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Abstract 

We investigate a class of models in 1 + 1 dimensions with four 
fermion interaction term. At each order of the perturbation expansion, 
the models are ultraviolet finite and Lorentz non-invariant. We show 
that for certain privileged values of the coupling constants, Lorentz 
symmetry is restored, and indeed the model turns out to be confor­
mally invariant. This phenomenon is both quantum mechanical and 
non-perturbative. 
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1. Introduction 

Conformal models have played an important role both in the statistical 
mechanics of lower dimensional systems and in the construction of viable 
string theories. In the absence of a systematic approach so far for the clas­
sification and the construction of conformal theories, various special models 
have been proposed and applied to string theory [1,2]. Among these are 
the conformal models based on the affine Virasoro construction [3,4], which 
are generalizations of the original Sugawara construction in terms of cur­
rents that satisfy an affine algebra. Apart from some isolated cases [5], this 
construction has so far not found widespread application in string theory. 
Among the reasons for this is the lack of a good understanding of the local 
field theory that is at the basis of this construction. Several formulations 
of the model based on various generalized sigma model type actions have 
been proposed [6,7,8], but more work is needed to make progress along this 
direction. 

A different approach to the same problem is to start with various gen­
eralizations of the Thirring riwdel and· investigate possible non-trivial fixed 
points in the coupling constant space. This approach is motivated by the ob­
servation that the interaction in these models is of the form current x current, 
which is very suggestive of the affine Virasoro construction. The original 
Thirring model has already been used in string compactification [9]. In their 
classical work, Dashen and Frishman [10] showed that a non-abelian gener­
alization of the Thirring model symmetric under a Lie group is conformally 
invariant for certain quantized values of the coupling constant, and at these 
conformal points, the stress tensor admits a Sugawara construction. More 
recent work [11,12,13] suggests the possible existence of more general non­
symmetric fixed points in the coupling constant space. 

In this paper, we shall investigate a different generalization of the Thirring 
model. The models in question have some unusual properties. Since the cou­
pling constants are dimensionless, one would expect the appearence of the 
usual renormalizable divergences in perturbation theory. Instead, it turns 
out that each order of perturbation expansion is ultraviolet finite. Another 
surprising feature is connected with Lorentz invariance. Superficially, the 
interaction term in these models seems to violate Lorentz invariance on the 
world sheet, and if true, this would disqualify them from being of use in 
string theory. We will however show that, if the coupling constants in the 
interaction term satisfy the so-called master equation [4], the corresponding 
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model is conformally invariant, and the stress tensor is given by the affine Vi­
rasoro construction. It then follows trivially that, since the conformal group 
includes Lorentz transformations, contrary to the appearances, the model is 
also Lorentz invariant. We would like to emphasize that Lorentz invariance 
is realized non-perturbatively only at the points in the coupling constant 
space that satisfy the master equation; individual terms in the perturbation 
expansion violate this symmetry. It is also of some interest to determine the 
transformation properties of the various fields that appear in the model un­
der the Lorentz group, since in general fields could transform non-lineary in 
a complicated fashion. We have investigated the transformation properties 
of the basic fermion fields and the currents, which are bilinear composites of 
the fermions. It turns out that the fermions transform linearly, with, however 
an anomalous coefficient for the "spin" term. The currents also transform 
linearly, with a different coefficient for the spin term. Again, these simple 
transformation properties hold only at the conformal points in the space of 
coupling constants. 

The paper is organized as follows. In section 2, we will introduce the 
model and argue for the lack of ultraviolet divergences in perturbation theory. 
In section 3, we will review free fields and the affine Virasoro construction. 
In section 4, we will show that if the coupling constants satisfy the master 
equation, the model is conformally invariant. The demonstration is based on 
the calculation of the operator form of the sttess tensor in the standard in­
teraction representation. In section 4, the Lorentz transformation properties 
of the fermions and the currents will be determined. Finally, the last section 
will summarize our conclusions. 

2. The Model 

The model is based on the following action: 

l=lo+I', 

where, 

and, 

I I-Jd2 ( Jijj I I jiJj) - u g Cij J + + + g cij _ _ . 

(1) 

(2) 

(3) 

In these equations, '1/Ja's are two component Majorana spinors in 1+1 dimen- · 
s1ons. As is usual in string theory, the time coordinate is denoted by T and 
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the space coordinate by o-. Again in keeping with the string usage, we will 
t(!.ke o- to be compact and to range from 0 to 21r, although this is not im­
portant for most of the subsequent development. The coupling constants Cij 

and c~j that appe·ar in the interaction are real and symmetric in i and j. We 
have also introduced two redundant constant g and g' for later convenience. 
The currents Jl_ of definite. chirality are constructed from chiral fermions '!f;±: 

J i 1 .J,a \ i .J,b 
± = 4'~-'±/\ab 'f'±, (4) 

where ,.\i are matrices which act on the internal space labeled by a and b. 
They satisfy the commutation relations 

[..\i, ..\j] = ifijk ..\k, 

and generate some Lie algebra. In what follows, we will take this algebra 
to be semi-simple with the metric given by identity, so that there will be no 
need to distinguish between upper and lower indices. 

We shall now argue that the perturbation expansion for these models is 
ultraviolet finite. To start with, it is clear that the + and - chiralities never 
mix, and therefore they can be considered seperately in the perturbation 
expansion. As a simple example, consider the one loop contribution to the 
+ chirality fermion-fermion scattering. If p is the total external momen­
tum, suppressing all the dependence on the internal space indices and overall 
constants, one encounters a potentially divergent integral of the form 

M ~ I d2k (ko- kl)(Po- ko- P1 + k1) 
(27r)2 . k2(p- k)2 

·fnl looo lo27r (ikeio + a(po -pl)) ( (1 - a)(po - Pl) - ikeiO) 
't da kdk d() 2 o o o (k2 + (a2- a)p2) 

i (Po - P1) 2 

2 p2 
(5) 

The integral, which superficially appeared to be logarithmically divergent, is 
actually convergent. This is because the k dependent terms in the numerator 
on the second line of the equation, which would normally lead to a divergent 
integral, all vanish after the integration over the angle (). Since the fermions in 
the Feynman graph all have positive chirality, the propagators always carry a 
factor k0 - k1 , which after Euclidean rotation turns into ik ei9 . The important 
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point is that factors of k in the numerator always appear in the combination 
k ei8 and, as a result, all of the () dependent terms vanish upon integration. 
But since these are the only possible divergent terms, the integral must be 
finite. It is easy to see that this argument works also for higher order graphs, 
and it follows that all of them are finite. A similar argument, with a change of 
the sign of(), shows that all of the graphs with negative chirality fermions are 
also finite. The only potentially divergent graphs are the ones that contain 
both positive and negative chirality fermions, but because of the form of the 
interaction (eq.(3)), there are no graphs of this type .. 

The price paid for the finiteness of the model is the loss of Lorentz invari­
ance, at least in the perturbation expansion. Lorentz invariant interactions 
must conserve chirality, which is not the case in our model. One can check 
the breakdown of Lorentz invariance explicitly in the case fermion-fermion 
scattering process discussed above. Higher order graphs for this process will 
yield an answer proportional to a factor of the form 

where the integer n will depend on the order of perturbation theory. Since 
the above factor scales under Lorentz transformations, different orders in 
perturbation expansion will have different Lorep.tz transformation properties. 
This only means, however, that there is no Lorentz in variance for arbitrary 
values of the coupling constants .. In section 4, we will show that, for special 
values of the coupling constants, Lorentz invariance is restored. 

3. Free Field Constructions 

In this section, we will review the free field limit of the model, with g set 
equal to zero, and introduce the affine Virasoro construction as a preparation 
for the next section. The free fermions of definite chirality, '1/Jg ±, depend on 

' the coordinates through the combinations a=j=r, and they satisfy the following 
commutation relations: 

(6) 

In this equation, z stand for a - T for the + components and for T +a for the 
- components. Free currents J~ ± are constructed from free fermions as in 
eq.(4), with a normal ordering prescription. They satisfy the commutation 
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relations 

[J~,±(z), J6,±(z')] = ifijk b(z- z') - ;: bi,j 5'(z- z'), (7) 

where z has the same meaning as before. The constant "' is the coefficient of 
the central term, and, given the representation matrices _Ai, it can easily be 
calculated. 

Another quantity of interest is the stress tensor of the free field theory. 
Since there is no mass term, the stress tensor is traceless, and and the two 
independent components can be conveniently taken to be 

'I: = ~ (T:o,o ± 'I:o,1) . 
0,± 2 0 0 

In terms of free fermions, they are given by the normal ordered expression 

To,±=±~(: ~a'I/Jg,± '1/Jg,±: -: '1/Jg,± aa'I/Jg,± :) · 

To,± satisfy the conservation equations 

(ar + aa)To,+ = (ar- aa)To,- = 0, 

(8) 

(9) 

and therefore they are functions of only the variables T =f a respectively. We 
also note that their commutators generate the Virasoro algebra: 

[To,±(z), To,±(z')] = ±i5'(z- z') (To,±(z) + To,±(z')) +;~(a;+ az)b(z- z'), 
(10) 

where z = a =f T as before. The numerical value of the coefficient c0 of the 
central term will not be needed. 

After this discussion of free fields, we will briefly review the affine Virasoro 
construction and the master equation. The affine Virasoro construction is an 
ansatz for the stress tensor in terms of free currents: 

Cij : J~,+(z)J6,+(z) :, 

c~i : .fo,_(z)J6,-(z) :, (11) 

where the double dots imply normal ordering in order to have a well defined 
product of the currents. The basic idea is to require L±(z) to satisfy the 
Virasoro algebra 

[L±(z), L±(z')] = =t=i5'(z- z'~ (L±(z) + L±(z')) +;~(a~+ az)8(z- z'), (12) 
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given that the currents satisfy the commutation relations of eq.(7). It can be 
shown that [4] this leads to the following equation for the constants Ci{ 

with a similar equation for c~j· A large number of solutions to eq.(13) with 
real and symmetric c's are known [4]. Any one of them would be satisfactory 
for our purposes. 

Another commutation relation that will be needed in the future is 

[To,±(z), L±(z')] = ±io(z- z')L~(z) =f 2io'(z- z')L±(z'), (14) 

which follows from free field commutation relation after the use of eqs.(8) 
and (11). 

The use of the same symbols Cij and c~i in both the above equation and 
in eq.(3) was not accidental; from now on we will fix the c's as well as the 
c''s that appear in the intera'ction term in eq.(3) to be a real and symmetric 
solution to their respective master equations. For the time being, g and g' 
are arbitrary; later, they will also be fixed. 

4. The Interaction 

After having fixed the constants in the interaction term, we are going to 
study the model in the interaction representation. Our goal is to establish 
the conformal invariance of the model. Since the model is translation in­
variant, one can eaSily construct the translation operators P 0 and P 1 by the 
usual Noether procedure. However, since the model is not manifestly Lorentz 
invariant, this stress tensor is not symmetrical, and the existence of the gen­
erators of the Lorentz group, let alone the conformal group, is problematic. 
Since we can no longer employ to the Noether construction, we will instead 
show that the stress tensor can be determined uniquely by appealing to the 
following principles: 

· a) The .stress tensor should be local function of the coordinates. 
b) It should be symmetric and traceless. 
c) The components 

T± = ~(To,o ± To,1) 
2 

should satisfy the conservation equations (9). 
d) The energy and momentum operators should be given by the standard 
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expressions 

(15) 

The conditions we have listed above refer to operators in the Heisenberg 
picture. However, for technical reasons, we have found it convenient to go 
through the intermediate step of the interaction representation. The great 
advantage of this picture is that all the manipulations involve only free fields. 

We remind the reader of a few well known facts about the interaction 
representation. In this picture, the field '1/J is taken to be the free field '1/Jo, 
and the states satisfy the Schroedinger equation 

where the interaction Hamiltonian H1 is given in terms free currents by 

HJ(T) -I ¢a-(gcii : J~,+(T- a-)JJ,+(T- a-): 

+ g' C~j : J~,- ( T + a-) JJ,-:- ( T + a-) : ) 

-Ida- (g L+(T- a-)+ g' L_(T +a-)) 

{16) 

-Ida- (g L+(a-) + g' L_(a-)). (17) 

Actually, we are interested in the fields expressed in the Heisenbeg picture, 
but we find it advantageous to rewrite them in terms free fields of the inter­
action picture. For this purpose, we need the Dyson operator U(T, 0), whieh 
governs the time development of the states in the interaction representation: 

IT)= U(T, 0)17 = 0). 

From its definition, this operator satisfies 

io7 U(T, 0) 

U(T = 0,0) 

HJ(T)U(T, 0), 

1, (18) 

where the Heisenberg and the interaction pictures are taken to coincide at 
timeT= 0. In our case, the above equation is easily integrated since HJ(T) 
given by eq.(17) is T independent: 

U(T,O) = exp(-iTH1). (19) 
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A general field operator c/J( T, O") in the Heisenberg picture can be expressed 
in terms of the same operator ¢J1 ( T, O"), in the interaction picture by the 
equation 

c/J(T, 0") = u- 1 (T, o)¢JI(T, O")U(T, o). (20) 

¢J1 is either a free field, or for a composite operator like the currents or 
the stress tensor, it is a product of free fields. In what follows, we will 
specify various operators of interest in the interaction picture in terms of 
free fields, and attach to them an index I in order to distinguish them from 
the Heisenberg operators, which will be free of this index. The latter can 
then be constructed explicitly through eqs.(19) and (20). 

Having gotten these preliminaries out of way, we are ready to specify 
the combination of components Tf in the interaction picture. The unique 
solution that is local and that satisfies the energy and momentum conditions 
of eq.(15) is, 

(21) 

As usual, the + components of free fields depend only on the variable O" - T 

and the- components on the variable O" + T.- The remaining components of 
T1 can then be solved for using the symmetry and the zero trace condition, 
and therefore, these conditions are automatically satisfied. 

Now that we have the stress tensor in the interaction picture, we can 
translate it into the Heisenberg picture. It is easy to carry out the calculation 
explicitly. For example, 

u-1(T, O)[L+(z), HI]U(T, 0) 

igL~(z), (22) 

where, in the last step, the expression for H1 in terms of L± (eq.(17)) and 
the commutation relations (12) were used. This equation, and a similar one 
for L_(z), have the solutions 

u-1 (T, O)L+(z)U(T, 0) 
u-1(T, O)L_(z)U(T, 0) 

8 

L+(z + gT), 
L_(z- g1T). (23) 



Proceeding in the same fashion, we have, 

i8r (U- 1(T, O)To,+(z)U(T, 0)) = i9 u-1 (7, O)L~(z)U(T, 0) = i9 L~(z + 97). 
(24) 

This equation, and the corresponding one for To,-, have the solutions 

u-1(T, O)To,+(z)U(T, 0) L+(z + 9T)- L+(z) + To,+(z), 
u-1(T, O)To,-(z)U(T, 0) = L_(z- 91T)- L_(z) + To,-(z). (25) 

Putting everything together, we can convert the stress tensor in the interac­
tion picture given by eq.(21) into the Heisenberg picture: 

9 9' 
(1- 2)L+(a- T + 97)- L+(a- T)- 2 L_(a + T- 9'T) 

+ To,+(a- T), 
9' 9 

(1- 2 )L_(~ + T- 91T) + L_(a + T)- 2L+(a- T + 9T) 

+ To,-(a + T). (26) 

According to the conservation equations, T + should be a function of only 
a - T and T _ should be a function of only a + T. This requirement fixes the 
coupling constants to be the following four combinations: 

I ' 
9 = 0, 2 9 = 0, 2. (27) 

The zero values for the coupling constants correspond to the trivial free field 
solutions. We exhibit below the solution 9 = 9' = 2: 

T+(T,a) 
T_(T,a) 

To,+(a- T) - L+(a- T) - L_(a- T), 

To,-(a + T)- L_(a + T)- L+(a + T). (28) 

As a further confirmation of conformal invariance, one can easily show 
that T± satisfy the Virasoro algebra (eq.(12)). It is also easy to check that 
the model has Poincare invariance. The single Lorentz generator is given by 
the standard expression 

(29) 

and, using the Virasoro algebra, the Poincare commutation relations 
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are easily verified. Here we have the interesting situation of the restaura­
tion of Lorentz symmetry as a result of quantum effects in a model that · 
violates this symmetry classically. This is a non-perturbative phenomenon 
that happens only for certain fixed values of the coupling constants. 

We have just seen that the stress tensor has a simple exact expression in 
terms of free fields, even though the model is interacting. This simplification 
only occurs at the conformal points, with c's fixed by the master equation 
(13) and g's fixed by (27). Another set of fields that are exactly calculable 
in terms of free fields are L± (see eq.(23)). However, as far as we know, no 
other fields enjoy this property even when the model is conformal. 

5. Lorentz Transformations 

It is of some interest to find the transformation properties of the fermion 
fields and the currents under Lorentz transformations. In what follows, we 
will set g = g' = 2 and focus on the + chirality fields; the calculation for the 
- chirality fields is entirely analogous. To find the transformation law of '1/J+, 
for example, one has to compute its commutator with the Lorentz generator 
M of eq.(29). It is easiest to do this calculation at T = 0; at this point, 
U = 1, and the Heisenberg and the interaction pictures coincide. One can 
then carry out the computation in the interaction picture using free fields. 
The equal time commutator of the fermion field with the stress tensor has 
the form 

['1/Jo,+(T, a), TI,+(T, a')]= o(a- a')A(T, a) 
+8'(a- a') (B(T, a)+ B(T, a')), (30) 

where A and B will be calculated below. Given this res11lt, the commutators 
of '1/J+ with the Poincare generators at T = 0 are easily found to be 

['1/Jo,+(O, a), p+] ['1/Jo,+(O, a), J da'TI,+(O, a')] 

A(O, a)+ BuB(O, a), 

['1/Jo,+(O, a), M(O)] - ['1/Jo,+(O, a), J da'a'TI,+(O, a')] 

a A(O, a)+ B(O, a)+ a 8uB(O, a), (31) 

leading to the result 

[1/Jo,+(O, a), M(O)] =a [1/Jo,+(O, a), p+] + B(O, a). (32) 
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The first term on the right comes from the transformation of the coordinates, 
since 

~(aT =F 8u)7/J = [7/J, p±]. 

The second term, B, is then the spin transformation term. This is also the 
term that determines the conformal weight of 7/J. 

It remains to find what A and B are. From eq.(21), we see that we need 
the commutators of 7/J+ with To,+ and L+. The first commutator contributes 
the following terms to A and B: 

3i i 
A1 = -48u7/Jo,+, B1 = ~41/Jo,+· (33) 

Next, we need the commutator of 7/J+ with L+. This part of the computation 
is a bit more involved, since the expression for L+ given by (11) has to be 
regularized, and for this purpose, we found it convenient to use the operator 
product expansion. We will first calculate the OPE of 7/Jo,+(z) with L+(z'), 
where z =a-T, and then convert the result into the equivalent result for the 
commutator. In this approach, it is natural to regulate L+ by point splitting. .. 
~M . 

(34) 

subtract the term singular in£, and let i ----+ 0 at the end. In this case, because 
of the symmetry of Cij in i and j, the singular' term does not contribute, so 
one can forget about it. 

Starting with the basic OPE 

from(34), we have, 

7/Jo,+(z) L+(z') rv 8Cij. 
1
, ).i (7/Jo,+(z) + 7/Jo,+(z' + t)) J6,+(z'- i) 

1r'l z- z - i 

+
8
Cii_ 

1
, J.0i +(z' + t)>.i (7/Jo +(z) + 7/Jo +(z'- t)). (36) 

1r'l z - z + i . , , , 

One has to apply the OPE (35) once more to the products of the form J0,+7/Jo,+ 
on the right hand side of this equation. After that, the limit i ----+ 0 can be 
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taken without encountering any singularities: 

(37) 

The double dots around the composite operators indicate that these terms 
_have been regulated by subtracting the short distance singularity. By apply­
ing the usual translation 

~ - 1
--+ 8(z- z'), 

21rz z- z' · · 

The contributions from the commutator of '1/Jo + with £+ to A and B are 
' . 

The total values of A and B are obtained by adding up these results: 

A = A1 + A2, B = B1 + B2, 

and we finally have the following transformation law for '1/J+: 

A similar calculation for the current J! gives 

[J!(T, a), M(T)] =~(a,...- T)(Br- Bu)J! 

-iJ! + !:._ ( 4/'\: Ckm - 3Cij fikl /;ml) Jr_;! · 
7r 

(38) 

(39) 

(40) 

These equations show that both the fundamental fermion and the current 
transform linearly, but they have anamolous spin terms. This is equivalent 
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to the existence of anomalous conformal dimensions. Fields with definite 
transformation properties are obtained by diagonalizing the matrices that 
appear in these equations. 

6. Conclusions 

We have presented a simple model in 1 + 1 dimensions with a four fermion 
inter,action term. Classically, the interaction term seemed to violate Lorentz 
invariance. We have shown that, quantum mechanically, for values of the 
coupling constants satisfying the master equation, the model is not only 
Lorentz invariant, but it is conformally invariant as well. Apart from their 
intrinsic interest of these models, this opens the possibility of utilizing them 
for string compactification. 
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