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Propagation of Molecular Chaos by Quantum 
Systems and the Dynamics of the Curie-Weiss 

Model 

Alexander Gottlieb 

Abstract 

The propagation of molecular chaos, a tool of classical kinetic the
ory, is generalized to apply to quantum systems of distinguishable par
ticles. We prove that the Curie-Weiss model of ferromagnetism propa
gates molecular chaos and derive the effective dynamics of a single-spin 
state in the mean-field limit. Our treatment differs from the traditional 
approach to mean-field spin models in that it concerns the dynamics of 
single-particle states instead of the dynamics of infinite-particle states. 

1 Introduction 

The infinite-particle dynamics of spin models with finite-range interactions 
- such as the Ising model - can be defined without difficulty in the norm 
limit of the local (finite-particle) dynamics [21][Section 7.6]. For mean-field 
spin models such as the Curie-Weiss model, the infinite-particle dynamics 
can only be defined in certain representations of the infinite-particle algebra, 
in the strong operator limit of the local dynamics [ 6, 1 J. The purpose of this 
note is to introduce a new approach to the quantum mean-field dynamics 
via the propagation of quantum molecular chaos. The concept of quantum 
molecular chaos enables us to comprehend the infinite-particle limit of the 
Curie-Weiss dynamics without constructing an infinite-particle dynamics. 

For classical mean-field systems, the theory of the propagation of molec
ular chaos enables one to study the effective dynamics of finite groups of par
ticles without defining dynamics of infinite particle states. We can achieve 
the same end in the quantum context by utilizing the analog for quantum 
systems of theory of the propagation of molecular chaos. This device is ex
ploited in [19], where a quantum version of propagation of molecular chaos is 
used to derive the Vlaosov equation from the dynamics of quantum particles 
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in the continuum. Their approach was inspired by [3], wherein the Vlasov 
equation was derived from the propagation of molecular chaos by mean-field 
systems of classical particles. 

The concept of molecular chaos dates back to Boltzmann [2]. In order to 
derive the fundamental equation of the kinetic theory of gases, Boltzamnn 
assumed that the molecules of a nonequilibrium gas were in a state of "molec
ular disorder." Nowadays, the ter:Ql "molecular chaos" connotes a system 
of classical particles that may be regarded as having stochastically indepen
dent and identically distributed random positions and momenta. The state 
of any molecularly chaotic system is characterized by the probability law of 
a single particle of the system, and so the temporal evolution of any system 
that is at all times in a state of molecular chaos reduces to that of the prob
ability law of a single particle. Both Boltzmann's equation for dilute gases 
and Vlasov's equation for dilute plasmas may be interpreted as equations 
that describe the dynamics of the position-velocity distribution f ( x, v )dxdv 
of a single particle in a molecularly chaotic gas or plasma. Because gases 
and plasmas remain in a molecularly chaotic state once they have entered 
one, i.e., because they "propagate molecular chaos," the kinetic equations 
of Boltzmann and Vlasov can be thought of as evolution equations for a 
single-particle distribution f(x, v)dxdv. 

The concept of propagation of molecular chaos is due to Kac [11, 12], who 
called it "propagation of the Boltzmann property" and used it to derive the 
homogenous Boltzmann equation from the infinite particle asymptotics of 
certain Markovian gas models. This idea was further developed in work 
by [9, 16, 26, 23]. McKean [14, 15] proved the propagation of chaos by 
systems of interacting diffusions. See [3, 24, 20, 5, 8] for more recent work 
on and some generalizations of McKean's propagation of chaos. For two 
good surveys of propagation of chaos and its applications, see [25, 17]. 

This paper is organized as follows. Quantum molecular chaos is defined 
in Section 2, and related to classical molecular chaos. Examples of quan
tum molecular chaos are provided; it is shown that sequences of canonical 
states are often molecularly chaotic. In Section 3 we define the propagation 
of quantum molecular chaos. We then prove that the Curie-Weiss model 
propagates molecular chaos and solve the mean-field dynamical equation for 
the single-particle state. 
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2 Quantum Molecular Chaos 

The definition of molecular chaos current in the probability literature is 
equivalent to the following [25, 7]: 

Definition 1 Let S be a separable metric space. For each n E N, let Pn 
be a symmetric probability measure on sn, the n-fold Cartesian power of 
S. ("Symmetric" means that the measures of rectangles are invariant under 
permutations of the coordinate axes.) Let p be a probability measure on S. 

The sequence {Pn} is p-chaotic if the k-dimensional marginal distribu

tions p~k) converge (weakly) to p®k as n --'--too, for each fixed k EN. 

The quantum analog of a probability measure is a state on a C*-algebra 
with identity. A state on a C* -algebra with identity A is a positive linear 
functional on A that equals 1 at the identity element. The space of states on 
A endowed with the weak* topology will be denoted S(A). Molecular chaos 
is an attribute of certain sequences of symmetric probability measures; we 
now define quantum molecular chaos to be an attribute of certain sequences 
of symmetric states. 

Definition 2 (Quantum Molecular Chaos) Let A be a C*-algebra with 
identity, and denote the n-th (spatial} tensor power of A by ®n A. Let p be 
a state on A. For each n E N, let Pn be a symmetric state on ®n A, that is, 
a state on ®n A that satisfies 

for all permutations 1r of {1, 2, ... , n}. For each k ::; n, let pC,:) E S( ®k A) 
be defined by 

p~k)(B) = Pn(B ®1®1® · · · ®1), 

for all B E &i A, and let p®k be defined by the condition that, for all 
A1, A2, ... , Ak E A, 

The sequence {Pn} is p-chaotic if, for each k E N, the states plf) con
verge weakly* to p®k in S ( ®k A) as n --'--t oo. 

The sequence {Pn} is molecularly chaotic if it is p-chaotic for some 
state p on A. 
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Suppose A is the algebra generated by the observables for a single parti
cle of a certain species. The algebra generated by all single-particle observ
ables in a system of n distinguishable particles of the same species is ®n A, 
and states on ®n A correspond to statistical ensembles of those n-particle 
systems. Quantum molecular chaos of a sequence of n-particle states ex
presses a condition of quasi-independence of the particles when the number 
of particles is very large. 

Quantum molecular chaos is related to classical molecular chaos as fol
lows: 

Theorem 1 Let A be a C* algebra with identity 1 and for each n E N let 
Pn be a symmetric state on ®n A. The following are equivalent: 

-(i) The sequence {Pn} is p-chaotic in the sense of Definition 2. 

{ii} For each pair of positive elements Qo and Q1 satisfying Qo + Ql = 1, 
the sequence of probability measures {Pn} on {0, 1}n defined by 

is P -chaotic in the classical sense of Definition 1, where P is the probability 
measure on {0, 1} defined by 

Proof: 
It is clear from Definition 2 that (i) ===} (ii). The rest of this proof is 

devoted to showing that (i) ===} (ii). 
We first establish the following claim: Let 'P(S(A)) denote the space of 

regular Borel probability measures on the state space of A, endowed with 
the weak* topology as the dual ofC(S(A)). Let CT be any state on A. The 
measure bu, a point mass at cr, is is the only measure J.t E 'P(S(A)) such 
that 

J.t{r E S(A): ir(Q)- CT(Q)i 2: E} = 0 (1) 

for every E > 0 and Q E A with 0 :S Q :S 1. To prove this claim, first note 
that (1) holds for every element of A if it holds for those elements Q with 
0 :=:; Q :S 1, since every element of A is a linear combination of such positive 
elements. Since (1) holds for every Q E A, the Borel measure J.t is supported 
on arbitrarily small basic open neigborhoods of cr E S(A), whence it follows 
that J.t( { cr}) = 1, since J.t is a regular measure. 
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Next we define a couple of homeomorphisms: Let ®00 A denote the in
ductive limit of the spatial tensor products ®n A. A state O" E ®00 A is called 
symmetric if 

O"(A1 ® A2 ® ···®An® 1 ® 1 ® · · ·) 

O"(A1r(l} ® A1r(2) ® · · · ® A1r(k) ® Ak+l ®···®An® 1 ® 1 ® · · ·) 

for all elements A1, A2, ... , An of A, and all permutations 1r of {1, 2, ... , k }, 
k ~ n. Denote the space of symmetric states on ®00 A by Ssym(®00 A). 
St!iSrmer's theorem [22j[Theorem 2.8] states that there exists an affine home
omorphism q> from the space P(S(A)) of regular probability measures on 
S(A) to Ssym(®00 A), such that <I>(8J.I) = 1-£®00

• The classical precursor 
of St!iSrmer's theorem, de Finetti's theorem [10], states that there exists 
an affine homeomorphism 3 : 'P('P({O, 1})) ---+ 'Psym({O, 1}00

) such that 
3(8p) ~ p®00

• 

Now assume that condition (ii) holds. 
Let r be an arbitrary but fixed state on A, and for each n, extend 

Pn E 0n A to the state 

Pn = Pn ® T ® T ® T ® T ® T ® · · · 

inS( @00 A) Since S( ®00 A) is weak* compact, every subsequence of {Pn} has 
cluster points; condition (ii) will used to prove that /lJoo is the only cluster 
point of {Pn}· It will follow that {Pn} converges to p®oo, which implies that 
{Pn} is p-chaotic. 

Let 1-£ E S( ®00 A) be any cluster point of {Pn}, the limit of the subse
quence {Pn,.}. Because oft he increasing symmetry of the Pn,., the state 1-£ is 
symmetric: 1-£ E Ssym( ®00 A). Suppose that 1-£ -=/= p®oo (this assumption will 
lead to a contradiction). Then <I>~ 1 (J.£) i= 8p and we have shown that there 
must exist 0 < Q < 1 and E > 0 such that 

<r>-l(J.£){0": lq(Q)- p(Q)I 2:: ~:} > o. (2) 

Set Q0 = Q and Q1 = 1- Q. Define P-: S(A) ---+ P( {0, 1} ), mapping O" to 
Pu, by 

Pu(j) = q(Qj) ; j E {0, 1}. 

Define poo: S(®00 A)---+ 'P({O, 1}00
), mapping O" toP;:', by 

P:'{(x1,x2, · · ·): Xl = i!, · · · ,Xn =in}= O"(Qil ® · · · ® Qin ® 1 ® · · · ). 
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Condition (ii) implies that P 00 (pn1.) ----? (Pp)®oo. Since poo is continuous 
and Pn~c ----? J.L, it follows that 

(3) 

The composite map s-1 o poo o ~is affine and continuous, and it maps 
liu to lip<T for every a E S(A). The map P: P(S(A))----? P(P({O,l})) 
induced by P: S(A) ----7 P({O,l}) is also affine and continuous, and also 
maps liu to lip<T for every a E S(A), soP must equal s-1 o poo o ~ by the 
Krein-Milman theorem. That is, the following diagram commutes: 

P(S(A)) 

pl 
'P('P({O,l})) ~ 'Psym{{O,l}00

) 

By equation ( 3) and the commutativity of the preceding diagram, 

But equation (2) implies that 

P(~-1 (J.L)){p E P( {0, 1}) : Jp(O)- Pp(O)l 2:: E} > 0, 

and this contradicts ( 4) . 

• 

(4) 

Corollary 1 Let A be a C* algebra with identity, and for each n E N let 

Pn be a symmetric state on 0n A. If p~2) converges to p 0 p then {Pn} is 
p-chaotic. 

Proof: 
Let Qo and Q1 be any positive elements of A such that Qo + Q1 = 1, 

and let Pn and P be as in the statement of Theorem 1. The measures Pn 
are symmetric, and P~2) converges to P 0 P since p~2 ) converges to p 0 p. 
This suffices to imply that {Pn} is P-chaotic [25]. The p-chaos of {Pn} now 
follows from Theorem 1. 

• 
The following theorem shows that sequences of canonical states for mean

field systems are often molecularly· chaotic: 
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Theorem 2 Let V be an operator on cr_d such that V ( x ® y) = V (y ® x) for 
all x, y E cr_d. Let vr2 denote the operator on ®net defined by 

' 

and for each i < j ~ n, define Vij as acting similarly on the ith and lh 

factors of each simple tensor. Define the states Pn E S(®nct) by 

Pn(A) = ~Tr (e-Hn A) ; H _ 1 "'v:n . 
n- n L...J ij ' 

i<j 
Z = Tr (e-Hn). 

The sequence {Pn} is p-chaotic if the density operator for pis the unique 
minimizer of the free energy 

1 
F[D] = 2Tr((D ® D)V) + Tr(DlogD). 

If V is positive definite then F has a unique minimizer. 

Proof Sketch: This theorem is the quantum version of Theorems 2 and 4 of 
[18]. The properties of classical entropy that Messer and Spohn used to prove 
those theorems are equally true for the von Neumann entropy -Tr(D log D) 
of density operators, at least when D operates on ct. The necessary prop
erties of von Neumann entropy are proved in [13]. 
0 

3 The Curie-Weiss Model Propagates Chaos 

A sequence of n-particle dynamics "propagates chaos" if molecularly chaotic 
sequences of initial distributions remain molecularly chaotic for all time 
under the n-particle dynamical evolutions. 

In the classical context, then-particle dynamics are Markovian. Accord
ingly, in [7], we defined propagation of chaos in terms of Markov transition 
functions: 

Definition 3 For each n EN, let Kn : sn X a(Sn) X [0, oo) ---)- [0, 1] be a 
Markov transition function which commutes with permutations in the sense 
that 

Kn(x, E, t) = Kn(1r · x, 1r • E, t) 

for all permutations 1r of the n coordinates of x and the points of E C sn, 
and for all t;::: 0. (Here, a(Sn) denotes the Borel a-field of sn.) 
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The sequence {Kn}~=l propagates chaos if, for all t 2: O, the molec
ular chaos of a sequence {Pn} entails the molecular chaos of the sequence 
{fsn Kn(x, ·, t)pn(dx)}. 

The quantum analog of a Markov transition function is a completely 
positive unital map. A linear map</> : A 1 ---? A2 of C* algebras is completely 
positive if, for each n EN, the map from A1 ® B(C") to A2 ® B(C") that 
sends A® B to </>(A)® B is positive [4]. Propagation of chaos is an attribute 
of certain sequences of Markov transition functions; we now define quantum 
propagation of chaos to be an attribute of certain sequences of completely 
positive unital maps. 

Definition 4 (Propagation of Quantum Molecular Chaos) For each 
n E N, let </>n be a completely positive map from ®n A to itself that fixes the 
unit 1 ® · · · ® 1 E ®n A and which commutes with permutations, i.e., such 
that 

for all permutations 1r of {1, 2, ... , n}, where 1r· denotes the operator; on 
®n A defined by 

1r • (B1 ® B2 ® · · · ® Bn) = B1r(l) ® B1r(2) ® · · · ® B1r(n) 

for all B1, B2, ... , Bn EA. 
The sequence { </>n} propagates chaos if the molecular chaos of a se

quence of states {Pn} entails the molecular chaos of the sequence {Pn o </>n}· 

Consider the case where A is the algebra generated by the observables 
for a single particle of a certain species, so that ®n A is the algebra generated 
by all single-particle observables in a system of n distinguishable particles of 
that species. For each n E N, let the dynamics of the n-particle system be 
given by a Hamiltonian operator Hn E ®n A. In the Heisenberg version of 
quantum dynamics, if A is the operator. that corresponds to measurement 
of a certain observable quantity at t = 0, the operator corresponding to the 
measurement of the same quantity at time t > 0 equals eiHnt/fi Ae-iHnt/fi. 

The maps </>n,t : ®n A --t ®n A defined by 

(6) 

are completely positive, and if they satisfy condition (5) one may ask whether 
the sequence { </>n,t} propagates chaos. 
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We conjecture that chaos always propagates when the n-particle Hamil
tonians Hn are as follows: Let A = B(cc:t), the algebra of all bounded 
operators on cc:t. The algebra ®n A is isomorphic to B( ®ncc:t), and states 
r E S( ®n A) correspond to density operators Dr on B( ®ncc:t) via the equa
tion r(A) = Tr(DrA). Suppose that V is a Hermitian operator on cc:t ® cc:t 
that is symmetric in the sense that V(x ® y) == V(y ® x) for all x, y E cc:t. 
Let V1n2 denote the operator on ®n~ defined by , 

~ and for each i < j :::; n, define vz; similarly (as acting on the ith and lh 
factors of each simple tensor). Define then-particle Hamiltonian Hn as the 
sum of the pair potentials Vij, wjth a 1/n scaling of the coupling constant: 

(7) 

Conjecture 1 The sequence { 4>n,t} defined in equation (6} propagates chaos: 
If {Pn} is p-chaotic then {Pn o <l>n,t} is Pt-chaotic, where_ the density 

operator for Pt is the solution at time t of 

:tD -*[V,D®D](l) 

D(O) Dp. 

(8) 

Here [V,D 0 DJ(l) denotes a contraction of [V,D 0 D]: if {Yi} is any or-
thonormal basis of cc:t and x E cc:t, , 

This conjecture will now be verified for the Curie-Weiss model of fer
romagnetism. In this model, the ferromagnetic material is modelled by a 
crystal in which the spin angular momentum of each atom is coupled to the 
average spin and to an external magnetic field. In case the applied magnetic 
field is directed along the z-axis, we may make the approximation that only 
the z-components of the spins are coupled to each other and the external 
field. As in [6, 1], we consider the case of spin-! atoms, so that the space of 
pure spin states of a single particle is C2 , and the observables corresponding 
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to the measurement of the x, y and z components of spin are the Pauli spin 
operators 

The space of pure states of ann-spin system is ®n«J. For each i ~ n, if A 
. is an operator on C,_ let Ai denote the operator on ®nCC2 defined by 

If A is Hermitian, Ai corresponds to the measurement of the spin observable 
A at the ith lattice site. The Hamiltonian for the n-site Curie-Weiss model 
lS 

where J is a positive coupling constant and H is another constant propor
tional to the strength of the external magnetic field. 

Since ®nB(<CJ) is isomorphic to B(®nCC2 ), states Pn E S(®nB(CC2 )) cor
respond to density operators DPn in ®nC2 • From definition (6) and the fact 
that Tr(AB) = Tr(BA), 

A. (A) = Tr(Dpnei1intfli.Ae-i1intfli) Pn ° 'l'n,t 

= Tr(e-i1int/n D ei1int/n A) Pn • 

Therefore, Pn o ¢n,t has the density operator 

(9) 

For any state p on B( C2 ), let D P denote the corresponding density op
erator, and let (Dp(t)] denote a 2 x 2 matrix that represents Dp· 

Theorem 3 The sequence of Hamiltonians {1-ln} propagates chaos. If {Pn} 

is a p-chaotic sequence of states with [Dp] = ( ~ ~ ) , then for each t ~ 0, 

{Pn o ¢n,t} is p(t)-chaotic, where 

( 
a ceit(H+IiJ(a-d)) ) 

[Dp(t)] = ce-it(H+IiJ(a-d)) d · 
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Proof of Theorem 3: 
If x E {0, 1 }n for some n E N, let N(x) denote the number of 1s_in x: 

n 

N(x) = L.:xi 
i=l 

if X = (xl, X2, ... 'Xn)· If g : {0, 1}n --+ cis a symmetric function, then 
g(x) depends on x only through N(x), so that g(x) = g(y) if N(x) = N'(y). 

Lemma 1 For each n EN, let fn: {0, 1}n --+ C be a symmetric function. 
Suppose that 

(a) there exists B < oo such that .EsE{O,l}n lfn(s)l ~ B for all n, and. 

(b) there exists c E C and f: {0, 1}--+ C such that, fork= 0, 1, 2, ... , 

L fn(xl, ... , Xk, ZI, ... , Zn-k) --+ cf(xl)f(x2) · · · f(xk) 

as n--+ oo. 

Then 

(i) For all G E Cc([O, 1]), 

lim "' fn(x)G (N'(x)) = c G(f(1)) 
n-+oo L.....J n 

xE{O,l}n 

(ii) If c # 0 then 0 ~ f(O), f(1) ~ 1 and f(O) + f(1) = 1. 

Proof of Lemma: Let 

Fn(j) = L fn(x). (10) 
./lf(x)=j 

Condition (b) implies that 

lim 
n-+oo 

fn(1,1, ... ,l,zl,··· ,Zn-k) = c(f(1))k 
Zl,za, ... ,Zn-k 

for all k E N. Grouping the summands for which exactly j coordinates of 
(1, 1, ... , 1, ZI, ... , Zn-k) equal1, we find that 

(
n-k) 

n . k 
lim "F.(j) . (- ) = c(/(1))' .· 

n-+oo L.....J n 
j=k 

j 

(11) 
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Now 

(
n-k) 

~ . j- k - ~ . j(j -1) ... (j- k + 1) 
~Fn(J) ( n) - ~Fn(J)n(n-1)···(n-k+1)' 
J=k J=k 

j 

while 

and therefore 

Condition (a) implies that L:j IFn(j)J ~ B for all n. This bound, equa
tions (11) and (12), and the fact that any continuous function on [0, 1] can 
be approximated uniformly by polynomials, imply that 

lim ~ Fn(j)G (i) = c G {!(1)) 
n--+oo~ n 

j=O 

for all G E Cc([O, 1]). This establishes (i), in view of the definition (10) of 
Fn. 
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If c =f: 0, conclusion (i) implies that f(1) E [0, 1]. Condition (b) fork= 0 
and k = 1 states that 

lim 2:: n--+oo fn(Z!,Z2,··· ,zn) = c 
ZJ,Z2,··· ,zn 

lim 2:: fn(1, ZI, · · • , Zn-1) cf(1) 
n--+oo 

Zl ,z2 , ... ,Zn-1 

lim 2:: n--+oo 
fn(O, Z!, ... , Zn-d cf(O), 

Zl,Z2t••• ,Zn-1 

so it follows that f(O) + !(1) = 1 if c =f: 0. This establishes (ii), concluding 
the proof of the lemma . 

• 
Let e 1 = (1, 0) and e2 = (0, 1). For each n E N, let 

En= {eit ®ei2 ®···®ejn E ®nC2
J jl,j2,··· ,jn E {1,2}}. 

Denote by [AJ~::::::J: the matrix elements for an operator A on 0n<C2 relative 
to the basis En, that is, for j1, k1, ... ,jn, kn E {1, 2}, let 

[AJ~::::::J: = (A(eit ® eh ® · · · ® ejJ, ek1 ® ek2 ® · · · ® ekJ. 

The sequence {Pn} is p-chaotic. This implies that, for each k EN, 

[D jYl,. .. ,y~c,zl,··· ,zn-lc ~ [D ]Yl [D JY2 ... [D ]Yic 
Pn :1:1, ... ,:v/c,ZI, ... ,zn-lc P :1:1 P :1:2 P Xk ' 

Z1,z2, ... ,zn-k E{1,2} 

as n ~ oo. To show that {Pn o <Pn,t} is p(t)-chaotic, it suffices to show that 
for all kEN, 

(13) 

· as n ~ oo. We proceed to verify (13). 
The operator 1ln is diagonalized by the basis En, and its diagonal entries 

are 

1 n 

[HnJZ~:::::~: =;;, L (-JTJ(ekJTJ(ek.)- HTJ(ekJ), (14) 
r,s=l 
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where 

7J(el) 
h 

= +-
2 

17(e2) 
h 
2 

Abbreviating -JTJ(X)1J(y)- H17(x) by w(x, y), equations (9) and (14) imply 
that 

Therefore, 

lim 
n-+oo 

Zl,.·· ,Zn-kE{1,2} 

lim "' [DjYl>···,Yk,zlo···•Zn-k exp J-Z "'(TJ(Xr) -TJ(Yr))- "' TJ(Zs) . 
( 

2"t k 1 n ) 

n-+OO L..., Xl, ... ,Xk,Zl,•••,Zn-k fi L..., n L..., 
Zl,. .. ,Zn-kE{1,2} . r=l s=k+l 

The last limit in the preceding equation may be calculated thanks to 
Lemma 1. To apply the lemma, fix X1, Yb ... , Xk, Yk E {1, 2} and define 

fn: {1,2} ~ <C; 

G : [0, 1] ~ <C; 
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The functions f n are symmetric and satisfy condition (b) of the lemma, with 

!(1) = [Dp]:~ 

j(2) = [Dp]:~ 

c = [Dp]~~ [Dp]~~ · · · [Dp]~~. 

The f n also satisfy condition (a) of the lemma, for 

I
[D]Yl, ... ,y,.,zi, ... ,Zn I < ~ ([D]XI, ... ,:z:,.,zi, .... ,zn + [D]Yl, ... ,y,.,zl, ... ,zn) 

Xt,··· ,x:~e,zr, ... ,zn - 2 Xt , ... ,xk,Zl,··· ,zn Yl,•·· ,y~e,zr, ... ,zn 

by the positivity of D Pn, so that 

""' I[D]Yl, ... ,y,,zi, ... ,zn I < tr(D ) = 1. L...J X!,··· ,x~e,zt,··· ,zn - Pn 
Z1, ... ,zn-kE{1,2} 

Conclusion (i) of Lemma 1 now reveals that 

converges to 

whence 

lim 
n-+oo 

ZlJ ... ,Zn-kE{1,2} 

( 
't k ) 

exp H~ ~(TJ(Xr) -TJ(Yr)) X. 

[DpJ:: [Dp]~: · · · [Dp]~: exp (Jit (!DPJ::- [DpJ::) t.(ij(x,)- ij(y,))) 

k 

IT [DpJ:;: exp {it (TJ(Xr) -TJ(Yr )) ( H/n + J ( [Dp]=~ - [Dp]:~))}. 
r=l 
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This shows that {Pn o <Pn,t} is p(t}-chaotic, where 

Finally, it may be verified that the density operators D p(t) satisfy equa
tion (8} of Conjecture 1. 

• 
4 Future Work 

In future work, we hope to prove Conjecture 1, or at least to prove that the 
mean-field Heisenberg model propagates chaos. We shall also investigate the 
propagation of chaos by open systems (coupled to thermal baths) and prove 
the H-theorem for those processes. 
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