions. When the counterions are excluded 

from the region close to the macroion-macroion axis, they accumulate within the 

remaining free volume between the macrospheres and therefore continue to exert a 

repulsive collision force. The position of the observed minimum in the collision force at 

r~ 1.3 O"M approximately coincides with the second minimum in the solvation force 

between neutral macroparticles. The difference between the numbers of mono- and 

divalent counterions needed to neutralize the macroion charge, and the associated 

difference in steric exclusion effect, explains the differences between collision terms 

observed in the two cases. In the monovalent case, about twice the number of small ions 

compete for the limited free space between the macroions, thus increasing the apparent 

repulsion. As a result, an attractive collision force is not observed in an electrolyte 

solution with monovalent counterions, Figure 5(a). 

The overall force profile sP.own in Figure 5(b) is similar to that reported by 

Valleau et al8 for the interaction between two parallel charged walls, but the individual 

16 



contributions are qualitatively different. The electrostatic force for the planar geometry at 

conditions presumed by Valleau et al8 is attractive-for all distances, and its magnitude 

decreases monotonically with increasing wall-wall separation. For spherical macroions 

considered in the present work, the electrostatic force is strongly repulsive at short 

distances, but turns to attraction at certain intermediate separations. We consider the 

whole range of intercolloidal separations including those when the counterions are 

sterically excluded from the energetically most favorable region between the macroions. 

In studies of the planar case6
-
8

, on the other hand, the wall charge was typically 

considered to be neutralized by counterions confined between the two walls. This 

precluded calculations for systems with wall-wall separations below cr5 where the 

neutralizing counterions are excluded between the walls32 and the overall Coulombic 

force is always repulsive. 

IV.2 Potentials of mean force from simulation and from classical theories 

The potential of mean force can be obtained by integration of the mean force 

obtained from .Monte-Carlo simulations, 

W(r) = J/'Cr)dr. [14] 

The integral in Eq.(l4) is evaluated numerically. In calculating .this integral, we assume 

that the mean force between macroions vanishes beyond about 3 macroion-diameter 

separations. Figures 6(a) and 6(b) show the potential of mean force between adjacent 

macroions obtained by integrating the mean force as a function of inter-macroion 

separation . Simulation results are compared with predictions of DL VO theory33
, and SI 
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theory10
• In DLVO theory, where the linearized Poison-Boltzmann equation is applied, 

the electrostatic interaction between two macroions in an electrolyte solution is given by 

WDLVO(r)- z~iB exp(-1C(r-O"M)] 

kT - r (1 +1CO"M /2)2 
(15) 

where zM is the macroion valence, aM is the macroion diameter, K is the Debye 

screening parameter and lB is the Bjerrum length. SI theory is also based on the 

linearized Poison-Boltzmann equation but uses the Gibbs energy (instead of Helmholtz 

energy). It includes a repulsive Helmholtz energy term and an attractive term due to 

volume change associated with the varying distance between the macroions. The SI 

potential for interaction between two identical macroions in electrolyte solutions is given 

by 

W
81

(r) 2 I [sinh(1Ca)]
2
[1+1Cacoth(1Ca) 1(] ( ) --= ZM B - exp -10" 

kT 1Ca r 2 
(16) 

where a=aM/2. The attractive interaction appears at large inter-macroion separations 

where the first term in the parenthesis is smaller than Ki2. Eq (16) implies that an 

attractive electrostatic force exists for all situations as long as the center-to-center 

distance r is sufficiently large. Because all effects of small ions are absorbed in the Debye 

screening parameter, neither DL VO nor SI theory can distinguish between divalent and 

monovalent salts at the same ionic strength. 

Figure 6(a) shows the potential of mean force between two negatively-charged 

macroions in a 1:2 electrolyte solution. Results from DL VO theory agree fairly well with 

simulation results. This good agreem~nt is somewhat .misleading because it conceals the 

cancellation of errors made in DL VO theory. Specifically, the Poisson-Boltzmann 
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approximation ignores two opposing effects: the finite ion size, and the correlated 

' 

fluctuations in ion distribution. On the other hand, SI theory underestimates repulsive 

interaction between macroions over all distances. The weak, long-range attraction 

predicted by SI theory is not confirmed by our results for an electrolyte solution with 

monovalent counterions. 

Figure 6(b) shows the potential of mean force bet\veen two macro ions in a 2: 1 

electrolyte solution.· In this case, neither DL VO nor SI theory reproduces the attractive 

potential seen at intermediate macroion separations. Although SI theory predicts an 

attractive electrostatic force between macro ions of like charge, the depth of the attractive 

potential is much smaller while its range extends to separations much larger than those 

found in the simulation. Very recently, Tokuyama34 derived an expression for the 

intercolloidal potential comprising a repulsive Yukawa term and an attractive part 

decaying as exp(-Kr)lr3 .While this potential captures qualitative features observed in our 

work, it has been derived assuming a finite macroion concentration in the absence of salt 

which precludes quantitative comparisons with present calculations. 

To obtain additional insights for electrostatic interaction between like-charged 

macroions, we calculated the internal energies of the system at different macroion 

separations. Figure 7 presents the relative internal energy as a function of the distance 

between two macroions in 1:2 and 2:1 electrolyte solutions. The relative internal energy, 

~E(r)=E(r)-E(oo), is defmed as the difference between the internal energy of the system 

when two macroions are separated by a distance r and that when they are separated 

infinitely apart. In accord with DLVO theory, the internal energy displays an attractive 

minimum regardless of the valences of the small ions. In solutions with monovalent 
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counterions, the minimum is observed around r-1.2u M corresponding to the separation 

where a single-layer of counterions can be simultaneously in contact with both 

macroions. In the monovalent case, the contact energy of two macroions exceeds the 

value characteristic of large separations. However, for macroions in the 2:1 electrolyte 

solution, the contact value of relative internal energy is negative and the position of the 

energy minimum is shifted to a separation about one-half u M that for the monovalent 

case. This difference is consistent with our earlier discussion of steric exclusion of simple 

ions from the region between adjacent macroions. As screening divalent ions require less 

space (because of smaller number of ions) than the equivalent number of monovalent 

ions, monovalent counterions neutralize the macroions most efficiently at separations 

somewhat bigger than those for divalent counterions. 

In the remaining example, we consider the effect of salt concentration on the 

interaction between macroions in 2:2 electrolyte solutions. We consider three 

concentrations, cs=0.01, 0.1, and 1 M. As shown in Figure 8, the attraction between like­

charged macroions is most prominent at the intermediate concentration of divalent 

counterions. The nonmonotonic effect of the electrolyte concentration can only be 

explained by considering all the different contributions to the colloid:-colloid interaction. 

We therefore survey these contributions before we proceed with a discussion of the 

results presented in Figure 8. 

IV.3 Origin of electrostatic attraction between like-charged macroions 

The origin of electrostatic attractive forces between macroions of like charge has 

been a subject of many discussions33
-
37

. Some observations originally believed to reveal 

such attractions have been explained35 in terms of the collective effect of screened 
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repulsion between the macroions. In other scenarios, the attraction was attributed to a 

combination of effects including accumulation of co{mterions and depletion of coions in 

the region between the two macroions and significant correlations between ionic-density 

fluctuations6
•
40

•
41 in adjacent double layers. 

Some classical theories like Sogami-Ise (SI) theory10 predict attractions based on 

purely mean-field arguments. Our simulation results show that attractive interaction 

typically occurs when one or two layers of counterions fill the gap between the 

macroions, suggesting that the attraction between the macroions of like charge is related 

to counterion mediation. However, this contribution alone is not sufficient to overturn the 

strong repulsive force due to direct interaction between equally charged macroions~ and 

between counterions themselves. An additional effect ultimately responsible for the 

attraction betWeen the macroions is the correlation between ion density fluctuations in the 

adjacent double layers surrounding the two macroions. Interpretations of the correlation 

effect exploit the analogy with induced polarization giving rise to the van der Waals 

attractive force between adjacent atoms6
-
8

• Similar reasoning has been used to describe 

counterion-mediated attractions between two like-charged rods in electrolyte solutions38
• 

The analogy between double-layer correlations and quantum-mechanical 

dispersion forces has also been pointed out in perturbation theory for interacting 

polyions39
•
42 and for reverse micelles41

• While the method provides valuable insights into 

attraction between macroions, quantitative comparisons with computer simulation or 

experiments also require an account of hard-sphere interactions. 

A counterion-condensation theory developed by Ha and Liu38 for interaction 

between charged rods is in qualitative agreement with computer simulations9
• Other 
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sources of electrostatic attraction between equally charged colloids include fluctuations in 

total macroion charge (resulting in a potential that decays as the square of the direct41 or 

screened42
•
43 Coulombic interaction), and in a charge-reversal model by Sjostrom et al44

• 

All these theories emphasize the attractive contribution of the correlations among small 

ions in the vicinity of the macroions. Within linear approximations, the ion-ion 

correlation effect should depend primarily on the ionic strength of the solution. This 

prediction seems to be home out by our observation of a similar attractive energy 

minimum displayed by macroions in mono- and divalent salts at the same ionic strength. 

The potential of mean force, however, is repulsive in the monovalent-salt solution while 

it can be attractive in the presence ofdivalent ions. This difference is explained in terms 

of the repulsive entropic term related to the localization of the counterions surrounding 

the two macroions. This term is weaker in the divalent-salt solution where the number of 

localized ions is about one-half that in the monovalent case. 

The qualitative difference between the behaviors of solutions with mono- and 

divalent counterions is not related to any qualitative differences in underlying 

mechanisms for ions with different valences. The various opposing contributions can, 

however, differ in magnitude and hence produce different overall results. The net force 

often amounts to a small fraction of either of the leading terms. Relatively small changes 

in individual contributions can, therefore, shift the force balance from overall repulsion to 

overall attraction. 

Divalent counterions generally result in stronger screening of the macro ion charge 

(a mean-field effect), as well as stronger correlations between. charge-density fluctuations 

in the double layers surrounding the polyions. These fluctuations are more pronounced at 
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higher concentrations of small ions. It is therefore not surprising that there is a change in 

the macroion-macroion potential of mean force observed in Figure 8 upon transition from 

weak screening at cs=O.Ol M to moderate concentration cs=O.l M. 

The explanation of the maximum of the salt effect is, however, less obvious. The 

free energy reduction due to ion-ion correlations intensifies with increasing ion densities 

in overlapping double layers. The effect is most pronounced at larger differences in these 

densities and the corresponding densities in the bulk solution. At low salt concentrations, 

these differences grow with increasing Cs but the trend is reversed at moderate 

concentrations. At very high ionic strength, differences between ionic densities in the 

double layer and the bulk solution gradually diminish, thus reducing the energetic 

incentive of bringing the two macroions together. 

The resulting behavior (illustrated in Figure 8) is of practical importance. First, 

we note that the concentration range around the obsetyed maximum in salt effect includes 

the concentration of physiological solutions suggesting that physiological solutions with 

divalent ions correspond to a concentration range where Yariations in salt concentration 

have a minimum effect on the intercolloidal or interprotein potential of mean force. 

Second, our results can be of help in choosing the optimal concentration range to be 

considered when salting-out is used in procedures such as colloid precipitation, 

purification of water, or separation of proteins4548
• The nonmonotonic effect of salt 

concentration on protein-protein interactiqn has been revealed in recent measurements in 

our laboratory. We have monitored the cloud point temperature, Tc, of lysozyme 

solutions as a function of the concentration of various salts with divalent cations 

(magnesium) or anions (sulfate ion). A maximum in T c was repeatedly observed49 within 

23 



the concentration interval 0.2-0.5 M. Similarly, Taratuta et af6 observe a weak maximum 

in T c of lysozyme solutions as a function of the iollic strength of the sodium phosphate 

buffer (containing a mixture of mono- and dibasic phosphate salts) around 0.4-0.5 M. 

Further examples of nonmonotonic salt effects on the behavior of protein solutions 

include the minima in the diffusion coefficients of lysozyme and concanavalin as 

functions of ammonium sulfate concentration50;and the extrema in the insulin 

dimerization constant51
, and in the activity of P-lactoglobulin52 measured as functions of 

the concentration of NaCl or MgCh, respectively. The ion-correlation effect on optimal 

salting-out concentration discussed along with Figure 8 is expected to play a significant 

role in systems dominated by electrostatic considerations. 

However, optimum conditions can be modified by the presence of specific ion­

ion, ion-colloid, and ion-solvent interactions. Further, more systematic data for a variety 

of conditions would be needed to formulate general guidelines regarding the salting-out 

effect of multivalent electrolytes. At finite colloid concentration, the question of the 

pairwise additivity of intercolloidal potential53 must also be addressed. An accurate 

account of different and often opposing contributions is essential in such calculations. 

The interaction between macroions in electrolyte solutions involves complicated many­

body effects including the correlations among ion-density fluctuations and steric 

exclusion of small ions. These effects can be considered by mol~cular simulations that 

require substantial numerical effort. Integral equation theories represent an inviting 

alternative for systematic calcul~tioJis. The double-layer interaction between two parallel 

charged .walls has been successfully described by the anisotropic hypemetted-chain 

equation (AHNC)54
-
57 and by the non-local density functional theory proposed by Tang et 
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· al58
• Despite the lower symmetry of the present system with accompanying numerical 

complexity, variations of these theories are likely to be promising for deriving a 

successful theory for colloidal interactions. 

V. Conclusions 

·We have studied interactions between like-charged macroions in primitive-model 
., 

electrolyte solutions at various conditions. Attractive interaction between equally charged 

macroions is observed at certain conditions when the solution contains divalent 

counterions. This attraction appears to be most significant . at intermediate salt 

concentrations, an observation of practical importance. In the absence of multi-valent 

counterions, macroions of the same charge repel each other at all separations. At these 

restricted conditions, the classical DL VO theory agrees surprisingly well with the 

simulations. The long-range attractions between macroions as predicted by the SI theory 

are not confirmed by our study. 

The mechanism of inter-macroion interaction is elucidated by a separate 

evaluation of the different contributions to the mean force between particles. The 

attractive-energy term is opposed by the entropic penalty associated with the localization 

of the screening counterions. In a solution containing only monovalent counterions, the 

entropy term outweighs the electrostatic interaction at all separations. In a solution with 

divalent counterions, fewer counterions are needed to screen the polyion charge. As a 

result, the repulsive entropic effect is not always sufficient to reverse the short-range 

elec.trostatic attraction ·that originates from Coulombic macroion-counterion forces and 

ion-ion correlations. The hard-sphere term related to collisions between the macroions 
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and surrounding simple ions is strongly repulsive at small distances but rapidly decays 

with inter-macroion separation. 
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Figure Captions 

Figure 1 Interaction between two neutral macrospheres surrounded by small hard 

spheres. As two macro-spheres approach each other, the two big-sphere/small-sphere 

excluded volumes overlap creating additional free volume for small hard spheres. The 

increase in free volume leads to an attractive en tropic force between a pair of neutral 

macrospheres . 

Figure 2 Distributions of monovalent counterions and divalent coions at a small 

macroion separation. 

Figure 3 Reduced entropic force between two large hard spheres in a medium of small 

spheres. Squares are simulation results of Dickman, Attard and Simonian (1997)25
• Solid 

circles are calculated by the direct-sampling technique introduced in the present work, 

and the dashed line is predicted by the Asakura-Oosawa theory. The reduced force is 

defined as F* (D)= 2F( D) I ( trCJ Ma sPkT), where F(D) is the force at contact distance 

D,; CJ M is the diameter of big hard spheres and cr s is the diameter of small hard spheres; 

pis the number density of small hard spheres; k is the Boltzmann constant; and Tis 

temperature. The diameter ratio of large and small hard spheres cr L I cr s = 5 ; the packing 

fraction of small hard spheres is '11 = npcr~ I 6 = 0.341 . 
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Figure 4 Mean force (F) between identical small ions of a 1: 1 primitive-model 

electrolyte solution vs. inter-ion separation (r). The ciuve is calculated from the pair 

correlation function between ions of the same charge; and circles represent the results of 

the direct-sampling technique discussed in the text. The concentration of the salt is 2M 

(M=mol dm-3
), Bjerrum length hr=0.714 nm, temperature T=298.15 K, and diameter of 

ions o=0.425 nm. 

Figure 5(a) Mean force (F) between identical macroions in a 1:2 primitive-model 

electrolyte solution of ionic strength /=0.28M. Solid circles represent the total force; open 

circles correspond to the collision force and squares to Coulomb interaction. The lines 

are to guide the eye. Symbol size corresponds to error bars of the simulation. 

Figure 5(b) Same as Figure 6(a) but for macroions in a 2:1 electrolyte solution of ionic 

strength /=0.31M. 

Figure 6(a) Potential of mean force (W) between identical macroions in a 1:2 electrolyte 

solution of ionic strength /=0.28 M. Circles: simulation results; solid curve: DL VO 

theory; dashed line: Sogami-Ise theory. 

Figure 6(b) Same as Figure 7(a)but for macroions in a 2:1 electrolyte solution of ionic 

strength I =0.31M. 
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Figure 7 Reduced internal energy, LJE(r)/kTas a function ofthe macroion separation r in 

1:2 and 2:1-electrolyte solutions considered in Figure 4. 

Figure 8 Comparison of macroion-macroion potentials of mean force at three different 

concentrations, c8, of2:2 electrolyte, c5=0.01, 0.1, and 1M. 

Table I Simulation Parameters Used in This Work 

Number of particles 180 

Temperature, T (K) 298 

Dielectric constant, Br 78.5 

Macroion diameter, O'M (nm) 2 

Macroion charge, ZM -20 

Small ion diameter (cations & anions), as (nm) 0.4 

Bjerrum length, /B (nm) 0.714 

32 



Figure 1 



1 

1 

1 

1 

1 

Figure2 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

divalent coions 

2.0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
' 



,-.._ 

B 
* 

""' 

1.0 

0.0 

-1.0 

-2.0 

-3.0 

0.0 

0 

• 

, 

Figure3 

~Cif:J 
0 

0 • 
,,' uo 

~,' . ~ 
o Dickman et al., 1997 

e direct sampling 
- - - - Asakura- Oosawa theory 

0.5 1.0 1.5 2.0 

Dfcrs 

2.5 



2.0 

1.5 

E-

~ 1.0 
~ 

0.5 

0.0 
0.4 

Figure4 

-from pair correlation fimction 

o from direct sampling 

0.5 0.6 0.7 

r, run 



Figure 5(a) 

35 

(a) 

• Total 
25 ace 

P20 o HS 

~ 
_gll5 
~ 

10 

5 

0 

1.0 1.2 1.4 1.6 1.8 2.0 
r/crM 



Figure5(b) 

17.5 
(b) 

15.0 

• Total 
12.5 oCC 

oHS 

10.0 
p 
..1<: 
~ 7.5 
J:L. 

5.0 

2.5 

0.0 

-2.5 

1.0 1.2 1.4 1.6 1.8 2.0 
r/crM 



.Figure 6(a) 



Figure 6(b) 

-1 

1.0 1.2 1.4 1.6 1.8 2.0 
r/crM 



p 
~ 
:::::::" 
~ 
.<l 

2 

0 

-1 

-2 

-3 

-4 

-5 

Figure 7 

:J 2:1 

:J 1:2 

1.2 1.4 1.6 1.8 2 2.2 2.4 



8 

6 

4 

FigureS 

--tr- 1M 

--e--0.1 M 
--a-0.01 M. 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
r/crM 







Figure 7 

2 

0 

~ -1 
::::::" 
~ -2 .<::1 

-3 
:::! 2:1 

-4 :) 1:2 

-5 

1.2 1.4 1.6 1.8 2 2.2 2.4 



8 

6 

4 

Figure 8 

--6--1 M 
~o.1M 

-a-0.01 M 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
r/crM 




