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Y Abstract _ |

B The pace of extraordinary advances in molecular biology has accelerated
in the past decade due in large part to discoveries coming from genome
projects on human and model organisms. The advances in the genome
project so far, happening well ahead of schedule and under budget, have
exceeded any dreams by its protagonists, let alone formal expectations.
Biologists expect the next phase of the genome project to be even more
startling in terms of dramatic breakthroughs in our understanding of
human biology, the biology of health and of disease. Only today can
biologists begin to envision the necessary experimental, computational
and theoretical steps necessary to exploit genome sequence information
for its medical impact, its contribution te biotechnology and economic
competitiveness, and its ultimate contribution te environmental quality.
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W High performance computing has become one of the
critical enabling technologies, which will help to translate
this vision of future advances in biology into reality.
Biologists are increasingly becoming aware of the
potential of high performance computing. The goal of this
tutorial is to introduce the exciting new developments in
computational biology and genomics to the high
performance computing community.
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Tutorial Outline \[}

BERKLLLY LAD:

B 1:30-2:00 p.m. Overview of Computational Biology
--Teresa Head-Gordon

B 2:00-3:00 p.m. Bioinformatics -- Manfred Zorn

N 3:00-3:30 p.m. Break

B 3:30-4:00 p.m. Protein Structure Prediction and
Folding --Teresa Head-Gordon

®E 4:00 - 4:30 p.m. Docking/Molecular Recognition
-- Brian Shoichet

W 4:30 - 5:00 p.m. Cellular Networks -- Adam Arkin
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Computational Challenges in Structural
and Functional Genomics

Teresa Head-Gordon
Physical Biosciences and Life Sciences Divisions
Lawrence Berkeley National Laboratory

November 15, 1999
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(1) Why computational biology?
(2) Community effort to define problems with genuine computational
complexity
Genome analysis, gene modeling, sequence-based annotation
Low resolution fold prediction: Single Molecule

High resolution structure prediction and protein
folding: Single Molecule

Molecular recognition or Docking: Multi-molecule complexes
Cellular Decision modeling
(3) Putting it all together:
Deinococcus radiodurans
Center for Integrative Physiome Analysis (CIPhA)
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r Revolutionary Experimental B ﬂ
Efforts in Biology S

Sequence Structure Function

Genome projects
Microbial organisms

C elegans
Human Structural Genomics Initiative
High throughput effort underway
NIH, new beamlines . v
LBNL: ALS Functional Annotation

Initiatives
Gene deletion projects
Yeast two-hybrid screening
Gene expression micro-arrays
In vive GFP protein (kinetics)

Super puting 99-Portland

3 Computational Biology White Paper

I]
,.

L ——
http://chcg.lbl.gov/ssi-csb

A technical document to define areas of biology exhibiting computational preblems
of scale

Organization:
Introduction to biological complexity and needs for advanced computing (1)
Scientific areas (2-6)
Computing hardware, software, CSET issues (7)
Appendices

For each scientific chapter:
illustrate with state of the art application (current generation hpc platform)
define algorithmic kernals
deficiencies of methodologies
define what can be accomplished with 100 teraflop computing

»Community document
>More organized CB community in government labs, universities
»>Support for CB by the broader biological community

“Supercomputing 99-Portland




High-Throughput Genome Sequence Z:r\'-l i
Assembly, Modeling, and Annotation »,

The Genome Channel Browser to access and visualize current data flow, analysis
and modeling. (Manfred Zorn, NERSC)

| Genome sequencing and annotation ——— Bioinformatics

100,000 human genes; genes from other organism
Structure/functional annotation at the sequence level

) Computation to determine regions of a genome that might yield new folds
Experimental Structural Genomics Initiative

Functional annotation at the structure level by experiment

Super puting 99-Portland
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Characterize the Link Between [.11
Protein Sequence and Fold Topology Sm—.

Experimental Structural Genomics Initiative
Define basis set of folds: ~103 structures to be determined
Predict Fold Topology from Computation (~10° folds)

Functional annotation at the structural level by computation

Super P 99-Portland




A =rsc) Low Resolution Fold Topologies :\l ];;
: to High Resolution Structure ]

Influenza virus poised above a model

One microsecond simulation of a fragment of a lipid membrane will involve a
of the protein, Villin. 100,000 atom MD simulation over
Duan & Kollman, Science 1998 long timescales to understand this

step in the mechanism of viral
infection. (Tobias, UCI)
Low Resolution Structures from Predicted -
Fold Topology
Fold class gives some idea of biological function, but....

Higher Resolution Structures with Biochemical Relevance
Drug design, bioremediation, diseases of new pathogen

Super puting 99-Portland
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Simulating Molecular ”\] i'?']
Recognition/Docking m—

Changes in the structure of DNA that
can be induced by proteins.

Through such mechanisms proteins
regulate genes, repair DNA, and
carry out other cellular functions.

Improvements in Methodology and Algorithms of Higher Resolution Structure
Breaking down size, time, lengthscale bottlenecks (I'T2, algorithms,
teraflop computing)

b Protein, DNA recognition, binding affinity, mechanism with which drugs bind
) to proteins ]

Simulating two-hybrid yeast experiments

Protein-protein and Protein-nucleic acid docking

“Super puting 99-Pertland
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Modeling the Cellular Program FEELEL ﬂ

E:Hr.t:u:v

Erythropoietin

Platelet-Derived Growth Factor

Three mamnialian signal transduction pathway that share common molecular

elements (i.e. they cross-talk). From the Signaling PAthway Database (SPAD)
(http://www.grt.kyushu-u.ac.jp/spad/)

Integrating Computational/Experimental Data at all levels
Sequence, structural functional annotation (Virtually all biological initiatives)
Simulating biochemical/genetic networks to mode cellular decisions
Modeling of network connectivity (sets of reactions: proteins, small molecules,
DNA)
Functional analysis of that network (kinetics of the interactions)

Super I g 99-Portland
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Computer Hardware & Portability
Applications described running on various platforms
T3D, T3E, IBM SP's, ASCI Red, Blue

Information Technologies and Database Management
Integrating biological databases; CORBA and java
Data Warehousing
ultra-high-speed networks

Ensuring Scalability on Parallel Architectures
implicit algorithmic scaling
paradigm/software library support tools for effective parallelization
strategies: 100 teraflop

Meta Problem Solving Environments

geographically distributed software paradigm: “plug and play” paradigm
Visualization ,

Querying data which is “information dense”

’ Supercomputing 99-Portland
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r Feedback from Biotech 1\[ ﬂ
s Industry Meeting —

LBNL 2,25/99

Jim Cavalcoli, Ph.D. Patrick O'Hara Herve Recipon

Bioinformatics Manager, PDLMG VP, BioMolecular Informatics Asst. dir. bioinformatics

Parke-Davis, Warner-Lambert ZymoGenetics, Ine diaDexus (Incyte)
Seattle WA

Pete Smietana, Ph.D. Peter Karp, Ph.D. Rick Bott

Senior Staff Software Engineer, Scientific Fellow X-ray erystallographer

Bioinformatics Pangea Systems Genencor

Ciphergen

Julie Rice Eric Martin

Computational Chemist Sr. Scientist Small Molecule Discovery

IBM-Almaden Chiron

LBNL: Gilbert, Head-Gordon, Holbrook, Mian, Rokhsar, Simen, Spengler, Zorn

We want to listen to Biotech industry perspective on Computational Biology white paper

Is there strong objection to any of the content?
NO, very supportive
Are there other areas to be included, stronger emphasis placed?
Will be a new chapter on databases: integrating, querying, visualization
Technical input: contribute a "vignette™ on important Comp. Bio. application
Parke-Davis, Chiron, Zymogenetics, Pangea

Super puting 99-Portland
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re Center for Integrative Physiome - A
A rrreced] o
—" Analysis (CIPhA) ,

NCRR submitted 2/1/99 P.L: Adam Arkin

Cell cycle, asymmetric division and
differentiation in Caulobacter crescentus

Analysis of developmental pathways in C.
Elegans

Analysis of databases of two-hybrid
interactions

The role of cytomechanical and nuclear
structure in mammary gland transformation

Interrelationships among the various tools and databases used and developed by the Center. Blue
rectangles are databases built by the Center (with the exception of Inferact 1.0 which is provided
courtesy of Roger Brent, Molecular Sciences Institute). Green boxes are off-site database.
Hexagons are tools to be developed by this Center.

Adam Arkin, Mina Bissell, Roger Brent, Silvia Crivelli, Tarek Elaydi, Teresa Head-Gordon,
Stephen Holbrook, Stuart Kim,
Casimir Kulikowski, Harley McAdams, Saira Mian, Ilya Muchnik, Lucy Shapire, NERSC
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Deinococcus Radiodurans (DR: m
Strange Berry That Withstands Radiation)

Bacteria isolated from tins of spoiled meat given “sterilizing” doses of y radiation.
3x10° base pairs, or ~3000 protein products
fully sequenced by TIGR under DOE/OBER sponsorship

Three components to DR's successful DNA repair strategy
specifics of the DNA repair mechanism
the fact that it is multi-genomic
coupling of repair, replication, export of damaged DNA from intracellular medium.

Propose to construct molecular models of key components of the DNA repair system:
Damaged DNA
Multigenomic repair intermediates such as Holliday junctions
Proteins known are yet to be discovered to be involved in DNA repair
Protein-protein or protein-nucleic acids that couple repair, replication, transport.

Developing better fold recognition, comparative modeling, and ab initio prediction
methods, and docking methods to describe macromolecular complexes.
Application of methodologies will be to fully and completely annotate the DR genome
Learn underlying components of highly-honed strategies for DNA repair in DR.

Involves significant portions of community white paper on high end computing needs

Super puting 99-Portland

raxyry The Need for Advanced Computing /_\| ﬂ
= : for Computational Biology .

Computational Complexity arises from inherent factors:
100,000 gene products just from human; genes from many other organisms
Experimental data is accumulating rapidly
N2, N3, N4, etc. interactions between gene products
Combinatorial libraries of potential drugs/ligands
New materials that elaborate on native gene products from many organisms

Algorithmic Issues to make it tractable
Objective Functions
Optimization
Treatment of Long-ranged Interactions
Overcoming Size and Time scale bottlenecks
Statistics

“ Super puting 99-Portland
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The First Step Beyond the Genome Project: High-

Throughput G A bly, Modeling, and
Annotation
P. LaCascio, R. Mural, J, Snoddy, E. Uberbacher,
ORNL

S. Mian, F. Olken, S. Spengler, M. Zorn: LBNL
David States, Washington University

From Genome Annotation to Protein Folds:
Comparative Modeling and Fold Assignment
D. Eisenberg, UCLA

A. Lapedes, LANL

A. Sali, Rockefeller University

B. Honig, Columbia University

Low Resolution Folds to High Resolution Protein
Structure and Dynamics

C. Brooks, Scripps Research Institute

P. Kollman &Y. Duan, UCSF

A. McCammon & V. Helms, UCSD

G. Martyna, Indiana University

D.Tobias, UCI

T. Head-Gordon, LBNL

ey

Acknowledgements for Community .’>| m
White Paper in Computational Biology

Biotechnology Advances from Computational
Structural Genomics: In Silico Drug Design and
Mechanistic Enzymology

R. Abagyan, NYU, Skirball Institute

P. Bash, ANL

J. Blaney, Metaphorics, Inc.

F. Cohen, UCSF

M. Colvin, LLNL

I. Kuntz, UCSF

Linking Structural G ics to Sy Modeli)
Modeling the Cellular Program

A. Arkin & D. Wolf, LBNL

P. Karp, PangeaS. Subramaniam, U Illinois Urbana

Implicit Collaborations Across the DOE Mission
Sciences

M. Colvin & C. Musick, LLNL

T. Gaasterland, ANL (now Rockefeller)

S. Crivelli & T. Head-Gordon, LBNL

G. Martyna, Indiana University

Q.
Super p

ing 99-Portland

BERKLLEY Lan Rkl

W ERSC

Eati cove a0 Conttn

-~
- R
3 ey !ml

i

[IXIRY

Bioinformatics

Manfred D. Zorn
November 15, 1999
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Overview

® 30 seconds of Biology
B DNA Sequencing: View from 10,000 feet
Genome Analysis

©® Genome Projects

® Identify a possible gene

@ Characterize a gene
M Large-scale Genome Annotation
H What’s supercomputing got to do with it?
m Challenges

Supercomputing 99-Portland
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Biology is Special "

Life is characterized by
B Individuality

B Historicity

B Contingency

B high (digital) information content

-Supercomputing 99-Portland
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Rough endoplasmic Golgi apparatus
reticulum - . 'y .

DNA packs tightly into
metaphase chromosomes

e
‘\i\% metaphase
S ciomosome

BRI, :}
GRS,

o chramatin |
3 PP

. i s
. Mgt {\
Nucleus 8% nuclcosomes

b
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Fundamental Dogma
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DNA
i
Proteins
Gircuits

Phenotypes
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Y DNA Codes

lml
A S

Foi dfiffrsnt dinbespins,
tokevtthrve st s,
coninfut rsenay thonin
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®

Dodson, 1998
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e Cor

Read base code from storage medium!

B Read length: About 600 bases at once

B Reader capacity
v 100 lanes in parallel in about 2-5 hours

v DNA Sequencing ay|

~Super P g 99-Portland
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wms. OCQUeNcing: “bird’s eye view” “\'I

|Borreiey La)

m Prepare DNA
@ about a trillion DNA molecules

m Do the sequencing reactions
@ synthesize a new strand with terminators

m Separate fragments
® by time, length = constant

m Sequence determination
@ automatic reading with laser detection systems

Supercomputing 99-Portland
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r Human Ggmt;le Project - \'\H
Teae Coran A cenen Oa S

B Construction of a high-resolution genetic map

m Production of a variety of physical maps of all human
chromosomes and of selected model organisms

B Determination of the complete sequence of human
DNA and DNA of selected model organisms

B Development of capabilities for collecting, storing,
distributing, and analyzing the data produced

B Creation of appropriate technologies necessary to
achieve these objectives :

Super puting 99-Portland
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Eatime Sons g SOMER

Genome Projects

B Model organisms sequenced

® E. coli 4.5 Mb

® S. cerevisiae

® C. elegans 100 Mb

® Dozens of bacteria 1-6Mb

® D. melanogaster 140 Mb
B Human

® 408 Mb

@ ~14% of the genome

“Supercomputing 99-Portland
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Base Pairs in GenBank e f)
.
—

Super puting 99-Portland -
DNA Analysis _‘

Disassemble the base code!

E Find the genes
© Heuristic signals
® Inherent features
@ Intelligent methods

B Characterize each gene
® Compare with other genes
@ Find functional components
® Predict features |

“Super It g 99-Portland
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What is a Gene? |

o University of Pennsylvania
,,,, / eee.. ....... Compuiational Biology and
primary dronscript Informatics Laboratory

promoter

cadd box .
polyAsignnl |

siopcodon 5
s
)

s
3
'\ » N
miron  exon )
2 ’ »
I
2
H

33
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axn Heuristic Signals

DNA contains various recognition sites
for internal machinery

# Promoter signals

B Transcription start signals

E Start Codon

B Exon, Intron boundaries

B Transcription termination signals

ing 99-Portland
34

Super

17



i
H
i

rr
Heuristic Signals

18 :



=

Inherent Features .,-.'-j

Besnibity Lan

DNA exhibits certain biases that can be
exploited to locate coding regions

Uneven distribution of bases
Codon bias

CpG islands

In-phase words

Encoded amino acid sequence
Imperfect periodicity

Other global patterns

Supercomputing 99-Portland
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' Intelligent Methods

Pattern recognition methods weigh inputs
and predict gene location

B Neural Networks
B Hidden Markov Models
m Stochastic Context-Free Grammer

Super puting 99-Portland -
BA: 5|
T o e St N eural n etWO rks

| G-mer vocabulary |__,®
[ 6-mer-in-frame
[ Markov | Y
[Isochore GC Composition|—m—p-@

4

| Exon GC Composition ]

| Size prob. profile

| Length

| Donor

| Acceptor

| Intron Vocabulary 1 |

Xu 1997

[ Intron Vocabulary 2

~ Supercomputing 99-Portland
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Hidden Markov Models

ke CompuTINg <0

‘—H ‘ Silent states

Production states

Supercomputing 99-Portland
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Characterize a Gene

Collect clues for potential function

B Comparison with other known genes, proteins
B Predict secondary structure
B Fold classification

B Gene Expression

B Gene Regulatory Networks
B Phylogenetic comparisons
H Metabolic pathways

“Super puting 99-Portland
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A rse] Large-scale Genome -
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Annotation —
7, Sepome W Multi-iaboratory Project

g2

m Standard Annotation of Genomes
® Genome Channel ters Genom Cenes
® Genome Catalog @

m Comprehensive integration of
® Analysis tools
® Data management systems
® Data mining
® User services

Compute Servers

Datz Warchouse

| Extensible Framework y ¥
@ High-performance computing BloParmeters  BloSequences  Blolndex
¢ Data integration technology
@ Artificial intelligence

ing 99-Portland
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Annotation Pipeline
Sequence Input 8 @ @

GsbB GenBank SWISS-PR OT

Anal ysis Queue

'

Annotation Repor t

Data Sour ces

- Supercomputing 99-Portland
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Genome Channel

ing 99-Portland
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SUGARG Commams comen

Feature Display

SR

TR
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Gene Search - BEAUTY Results

SR R
tribution of 29 Blast Hits on th.

100
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|
%
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Score E

{bits) Value
§1]2822195 (US2351) heural plekophilin related arm-repest protef... 253 6e-67
§1]3712673 (U96136) delta-catenin (Homo sapiens) 249 9e-56
112380537 (U90331) neurel plekophilin related arm-repeat protei... 236 9e-62
111702924 | gnl |PID| e259213 (¥81909) POOT1 protein [Komo sapiens} 165 3e~40
9111937727 (U51269) armadillo reprat protein [Homo sapiens] 109 1e-23
§1§2253589 (U52028) delca-catenin {Homo sapiens} 106 1e-22
gi}3152867 (AF062394) P120 catenin isoform 4B (Homo aapiens) B2 4e-15

§1[3152617 (Ar062319) p120 cavenin 1soform 2ABC [Homo amplens) 82 de-15
1szaisia L. 591, oot Home, 900IEna) 208 s 02

e
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Highlights - Data Analysis

Objects databases processes
=

&
Super

ing 99-Portland

48

24



r What’s supercomputing
PR g()t to d() With it?

B Complexity of the information

H Amount of data

H Most applications are trivially parallel

Supercomputing 99-Portland

Layers of Information

The same base sequence contains
many layered instructions!

B Chromosome structure and function
@ Telomers, centromers

B Gene Regulatory information
® Enancers, promoters

®m Instructions for gene structure

B Instructions for protein

® Instructions for protein post-processing and
localization

‘g
Super
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Moore’s Law and Genomics ’\'\H

HERKELEY an RN

Spec9% Integer Performance vs. Genbank Search

Genbank
search time

log2(spec95)
IS

Compute
performance

States 1998

Supercomputing 99-Portland —

The Shape of the Wave

® 1999
v JGI releases 150 Mbases draft
v Celera releases the sequence of Drosophila (140 Mb)
v Public “draft” effort reaches halfway point (1,500 Mb)
v 20 more Microbial genomes completed (80 Mb but 60,000 genes)
v First release of Celera “shotgun” (9,000 Mb)

® 2000
v JGI releases 150 Mbases draft
« Public “draft” completed (1,500 Mb)
v Mouse “draft” begins (500 Mb - comparisons with human)
v Two more Celera shotgun releases ( 18,000 Mb)
v 40 more Microbial genomes sequenced (160 Mb -120,000 genes)

- Super puting 99-Portland
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A CPU Requirements ff—‘»

Carmne Conpun i LOTCA
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B Current annotation
® 250 Mbases DNA yield ~125 Gbytes of data
@ It takes ~ 7.5 days on 20 workstations ~3,600nhr

B Celera Data
® 9 Gbases (36x) in small pieces every 3 months ~2,000 hr.
@ Analysis time approx. quadratic (1300x)
©® 1,300 x 3,600nhr / 2,000 hr. = 2,340 nodes

B Celera Sequencing
® Assembly of 1.7 Million reads in 25 hrs
© Annotation 8-10 Mbases per months with 6 FTE
@ Assembly of Human Genome: expected ~ 3 months

Supercomputing 99-Portland
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Projected Base Pairs Fres) j

B v'Lan

Projected size of the
sequence database,

indicated as the number
of base pairs per
individual medical
record in the US.

ing 99-Portland
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- Sequence Assembly —

BRI Gons Lring SEnicn

m Complexity

@ Adding a day’s read of 100 Mb to a billion base pairs of
contig would require 100 Pops operations

® A 1 Tops machine would take about one day to process
100 Mbases

Supercomputing 99-Portland
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Assembly / Integration / Modeling 11\]

IR N

B BAC end integration —
v JGI draft (1st half) = 300 Pops

v first Celera release requires = 3,000 Pops

® Draft and whole genome shotgun integration

v JGI draft (1st half) + Celera first release = 1,300 Pops
B Gene modeling

v Celera first release (9Gbases) - 1 day of Paragon time
® Placing STSs

v JGI draft requires =9 Pops

v Celera first release = 90 Pops

-Super puting 99-Portland
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Data Transfer \\'\Il

Bexriry L ao i

250,00
200,001
150.00-

100.00-
50.00]
0.00}
year |month| week | day III:II:I'S Thour

|leles/sec 003 | 039 | 165 | 1160 | 2310 | 270.10

Super puting 99-Portland #
A B
e Challenges
® Discovering new biology
B Lack of software integration
B Beginning to build high-performance applications
m Shortage of personnel
Super puting 99-Portland 5?
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One Gene - Many Proteins

SEERINE Consp e SENTER

Gerktiey Lao Rt

. Conboy 1 998
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S Rb and p53 Pathways \_
Extracellular Oncogenic
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B NERSC/LBNL B ORNL
® John Conboy ® Ed Uberbacher
® Donn Davy @ Richard Mural
® Inna Dubchak @ Phil LoCascio
® Sylvia Spengler @ Sergey Petrov
® Denise Wolf @ Manesh Shah
@ Eric P. Xing ® Morey Parang

@ Manfred Zorn
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Protein Fold Recognition, Structure
Prediction, and Folding

Teresa Head-Gordon
Physical Biosciences and Life Sciences Divisions
Lawrence Berkeley National Laboratory

November 15, 1999

-~ Super puting 99-Portland
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r Em Protein Fold Recognition, Structure /~\I p
i Prediction, and Folding

(1) Drawing analogies with known protein structuares
Sequence homology, Structural Homology

Inverse Folding, Threading

(2) Ab initio folding: the ability to follow kinetics, mechanism
robust objective function
severe time-scale problem
proper treatment of long-ranged interactions

(3) Ab initio prediction: the ability to extrapolate to unknown folds
multiple minima problem
robust objective function
Stochastic Perturbation and Soft Constraints

(4) Simplified Models that Capture the Essence of Real Proteins
Lattice and Off-Lattice Simulations
Off-Lattice Model that Connect to Experiments: Whole Genomes?

Supercomputing 99-Portland
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ey What is a protein? N

Berrcioy Laohely

S

A biopolymer which is distinct from a heteropelymer in one very important way
It’s 3-D structure is uniquely tailored to perform a specific function

Alanine
Proline
Threonine

Tryptophan

. Isoleucine

NMR, X-ray and electron crystallography solve structures slowly (1/2-3 yrs.)

~Supercomputing 99-Portland
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y The “Beads” are Chemically e

Complex Structures
VR TR Y
H/C/\ AN /C<H O /N\.c/H\ _
, SNl

C———N

/ C{i": Glutamine (NAQA)
L \ Leucine (NALA) \ /H
7 \I
(o] 1

’./
.
cfi; CH

. N
H
CH,

Glycine (NAGA)

ing 99-Portland
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" T Protein Fold Recognition:

Sequence Assignments to Protein Fold Toplogy (David Eisenberg, UCLA)

Take a sequence with unknown structure and align onto structural template of a given fold

Score how compatible that sequence is based on empirical knowledge of protein structure

Right now 25-30% of new sequences can be assigned with high confidence to fold class
100,000's of sequences and 10,000's of structures (each of order 10?-10%amino acids long)

Threading ]

“Super puting 99-Portland

34



r Protein Fold Recognition: B ﬁ
PR r e Thre ading ‘v

Computational Approach:
Dynamic programming: capable of finding optimal alignments if
optimal alignments of subsequences can be extended to optimal alignments of whole

objective functions that are one-dimensional E=X V; +Z V

Complexity: all to all comparison of sequence to structure scales as 1.2
Whole human genome: 10%3 flops

Improve Objective function:
Take into account structural environment
3D—>1D: dynamic programming, 1.2
Build pairwise or multi-body objective function
NP-hard if: variable-length gaps and model nonlocal effects such as distance dependence
Recursive dynamic programming, Hidden markov models, stochastic grammers

Complexity: all to all comparison of sequence to structure scales as L3
Whole human genome: ~10'¢ flops

ing 99-Portland
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-AXa  Computational Protein Folding

One microsecond simulation of a fragment of the protein, Villin. (Duan & Kollman, Science 1998)

(1) robust objective functionv’
all atom simulation with molecular water present: some structure present
(2) severe time-scale problemv’
required 10° energy and force evaluations: parallelization (spatial decomposition)
(3) proper treatment of long-ranged interactions X
cut-off interactions at 8A, poor by known simulation standards
(4) Statistics (1 trajectory is anecdotal) X

Many trajectories required to characterize kinetics and thermodynamics

- Supercomputing 99-Portland
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Computational Protein Folding === \

Derkriry Lan it

(1) Size-scaling bottlenecks: Depends on complexity of energy function, V
Empirical (less éccurate): cN?; ab initio (more accurate):CN? or worse ; ¢<<C
empirical force field used
“long-ranged interactions” truncated so ¢cM? scaling; M <N
spatial decomposition, linked lists

(2) Time-Scale of motions bottlenecks (At)

e+ 4e)=2r(t )—-ri(t—At)+f";T('t)%+0[(At)4];vi(t)= ri(t+Atl;:"(t_At)+0[(At)3

i
fi =ma, = —ViV(rI,rz,...rN)‘
Use timestep commensurate with fastest timescale in your system
bond vibrations: 0.01A amplitude: 10-5 seconds (1fs)
Shake/Rattle bonds (2fs)

Multiple timescale algorithms (~5fs) (not used here)

Super puting 99-Portland -
a 1 Microsecond simulation of ey ‘.;1
R Villin Headpiece in Water

Generate 10° steps; Assume 1 teraflop machine; 1000 Flops per energy/force evaluation
N? evaluation of energy & forces N evaluation of energy & forces

10,000 atoms
T[=100,000 atoms
11,000,000 atoms|

510,000 atoms |
“J=100,000 atoms
]w1,000,000 atoms

3 4 5 8 7 8 9 10 11 12 13
log{number of seconds on 1 teraflop machine) of

Ewald Sums:

erfe 1r.- + nl 2

NI = ~+ 4= 2, 2
= q; + q. % exp~k /4. cosk-r, |+V
" igj |"E0q,qj ‘ j+n| ”L3 kgoq,q] K p( K ) ( ") self

s Particle Mesh Ewald (N)
Spatial Decomposition in r-space; Parallelization of FFT's in k-space
¢ Evaluate full Ewald sum in r-space using FMM techniques

“ Supercomputing 99-Portland -
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- LTEr Ab Initio Profelp Structure /\l ;.‘,]
Prediction

Primary Squence and an Energy function — Tertiary structure

Empirical energy functions:
(1) Detailed, Atomic description: leads to enormous difficulties!

# Bonds # Angles # Impropers ( 2
Vo = zl: kb(bi _bo)z + ? kH(Hi _00)2 + ? A —Ta) +

12 6
# diltedrals # atoms # atoms qiq : o i o i # atoms
X k¢[1+cos(n¢+6)]+ > ¥ —i+gij S ) R . 4 + 3 AcA
i i

' A "y i
(1) Multiple minima problem is fierce

Find a way to effectively overcome the multiple minima problem
(2) Objective Functions: Replaceable algorithmic component?

Global energy minimum should be native structure, misfolds higher in energy

Super puting 99-Portland

N rsc| The Objective (Energy) =

FErreey

Function

Empirical Protein Force Fields: AMBER, CHARMM, ECEPP
“gas phase”

Sredregdaane NE

CATH protein classification: http:/pdb.pdb.bnl.gov/bsm/cath

o~helical sequence/ $-sheet structure B-sheet sequence/a-helical structure
Energies the same! Makes energy minimization difficult!

Add penalty for exposing hydrophobic surface: favors more compact structures

E <E for a few test cases

native folds 'misfolds

Solvent accessible surface area functions: Numerically difficult to use in optimization

Super puting 99-Portland
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r Hydration Forces from Experiment/ :\] :

Simulation and Optimization

v Lac iU

— gn.gas

o o cluster a4 [(Q), experiment
200 T 9dn, i — I(Q), gas
- gdr), Bquaaus wol Vo 1(Q), clustar
' ~- I(Q), aqueaus

50}

50 |

50

Lomonna{Q) {(bamisisteradian/saluts)

00 20 40

3 =18
80 10 12.0 LY 0.50 075 1.00 125

6.0
r/A QiA

Find model g (7) that best reproduces excess experimental signal, I_(Q)

W(r) is “potential of mean force” between two hydrophobic solutes
(Feature Article,J. Phys. Chem., 1999)

V= AMBER + (predicted helices fixed) + W(r) like that from experiment

Global optimization can find no lower energy structures than crystal structures
1pou (72 aa), 3icb (77 aa) , 2utg_A (70 aa), 3cin (145)

Super puting 99-Portiand %
" Neural Networks for 2° ]
R Structure Prediction

O Input units represent amino acid &) \
sequence

@)

O——
‘ Hidden units map sequence to structure O ><

Output Units represent secondary O
- structure class (helix, sheet, coil) O

-—» Weights are optimizable variables that are trained on database of proteins
Poorly designed networks result in overfitting, inadequate generalization to test set

Neural network design
input and output representation
number of hidden neurons '

weight connection patterns that detect structural features

ing 99-Portland
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Y ey Neural Network Results i\l\f

No sequence homology through multiple alignments

Train Test
Total predicted correctly = 66% Total predicted correctly = 62.5%
Helix: 51% C =042 Helix: 48% C,=0.38
Sheet: 38% C,=0.39 Sheet: 28% C,=0.31
Coil: 82% C_=0.36 Coil: 84% C_=0.35

Network with Design: Yu and Head-Gordon, Phys. Rev. E 1995

Train Test
Total predicted correctly = 67% Total predicted correctly = 66.5%
Helix: 66% C,=0.52 Helix: 64% C_=0.48
Sheet: 63% C, =0.46 Sheet: 53% C,=0.43
Coil: 69% C=0.43 Coil: 73% C,=0.44

Combine networks of Yu and Head-Gordon with multiple alignments

Supercomputing 99-Portland -
r Neural Network Predictiops .As $oft ’\i ﬂ
T Constraints In Local Optimization

Make neural network prediction of 2° structure for each amino acid
Network Output: Helix (P_, -1), Sheet (-1, Pﬁ), Coil (-1,-1)

P_= probability of being helix Py= probability of being sheet
Optimi following energy surface: =
ptimize on following gy surface sias = Vet + VW +V g

P 0 W G ) IR ALY

W ¢, and y, define perfect helix values
predictions define k¢, kq,, and q;

Using optimized structure from V,

ias

optimize on V., (AMBER: unbiased objective function)

- Supercomputing 99-Portland
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r Neural Networks Used To Guide Global e
Optimization Methods i

BERKLLLY Lag

Generate expanded tree of configurations

Predicted coil residues: generate random, dissimilar sets of ¢, and y,

Explore tree configuration in depth:

Global Optimization in sub-space of coil residues: walk through barriers, move downhill

Super puting 99-Portland
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r Neural Networks Used To Guide ’_\] ]

It

S Stochastic Perturbation Algorithm N

DERKELEY Lag

Stochastic/perturbation in sub-space of dihedral angles predicted to be coil
(1) Local minimization of a set of start points in sub-space
(2) Define a critical radius

1?2 n\Volo o
= (m) F(1+~j—~4‘2
4 2 P

a measure of whether a point is within a basis of attraction
(3) Generate many sample points in sub-space volume, V
(4) Evaluate r.m.s. between new sample points and minimizers of (1)
If (r.m.s. <r,) ignore this sample point
(5) Minimize sample points not in any critical distance and merge into (1)

Choose new set of dihedral angles and repeat

Probabilistic theoretical guarantees of global optimum in sub-spaces
Global optimization by solving a successive series of global optimum in sub-spaces?

“Super ing 99-Portland
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r Hierarchical Parallel Implementation of e i
SRR Global Optimization Algorithm

Static vs. Dynamic Load Balancing of Tasks

Central Processor

\
GOPTI1 GOPT2 GOPT3 GOPT4 GOPTS5
\ \ \ \ \

W, W, W, >W,, WouimWoy o WoimWe o W, oW,

Central Processor: Assigns starting coordinates to GOPT’s
Task time is highly variable
GOPT’s: Divide up sub-space into N regions for global search
Task time is variable

Workers: Generate sample points; find best minimizer in region
(Number of workers depends on sub-space)

Dynamical load balancing of tasks: reassigning GOPT/workers to GOPT/workers
Gain in efficiency of a factor of 5-10

Super puting 99-Portland _ -
r Global Optimization Predictions of o- ’\‘ i
S Helical Proteins

2utg_A: 70aa a-chain of uteroglobin:
Crystal (left), Prediction (right) r 2 5 o
R.M.S. 7.0A '

1pou: 72 aa DNA binding protein

Prediction (left) and crystal (right)
R.M.S. 6.3A

Still have not reached crystal energy yet!

< Supercomputing 99-Portland
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Simplified Models for - 1

Simulating Protein Folding —

Simplifies the “real” energy surface topology sufficiently that you can do
(1) Statistics v/
Can do many trajectories to converge kinetics and thermodynamics
(2) severe time-scale problemv’ :
characterize full folding pathway: mechanism, kinetics, thermodynamics
(3) proper treatment of long-ranged interactions v/
all interactions are evaluated; no explicit electrostatics
(4) robust objective function?
good comparison to experiments

Super puting 99-Portland

r o/B Protein Model Resembling
IgG-binding Proteins L and G

+Folding is highly cooperative, chain collapse accompanying folding.
4 Two parallel folding pathways:
One pathway contains an intermediate—protein G
One pathway contains no intermediates—protein L.
+Sequence mutations affecting secondary structure propensities
Similar to mutational experiments on Protein G & L
Same Hamiltonian can model all-B (SH3) and all-o. proteins (four helix bundles)

~ Super puting 99-Portland
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m Computational Complexity of Simplified e A
Models for Protein Folding /\‘ l

3t s‘

Bcar.r.u.v i AD

Thermodynamics of the folding process are characterized using
multi-histogram method: complexity increases with multiple order parameters
constant-temperature Langevin simulations \

Folding kinetics are characterized by tabulating
mean-first passage times, and temperature scans

One week using two Compag/Dec EV10000 (~50 specfp95) per protein sequence
100,000 sequences for Human Genome; Ample mutational study data

g 99-Portland
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Structure-Based Drug Discovery

Brian K. Shoichet, Ph.D
Northwestern University, Dept of MPBC
303 E. Chicago Ave, Chicago, IL 60611-3008

Nov 15, 1999
Super puting 99-Portland 2?
A:rsc Problems in Structure-Based

R Inhibitor Discovery & Design

M Balance of forces in binding

@ Energies in condensed phases
v interaction energies
v desolvation

B Problem scales badly with degrees of freedom

@ Configuration
v configs o (prot-features)! X (lig-features)*

@ Conformation
v Ligand & Protein, confs o 3/ends X 3pbonds

E Sampling chemical space (scales very badly)
B Defining binding sites

Supercomputing 99-Portland




The Pros & Cons of Proteins

-~

y A
FEEEEee [III

BERRECEY. Ao RN

© .0
K+
o i o
o
18 - Crown-6
sulfate binding protein
Supercomputing 99-Portland 5
r Conserved Residues, Ordered

Sanme cons 0 STEa

Structure, Function Unknown

~Super
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L AxXnm Inhibitor Discovery or Design? sreen] ﬂ

Gesktiry Ao R

B Design ligands
® Ludi (Bohm)
® Grow (Moon & Howe)
® Builder (Roe & Kuntz)
® MCSS-Hook (Miranker & Karplus)
® SMOG (DeWitte & Shaknovitch)
® Others...

® Discover Ligands
® DOCK (Kuntz, et al., Shoichet)
® CAVEAT (Bartlett)
® Monte Carlo (Hart & Read)
@ AutoDock (Goodsell & Olson)
® SPECITOPE (Kubn et al)

® Others...
Super: ing 99-Portland -
Screening Databases by creerd] )
Molecular Dockin

]

Dock into site

5
.

Calculate energies

l

Test highscoring
molecules

. Structure
C t_iatermmatvon)
Newy inhibitor

dasign

@ Chemistry & Biology, 1996

“Supercomputing 99-Portland
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immm=. Database Screening Using DOCK — i

E ¥ Lag.

Database of commercially
available small molecules

Each molecule is fit into the binding site
in multipic oricntations.

M ultiple conformations of cach ligand
are considered.

Each orientation is ecvaluated for
complementarity, using van der W aals
and electrostatic interaction energies.

Solvation energies are subtracted.
/

o ~200,000
compounds

The inhibition constants of the best fitting
molecules arc established in an enzyme assay’

Inhibitor-receptor com plex structures are determined.
New interactions with the enzyme are targeted. )

Supercomputing 99-Portland
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" Novel Ligand Discovery /r}| ﬂ

R e Using Molecular Docking —

/N\
unpublished

“ Supercomputing 99-Portland
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Ligand Flexibility:
Conformational Ensembles

Generate an ensemble .

dock it into the site

e [m]

~Supercomputing 99-Portland
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W=rsc . ceeree?] i
s, CONfOrmational Ensembles vs. Brute Force - \H

Bexrriey Lao il

100.000

10.000

1,000
3
8
i3
E 100
E
10
1
DHFR T8 LDH Trypsin TEM-1
Raceptor
Super puting 99-Portland 97
e— Database Docking
" ‘ L
Number of Time Score RMS Rankin
Enzyme Confs Gomps (iws.) (<4, ) (A) Database
Single Conformation Database
Complexed DHFR 5761 5761 0.58
Uncomplexed DHFR 5761 5761 1.40 919 8.32 16.09%
Complexed TS 281 281  0.31
Uncomplexed TS 281 281 0.51 -8.3 3.67 97.15%
Multi Conformation Database
Complexed DHFR 867,822 5656 0.94 125 1.20 99.33%
Uncomplexed DHFR 867,822 5,656 2.96 7.4 1.34 98.83%
Complexed TS 88,487 263 0.27 89.2 0.77 99.62%
Uncomplexed TS 88,487 263 0.18 315 2.71 99.24%

Full Multi Conformation Dafabase
Complexed DHFR 33,717,639 115,349 26.50 -125 1.20 99.72%
Complexed TS 33,715,748 117,240 80.90 -89.2 0.77 99.93%

- Supercomputing 99-Portland
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Hierarchical Docking

Flexible docking: Hierarchical docking:

27 confs 27 confs
x3 atoms 3C+3A+9B
81 atom positions 15 atom positions
A
|
B
Supercomputing 99-Portland -
":mw“ Correcting for Ligand Solvation Energies
AGrbind = AC}interact - AC}solv, L~ ACTsolv, R
AG'interact = E(ql Pi + Vin)
AGelec,solv = (q2/2r) (UDO - 1/Dw) e ®° °

=(1/D, - 1/D,)/2r 22Q:3q; . Q )
=-621.48 — 25.890 x area .

- Supercomputing 99-Portland
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Solvation Corrections:
Thymidylate Synthase Screen
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Solvation Corrections: DHFR Screen
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BERKELEY LAD
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Net Charge on Molecule
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3

Net Charge on Molecule
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Solvation Corrections: crereod] l;?.]
Benzene Cavity Screen —
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e Unmet Challenges ﬂ

FEG e Con e So

u Better Scoring
® context dependent desolvation
@ receptor desolvation
® better force-fields

B Receptor Flexibility

® Cominatorial Chemistry

m This work supported by the NIH,
Genetics Institute, and Procter & Gamble

Super puting 99-Portland
105
-~
v - A
W ERsC -u/:r>:| im]
TElGanTe Cones i cenicn :mu.-.c

Cellular Network Analysis

Adam Arkin
Physical Biosciences
Lawrence Berkeley National Laboratory
Bioengineering and Chemistry
University of California, Berkeley
11/15/99

~Supercomputing 99-Portland
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A Fheineering of Cellular Circuitry rreee) 1"'1

COimie oA Ing cEien

{BeRxcLEy Lan]

ourtesy of IBM From: W: Lab, Loyola

Asynchronous Digital Telephone Switching Circuit Asynchronous Analog Biological Switching Circuit

Full knowledge of parts list Partial knowledge of parts list

Full knowledge of “device physics” Partial knowledge of “device physics”

Full knowledge of interactions Partial knowledge of interactions

No one fuily understands how this circuit works!! No one fully understands how this circuit works!!

Its just too complicated. Its just too complicated.

Designed and prototyped on a computer (SPICE analysis) We need a SPICE-like analysis for biological systems

Experimental implementation fault tested on computer

. Supercomputing 99-Portland -

W:rsc : - 2§
Analysis of Cell Function }
2 INIC COMBLTING CONTER [Berneiey Lacl .

The challenge is to integrate data from all levels to
produce a description of celiular function.

There are challenges in:

Systematization and structuring of data
Serving and query this data

Representing the data

Building multiscale, multiresolution models
Dynamic and static analysis of these models

Pay-offin
Industrial bioengineering
Rational pharmaceutical design
Basic biological understanding

-Supercomputing 99-Portland
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L3 Complexities of Cellular Function t\l\]]
o chaca -

Super puting 99-Portland

Tale:

o Spatiotemporally

e S 3
resolved pictures of

meoent:
This EPS piciora wit prnt 0 @
bk rolto

take up Gigs of storage.

Analyses takes days-
weeks.

Each of those little bright spots contains networks vastly more
complicated than those on the last slide!

ing 99-Portland

Complexities of Cellular Function i\Q

BERKELEY LAG ]___

et developmental processes

Models are in early days.

.
Super p
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Tt Comtna conen

Heterogeneity of Data

Y

A
It}

Data are:

1) Qualitative-->Quantitative

2) Collected at many levels

3) Of heterogeneous structure
4) Of heterogeneous availability

Challenge:

Optimal use of available daéa to
make predictions about cell
function and failure.

Supercomputing 99-Portland
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Lammme commiame comca

Tools for “multilevel” analysis

Bmm;n.s

Cellular networks

Physical properties

Findg Parts

~Supercomputing 99-Portland
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WAL CntaY BEsEaRes
RCITIE Sorimiing ComR

yr=c Why now? e ;;]]

BERKELEY LAD:

*Genome projects are providing a large (but partial) list of parts

*New measurement technologies are helping to identify further components, their interactions,
and timings

» Gene microarrays

» Two-Hybrid library screens

* High-throughput capillary electrophoresis arrays for DNA, proteins and metabolites
* Fluorescent confocal imaging of live biological specimens

» High-throughput protein structure determination

*Data is being compiled, systematized, and served at an unprecedented rate
*» Growth of GenBank and PDB > polynomial ’

» Proliferation of databases of everything from sequence to confocal images to literature

+The tools for analyzing these various sorts of data are also multiplying at an astounding rate

Superc

ing 99-Portland —
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Y =S SPICE Tools for Biology?

Lris ctmen

\ﬂ

Bio/Spice: A Web-Servable,
Biologist-Friendly, database,
analysis and simulation interface
was developed into a true beta
product. ‘

Interfaces to ReactDB, MechDB,
and ParamDB.

With Kernel, performs basic:
flux-balance analysis,

stochastic and deterministic
kinetics,

Scientific Visualization of results.

Dimerize-1 Co

Notebook/Kemel design optimized
for distributed computing.

57
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Components of Bio/Spice /.\|\ﬂ
!

Internet

Internet

Center Data

Super: ing 99-Portland
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An Example of “Device Physics” rezest) i"ﬂ

ETIA

Sluccasslve competitions batweon RNase and
ribosomes*
Geometric distribution of number of protelns per 70
transcript
60+
@ 50
Simulation methodology | §«f
for full-up simulation of %0
chemical Markov-Process | &2 ;

; 1 TS y A g,
scales exponent_tally with 10 i i s g A*“YW’W")’ Wikl
number of reactions T e T T E W e a

Time {minutes)
Super puting 99-Portland
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BERRELTY L an )

This is approximately 1/3 of just
the initiation of the sporulation
program from Bacillus subtilis.

There are over 100 proteins,
40 genes, 300 reactions for which
data is available.

The total data on just this process is a tens of Gigs and it is incomplete.
Microarray and microscope data are added 100 Megs per week.

Model builders need to query this data and arrange it for simulation.
Simulations must be run under many different condition and hypotheses.

Supercomputing 99-Portland
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The Need for Advanced Computing

Data Handling:

The total data necessary for network analysis is huge.

By nature it will be distributed and heterogeneous

We need:
Database standard and new query types
Means of secure,fast transmission of information
Means of quality control on data input

Tool integration:

Centralization of computational biology tools and standards
Ability to use tools together to generate good network hypotheses
Good quality ratings on Tool outputs

Advanced Simulation Tools:
Fast, distributed algorithms for dynamical simulation

Mixed mode systems (differential, Markov, algebraic, logical)
Spatially distributed systems

_Super )} g 99-Portland
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