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In the AdS/CFT correspondence, CQrrelation functions of conformal fields are related 
to amplitudes of a quantum theory in AdS [1 - 3] (for a review, see for example [4]). 
Since the conformal group of the boundary and the isometry group of AdS are identical, 
correlation functions defined in this way are conform ally symmetric. However not all 
quantum theories in AdS can be related to CFT at the boundary in this way. The 
correlation functions on the boundary must obey the axioms of CFT. For example, any 
CFT contains the energy-momentum tensor in the operator algebra, and one must be 
able to compute correlation functions including the energy-momentum tensor. There 
has to be a field in AdS to which it can couple to, namely the graviton. Thus a quantum 
theory dual to CFT is necessarily gravitational. A quantum gravity mayor may not 
be a string theory. In some cases, however, there are operators in CFT which can 
directly couple to string states. Wilson loop operators are examples of such operators. 
So we may hope to learn about stringy aspects of the AdS/CFT correspondence by 
studying the Wilson loops. Also, these are fundamental gauge invariant operators in 
gauge theories, and we may hope to learn about gauge theories from the point of view 
of AdS. 

In this talk, I will discuss Wilson loops in the .N = 4 supersymmetric Yang-Mills 
theory in four dimensions, based on my work with Nadav D~ukker and David Gross [5]. 
First we review basic p:rop~rties of the WUson l()ops in .N = 4 theory. This part of the 
talk is purely field theoretical. The.N ·'4 theory contains massless scalar fields, a:o.d 

they must be taken into account in constructing the Wilson loop. The presence of the 
scalar fields improves ultra-violet properties of the loop operators. We will then discuss 

t Talk presented at Strings '99 ih Potsdam, Germany (July 19 - 24, 1999). 
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how these and other properties of Wilson loops can be seen from the point of view of 
string theory in AdS. 

At the conference, I also presented my work in progress with Cumrun Vafa about 
Wilson loops in the large N Chern-Simons gauge theory in three dimensions, which will 
appear elsewhere. (This is why the title says "Large N Theories.") 

2. Wilson Loops in the .IV = 4 Super Yang-Mills Theory 

Let me start with the.IV = 4 supersymmetric Yang-Mills theory in four dimensions. As 
we mentioned, this part of the talk is purely field theoretical. 

2.1. Definition 

The Wilson loop is a phase factor associated to a trajectory of a quark in the fundamental 
representation of the gauge group G. We will discuss the case when G = U(N). The 

.IV = 4 theory consists of the gauge field AIL' four Weyl fermions Aa (a = 1,," ,4), 
and six scalar fields <Pi (i = 1"" ,/6) all in the adjoint representation of the gauge 
group U(N). The theory does not contain particles in the fundamental representation. 
Instead, we may use the W-boson to probe the theory. We start with the U(N + 1) 
gauge group and break.it to U(N) x U(1) by choosing the non-zero vacuum expectation 
values for the scalar fields. 

i . (<Ph(N)=O 0) 
<PU(N+1) = 0 u(}i' (1) 

Since there are six scalar fields, we parametrize their vacuum expectation values by a 
point (}i on the unit 5-sphere, (}2 = 1, corresponding to the direction of the symmetry 
breaking. The absolute value of the scalar vacuum expectation value is denoted by u. 

The phase factor associated to a trajectory of the W-boson gives the loop operator 
of the form, 

W = Tr Pexp [f ds (iAIL(x(s))xIL(s) + i<pi(X(S))(}i(S)lx(s) I) ] , (2) 

in the Minkowski space, and 

W = Tr Pexp [/ ds (iAJL(x(s))xIL(s) + <Pi(X(s))(}i(s)lx(s)l)] , (3) 

in the Euclid: space. We should point out that there is an imp~rtantdifference between 
the Minkowski case and the Euclidean case, that is the absence of the imaginary unit 
"i" in front of the scalar field <P in tlfe Euclidean case .. In particular, the Wilson loop 
in the Euclidean case is not a pure phase. This distinction is important in many of our 
results in the following. In this talk, we will deal with the Euclidean case only. 
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Another important aspect of the Wilson loop (3) generated by the W -boson is that it 
couples to the gauge field AIL and the scalar field cPi with the same strength since 02 = l. 
Clearly this is the consequence of the fact that the W-boson in this case is a BPS 
particle. This is not the most general gauge invariant observable one can write down. 
In general, one may consider a more general loop operator whose coupling strength to 
the gauge field may be different from that to the scalar field, as in 

W = Tr Pexp [I ds (iAIL(x(s))xlL(s) + cPi(x(s)hi(s))] . (4) 

Here we used the symbol ii to denote the coupling to the scalar field. The phase factor 
for a W-boson trajectory corresponds to the special case when x2 = y2. 

2.2. UV Divergence 

Although the N = 4 theory is ultra-violet finite, composite operators of the theory may 
require regularization. If two local operators coincide at a point, for example, there can 
be a divergence. Let us discuss the ultraviolet divergence in the Wilson loop operator. 
It turns out that the operator with the constraint x2 = y2 is special in this regard. 

If the 't Hooftcoupling g2 N is small, one may compute the vacuum expectation 
value of the Wilson loop (4) by the perturbative expansion. The one-loop computation 
gIves 

g2N f ( y2) (W) = 1 + -- dslxl 1 - -. + .. , . 
(27f)2€ . x 2 

(5) 

Here € is the UV cutoff parameter. When x2 = ii, the divergence is canceled due to the 
cancellation between the gauge field exchange and the scalar field exchange diagrams. It 
seems that this cancellation persists at higher loops. As we will see in the following, the 
AdS/CFT correspondence shows that the cancellation of the UV divergence happens at 
the large g2 N also. 

So far, we have assumed that the loop is smooth. When there is a singularity on 
the loop, the divergence is not completely canceled, and some logarithmic divergence 
remains even when x2 = iP. For example, when the loop has a cusp, the one-loop 
computation shows the logarithmic divergence depending on the angle at the cusp as 

g2Jv 11' - n (1) 
(Wwith cusp) = 1+ '2 )2~(cosn+cose)log - + "', 

\ 11' sm.~G € 
(6) 

where n is the angle at the cusp (i.e. a jump in xIL/lxl). At the cusp, the direction 
Oi = yi/liJl of yi may also change dis,continuouslYi the angle e is the amount of the 
discontinuity in Oi at the cups. R~normalizing this divergence would then give an 
anomalous scaling property of the loop, which depends on n and e. There is also 
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a logarithmic divergence when the loop has an intersection. 

g2 N 1 (1) 
(Wwith intersection) = 1 + -2---:---O( cos n + cos 8) log - + .... 

7r SIn H f 
(7) 

These are somewhat similar to the logarithmic divergence in the even-dimensional 
observables (such as points or surfaces) discussed by Berenstein, Corrado, Fischler and 
Maldacena [6] and by Graham and Witten [7]. 

2.3. Loop Equation 

The large-N loop equation is considered to be one of the fundamental properties of the 
Wilson loop operators [8]. It is expected to hold in both small and large g2 N. When 
g2 N is small, it is equivalent to the perturbative Feynmann rules of the gauge theory. 
On the other hand, there are subtleties in the definition of the loop equation since it 
is derived assuming that the loops are regularized but not renormalized. In fact, the 
equation depends explicitly on the UV cutoff. The situation seems better in the N = 4 
theory because of the better ultraviolet behavior as we saw in the above. Since the 
equation is supposed to hold at large g2 N also, it may be useful in testing the stringy 
aspects of the AdS / CFT correspondence. I will comment on this later in this talk. 

In order to write down the loop equation, we need a complete set of gauge invariant 
observables which can be written in the form of loops. Inparticular, we need to introduce 
sources for the fermion fields also. From the point of view of supersymmetry, it is natural 
to couple the fermionic variable ( to the gluino field A in the combination, 

W = TrPexp [! ds (iA/Lx/L + 1>i'ii + ~((il/Lx/L + ri:l/)A + ... )] . (8) 

It turns out that the combination (i!/Lx/L + riJ/) of 4d and 6d gamma-matrices, II-' and 
r i , becomes nilpotent when the constraint x2 = ii is satisfied. This simplifies our task 
of writing down the loop equation considerably. We then introduce the second order 
differential operator on the loop space defined as § 

.c = lim ds ds' -.. + . (9) 1s+1I (J2 82 82 ) 
7/~of S-7/ 8X/L(S)8X/L(S') 8y~(s)8yi(S') 8((s)8((s') 

The two derivatives are taken at different points sand s' on the loop. The distance 'rJ 

betw~~n the two points must be chosen to be shorter .than the UV cutoff f so that we 
can isolate the contact· terms we need for the loop equation. This is the prescription 

due to Polyakov [9]. 

§ The differential operator £ defined here .does not preserve the .constraint 3;2 :::; ii. Recently some 
improvement in the definition of £ was made, and it was found to be possible to write a loop equation 
which closes only among loops preserving the constraint [10J. 
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When the loop satisfies the constraint :i:2 = iP, the action of the differential operator 
on the Wilson loop can be written, using the Schwinger-Dyson equation and the large 
N factorization, as 

£(W) = IN f ds f ds'8(4) (x(s) - x(s')) X 

x [:i:(s). :i:(s') - y(s)· y(s')] (WSS/)(WSIS)' (10) 

where WSSI given by the path ordered exponential of the form (8) integrated over the part 
of the loop, between sand s'. The fermionic variables , are set to be zero after taking 
the derivative. The loop equation (10) states that £(W) is non-zero only when the loop 
has a self-intersection. In the case of pure Yang-Mills theory without supersymmetry, 
there is an ambiguity about whether to take into account the trivial self-intersection, 
namely the case when s = s', for which the delta-function contraint xJ.t(s) = xJ.t(s') in 
the right-hand side of (10) is satisfied trivially. In some sense, the loop intersects with 
itself at each point along the loop. In the case of the N = 4 theory, we do not have to 
worry about such an ambiguity since the factor [:i:(s)· :i:(s') - y(s)· y(,s')] vanishes when 
s = s'. 

3. Wilson Loops in AdS5 x S5 

Now let us discuss how these properties of loop operators can be seen from the point 
of view of string in AdS. In the above, we started with the U(N + 1) gauge group and 
broke the group to U(N) x U(l). In the string theory, this corresponds to putting N 
D3 branes on the top of each other, and probe it by another D3 brane. The open string 
stretched between the N D3 branes and the single D3 brane probe corresponds to the 
W-boson of the gauge theory. According to Maldacena's conjecture, in the large N 
limit, the N D3 branes are replaced by the geometry of the AdS5 times 5-sphere. The 
W-boson is now a string in AdS stretched from the boundary. The large N Wilson loop 
was studied from this point of view by Maldacena [11] and by Rey and Yee [12]. In the 
following we will clarify some aspects of this approach and extend it to various cases. 

The metric on AdS5 times the 5-sphere is given by 

ds2 = V92Ny-2(dydy + dxJ.tdxJ.t) + Vg2Nd()2. (11) 

It is often useful to combine the radial coordinate y of AdS with the coordinates () of 
the 5:-:sphere iJ'ltosix coordinates yi = y()~. ·In the coordinates xJ.tC;l.nd yi, it is.easy to see 
that the total metric is conformal to the flat ten-dimensional metric. 

ds2 = Vg2Ny-2(dx IL dxP '+ dyidyi) (12) 

In this coordinates, the boundary of AdS is at y = O. 
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3.1. Boundary Conditions 

To compute the Wilson loop observables in this framework, it is important to understand 
the relation between the loop variables and the boundary condition on the string 
worldsheet. It is well-known that the conformal field theory on the string worldsheet 
couples to the spacetime gauge fields AJl. and <Pi as 

f I (OXJl. i) da AJl. oal + <PiP , (13) 

where the integral is along the boundary of the worldsheet. We use aCX (a = 1,2) 
for the worldsheet coordinates with the world sheet boundary at a 2 = o. The vector 
field AJl. couples to the derivative of the string coordinates XJl. along the boundary of 
the worldsheet. The scalar fields <Pi, on the other hand, couple to the momentum pi 
conjugate to the corresponding string coordinates yi, 

P
i _ 1 cx/3 oyi 

- ylgglCXf. oa-/3' (14) 

where gcx/3 is a metric on the worldsh~~t. The scalar fields <Pi correspond to the transverse 
coordinates of the D-brane, and they are T-dual of the gauge field along the D-brane. 
Since the momentum pi is T-dual to the derivative of the string coordinate along the 
boundary, the scalar fields couple to pi. 

Since the gauge field AJl. couples to the derivative of the string coordinates OlXJl. 
along the boundary and the scalar field <Pi couples to the momentum pi conjugate to 
the string coordinates at the boundary, it is clear that the Wilson loop operator of the 
form (4) couples to the string world sheet with the following boundary conditions. 

XJl.(aI,a2 = 0) = xJl.(a l ) 
dyi 

pi(aI,a2 = 0) = da l (a
l

) (15) 

In the four-dimensional directions along the D3-brane, the string worldsheet obeys the 
Dirichlet condition that the string ends along the loop xJl. (s ). For the six transverse 
directions, the string momentum is fixed following the Neumann condition. These 
boundary conditions are complementary to the standard D3-brane boundary conditions 
(Neumann condition for XJl. and Dirichlet condition for yi), as they should since we are 
imposing extra conditions by inserting the loop operator on the D-brane. 

When· g2 N·· is large, thestriilg tension becomes large and we can approximate the 
string dynamics bya minimum surface in AdS [11,12]. For a given set of the loop 
variables (XIL(S), yi(s)), we expect that there isa unique minimum surface in AdS obeying· 
these boundary conditions. The existence and uniqueness of minimum surfaces in AdS, 
in the case when 'Ii is constant, have been discussed in the mathematics literature 
(see, for example, [13 - 15]). This, however, leads to a puzzle. In the AdS/eFT 
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correspondence, we expect that the boundary conditions for the bulk degrees of freedom 
are imposed at the boundary of AdS at y = O. However the condition that the string 
worldsheet to terminate at y = 0 would be an extra Dirichlet boundary condition. This 
mayor may not be compatible with the ten Dirichlet/Neumann boundary conditions 
we have already imposed. 

It turns out that there is a nice resolution to this puzzle. One can show that, if 
the boundary conditions are smooth, the minimum surface obeying these ten boundary 
conditions can terminate at y = 0 only if the constraint :i;2 = iJ2 is satisfied [5]. This 
can be shown by using the Hamilton-Jacobi equation for a minimum surface in AdS. 
This fits nicely with the fact we saw earlier in the field theory point of view; the Wilson 
loop generated by a trajectory the W-boson obeys the same constraint :i;2 = iJ2. This 
resolves the puzzle, but it raises another question about how to define the Wilson loop 
operator which does not obey the constraint. We will come back to this question later. 

3.2. Legendre Transformation 

Once we find the minimum surface obeying the boundary condition, we can compute the 
value of its classical action. In the semi-classical approximation, the vacuum expectation 
value of the Wilson loop is given by the exponential of the action for the minimum 
surface. There is a question of which action to use. A naive guess would be the area 
of the surface, namely the N ambu-Goto action. This would be appropriate if we were 
solving the fully Dirichlet problem. In the fully Dirichlet problem, the boundary loop 
is fixed in the target space, and there is a well-defined area for each surface. The area, 
however, is not an appropriate action functional for the Neumann problem. Since the 
Neumann problem fixes the string momentum, rather than the location of the loop at 
the boundary, the area for the surface is not well-defined. The appropriate action for 
the Neumann problem is the Legendre transform of the area, which we denote by A. 

A = A - f dsPi yi. (16) 

A obtained by the Legendre transformation is a good functional of the string momentum. 
There is a bonus in performing this Legendre transformation. Since the metric in 

AdS diverges near the boundary, the area of the minimum surface is infinite if the surface 
terminates at the boundary of AdS. To regularize this, we introduce a cutoff E in the 
y-coordinates. The boundary of AdS is at y = 0, and the regularized area is given by an 
integral in the region y 2:: Eo By now, it is well-known that this infrared regularization in 
AdS corresponds the ultraviolet reguJarization in the gauge theory [16]. So we use the 
same symbol E for both the UV cutoff of the gauge theory and the IR cutoff of the string 
theory in AdS. If the loop is smooth, the area is linearly divergent and the divergence 
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is proportional to the circumference of the loop [11]. 

A = .Jij2N f dsl±1 + (finite). (17) 

It turns out that the Legendre transformation precisely cancels this linear divergence, 
leaving the Legendre transformed action ii to be finite. Therefore the vacuum 
expectation value of the Wilson loop, which is given by the exponential of ii, is finite in 
this case. Earlier, we have seen in the gauge theory that the Wilson loop is perturbatively 
finite when ±2 = iP. The fact that ii is finite fits well with this gauge theory result. 

3.3. Examples 

There are several types of Wilson loops for which solutions to the corresponding 
minimum surface problems can be found explicitly and the areas of the surfaces can 
be computed analytically. 

The first example is the parallel Wilson lines. This was studied by Maldacena [11] 
and by Rey and Vee [12]. By computing the area of the minimum surface connecting 
the Wilson lines and by performing the Legendre transformation, one finds 

~ _ cz;;41rVi L 
A - V g-N r(~)4 R' (18) 

where L is the length of the Wilson lines and R is the distance between them. This 
expression is for L » R. The parallel Wilson lines compute the potential between quark 
and antiquark. This result shows that the potential goes as 1/ R, as expected from the 
conformal invariance, and the coefficient is proportional to J g2 N. It is interesting 
to compare this with the perturbative computation. When g2 N is small, the quark­
antiquark potential is proportional to g2 N due to the one glueon exchange. Somehow 
when g2 N becomes large, this g2 N behavior turns into J g2 N. One may view this as a 
prediction of the AdS/eFT correspondence, which can in principle be tested by a field 
theory computation at large N. 

We can also find a minimum surface corresponding to a circular Wilson loop. The 
area of the surface, after performing the Legendre transformation, turns out to be 
independent of the radius of the circle, and the vacuum expectation value of the loop is 
given by 

(W) = exp (J92N). (19) 

In these two cases, the Wilson loops are finite as we expect for smooth loops. 
Another case we can find a minimum surface is a loop with a cusp. Near the 

cusp singularity, the geometry is scale invariant and we can integrate the equation of 
motion using the elliptic integrals. In this case, the divergence of the area is not precisely 
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canceled by the Legendre transformation, and the logarithmic divergence remains. Once 
again, this is similar to what we saw in the gauge theory side (6). The coefficient in 
fron,t of the logarithm is different from the perturbative result, however. 

3.4. Loops with j;2 -I i/ 

We have seen that, when the Wilson loop operator obeys the constraint j;2 = '1/, 
we can evaluate its vacuum expectation value at large g2 N by computing the area 
of the minimum surface in AdS. Its vacuum expectation value is the exponential of the 
Legendre transform of the area, and it is finite when the loop is smooth. 

It is then natural to ask how to compute the loop which does not satisfy the 
constraint. For the boundary conditions which do not satisfy j;2 = iP, there is no 
minimum surface ending on the boundary of AdS. So one may say that the vacuum 
expectation value of such a Wilson loop should be zero. This is a reasonable answer. 
In fact, in other cases such as finite temperature theories, such an answer gave results 
consistent with what we expect for gauge theories [17]. 

For some problems, however, we need information more detailed than simply stating 
(W) = 0 for j;2 -I 'Ii at large g2 N.' Suppose for example we want to see whether the 
Wilson loop computed in this way give a solution to the large-N loop equation (10). 
When the loop is smooth and without intersections, the equation is simply C(W) = 0 
and this is satisfied by any smooth functional of the loop. Non-trivial checks of the loop 
equation, therefore, have to involve loops with cusps or intersections. For a loop with a 
cusp, however, a minimum surface which can end at the boundary of AdS violates the 
condition :i;2 = iJ2 [5], while the loop equation (10) is derived for loops obeying :i;2 = iJ2. 
Thus, in order to test the loop equation, we need more refined knowledge on the vacuum 
expectation value of such Wilson loops. 

The perturbative computation suggests that loops not obeying the constraint are 
ultraviolet divergent. In analogy with the distinction between chiral primary fields and 
non-chiral fields in gauge theory, we expect that computation the vacuum expection 
value for loops with j;2 -I iJ2 requires better understanding of stringy corrections in 
AdS. 

4. Comments 

At the end of my presentation at the conference, I was asked whether the Wilson loop 
operator W as in (4) is well-defined in the Euclidean quantum field theory. Do we 
know that the functional integral for (W) is convergent? Since the scalar field <Pi 
in the exponent comes with the reaL coefficient ii, the functional integral would be 
convergent only if the distribution of the eigenvalues of <Pi decays sufficiently fastly for 
large eigenvalues. Another audience commented that, since the Wilson loop with the 
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constraint :i:;2 = il is BPS-like (it is a phase factor associated to a trajectory of the W­
boson, which is a BPS particle in the N = 4 theroy), it is likely that such an operator 
makes sense, and so does the one with :i:;2 > il since the effect of the 1>i in the exponent 
would be weaker. On the other hand, one may question whether an operator with 
:i:;2 < iJ2 exists. 

In fact, the AdS/CFT correspondence suggests that operators with :i:;2 = iJ2, :i:;2 > iJ2 
and :i:;2 < iJ2 behave differently. As I pointed out, the minimum surface can terminate 
at the boundary of AdS at y = 0 only if the constraint :i:;2 = iJ2 be satisfied. The 
AdS/CFT corrspondence then gives a definite prescription to compute (W) using the 
Legendre transform of the area of the minimum surface. When:i:;2 > iJ2, we can still 
find a minimum surface obeying the boundary conditions (15), except that the surface 
ends somewhere in the interior of AdS rather than at the boundary. One may therefore 
hope to compute (W) using such a minimum surface. On the other hand, in the case 
of :i:;2 < iJ2, there is no solution to the minimum surface problem even if we relax 
the condition that the surface should terminate at y = O. This may be viewed as an 
indication that the loop operator for :i;2 < iJ2 is problematic. It would be interesting to 
study properties of such loops from ,the point of view of the gauge theory and to see 
how they fit with these behaviors of minimum surfaces. 

To conclude, the Wilson loop provide us an window to observe the stringy nature 
of the correspondence between gauge theory and string theory. In the N = 4 gauge 
theory in four dimensions, we have understood various aspects of loops which obey the 
constraint, :i:;2 = iJ2. I think that finding a way to study loops without the constraint 
would teach us more about gauge theory and string theory. 
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