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Abstract 

We propose a partial differential equation (PDE) for filtering and segmentation of echocar
diographic images based on a geometric-driven scheme. The method allows edge-preserving 
image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes 
the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as 
is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is bor
rowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time 
echocardiographic images are shown. 

1 Introduction 

Infarction of the heart muscle is the primary cause of death among human beings compared to 

all the other diseases. Therefore, evaluation of the heart functionality is an important component 

in good health care. Echocardiography is by far the most commonly used imaging technique to 

diagnose pathologies of the cardiac muscle. The features that have made it so largely used are 

its noninvasiveness, ease of use, low cost and effectiveness in diagnosing heart pathologies. 2D 

echocardiography only allows visualization of planar tomographic sections of the heart; thus, it 

relies on strong geometrical assumptions for the determination of heart chamber volume and is is 

subject to considerable measurement error, especially for the right ventricular and atrial volume 

determination [3]. On the other hand, 3D echocardiography overcomes the need for geometrical 

·Supported in part by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, U.S. 
Dept. of Energy under Contract DE-AC03-76SD00098, and LBNL Directed Research and Development Program. 
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assumptions, thereby allowing accurate evaluation of chambers size and shape, even in case of 

cavities with irregular geometry. 

A serious drawback is the poor quality of echograms if compared, for example, with computed 

tomography (CT) or magnetic resonance (MR). An accurate visualization and interpretation of 

ultrasounds images is often affected by the high amount of noise intrinsically linked to the acqui

sition method. Indeed the process of formation of an ultrasound image involves a combination of 

coherent, rayleigh and diffractive scattering that produces the characteristic speckle-noise distri

bution [31]. Traditional pre-processing algorithms such as moving average, median and Gaussian 

filtering reduce the noise superimposed on the image but do not preserve the edge information or 

the boundaries [10]. Non-linear filtering methods based on partial differential equations have been 

applied in [18, 9, 26]. 

Many techniques have been proposed in the literature to extract the ventricular surface in 

conditions of end-systole and end-diastole - thus when the ventricle is closed - starting from a 

small number of 2D images that represent different sections of the ventricle. Reconstruction of 

the ventricular chamber has been widely studied in recent years from Computed Tomography and 

Magnetic Resonance Imaging. Cohen in [6] [7] uses the concept of active deformable contours for 

the segmentation of ventricular shapes from 2D echo cardiography and 3D magnetic resonance. 

The approach is a generalization of Kass, Witkin, and Terzopoulos deformable elastic model [12]. 

Malladi, Sethian, and Vemuri in [13, 14] combine the idea of deformable surfaces with the level

set approach of Osher and Sethian [20], by representing the surface as a particular level-set of an 

implicit function and applying it to the reconstruction of the ventricular chamber in 3D+ time MR 

images; see [16]. 

The difficulty in segmenting the heart chamber shapes from echocardiograms is two fold; first, 

the images are relatively noisier resulting in poor edge indicator and second, due to opening and 

closing of the heart valve, the boundary of the left ventricle remains uncertain in some images. Big 

'holes' due to open valve many times causes the shape model to erroneously flow into the atrium. 

We address both these issues in this paper. The noise and poor edge quality is handled with an 

edge preserving filtering mechanism [32] and the issue of shape uncertainty is resolved by exploiting 

the continuity assumption in time [26]. 
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In this paper we want to address both the tasks of edge preserving image denoising and shape 

extraction of the cardiac chambers from echocardiographic images, by using the same geometric 

partial differential equation (PDE) based model. Encouraged by the recent advances [14][15] [16]

[17][32][2][23] [26] [18] in PDE based image analysis tools, we extend and apply some of those meth

ods to echocardiographic image analysis. The theme of this paper is to start with a governing 

equation that is expressed via an Euler-Lagrange of a functional and to show its many interpre

tations. A numerical scheme based on the level set methods [20] and the efficient narrow-band 

versions [1][14] of it are used to solve the main equation. 

Another key aspect of this paper is the accurate computation of ventricular volume from the 

extracted shapes. This leads to the estimation of such quantities as ejection fraction from a time 

varying set of 3D images. Finally, to demonstrate the accuracy of our segmentation scheme, we 

compare the volume figures we obtain from segmenting sheep heart images to the exact experimen

tally measured values [PINI reference]. 

The rest paper is organized as follows: In Section 2 we present the main equation and we outline 

its relevant features. In Section 3 we interpret the main equation as an image processing algorithm 

and show its application in echo cardiographic image denoising. In Section 4 we study the geometric 

interpretation of the model for shape segmentation. In Section 5-8 results of the application of the 

model to in vivo ultrasounds acquisitions are presented and details of the implementation are 

provided. 

2 The geometric evolution equation 

Consider an hypersurface Y(x, t) that is propagating under the speed F in the normal direction. 

The speed F(N, JC, x) is a function of the intrinsic geometrical properties of the hypersurface, 

like the normal vector and curvature, as well as of the position. We consider a level set equation 

[20][28][29] to represent this motion by embedding the hypersurface as the zero level-set of an higher 

dimensional function \f!(x, t), namely the set {\f!(x, t) = o}. By following chain rule, the equation 

of motion of the embedding is 

(1) 
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with the initial condition W(x, t = 0) = Wo. By embedding the evolution of Y(x, t) in the evolution 

of of W(x, t), topological changes of Y(x, t) are handled automatically and a numerical solution 

for the evolutionary hypersurface can be accurately achieved in the viscosity framework presented 

in [20]. Several applications in shape modeling have been presented using this model for surface 

propagation in [13][4][14][16]. Level set methods in image analysis have been introduced in [14] for 

boundary extraction. The method relies on evolving an initial manifold in the image domain and 

to mold the shape into the desired boundary. The key is a suitable design of the evolution speed F

In [14] the speed function used to control the shape recovery process is a combination of constant 

inflationary speed, an intrinsic geometric speed that regularizes the final result and a speed that 

depends on the image: 

(2) 

where 9 is a decreasing function of the image gradient. It has to be noted that the curvature of the 

hypersurface written as a function of the level set of w(x, t) is just J( = \7 . I~:I and then the above 

expression defines the propagation of Y(x, t) driven by the image features and regularized by the 

curvature; J( is the Euclidean curvature for plane curves and the mean curvature for manifolds. 

In addition to the speed term in Eqn. 2, an attraction to the boundary features can be defined 

by adding a forcing term that advects the surface along an image dependent vector field [5][16]. 

The vector field has to be synthesized such that it always points towards towards the local edge. 

The speed function then takes the form: 

F = 9 (1 ~ EJ() - fJ\7 9 . ( \7w ) 
l\7wl ' (3) 

where the unit normal to the surface is expressed by the term N = -I~:I' The corresponding 

surface evolution has a steady state solution when the inflationary and the geometry dependent 

terms balance the advection term. As shown in [5, 16], this model of surface evolution leads to 

stable shape recovery even in the presence of minor gaps and oscillations along the edge. However, 

echo cardiographic images are significantly noisier with much poorer edge definition when compared 

to CT, and MR images. They not only have noisy structures but often large parts of the boundaries 

are missing making the shape recovery really troublesome. So, even with the extra forcing term in 

Eqn. 3, the evolving "edge-seeking" surface can easily go through the gaps present in the edge map. 
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We aim to develop a filtering and segmentation method that deals with non-continuous edges. 

We propose the following evolution equation for the level set function \]i: 

\]it - gJCI\7\]iI- {3\7g. \7\]i = O. (4) 

Notice that the constant component of the speed, i.e. the 'edge-seeking" term has been dropped. 

The reason for this change is two fold: (a) given a good initial condition, the segmentation algo

rithm will recover shapes with significant gaps by simply minimizing distance in areas where edge 

information is absent, and (2) as we show in the next section, the above equation can be used to 

denoise the original image as well as enhance edges. The edge enhancement step is used as a pre

cursor to segmentation. The equation itself can be solved with user-defined initial condition during 

the segmentation step and with the original image as an initial condition for the edge-enhancement 

stage. The model regularizes the the boundaries where a clear representation of the edges is missing. 

It presents topological adaptability, robust numerics and very fast implementations [17J. 

3 The shock~type filtering 

Low level image processing tends to achieve the basic result of computing a decomposition {nd of 

the domain 0 = 0 1 U ... U ON and computing an enhanced image similar to the original one, that 

varies smoothly and slowly within each ni and discontinuously on (part of) the boundary of the 

Oi. Boundaries of the homogeneous regions ni that are not part of the boundary of 0 are called 

edges1 . The goal is then to smooth all the homogeneous regions that contain noise and to retain in 

an accurate way the location of the edges that define the shape of the represented structures. We 

shall now show how we can use Eqn 4 to do image processing. Let us consider an image 10 (x) : n -+, 

where 0 c RN is a rectangular spatial domain and N = 2 for 2D images and N = 3 for 3D images. 

The image filtering associates with Io(x) a family \]i(x, t) : 0 x [0, TJ -+ R of simplified-filtered 

images depending on an abstract parameter t, the scale. To better understand the method, let us 

consider the main equation, namely: 

\]it = g (\7. I~:I) 1 \7\]i 1 + (3\7g. \7\]i 
1 

g(x) = 1 + (I\7Ga (x) * I o{x)J/a)2 
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(5) 

with the initial condition given by the noisy image \Ii (x, t = 0) = Io(x). 

The first (parabolic) term in Eqn. 5 is a geometric diffusion term weighted by the edge indicator 

g. The geometric diffusion term (V. I~~I) IV\li1 is a degenerate diffusion term that diffuses the 

signal only in the direction parallel to the boundaries and not at all in the direction of V\Ii thereby 

preserving edge definition. Writing the diffusion term as Morel and Solimini noted that: 

(6) 

Morel and Solimini noted that the first term, the Laplacian, is the same as in Scale Space Theory [2] 

and the second one is an inhibition of the diffusion in the direction of the gradient. The weighting 

function 9 enforces edge preservation by slowing down the geometric diffusion in presence of high 

gradient in the smoothed image. Thus the aim of the selective geometric diffusion term is to make \Ii 

smooth away from the edges with a minimal smoothing of the edge itself. The second (hyperbolic) 

term in Eqn 5 sharpens the edges by advecting the brightness signal of the initial image 10 toward 

the edges following the vector fields induced by Vg. A similar observation was made in [24]. 

The edge indicator g(x) is a non-increasing function of VG".(x) * Io(x). To interpret this term 

we observe that the convolution property VG".(x) * 10 (x) = V(Gu{x) * Io{x)) = G".(x) * V Io(x) 

holds. Thus we can consider it as the gradient of a smoothed version of the initial image: Is (x) = 

Gu(x)*Io(x). We compute it via heat-flow (an idea usually attributed to Koendrink) by observing 

that the convolution of the signal with Gaussian is equivalent to the solution of the heat equation: 

Is(x, t) = fou t1I(x, t)dt 

I(x, 0) = Io(x). 

(7) 

In the filtering process the minimal size of the details that are preserved is related to the size of the 

Gauss kernel, which acts like a scale parameter. Notice that the filtering model reduces to mean 

curvature flow when 9 (s) = l. 

We have applied the multiscale analysis model to an in vivo acquired 2D and 3D echocardio

graphic sequence. The sequence has been obtained by means of a rotational acquisition technique 
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using the TomTec Imaging System. With this technique the transducer undergoes a rotation around 

its main axis in a propeller configuration. A series of tomographies corresponding to the sections 

of a cone of biological tissue have been acquired. The acquisition consists of 14 image-cubes that 

represent a whole cardiac cycle of a real patient. A volume of size 151 x 151 x 101 voxels has been 

processed. The interval of time between one 3D image and the next one is 40 ms. 

In Figure 1 a slice of the 3D volume has been visualized. The original noisy image is shown 

on the left and the result of the multiscale denoising algorithm with a = 0.1,,8 = 1.5,.6.t = 0.05, 

and cr = 0.001 is presented on the right. In Figures 2-5 a sequence of filtered volumes is shown. 

The parameters are the same as in the 2D computation. The iso-surfaces corresponding to the 

interface between cardiac muscle and blood have been computed using the marching cubes method 

and visualized by a Gouraud surface rendering ([11], [30]). To clarify the visualization of the 

ventricular chambers we applied four cutting planes that isolate the region of interest. In clinical 

practice a cutting plane that filters out the "front" regions is often used. The epicardium is not 

visible because the gray levels of his interface are not captured by the marching cubes threshold we 

have chosen in order to visualize the left ventricle. In particular the low echogenicity of the blood 

allows the choice of a low isosurface threshold that avoids the visualization of most of the other 

structures. 

a) b) 

Figure 1: 2D echocardiography of in vivo acquired left ventricle. Left: original image. Right: result 
of geometric image denoising. 

Note that the 3D pictures are simply meant to visually demonstrate the degree of noise reduction 

via the proposed geometric method. A more thorough study involving measuring the degree of noise 
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a) b) 

Figure 2: Geometric smoothing of the 1st frame of the 3D echocardiographic sequence. 

a) b) 

Figure 3: Geometric smoothing of the 5th frame of the 3D echocardiographic sequence. 

reduction and a detailed comparison with other denoising schemes has been done in another work 

[27]. The rendered surfaces can not be used for any measurement or tracking. The problem of 

explicitly building a shape model of the shape of interest is the topic of next section. 

4 Shape extraction 

Imagine a planar curve Co in an image I{x) : D -? R+, DC RN , N = 2, and consider the evolution 

C(t) of that initial shape. We want to study the evolution rules that allows us to mold the curve 

conformally into the edge map. Consider first the basic motion: 

Ct=FN 
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a) b) 

Figure 4: Geometric smoothing of the 9th frame of the 3D echocardiographic sequence. 

a) b) 

Figure 5: Geometric smoothing of the 13th frame of the 3D echocardiographic sequence. 

where N is the unit inward normal and F is a real function. The curve moves with speed F in the 

normal direction. Let us design F in such a way that C(t) is attracted by the boundaries in the 

Image. Consider the following evolution equation: 

Ct = (-\1g. N)N. (9) 

Recall that the minima of the edge indicator g(x) denote the position of the edges and therefore 

the vector field field - \1 9 can be shown to point toward the edges. The result of this flow is an 

oscillatory curve without "smoothness" or regularization. 

One way of introducing smoothness in the curve is to let it evolve under its Euclidean curvature 
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K, 

Ct =KN. (10) 

This flow decreases the Euclidean curvature and has the property of smoothing all the high curvature 

regions of the curve, Le. the local variations [8]. However, this flow will also destroy useful curve 

features if run long enough. Thus a key point is to determine a suitable stopping criterion. Several 

methods have been proposed in the past in teh framework of variational methods [19] and level set 

methods [15]. The authors in [15] have presented a scale-dependent stopping criteria implemented 

via a min-max curvature flow. In the present context we use the function 9 to introduce the stopping 

criterion. Therefore the evolution equation for curve regularization becomes: 

Ct =gKN (11) 

where the curvature motion is slowed down in near the shape boundaries. The final evolution 

equation for shape extraction will use both the attraction and the regularization terms, namely 

Ct = (gK - (3('\1 9 . N))N (12) 

where the initial condition C(O) = Co is any curve sufficiently close to the boundary to feel the 

effect of the edge map g(x). 

In [16, 17], the above curve evolution model has been extended to surface evolution for seg

mentation of 3D shapes from volumetric images. In this case we define a surface So in an image 

I (x) ; n -+ R+, n c R N , N = 3 and evolve the surface towards the shape boundaries. Apply

ing an analogous argument will elad us to write the following surface evolution equation for 3D 

segmentation: 

St = (gH - (3('\1g. N))N, (13) 

where H is the mean curvature and N is the normal to the surface. 

The curve and surface evolution in Eqns. 12 and 13 can be solved using the level-set approach 

[20][29] . Consider an (N - I)-dimensional hypersurface Y(x, t) (N = 2 for C and N = 3 for S) 

and represent it as the zero level-set of a function w(x, t) : n x [0, T] -+ R, n eRN, N = 2,3. In 

other words, the initial curve or surface is simply the set {w = O}. The function W therefore is and 

10 



implicit representation of the hypersurface. Both Eqns. 12 and 13 have the same level-set form, 

i.e. the main model: 

Wt = 9 (v. I~:I) Ivwl + ,6vg· vW 
1 

g(x) = 1 + (Iv IGs(x)l/a)2 (14) 

with the initial condition w(x, t = 0) = Woo In our case Wo is the signed distance function from 

the initial hypersurface Y(x, t = 0). Note that the function 9 is an edge indicator expressed as 

a non-increasing function of the image gradient. The gradient is computed from a geometrically 

enhanced image, denoted as IGs, using Eqn. 4. This also establishes a link between the two 

stages of processing we employ in this work. In the next section we show how the image analysis 

methodology developed in the last two sections can be utilized to build accurate shape descriptions 

from echo cardiograms. 

5 2D Echocardiography 

Consider a 2D echo cardiographic image l(x) from which we want to accurately extract the bound

aries of the cardiac chamber. We consider the embedding 'P : n x [0, T] -+ R, n c R2 and look for 

the steady state of the evolution equation: 

'Pt = gKlv'Pl + ,6v 9 . v'P 
1 

g(x) = 1 + (IvIGs(x)l/a)2 

with the initial condition given by a user-defined signed distance function 'P(x, 0) 

Euclidean curvature K is obtained from the divergence of the unit normal vector: 

222 K = 'PxX'Py - 'Px'Py'Pxy + 'Pyy'Px 
('P~ + 'P~)3/2 

(15) 

(16) 

'Po. The 

(17) 

We now show how to approximate the above equation with finite differences. Let us consider 

a rectangular uniform grid in space-time (t,x,y); then the grid will be the points (tn,Xi,Yj) = 

(nt:.t,it:.x,jt:.y). We use the notation 'Pfj for the value of 'P at the grid point (tn,Xi,Yj). The 

curvature term is a parabolic contribution to the equation of motion. In terms of numerical scheme 

we approximate this with central differences. The second term on the right corresponds to pure 
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passive advection by the underlying velocity field \79 whose direction and strength depend on 

position. This term can be approximated through upwind schemes for hyperbolic terms, as noted 

in [29]. In other words, we check the sign of each component of \79 and construct one-sided upwind 

differences in the appropriate direction. We can write now the complete first order scheme to 

approximate the above equation as 

(18) 

where D is a finite difference operator on !.p, the superscripts {-, 0, +} indicate backward, central 

and forward differences respectively, and the superscripts {x, y} indicate the direction of differenti

ation. In Figures 6-7, we show the steps involved in the extraction of the heart chamber shape from 

a noisy echo cardiogram. Figure 8 shows the result of ventricular chamber extraction from another 

echocardiogram data set. Here we make two observations, (1) the algorithm faithfully reconstructs 

the shape of the heart chamber inspite of large gaps in the edge map, and (2) the algorithm requires 

the user to place the initial contour reasonably close to the final shape as opposed to mere shape 

tagging approach described in [17]. This is because we have eliminated the constant inflationary or 

"edge-seeking" term (Eqn. 2) that was used in [14] to prevent the contour model from propagating 

past the edge gaps. So, in areas of image with little or no edge information, the length-minimizing 

curvature term takes over and closes the gap. 

a) b) 

Figure 6: Extraction of the ventricular chamber from a 2D echocardiogram. Left: Initial noisy 
image with many gaps in the edge description, Right: User defined initial contour expressed as the 
zero level-set of a function. 
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a) b) 

Figure 7: Extraction of the ventricular chamber from a 2D echocardiogram. Left: Various stages 
of evolutions rendered on the same image, Right: Steady state solution of the level set evolution. 

a) b) 

Figure 8: Extraction of the ventricular chamber from a 2D echocardiogram. Left: zero level set of 
the signed distance function used as initial condition Right: Steady state solution of the level set 
evolution. 

() 2D + time Echocardiography 

The requirement of placing the initial contour reasonably close to the final solution is both restrictive 

and time consuming. In this section, we address that very issue in the context of analising a 

time varying sequence of echocardiographic images. Let us now consider a time sequence of 2D 

echocardiographic images that represents an entire cardiac cycle I(m), m = 1 ... M. We segment 

the cardiac chamber by extending the geometric model to the time sequence, as follows: 

(19) 
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gCm)(x) = 1 
1 + (1\711~)(x)l/a)2 

(20) 

where the initial conditions are <,O~O) = <,00 and <,O~m) = <'o~r:-l), m = 1 ... M. That means that for 

the first frame m = 0 the initial condition is a user-defined signed distance function <,00 and for the 

subsequent M - 1 frames the initial condition is automatically given by the steady state solution of 

the previous frame <'o~r:-l). We found that the best results are obtained by considering a starting 

frame to be the one corresponding to the early diastole, where the mitral valve is completely opened, 

and to continue the segmentation for half the cardiac cycle in the positive time direction and for 

the remaining half in the negative time direction, namely: 

<,O~M/2) = <,00 

(m) _ (m-l) - (M/2 1) M <,00 - <,0 ss , m - + ... 

(m-l) _ (m) - (M/2 - 1) 0 <,00 - <,0 ss , m - ... 

The result of applying this procedure on a time sequence of 2D echocardiographic images is 

shown in Figures 9-11. In Figures 12-14, we follow the same procedure and show results from a 

different data set. 

a) b) 

Figure 9: Segmentation of the ventricular chamber from a sequence of time varying echocardiograms. 
Frames #15 and #16. 

7 3D Echocardiography 

We want to accurately extract the 3D ventricular shape by retaining the advantages such as easy 

initialization in 2D segmentation and also the regularization properties of a real 3D shape extraction 
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a) b) 

Figure 10: Segmentation of the ventricular chamber from a sequence of time varying echocardio
grams. Frames #17 and #18. 

a) b) 

Figure 11: Segmentation of the ventricular chamber from a sequence of time varying echocardio
grams. Frames #19 and #20. 

a) b) 

Figure 12: Segmentation of the ventricular chamber from a sequence time varying 2D echocardio
graphic images. Frames #7 and #8. 
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a) b) 

Figure 13: Segmentation of the ventricular chamber from a sequence time varying 2D echocardio
graphic images. Frames #9 and #10. 

Figure 14: Segmentation of the ventricular chamber from a sequence time varying 2D echocardio
graphic images. Frame #11. 

method [16, 17]. We again face the same difficulty that the edge map in 3D is both noisy and has 

many gaps. In addition, in 3D it is also problematic for the user to specify an initial model that 

is reasonably close to the final surface. With this in mind we propose a chain of models to achieve 

our goal. 

First, consider a 3D echocardiographic image Iv as a stack of2-dimensional slices I~), l = 0 ... L. 

As in the 2D + time case we apply a sequence of 2D segmentation steps using the following model: 

tp~l) = g(l) K(l) I 'V tp(l) I + (3\l g(l) . \l tp(l) 

g(l)(x) _ 1 
- 1 + (I\lI~~s(x)l/a)2 

with the initial conditions: 

16 
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tp~l) = tp~ls-l), 1 = lo ... L 

(1-1) - (I) 1 - 1 0 tpo - tp sS' - 0··· 

where lo is a suitable slice. The best results are obtained when lo is a long axis view that contains 

both the mitral valve and the apex. At the end of this stage we have a set of 2D contours when 

stacked on top of each other will provide a good initial guess to start the 3D shape extraction 

problem. 

Therefore, we now consider the entire 3D image and perform a real 3D segmentation by evolving 

the embedding <p : n x [0, T] --+ R, n c R3, with the flow: 

<Pt = gHI\7 <PI + (3\7 9 . \7 <P 

1 
g(x) = 1 + (I\7IvGs(x)l/a)2 (23) 

with the initial condition given by the union of the previous set of 2D segmentation results, Le. 

<p(O) =uIA2,1=O ... L. 

The mean curvature H can be expressed as a function of the embedding as follows: 

(24) 

To discretize Eqn. 23 consider a uniform grid in space-time (t, x, y, z); then the grid will be the 

points (tn,Xi,Yj,Zk) = (ni::.t,ii::.x,ji::.y,ki::.z). Then the first order scheme that approximates Eqn. 

23 is 

[ 

[9ijkHIjk(D~f; + D~J: + D~f:)l/2] 
A-.~:+l = A-.7f. + i::.t {[max(g?fk, O)Dij% + min (g?/k , O)D~% } 
'f'~Jk 'f'~Jk ( Oy O)D-Y . ( Oy O)D+Y - +max gijk' ijk + mm gijk' ijk 

+ ( Oz O)D-Z -L . ( Oz O)D+Z] max gijk' ijk I mm gijk, ijk 

(25) 

using the same notation as before. A demonstration of this scheme is shown in Figure 15. The 

picture on the left is a rendition of the initial surface constructed by assembling all the individual 

2D contours. This shape is then regularized and drawn towards the 3D edge map by solving Eqn. 

23 for a few time steps; the result is depicted in the right picture. 

Next, we compare the volume measurement we obtain from our 3D segmentation to that of 

experimentally computed values on a couple of sheep heart data sets. The echocardiographic data 
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a) b) 

Figure 15: Extraction of the ventricular chamber in 3D echocardiography. Left: segmentation of 
the 3D image as a spatial sequence of 2D images. Right: full 3D shape refinement. 

a) b) c) 

Figure 16: Heart shape extraction and volume comparison from 3D images of sheep hearts; see the 
text. 

was obtained from sheep hearts; for details on data acquisition and experimental heart volume 

computation, the reader is referred to the work of Pini et. al [21, 22]. The volume figures on two 

sheep hearts according to [21, 22] are 39.0 and 35.7 cm3 , and the volume figures we obtain by first 

extracting the 3D surfaces from corresponding echocardiograms is 42.2 and 35.4 cm3 , i.e. an error 

of 7.6 % and 0.8 % respectively. Some cross-sections of those surfaces is shown in Figure 16. 

8 3D + time Echocardiography 

Finally, let us consider a 3D sequence of echo cardiographic images It~, m = 0 ... M. To segment 

the ventricular shape from the entire sequence, we adopt the same strategy as we did for time 
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varying 2D seqence and apply the following flow: 

¢~m) = g(m) H(m)lv¢(m)1 + flvg(m) . v¢(m) 

g(m) (x) = __ ----,--,.1 __ _ 

1 + (IVI~~Gs(x)l/a)2 

(26) 

(27) 

This equation is solved with appropriate initial conditions for each time frame. We applied this 

scheme to a time varying sequence of echocardiograms and computed the volume of the left ven

tricular shape while the heart is in a cardiac cycle. The plot of the computed volume is shown in 

Figure 17. It is now possible to reliably compute quantities like the ejection fraction from noisy 

echocardiograms. 

fill 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,1 

Figure 17: The plot. 

9 Concl usions 

We presented a geometry-based partial differential equation (PDE) approach for filtering and seg

mentation of echocardiographic images. The method allows edge-preserving image smoothing and 

a semi-automatic segmentation of the heart chambers. This approach uses regularization to fill in 

the edge-gaps and improves edge fidelity. A numerical scheme for solving the proposed PDE is 
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carried out from level set methods. Results on human in vivo acquired 2D, 2D + time, 3D, and 

3D + time echocardiographic images have been shown. 

Acknowledgements 

We thank Prof. Pini for giving us the sheep heart data and the volume figures that we used in our 

comparison. 

References 

[1] D. Adalsteinsson and J. A. Sethian, "A fast level set method for propagating interfaces," in J. 

Compo Phys., Vol. 118(2), pp. 269-277, May 1995. 

[2] L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, "Axioms and fundamental equations of 

image processing," Arch. Rational Mechanics 123, 1993. 

[3] W. Bommer, L. Weinert, A. Neumann, J. Neef, D. Mason, A. Demaria, Determination of right 

atrial and right ventricular size by two-dimensional echocardiography, Circulation, pp. 60-91 

(1979) 

[4] V. Caselles, F. Catte. T. CoIl, F. Dibos, "A geometric model for active contours," Numerische 

Mathematik, Vol. 66, pp. 1-31, 1993. 

[5] V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active contours," in Proc. ICCV'95, Cam

bridge, MA 1995. 

[6] L.D Cohen, On active contour models and balloons CVGIP:lmage Understanding voL 53, pag. 

211-218. 

[7] I. Cohen, L.D Cohen, N. Ayache, Using deformable surfaces to segment 3D images and infer 

differential structure CVGIP:lmage Understanding voL 56, pag. 242-263. 

[8] M. Grayson, "The heat equation shrinks embedded plane curves to round points," J. Differential 

Geometry 26, 1987, pp. 285-314. 

20 



[9] A.HandloviCova, KMikula, A.Sarti, Numerical solution of parabolic equations related to level 

set formulation of mean curvature flow, Computing and Visualization in Science (1998) 

[10] C. Lamberti, F. Sgallari, Edge detection and velocity field for the analysis of heart motion, 

Digital Signal Processing 91, Elsevier (Editors V. Cappellini, A.G. Costantinides) pp. 603-608 

(1991) 

[11] W.E. Lorensen, H.E. Cline Marching cubes: a high resolution 3D surface construction algo

rithm, Computer Graph., vol. 21, pp. 163-169 (1987) 

[12] M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models, International Journal of 

Computer Vision, vol. 1, pp. 321-331, 1988 

[13] R. Malladi, J.A. Sethian, B.C. Vemuri, "A topology-independent shape modeling scheme," in 

SPIE: Geometric Methods in Computer Vision II, Vol. 2031, pp. 246-258, 1993. 

[14] R. Malladi, J. A. Sethian and B. C. Vemuri, "Shape modeling with front propagation: A level 

set approach," IEEE Trans. on PAMI 17, 1995, pp. 158-175. 

[15] R. Malladi and J. A. Sethian, "Image processing: Flows under Min/Max curvature and mean 

curvature," in Graphical Models and Image Processing, Vol. 58(2), pp. 127-141, March 1996. 

[16] R. Malladi and J. A. Sethian, "Level set methods for curvature flow, image enchancement, and 

shape recovery in medical images," in Visualization and Mathematics: Experiments, Simulations, 

and Environments, Eds. H. C. Hege, K Polthier, pp. 329-345, Springer Verlag, Heidelberg, 1997. 

[17] R. Malladi and J. A. Sethian, "A real-time algorithm for medical shape recovery," in Proceed

ings of ICCV '98, pp. 304-310, Mumbai India, January 1998. 

[18] KMikula, A.Sarti, C.Lamberti "Geometrical diffusion in 3D echocardiography", Proc. of AL

GORITMY '97- Conference on Scientific Computing, West Tatra Mountains, Slovakia, 1997. 

[19] N. K Nordstrom, "Variational edge detection," PhD dissertation, Department of electrical 

engineering, University of California, Berkeley, 1990 

21 



[20] S. J. Osher and J. A. Sethian, "Fronts propagation with curvature dependent speed: Algo

rithms based on Hamilton-Jacobi formulations," Journal of Computational Physics 79, 1988, 

pp. 12-49. 

[21] Pini R, Giannazzo G, Di Bari M, Innocenti F, Rega L, Casolo G, and Devereux RB, "Transtho

racic three-dimensional echocardiographic reconstruction of left and right ventricles: In vitro val

idation and comparison with magnetic resonance imaging," American Heart Journal, 133: pp. 

221-229, 1997. 

[22] Pini R, Giannazzo G, Di Bad M, Innocenti F, Marchionni N, God A, and Devereux RB, 

"Left ventricular volume determination by 3-D echocardiographic volume imaging and biplane 

angiography," Journal of Noninvasive Cardiology, 3, pp. 46-51, 1999. 

[23] Bart M. ter Haar Romeny(Ed.) Geometry-driven diffusion in computer vision, Kluwer Aca

demic Press, 1994. 

[24] G. Sapiro, "Color snakes," Hewlett-Packard Lab. tech report, 1995. 

[25] G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein, "Implementing 

continuous-scale morphology via curve evolution," Pattern Recognition, Vol. 26(9), pp. 1363-

1372, 1993. 

[26] A.Sarti, K.Mikula, F .Sgallari "Nonlinear multiscale analysis of 3D echocardiographic se

quences", Submitted to IEEE Trans. on Medical Imaging, 1998. 

[27] A. Sarti, C. Ortiz de Solorzano, S. Lockett, and R. Malladi, "Computer-Aided Cytology: A Ge

ometric Model for 3D Confocal Image Analysis," submitted to IEEE Transactions of Biomedical 

Engineering, March 1999. 

[28] J. A. Sethian, "A review ofrecent numerical algorithms for hypersurfaces moving with curva

ture dependent flows," J. Differential Geometry 31, 1989, pp. 131-161. 

[29] J. A. Sethian, Level set methods: Evolving interfaces in geometry, fluid mechanics, computer 

vision, and material science, Cambridge University Press, 1997. 

22 



[30] W. Shroeder, K. Martin, B. Lorensen, The visualization Toolkit, Prentice Hall PTR., New 

Jersey (1996) 

[31] S.Shutilov, Fundamental Physics of Ultrasounds, Gordon and Breach, New York, 1988 

[32] N. Sochen, R. Kimmel, and R. Malladi, "A General Framework for Low Level Vision," III 

IEEE Transactions on Image Processing, special issue on PDEs and Geometry-Driven Diffusion 

in Image Processing and Analysis, Vol. 7, No.3, pp. 310-318, March 1998. 

23 




