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Experiments in First-Order Optimal Prediction 

Thibaut Burin des Roziers and Alexander Gottlieb 

Abstract 

We review certain cases where first-order optimal prediction has 
been found to perform well. Numerical experiments show that the 
main reason for the success of optimal prediction in these cases is 
dynamical quasi-invariance of the collective variables. 

1 First-order optimal prediction 

A method of "optimal prediction of underresolved dynamics" has recently 
been proposed by Chorin, Kast, and Kupferman [1] for producing compu
tationally feasible numerical schemes for nonlinear evolution problems, such 
as turbulent flow problems. They consider a space X of vectors or functions 
that is closed under the evolution 

d 
dtx = F(x), (1) 

which may be either a system of ordinary differential equations or a partial 
differential equation. Given an ensemble of initial conditions for ( 1) dis
tributed according to the .probability measure P 0 on X , the ensemble of 
solution values at time t is distributed according to 

pt(A) = P0 ({x: x(t) E A when x(O) = x}). 

Expectations with respect to the measure pt satisfy the change of variables 
formula 

Ept[h(x)] = Epo[h(x(t))], (2) 

where x(t) is the solution at timet of (1) with initial data x(O) = x. The 
purpose of Optimal Prediction is to approximate the evolution P0 -+ pt by 
solving a system of k ordinary differential equations. The idea is to select a 
family { Q o) of probability measures on X parameterized by a subset of :R k, 
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and to derive differential equations !JtB = J( B) for the parameters from the 
original evolution equation (1), so that Qu(t) ~ pt for as long as possible. 

The papers [1, 3, 4, 5, 6, 7] develop a simplistic version of the method 
of optimal prediction, called first-order prediction. This method, as applied 
to large systems of ODEs, goes as follows: 

Let 

(3) 

be a system of nODEs. (Imagine a Hamiltonian system with many degrees 
offreedom.) Let g1(x),g2(x), ... ,gk(x) be k differentiable functions on JRn, 
with k << n, and let Q be a measure on JRn. (If the system of ODEs is 
Hamiltonian, the measure Q might be taken to be a canonical Gibbsian 
measure.) For each f) = ( 81 , ... , (}k) E lR k let Q u denote the conditional 
probability under Q given that Yi(x) = f)i fori = 1, 2, ... , k. That is 

(4) 

Let P0 = Q IJ(o) be the distribution of an ensemble of initial conditions for 
the ODEs (3). We wish to "predict" expectation values with respect to pt. 

Let us assume that the family {Qu}oEJ.k of measures is rich enough that 
the measures pt can continually be approximated by measures from that 
family. This is called the closure assumption [6]. By the change of variables 
formula (2), 

d d 
dtEpt[gi(x)] = dtEpo[gi(x(t))] Epo[Vgi(x(t)) · F(x(t))] 

Ept [V Yi(x) · F(x)]. 

If the assumption that pt can be approximated by a measure Qu(t) is valid, 

the preceding equation implies that ftEQo(t) [gi(x)] ~ EQo(t) [V Yi(x) · F(x)]. 
But llrq0(t) [gi(x)] = Bi(t) by definition of the measure Qu(t)' so the closure 
assumption suggests that the parameter B(t) should obey the system of 
differential equations 

(5) 

These are the equations of first-order optimal prediction for the evolution 
problem (3) with prior measure Q and collective variables g1(x), ... ,gk(x). 
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They may be called "first-order" because they do correctly predict Ept [gi(x)] 
to first order for 0 ~ t << 1: if P0 = Qo(o) then 

d
d Ept [gi(x)Jj = dd Eq 6(t) [gi(x)Jj . 
t t=O t t=O 

2 When does first-order prediction work? 

For a generic prediction problem, the closure assumption will not be valid 
and the first-order method is not expected to succeed. However, some nu
merical experiments have been performed which show that optimal predic
tion sometimes works insofar as it successfully predicts the expectations of 
the collective variables given their initial values. Speculation concerning 
circumstances which may contribute to the success of first-order optimal 
prediction has produced several hypotheses. Two of these hypotheses are 
mentioned in [6]: for PDEs, or for systems of ODEs derived from PDEs, 
first-order prediction is more apt to succeed if (i) the collective variables 
represent spatial averages of the primary variables which are not concen
trated in space, and (ii) the collective variables are not funtions of disjoint 
groups of primary variables. Another hypothesis is that it is helpful to select 
collective variables that are functions of those primary variables that change 
more slowly under the dynamics. It also might seem favorable for optimal 
prediction that the prior measure Q be concentrated, i.e., that samples from 
Q have a small variance. 

We have found that when first-order prediction succeeds, it is not primar
ily due to the preceding circumstances. Rather, the success of first-order op
timal prediction depends mainly on the choice of collective variables: first
order prediction works :well if the set of functions of the collective 
variables is nearly invariant under the dynamics. This hypothesis 
was suggested to us by the work of 0. Hald on first-order prediction for 
linear Hamiltonian problems [2]. 

For special choices of the collective variables, first-order prediction cor
rectly determines the expected values of the collective variables. The equa
tions ( 5) of first-order optimal prediction for the system 

d 
dtui Fi(u); u = (ul,u2,··· ,uk) 

d 
dtwi Gi(u,w); w=(wbw2,···,Wn-k) 

(6) 
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with an arbitrary prior measure Q and collective variables 

Yt(u, w) = Ut, 92(u, w) = u2, ... , Yk(u, w) = Uk 

are simply 

d 
dtOi = Fi(Ot.02,··· ,Ok); i = 1,2, ... ,k. 

If the ensemble of initial conditions for ( 6) is distributed according to P0 = 
Qo(o) then by (2) and (4) 

Ept[gi(u,w)] = Ept[ui] = EQ[ui(t)ju(O) = 0(0)] = O(t), 

and the first-order method correctly "predicts" the expected values of the 
collective variables at timet. This does not mean that pt ~ Qo(t); first-order 
prediction correctly determines the expectations of functions h( u) of the 
collective variables, but not the expectations of general functions h( u, w ). 

Suppose, in particular, that A is ann x n matrix and that Vt, v 2 , .•. , Vk 

span a subspace of Jan that is invariant under Atr. Then, the system 

x=Ax 

reduces to the form (6) just considered upon setting Ui = x·vi and Wj = x·Wj 

for any vectors Wj which, together with the vectors Vi, span Jan. Thus, if 
O(t) solves the equations of first-order optimal prediction for :X = Ax with 
collective variables x · Vt, •.. ,x · vk and any prior measure Q, then 

Ept[x ·vi] = Oi(t) 

if P 0 = Qo(o)· First-order prediction exactly determines the expectations of 
the collective variables. 

In light of the preceding, first-order optimal prediction may be expected 
to do well if the PDE or system of ODEs is a slight perturbation of a linear 
evolution equation for which the collective variables span an invariant sub
space. We believe that every known success of first-order optimal prediction 
can be attributed to these circumstances, and that the other circumstances 
thought to favor the performance of optimal prediction matter much less. 
The numerical experiments reported in the next section support this opinion. 

3 Tests of first-order prediction 

In this section we review three of the cases where first-order optimal pre
diction has been found to work very well, and report the results of similar 
experiments we conducted ourselves. We interpret our results in Section 4. 
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3.1 Coupled harmonic oscillators 

Kast [7] considers the following system of 1001 coupled oscillators: 

Q = p 

qj j 2pj; j = 1,2, ... ,1000 
1000 

Fj -Q + L(q;- Q) 
i=1 

1000 

Pj (Q-qj)+ L(q;-qj)i j=1,2, ... ,1000. 
i=1 

(7) 

The collective variables are taken to be Q, P, q1, PI. ... , qw, P10· The prior 
measure is the canonical measure e-H / J e-H determined by the Hamilto
nian function H for which (7) are the canonical equations. Kast finds good 
agreement between 

E[P(t)i9(0), P(O), q1(0), ... ,p10(0)] 

and the optimally predicted values until (at least) t = 1. 
We tested a simpler version of Kast's system of coupled oscillators. We 

considered the system 

qj j 2pj; j = 1,2, ... ,100 
100 

q; + I:cq;- qj); j = 1,2, ... ,1oo. 
i=1 

As our prior measure Q we took 

1 ( 1 100 1 100 1 100 ) 

Z exp -2 Li2PJ + 4 _L (qj- qk)2 + 2 ~qJ dqdp. 
J=1 J,k=1 J=1 

(8) 

(9) 

(10) 

(11) 

For several choices of the collective variables g;( q, p ), we took P 0 = Qe(o) 
as defined in formula ( 4). We compared the exact values of Ept [g3(p )] 
to the estimates of those values EQo(t) [g3(p )] given by first~order optimal 
prediction. Here we report the results of seven experiments where twenty 
collective variables 

were taken to be: 
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(i) qt. Ph ... , qw,Pw 

(ii) qu,pu, ... , q2o,P2o 

(iii) qgt, P9t. . . . , qwo, Pwo 
10 10 10 10 

(iv) 2:(Mtjqj), 2:(M2jPj), ... , 2:(Mj,wqj), 2:(Mj,toPj) 
j=1 j=l j=l j=l 

where M was an 10 x 10 invertible matrix with integer entries 

(v) q1 + 0.1qu,Pt + 0.1pn, ... , qw + 0.1q2o,Pw + 0.1p2o 

(vi) · ql + 0.2qtt.Pl + 0.2pu, ... , qw + 0.2q2o,Pw + 0.2p2o 

(vii) q1 + 0.5q1bP1 + 0.5pu, ... , qw + O.Sq2o,pw + O.Sp2o 

(viii) q1 + q1 b Pl + Pn, · · · , qw + q2o, Pw + P2o 

The results of these experiments are shown in Figures 1 - 6. The solid 
curves in those figures graph EQo(t) (g3(p )] as a function oft, and the crosses 
mark the values of Ept (g3(p )]. The graph for experiment (iii) is not printed 
(the graph is too crowded) but first-order prediction was as successful for 
this case as it was for (i) and (ii). 

We also performed two experiments with the collective variables 

q1, P1, · · · , qw, P1o, 

but with different masses for the oscillators. In the first experiment, the 
masses were taken to be 1/j instead of 1jj2. Thus we replaced j 2 by j in 
the equation of motion (8) and in the fromula for the density of the prior 
measure (11). In the second experiment, the masses were all taken to be 1, 
so we replaced j 2 by 1 in (8) and (11). The results of these experiments are 
graphed in Figures 7 and 8. 
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Figure 1: Coupled oscillators (ii) 
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Figure 2: Coupled oscillators (iv) 
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Figure 3: Coupled oscillators ( v) 
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Figure 4: Coupled oscillators (vi) 
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Figure 6: Coupled oscillators (viii) 
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Figure 8: Oscillators with masses 1 
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3.2 A nonlinear system of ODEs 

In [1, 4, 5], first-order optimal prediction IS applied to the Hamiltonian 
system 

tii -256(Pi-1- 2pi + Pi+l) + Pr 

Pi +256(qi-1- 2qi + qi+l)- qt ; i = 1, 2, ... , 16. 

Their prior measure Q is the canonical measure 

Four collective variables 

gl. q, g2. q, 

q = (ql,q2, ... ,q16), 

are selected, where 

gl. p,g2. p; 

P = (Pt,P2, · · · ,Pt6) 

( 1 4 9 49 64 49 9 4 ) I g 1 ,r,r ,r , ... ,r ,r ,r , ... ,r ,r ,r z 

( 64 49 36 4 1 4 36 49)/ g2 r ,r ,r , ... ,r ,r, ,r,r , ... ,r ,r z 

r e-1116, z = 1 + r + r 2 + · · · + r64 + · · · + r. 

(12) 

(14) 

The conditional expectations that appear in the first-order equations (5) 
of optimal prediction are estimated by regression. The resulting equations 
are found to predict very well the conditional expectations 

up until t = 10 (at least). 
We repeated the preceding experiment, and obtained the same results 

as [1, 4, 5]. These results are presented in Figures 9. In this figure and the 
the rest of the figures of this section, the solid and dashed curves in those 
figures are the graphs of EcJe(t) [gi(q)] and EcJe(t) [gi(P )] for i = 1, 2, while 
the circles and crosses mark the values of Ept [gi( q)] and Ept [gi(P )]. The 
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solid and dashed curves are labelled V1p, V2p, V1q, V2q; the label V2p, for 
example, stands for EQe(t) [g2(P )]. 

We also performed a variant of the original experiment wherein we used 
the same collective variables but changed the prior measure. We substituted 
16 for 256 in formula (13) for the prior measure, which makes the prior 
measure about four times as spread out. The result of this experiment is 
presented in Figure 10. 

To test the effect of the collective variables on the performance of first
order prediction, we used the same prior measure (13) but used different 
collective variables of the form ( 14), where the vectors g1 and g 2 were taken 
to be 

(i) 

gl (1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) 

g2 {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1) 

(ii) 

gl (0,1,2,3,4,5,6, 7,8,7,6,5,4,3,2,1)/8 

g2 (8, 7,6,5,4,3,2,1,0,1,2,3,4,5,6,7)/8 

(iii) 

gl (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0) 

g2 (0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1) 

(iv) 

gl (1,0,0,1,1,1,0,0,0,0,1,0,1,0,0,1) 

g2 (O,l,0,0,0,1,1,1,1,1,0,0,0,1,0,1) 

(v) 

gl(j) cos(2rrj /16), j = 1, 2, ... '16 

g2(j) sin(2rrj /16), j = 1,2, ... , 16 
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(vi) 

cos(27rj /16) +cos( 47rj /16), j = 1, 2, ... , 16 

sin(27rj /16) +sin( 47rj /16), j = 1, 2, ... , 16 

The results of these experiments are shown in Figures 11 - 15. 
To compute expectations such as Ept [gi( q)), we sampled 100 initial con

ditions according to P0 = Qo(o), solved the ODEs (12) for each initial con
dition, and averaged. We feel that 100 samples give us adequately accurate 
results because we redid a few of our experiments with as many as 104 

samples and did not observe an appreciable change in the average values. 
The initial conditions were sampled using a Metropolis Markov chain Monte 
Carlo algorithm. We would allow 5 x 105 timesteps to pass before sampling 
the state of the Markov chain, then we let 104 timesteps pass between sam
ples, for we estimated the decorrelation time to be between 103 and 104 

timesteps. The coefficients of the equations of optimal prediction were also 
estimated exactly as in [1, 4, 5). 

0.5 

0.4 

Figure 9: Nonlinear system: the original experiment 
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Figure 12: Nonlinear system (ii) 
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Figure 13: Nonlinear system (iv) 
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g1 cos; g2 sin 
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Figure 14: Nonlinear system (v) 
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Figure 15: N cinlinear system (vi) 
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3.3 A linear PDE 

In [1, 4, 5], first-order optimal prediction is applied to the partial differential 
equations 

8 
8t q(x, t) 

8 
8tp(x, t) 

82 
= + 

8
x2 p(x, t)- p(x, t) 

82 
-

8
x2 q(x, t) + q(x, t) 

(15) 

on [0, 211"] with periodic boundary conditions. Ten collective variables are 
selected, namely, 

where 

j q(x )g(x- 21l"j /5)dx 

J p(x)g(x- 211"jf5)dx, 

g(x) = Le-1r2k2f25eikx 

kEZ 

and 

j = 0,1,2,3,4; 

(16) 

(i =V-i). (17) 

The prior measure selected is a certain Gaussian measure on C([O, 21r])2 
that resembles the law of circular Brownian motion. Because the prior mea
sure is not supported on differentiable functions, (15) must be interpreted 
in the weak sense. 

A numerical experiment shows that the the conditional expectations of 
the collective variables (16) at timet given their initial values are predicted 
well, at least up until t = 2. 

4 Interpretation of the experiments 

We performed many other experiments not reported here, whose results 
make it clear that first-order optimal prediction fails for "generic" collective 
variables. The results we presented in the preceding section were chosen to 
help us assess why first-order prediction works in the cases where it has been 
found to work. 
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4.1 The coupled harmonic oscillators 

The span of a set of collective variables of the form qi, Pi, ... , qi+IO, Pi+IO 
is nearly invariant under the dynamics (8) (9). Experiments (i) through 
(iv) show that first-order prediction works well for these collective variables. 
Experiment (iii) shows that "fast variables" can work as well as "slow vari
ables." Experiments (v)-(viii)show how first-order prediction fails as the 
collective variables move farther and farther from invariance. The last two 
experiments also show that fast variables work as well as slow variables, as 
long as the collective variables are nearly invariant. 

4.2 The nonlinear system of ODEs 

Experiments (i),(iv) and (vi) show that first-order prediction does not work 
for some reasonable choices of the collective variables. 

First-order prediction works well in experiments (iii) and (v) because 
the span of the collective variables is invariant under the linear part of 
(12), which dominates the dynamics. The linear part of the dynamics is 
diagonalized by functions of the form fk · ( q + ip) and fk · ( q- ip ), where fk 

is a discrete (sixteen point) Fourier vector of the form exp( -i27r j k /16); for 
k = -7, -6, ... , 7, 8. Since the eigenvalues offk · ( q + ip) and fk · ( q- ip) are 
the same as the eigenvalues of f_k · ( q + ip) and f_k · ( q- ip ), respectively, 
any function of the form ( c1fk + c2Lk) · ( q + ip) or ( c1fk + c2Lk) · ( q- ip) 
is invariant under the linear part of the dynamics. Thus, the collective 
variables of experiments (iii) and ( v) span invariant sub spaces for the linear 
part of (12). 

Experiment (iii) indicates that collective variables can have disjoint sup
ports and be fast variables; as long as they are invariant, first-order predic
tion can work. 

Figure 10 shows that it helps somewhat to have a concentrated prior. 
The success of first-order prediction in the original experiment and in 

experiment (ii) is a bit mysterious (see Figures 9 and 10) because the col
lective variables are not very close to spanning an invariant subspace for 
the linear part of (12), though they are still close. How close they come to 
invariance is indicated by the graphs of the discrete Fourier transforms of 
g1 + g2 and g1 - g2 in Figures 16 - 18. For example, Figures 17 and 18 
show that (g1 - g2 ) • ( q + ip) is nearly invariant under the linear part of 
(12), but that (g1 + g2 ) · ( q + ip) is not as nearly invariant. (These Fourier 
transforms are real since g1 and g2 are even. The central bar represents the 
constant component; the outer bars represent higher frequency components. 
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The sum of g 1 and g2 for experiment (iii) is constant, so the graph of its 
Fourier transform is omitted.) 

4.3 The linear PDE 

The span of the collective variables is very nearly invariant, for the sum (17) 
that defines the collective variables is very nearly equal to 

2 L e -1r
2 k2 /25 eikx (i = V-1). (18) 

k=-2 

If the sum in (17) were exactly equal to (18), the span of the collective 
variables would be exactly invariant. 

4.4 Yet another experiment 

Another numerical test of optimal prediction is reported in the last section 
of [6). First-order optimal prediction was applied to a nonlinear system 
of ODEs resembling (12), and several low wavenumber Fourier coefficients 
were used as collective variables. The first-order prediction of these Fourier 
coefficients agrees quite well with their conditional expectations given their 
initial values. Once again, the success of first-order prediction is attended 
by the circumstance of quasi-invariance of the collective variables. 

It may seem that the success of first-order prediction in this case cannot 
be due to the quasi-invariance of the span of the Fourier coeficients, for 
the approximate evolution of those Fourier coefficents given by the Galerkin 
scheme deviates substantially from the optimally predicted evolution. We 
still maintain that first-order pediction works here because the collective 
variables are quasi-invariant, that is, because some change of variables that 
renames the collective variables u renders the dynamics are approximately 
ofthe form (6), so that approximately 

d 
dtu = F(u) 

for some (unknown) function F. The fact that the optimal predictions are 
not the predictions obtained from the Galerkin scheme shows only that F 
does not happen to be the one suggested by Galerkin projection. The fact 
that the collective variables are invariant under the dominating linear part of 
the dynamics suggests there might be some F that makes the decomposition 
( 6) of the dynamics hold approximately. There is no reason F must have 
the form indicated by the Galerkin scheme, while the method of first-order 
prediction provides, in effect, a better choice of F. 
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Figure 16: Fourier transform of g 1 - g 2 of experiment (ii) 
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Figure 17: Fourier transform of g1- g2 of original experiment 
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Figure 18: Fourier transform of g1 + g 2 of original experiment 
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5 Conclusions 

First-order optimal prediction generically fails because the closure assump
tion is rarely valid, but it can succeed when the set of functions of the 
collective variables is nearly invariant under the dynamics. Other circum
stances thought to favor the success of the method seem to be much less 
important than the quasi-invariance of the collective variables. 
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