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Abstract. Equations are presented for calculating the fields from a bunched

beam thatpenetrateinto the layers of a beam tube of circularcross section. Starting

from the radial wave impedance of an outer surface, the wave functions in inner

layers are calculated numerically to obtain field strengthsor the longitudinal beam

imped~ce. Examples of a vertex-detector region and of an injection kicker are

given.

Introduction

The vacuum tubes that enclose particle beams, while usually of thick metal, have at

places regions “withthin metal or ceramic surrounded by metallic or magnetic structures.

Fields from the beam current penetrate these walls, particularly at low frequencies.

Calculation of the fields is needed to know the strengths of the fields outside and to

determine the beam impedance presented by the multilayer structure. Penetration of the

fields is affected by dissipative media and by the necessary matching of boundary

conditions at the interfaces between layers. Because the beam is moving often at

relativistic speed, it is important to use the field equations for waves propagating axially

at the beam velocity along the tube. Reflections at the boundaries between materials ire

strongly dependent upon the relativistic factor By and upon the ratio of radius of the layer

to the wavelength.

The first section below gives equations for calculations using Bessel fi.mctions for

the circularly cylindrical geometry. These may be used directly for numerical

computation. A second section examines the wave functions in various media and gives

approximations applicable for the usual parameter ranges. Following are example

calculations of some actual cases.

* This work was supported by the Director, Office of Science, OffIce of High Energy and Nuclear

Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. DE-

AC 03-76SFOO098.



Field eauations and method

Assuming cylindrical symmetry about the beam axis, the fields within each of the

layers may be obtained horn axial

of the modified Bessel functions

where

TM Hertz vectors (Ref. 1,2,3). These vectors are sums

v+= K&)e~t-oz@

I//_ = Io(hr)e@-k’”~)

# - ‘2
V2

(D2JLS+jcqfm

(),21 .2
h2=ko ~-/JrEr +J~.

P
(2)

If the material is a metal, the term containing the skin depth 6 is usually the greater. I

have subscripted the yswith + or – to indicate that Ko, infinite at r = O, is similar to an

outgoing wave and 10 an incoming field. While the axial phase velocity is always /?c,

wave fronts in media with /JrSr # /3-2proceed

component,

In a structure without axial variation, only

arise from the potentials:

Ez = –h2y
k dv

E,. –j~—

par

(la)

(lb)

with some radially outward or inward

,..

the three TM components of the fields

20 is /toe = 120z ohm. The boundary conditions between layers are

and H@be continuous, and we shall not need the radial E-component.

simply that .EZ

It will also be

convenient to omit the exponential z- and t- dependence when writing the fields.
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In the interior of the beam tube with beam current le~tW–k~z’@jSwe have for radii

greater than the bizun radius

“%+’”[%)+’”’”[:)‘z= J 2n (py)

(4)

‘$=~%K’(%)+JB”E1l(%
The constant BOis to be determined. These expressions appear more familiar if we make

an approximation for the usual case of &/~~ <<1:

Ez z –j
IZO kOr
——&z*+Bo
27& py fly

(4a)

In the medium of layer n we shall let y = AnKo(hr) + BnIo(hr) and represent the

fields as a vector F that is the product of matrix ikfnand amplitudes An and Bn:

with

Mn =

‘=F’l=MnFl
–h2Ko —h210

(5a)
.

(5b)

Within a layer the fields at the inner radius, e.g. r= a, are obtained from the fields at their

outer radius, e.g. r = b, using matrix M and its inverse:
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F(a) = i14(a)[M(b)]-lF(b) (6)

At the inner surface of the outermost medium to be considered, we must speci~ the

ratio of fields Ez and H@. For a compound structure such as a magnet, this may not be

simple and ‘may:introduce azimuthal variations not strictly provided for in this analysis.

Perhaps a suitable approximation can be found. In what follows, I shall choose the

simpler case of a u~form exterior medium of infinite radial extent, such as vacuum or a

magnetic or conducting material. In this case, only outgoing fields will exist in the

material and a sufficient potential is;

we= 4?&J(@-)

The ratio Z = E/His then given by

/

‘e=(’>~TK’’hr’
and the field vector Fe at this outer boundary maybe written

(7)

(8)

(9)

where Ae may be determined from the analysis if knowledge of this outermost fieId is

desired. .-

‘1 for the layers as in Eq. (6) aBy successively applying the matrices &f and M

matrix-product may be constructed that transforms fields Fe to the fields at the inner

surface of the beam tube, at e.g. radius a.

(lo)

The amplitude Ae is still unknown, but only the values of FE and FH (or their ratio) are

needed to solve for the constant B. in Eq. (4), which is given by
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~ Fl%K1(ha)- jFH~KO(ha)

b I@l)
(11)‘0= 2Z FHIO(k) – jFE~

where h = k. /~y. The longitudinal beam impedance per unit length, Z’B, that adds to

any space-charge term is

B.
z; =–—

I“

The magnetic field at r = a is given by

At the outer surface, the field Fe of Eq. (9) is found using amplitude

A=
_ H(a)

FH

(12)

(13)

(14)

,.

Media matrices

In vacuum or in any medium where the value of hr is less than 0.1 and real, an

approximation of Eq. (5) is

M=

h2(&z hr - 0.116) –hz

Of use in calculating a symbolic inveise is the value of the determinant (valid for any

(15)

value of hr):



1~1= j% (16)

...

If we discard terms of order (hr)2, we may find a simple product matrix to transform

through on~ la~gr of vacuum from radius b to smaller radius a:

i’kf(a)[i’kf(b)]-~=

I o

.kO b2–a2 b

‘J~ 2a i 1

(17)

In a layer of dielectric or magnetic material, the value of h2 (cf. Eq. (2)) maybe

either positive or negative. For the negative case, d may be convenient to use Bessel

functions and Hankel functions iV~2)= Jn – jYn; for that we let h = jg, i.e.

(1

1/2

13=k0 /=%&r-+
P

Then y becomes

( )
Y= A -j: H$)(gr) + ~Jo(w)

and

The matrix M is

[
–j~g2H~(gr) g2JO(gr)

)
M=

[

do .k.
—~rgH~2)(gr) ] ;srgJ1(gr)
2Z0 J

(18)

(19)

(20)

(21)

which becomes for small gr



M ~

[

. kO&r
J—Zor

[
–g2 ln(gr) -0.116+ j: 1 g2

~_ (W)2( )) %.(”)
ln(gr) – 0.616+ j; j—

2

2

(22)

The determinant of these is the same as Eq. (16) with ?Z2= –g2’

The functions change considerably if the material is a conducting metal with small

skin depth ~. The quantity h becomes essentially

(23)

and hris usually very large. Using the asymptotic values of Bessel functions of x$ the

field matrix, omitting multiplicative constants, is

The full transform inward across a layer of thickness t= b – a between radii b and a

becomes

[

cosh(ht) –$sinh(ht

M(a)[M(b)]”z = ~

–fsinh(ht) tiosh(ht)

A double metal laver

(24)

(25)

,’.

The beam tube at the interaction point for beams in the PEP II collider h~ two thin

layers of beryllium. These are 0.8mm and 0.4mrn thick separated by 1.6mrn. Outside

these is a metal shield. It is desired to know the em. field from the beam that reaches

silicon detectors that are in the gap between beryllium and the outer shield. Field

penetration should be greatest at the low ftequency that is present when the beam current

is modulated at the orbital frequency ~. = 136kH,z. We shall calculate the field per

ampere of current at frequency ~. ignoring effects of the detectors and any axial

reflections along the Be tube. Parameters for the calculations are given in Table 1.



Beryllium fills the radial spaces from a to b and from c to d. The shield, assumed to be

thick and of copper is at radius e.

Table I

Radii in mm

a = 25.0 Z*

b = 25.8 Orbital frequency ~0

C = 27.4 BY
d= 27.8 Conductivity of Be

e = 29.8 Conductivity of Cu

From the values in Table I we calculate

120z ohm

136 kHZ

6.07x103

3X107 mho/m

5.8x107 mho/m

-1‘o –d.d$)zx~o-smhinvacuum
= PY

bin Be =2.492x10Gm

06 inCu =L039x104rnho

At r= e, the copper shield, the ratio of EZ to 11~is

ze=–~=– I+j
ohm

J.039XJ04

,.,:,.

(26)

In the Be layers, use Eq. (25), designating in Eq. (27), Ml for the first layer a to b and

M3 for the second layer c to d. In vacu~, use Eq. (15), designated kfv(r). We can

then calculate the value at r = a of

[)
FE

[1
Ze

~H = Ml. M,(b). [&fV(c)]-l. A43. A4v(d) -[~v(e)]-~ ~ (27)

and further find the value of H~ using Eq. (13) for ~ = ~ ampere:

Ho= 6.366 A/m

8
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This result is numerically essentially the same as I/2m indicating that the radially

incoming field adds very little to the H-field. This is usually the case.

From ~q. (10) we find

Ho
Ae=—

6.366

FH = 11.898– jl17.45
(29)

The fields at the shield from 1= J ampere are then, using Eqs. (3) and (9)

H@(e)= Ae = (5.51+ j54)10-3A/m

Ez(e) = ZeAe =(4.71 – j5.77)10-6V/m

Zo IT

‘r(e)= B o
= 2.08+ j20.5 V/m

We seejn Eq. (29) that the quantity I?13is the attenuation factor for the H-field.

This factor of only 116 is approximately the same as the simple exponential attenuation

through the 1.2mm of beryllium, indicating that reflections and impedance mismatches at

the surfaces have contributed little. This can be the case here because the impedances

E/H of the outgoing waves in Cu, Be, and vacuum are in this example coincidentally

alike within a factor of 1.4.

It is also of interest that if one were to assign infinite conductivity to the shield ‘“..

rather than that of copper, the fields Ho and Er calculate to be 1.7 times stronger. This

is a caution about using this common characterization of a conducting surface.



A kicker magnet

This kicker assembly h~ a pulsed ferrite H-magnet that surrounds a ceramic beam

tube. It is desired to know the longitudinal beam impedance as a function of frequency.

On the ime~ surface of the ceramic at radius a = 31.7 mm is a thin coating of Kovar

alloy. The coating has surface resistivity l/at of 0.3 ohm/square. The ceramic tube

wall is 6.4 mm thick. The yoke, a square frame of ferrite, is 25 mm thick and there are

copper windings between ferrite and ceramic. These windings me normally open circuit.

While these features do not have cylindrical symmetry, I shall assume that the windings

act as neutral spaces, do not carry any net current and do not modi~ the impedance that

the ferrite frame presents to the beam fields iriside. The ferrite, between radii c and d, is

surrounded by a shield of, we shall assume, copper. The parameters used are given in

Table II.

Table II

Radii in mm Ceramic perrnittivity & 9

a= 31.7 Coating surface resistivity 0.3 ohrn/sq

,.. b=38.1 Coating conductivity 3.5xIOS mho/m

c = 40.0 Coating permeability 1000

d = 65.0 Ferrite permittivity 10

Ferrite permeability 1300

Copper conductivity 5.8x107 mho/m

Z() 120n ohm

PY 6.07x103 ‘-

As in the previous example, the impedance Ze of the thick outer shield of copper is

-(l+j)/cn5; in this case expressed as a function of frequency. Matrices for the layers of

ferrite, vacuum, ceramic, and Kovar follow Eq. (5), (21), and (25). Numerical calculation

of the Z’B then gives the result plotted in Fig. 1. This result is substantially the same as

one would obtain from an equivalent-circuit diagram having the resistance of the coating

in parallel with the inductance of the mafiet yoke; the ceramic acts no differently from a

radial spacer.
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Figurel: Beamimpedance perunit length of theinjection kicker. Solid anddashed

curves are respectively the real and imaginary parts.
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