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Abstract 

Adequacy of the description and the qualitative prediction of flow and transport processes in 

subsurface systems essentially depends on how well a model represents the heterogeneity that is 

intrinsic in real field. One of the simplest models to describe the heterogeneity structure is a so

called composite system. In this model it is assumed that the whole media is composed of 

homogeneous components that are distributed in space randomly or in a particular periodic 

manner. Flow and transport simulation in composite systems can usually be reduced to solving 

partial differential equations with variable discontinuous coefficients and averaging the 

solutions, which can be accomplished by numerical simulations using the Monte-Carlo approach. 

A different approach, related to averaging the differential equations of flow and leads to new 

equations that link averaged fields in composite media. This description is designated as mono

continuum or global description. If the homogeneous components of a composite system, so

called phases, have essentially different hydrodynamic and/or geometric parameters, it is natural 

to study averaging of the fields on the individual phases of the composite along with the global 

averaging. This approach reduces to a more detailed description of processes in multi-continua. 

It takes into consideration the mean fields in the individual continuum phase as well as the cross

flows and cross-forces between continua. However, this description is usually non-closed 

because the number of equations is less that number of unknown functions (mean fields and 

exchange terms). To overcome this difficulty, the phenomenological theory of unsteady motion 

in heterogeneous media (dual-porosity media, fractured porous media) postulates a special 

interaction mechanism for closing the equations. This paper presents the exact equations of 

mass-balance and moment-balance for each phase of the composite. The exact physical sense of 

exchange terms in the multi-continua models is explained. We then demonstrate that joint 
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consideration of the mono-continual and the multi-continual systems of equations in the case of 

two-phase random composite leads to a closed description, and from that, we can find the" 

exchange terms. For periodic composite system the same approach leads to a closed description 

for any number of phases. We successively study the composite systems with a random and 

periodical structure. The terms describing the interactions .between continua (such as the 

exchange of fluids and momentum between phases) are calculated. Finally, we examine the 

hypothesis customarily made in the phenomenological models 'that the cross-flow is proportional 

to the mean pressure difference. We find the hypothesis as generally unsatisfactory considering 

its region of applicability (micro and macro isotropic composite medium). 
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1. INTRODUCTION 

The problem of rationally describing flow and transport in real, macroscopically essentially 

inhomogeneous media is of considerable interest in the theory and its technical applications. 

Stochastic approach for flow and transport in heterogeneous random systems (including 

random composite media) involves the probabilistic treatment of percolation parameters and 

flow and transport equations, the determination of the ftmctional from the statistical solution or 

the analysis of equations relating the unknown and given functionals [e.g., Shvidler, 1985; 

Dagan, 1989; Gelhar, 1993 ] 

Inhomogeneous systems having periodic structure are a convenient model for studying processes 

in heterogeneous media. The theory of averaging the processes in periodic (as distinct from 

stochastic) structures is well established, and constructive methods for analyzing many processes 

in periodic media have been developed [e.g., Bensoussan et ai, 1978; Bakhvalov and Panasenko, 

1989; Jikov at aI., 1993] 

The description in terms of averaged fields represented by the theory of homogenization leads to 

equations that relate these fields to the effective characteristics of the inhomogeneous medium. 

Under certain conditions, the averaged equations can be treated as conservation laws, and their 

system as a mono-continuum model of the process. Obviously, this description must contain and 

utilize sufficient information on the fields in the individual phases of the periodic or random 

composite system and the inter-phase transfer processes. 

A more detailed description involves the determination of the mean fields in each phase, i.e. the 

conditionally averaged fields and the equations relating these fields. If it is possible to construct 

such equations and treat them as the equations of certain process in a phase of the composite 
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system, such a description would be a multi-continua one in accordance with the number of 

phases. 

Irrespective of the method of realizing the multi-continuum description, it is necessary to solve 

the central problem of closing the systems of equations associated with terms responsible for 

inter-continuum transfers of mass, momentum, energy, etc. 

The phenomenological theory of the unsteady motion of a homogeneous fluid in heterogeneous 

composite systems (media with dual porosity, fractured porous media), which postulates the 

special interaction mechanism, is well studied. In this approach, the flow in each phase of the 

composite is characterized by its own mean pressure or head and mean flow-velocity fields, the 

relation between which takes the form of Darcy's law. The rate of fluid transfer among the 

phases is assumed to be proportional to the difference of the mean head of each phase. 

We examine the problem of conditional averaging of a system of flow equations fora weakly 

compressible fluid in a random and periodic composite medium. The equations of the multi-

continua model were developed, and the parameters regulating the interactions between the 

phase continuum were calculated. 

For those cases in which, for one and the same process, a mono-continuum description can be 

realized and the conservation laws of the multi-continua model can be obtained, it has been 

shown that the splitting of the globally averaged fields is possible, that the closing transfer terms 

for the binary random system can be expressed in terms of the characteristic of the mono-

continuum and the mean fields in the phase continua , and that their interactions can be 

calculated. The information thus obtained for some random and periodical systems makes it 

possible to evaluate and refme the phenomenological closing hypothesis. As an example, we 

show that when a heterogeneous system is locally isotropic and macro-isotropic, the hypothesis 
( 
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of the proportionality of the cross-flow between the phases to the difference of phase pressures 

or head can be regarded in some cases as an approximate rule. On the other hand, this relation is 

generally inadequate in the cases of overall anisotropy. 

The article is consisted of 5 sections, with this introduction being section 1. In section 2 we 

examine the flow in random composite systems. Here, we consider the exact conditional 

averaged equations of fluid transport and averaged equations of momentum for each phase of the 

composite random media. These equations make up a non-closed system that is interpreted as a 

multi-continua model of the process. For a binary composite system, the inclusion of the 

equations of mono-continua (global) model in this non-closed system of the equations for the 

same process in the same composite system enables the closed multi-continua description, which 

makes it possible to directly compute the parameters a multi-continuum models that respond for 

interaction between continua. We examine a partial but important case of "meso-equilibrium" 

system and obtain the simple relations for cross-flows between phases, cross-forces, etc. 

In section 3 we examine some examples of random composite systems and present the analysis 

results. 

In section 4 the above analysis approach is applied to periodical composite media. Here we also 

examine the multi-continua model and present conditional averaged equations. In contrast to the 

stochastic approach, the system that joins the equations of mono-continuum and multi-continua 

models together with explicit expansion of the local fields with respect to fast and slowly 

changing variables makes a closed description possible for the composite system with any 

number of phases. 

In section 5 we present some examples of periodic composite systems, for which we can obtain 

exact expressions for phase heads and their differences. Also examined in detail is the two-phase 
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layered system for which pressure difference and cross-flows are obtained quantitatively. Here 

we discuss the same method of closing the equations of phenomenological models. 

The approach that is presented in this article for random and periodic composite media was 

briefly published by Shvidler [1986a,b; 1988] and Shvidler and Karasaki [1994,1999]. In this 

paper we set forth the problem in more detail and present new theoretical results and some 

applications. 

2. RANDOM COMPOSITE MEDIA 

2.1.Mono-continuum (global) description of flow in random medium 

Let us consider the unsteady flow of a homogenous, compressible fluid in a heterogeneous, in 

particular, composite deformable random medium in a three-dimensional domain n with 

boundary an. The problem is mathematically described by the equations: 

div v(x,t) +a(x) ou(x,t) f(x,t) , 
at 

a-I (x) v(x,t) + V'u(x,t) = 0, 

u(x,O) = uo(x), ulan = rp (x,t) , 

Here u(x,t) is the head, v(x,t) is the Darcy's velocity vector, a(x) is the symmetric and 

positive definite conductivity tensor, whose components are a random functions of x ,and 

scalar a ( x) is the specific storage of the porous media-fluid system, which is also a positive 

random function. We assume that both random fields a(x) and a(x) are stochastically 

homogeneous, that is, all probability density of these random functions are invariant to 

(2.1) 

(2.2) 

(2.3) 

translation in unbounded space. The source density f ( x, t) is a square integrable function. In the 
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present paper we only consider non-random initial and boundary conditions (2.3) for u(x,t). It 

should benoted that non-random flux condition lead to random boundary condition for u(x,i) 

and requires special analysis. 

We introduce the fields U(x,t) and V(x,t), unconditionally averaged over the ensemble of 

realizations of the random fields O"(x) and a(x): 

U(x,t) = (u(x,t»), V(x,t) = (v(x,t») (2.4) 

If we assume that 8 - so-called micro-scale of the stochastically homogeneous fields 0"( x) and 

a(x) - satisfies the condition 8 «In' where In is the macro-scale in region Q, then averaging 

over the probability measure in (2.4) can be replaced by averaging over the volume of the region 

()) 6. , whose meso-scale 11 satisfies the inequalities: 

(2.5) 

It is known [e.g., Bakhvalov and Panasenko,1989 ] that unconditional averaging of the system 

(2.1),(2.2) and (2.3) can be obtained by expanding the fields u(x,t) and v(x,t) in powers of the 

small parameter Jl = 8 / In that is a dimensionless length scale of heterogeneity for the random 

fields a (x) and 0" ( x). Thus the averaged equations (2.1) and (2.2) can be represented in the 

form: 

divV(x,t) + a· aU(x,t) +Jl~A[ DU(x,t)]= f(x,t) 
a tat 

(0". r V(x,t) + VU(x,t) = Jl ((T·r r[ DU(x,t)] 

(2.6) 

(2.7) 
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Here the scalar a* = (a(x)) is constant and the tensor a* = const is so-called the effective 

conductivity tensor. It should be noted that the non-random constants scalar a* and tensor (j* 

fully define the connection between the vector-field V(x,t) and scalar field U(x,t) in the 

limiting case of f.J ~ 0 only. The expreSSIOns the scalar-correlation 

f.JA[ DU(x,t)] = ([ a( x) - (a( x)) J[ u(x,t) - U(x,t)]) 

f.Jr[ DU(x,t)] = ([ a* -(a(x)) ][V'u(x,t) - V'U(x,t)]) 

and the vector-correlation 

are asymptotic series in power of the 

parameter f.J, whose coefficients are linear combinations of the derivatives of the field U(x,t) 

with respect to x and t. Because both series are infinite and contain the derivatives of any order, 

the equations (2.6) and (2.7) are non-local. 

Obviously, we must add the non-random conditions (2.3) to the equations (2.6) and (2.7) 

and refer the (2.3) to the function U(x,t), that is: U(x,to) = Uo (x), U(x,t)lan = <p(x,t). 

Thus, in terms of U(x,t) and V(x,t) there exists a closed description of the process of non

stationary flow in heterogeneous porous media. The chief difficulties in realizing this description 

are (a) determining the tensor· a* and (b) constructing the series A[DU(x,t)] and 

r[ DU(x,t)]. 

The unconditional averaged system: the equation of mass balance (2.6) and the equation of 

momentum balance (2.7), describes the mono-continuum model of flow in the medium, in 

particular, in composite medium, which is a closed description in terms of the mean fields 

U(x,t) and V(x,t). 

2.2. Multi-continua description of flow in random composite medium 
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For a more detailed description for composite medium we go over to conditional averaging of 

the fields u(x,t) and v(x,t) over the composite phases and introduce the random indicator 

function 

(2.8) 

where Q j is the portion of the domain 0 occupied by the i -th phase~ i =1, ... ,m. 

For any x the indicator functions satisfy the relations: 

m 

L">j(x) = 1 , (Zj(x)) = (}j> (2.9) 

where (}j is the volume fraction of the i-th phase in the composite, and for stochastically 

homogeneous medium (}j = const . Then from (2.9) we have 

(2.10) 

m m 

If the phases are homogeneous ,we can write a(x) = Lajzj (x) and 0" (x) = LO"jZj (x) ,where 

for each i-th phase a j = const and 0"; = const , and they are non-random scalars and tensors 

respectively. If the fields a(x) and a(x) are stochastically homogeneous, after averaging 

m m 

these equations we have (a ( x )) = L a;(}j . and (0" ( X )) = L aj(}j . 
i j 

For describing the conditional averaging of the any random field y(x) we use the following 

relation: 

(y(x))j = (y(x)), ifx E OJ (2.11) 
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and for any random field we can write 

(2.12) 

Thus, for the conditional averaging of y(x,t) , it is sufficient to unconditionally average 

Zj(x) y(x,t) and renormalize the result by dividing by ();. (It should be noted that here in (2.12) 

and elsewhere we do not assume summation on repeating indices!) 

Taking (2.12) into consideration, we introduce the phase parameter - conditionally averaged 

head in the i-th phase: 

U;(x,t) = ( u(x,t)); . (2.13) 

It is obvious that unconditionally and conditionally averaged heads are bound by the relation : 

m 

U(x,t) = L();U;(x,t) (2.14) 

For conditionally averaged flow velocity in the i-th phase: 

V;(x,t) = ( v(x,t) ); (2.15) 

and we have 

m 

V(x,t) = L()jV;(x,t) (2.16) 

We introduce the continuum i-th phase flow velocity which is analogous to Darcy's velocity, that 

is the mean velocity of liquid in pores distributed (spread) in all space. 

V;\x,t) = ();V;(x,t) (2.17) 

And from equation (2.16) we have 



It is easy to see that 

Then 

m 

V(x,t) = IV/(x,t) 

(i; (x)divv(x,t)) = divV;· (x,t) + Q; (x,t) 

Q; (x,t) = -(v(x,t)Vz; (x)) 

(z;(x) Vu(x,t)) = V[O;U;(x,t)] + P;(x,t) 

P;(x,t) = -(u(x,t) Vz;(x)) 

12 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

According to the definition (2.8) the vector Vz; (x) is non-zero only on the boundary ani that 

separates the i-th phase from the different phases. To study the behavior of the vector VZ i (x) on 

the almost everywhere smooth surface ani we introduce at an arbitrary point A; E an; a local 

orthogonal coordinate system where the axis ~ A is orthogonal to ani at point A; and directed 

inside ni, and the axes 17 A and (; A are" tangential to ani . 

where H [ ] is Heaviside' s step-function. In vicinity of origin we have expansion 

tangential, the above derivatives are zero and near point A; the indicator-function 

-+ 

Zi(~A,17A'(;A)=H(~A) .Therefore Vz;lA, =o(~A)e'A where O(~A) is the Dirac's o-function, 

-+ 
and e'A is a unit-vector on the axis~A . 

The scalar correlation Qi (x, t) and vector correlation P; (x, t) have a clear physical 
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significance. Let OJ be an arbitrary subdomain of the domain 0. For each realization inside the 
" 

subdomain OJ the surface SrJJ separates i-th phase from other phases that are distributed in OJ 

and ,generally speaking, st is multiply connected. We consider the expression 

Q," ~ I"f' }Q, (x,t)d", ~ -I",r' }(v(x,t)vz, (x))d'" ~ -1"'1-' (}v(x,t)vz, (X)d"') and after 

taking into account that V Z; (x) is zero everywhere excepting the points of surface st , we can 

write Q;' ~ -I",r' (j v. (x, t) I .. dS," ). Here v. (x, t) I .. is the continuos projection of the vector 

v (x, t) I Sf on the normal n; (x) to surface st ,that is directed inside 0;. 

Thus, the covariance Q; (x,t) is the specific mean cross-flow of fluid from the i-th continuum 

phase to the rest. Because the vector V z; (x) in point XES;") is perpendicular to st and directed 

inside 0;, the positive cross-flow Q; (x, t) denotes that mean flow from 0; is more than the 

flow into 0;. 

Similarly we consider the expression P7 = laf! Ip; (x,t)d'OJ = -IOJr! I(u (x,t) Vz; (x))dOJ 
w w 

~ I",r' (} u ( x, t) V z, (x) d"') and again taking into account the characteristics of the vector 

Vz, (x) , we can write P7 ~-I"'r' (j u(x,t)l .. n, (x)&,· ) . 

Thus the vector P; (x,t) is the mean specific cross-force from the i-th phase acting on the 

surface that separates the other phases from the i-th phase. 

And obviously, because LZ; (x) = 1 we have from (2.20) and (2.22) the conditions of 

compatibility: 

m m 

IQ;(x,t) = 0, LP;(x,t) = 0 (2.23) 
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Now, multiply the equations (2.1) and (2.2) by Zj(x) and taking into account the relations (2.13), 

(2.15), (2.17), (2.19), (2.20), (2.21) and (2.22), after averaging we have for the i-th phase 

d 
• aUj(x,t) 

ivV; (x,t) + ajBj + Q(x,t) = BJ(x,t) a t 
(2.24) 

(2.25) 

Although the conservative system of equations (2.24) and (2.25) is non- closed (because the 

cross-flows Q/x,t) and cross-forces Pj(x,t) have not been evaluated in terms of Uj(x,t) and 

V;(x,t) ), this system can be treated as the exact flow equations in the i-th continuum-phase. 

For this case in the mass balance condition (2.24) the term Q(x,t) determines the rate of mass 

transfer between the i-th continuum-phase and the other continuum-phases. Equation (2.25) is 

the modified Darcy's law in the form of momentum balance and the vectorPj(x,t) is the specific 

cross-force from the i-th continuum-phase to the other continuum phases. 

Such interpretation of the system of equations (2.24) and (2.25) for all composite phases together 

with (2.23) - the conditions of compatibility for cross-flows and cross-forces-provides a 

possibility of a statement about the multi-continua deScription for transport of flow in the 

composite media. In this description the conditions of mass and momentum balances in each 

continuum-phase are realized, and moreover, the continua exchange the fluid and momentum 

between them. 

The system of equations (2.23), (2.24) and (2.25) looks like the phenomenological equations 

presented earlier by Rubinstein [1948] (who studied the heat transport in heterogeneous media) 

and Barenblatt at al. [1960]. But there exist significant differences. For example, the exact 

equation of balance of momentum (2.25) contains the vector-functions qtj that represent the 
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force interaction between the i-th phase and the other phases that were ignored by these authors. 

Moreover, contrary to the phenomenological models, the coefficients of the averaged equations 

are defined exactly through the parameters of the composite media. 

For a physical interpretation of the mono and multi-continua models it is possible to use the 

averaged equations as the balance conditions for any volume when the volumes are sufficiently 

small. In examination of one representative realization the averaging is derived on surfaces or 

volumes. For statistical regularity of the results a different kind of averaging is necessary that 

applies some conditions. 

One of these conditions with respect to scales of hierarchy is presented in the inequality (2.5). 

This condition is sufficient for the mono-continuum description, but for multi-continuum 

description some conditions that guarantee the stability of conditional averaging should be 

added. For example, let the composite system be the matrix with randomly or regularly 

distributed inclusions (so- called granular media) (Fig. 1 ). It is obvious that a control volume OJ I',. 

must contain a sufficient number of inclusions, and that the surface of control volume 8OJI',. must 

dissect some part of inclusions and the fraction of the dissecting surface must be similar to 

volume fraction of the inclusions. Only under these conditions for volume or surface the 

averaging is stable and identical to the ensemble averaging. Similar condition must be met for 

the control volume and surface in a layered system (Fig.2). 

2.3.Alternative multi-continua model 

Along with the multi-continua model that represent non-closed system of equations (2.23), 

(2.24) and (2.25), it is possible to construct an alternative and equivalent multi-continua model. 

In this case we introduce a scalar function 
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q; (x,f) = (Z; (x)divV(X,f)) (2.26) 

and vector-function G; (x,f) 

G; (X,f) = (z; (x) VU(X,f)) (2.27) 

From equations (2.19) and (2.21) we fmd that 

q; (x,f) = divV/ (x,f)+Q (x,f) (2.28) 

(2.29) 

Obviously, the cross-flow Q; (x,f) and flow q; (x,f) have different physical meanings. Whereas 

the qj (x,f) define the total flow from the i-th phase to the rest, the Q (x,f) describes the flow 

transfer between i-th phase and different phases. 

Using the functions q; (X,f) and G; (X,f) we can rewrite the system of equations (2.23), 

(2.24) and (2.25) in the different form 

a. (). _8 _U....:....; (,--x,_f) () () I( ) + q,. x,f = ,. x,f 
" 8 f 

(2.30) 

(2.31) 

m m 

Lq;(X,f) = LdivV;· (x,f) (2.32) 

m 

LG;(X,f) = VU(X,f) (2.33) 

The equation (2.30) is the flow balance and the equation (2.31) is the momentum balance for the 

i-th phase. The equations (2.32) and (2.33) are the conditions of the compatibility for flows 
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q;(x,t) and forces G; (x,t). We conclude that the multi-continua description (2.23), (2.24) and 

(2.25) are preferable because it is more convenient for understanding the process and will be 

used in the subsequent analyses. In some cases we use the above relations in addition to 

computing the flow q;(x,t) and G; (x,t). 

2.4. Closure problem 

In order to close the conditionally averaged system and to determine the fields 

U;(x,t) , V; (x,t) , the cross-flows Q;(x,t) and the cross-forces P;(x,t) , it is natural to employ 

the results of unconditional averaging of the system of equations (2.1),(2.2) and (2.3) (i.e. , the 

global averaged system of equations (2.6) and (2.7) and compare the number of dependent 

variables and equations for them. 

It should be noted that after changing variables U (x, t) and V ( x, t) in the global averaged closed 

system (2.6) and (2.7) according to equations (2.14) and (2.16) the new system is non- closed 

withrespecttothevariablesU;(x,t) and V; (x,t) . 

In addition we should note that although the global averaged system of equations (2.6) and (2.7) 

and conditional averaged system (2.23),(2.24) and (2.25) are joint the mono-continuum and 

multi-continua models of the same composite media and non-steady flow , both systems are 

independent in the sense that the equations of global averaged system in the form (2.6) and (2.7) 

are not derivable from the system (2.23),(2.24) and (2.25) . 

Let us consider the three-dimensional flow process in a composite medium with m-phases. 

In this case to describe flow in one phase of multiphase media we use two scalar functions 

U;(x,t) and Q(x,t) and two vector functions V;(x,t) and P;(x,t). That results in a total of 8 
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(1 + 1 +3+3=8) dependent variables for each phase, and 8m unknown functions for the m-phase 

composite. On the other hand, for the description of the process in each phase we can use one 

scalar equation of conservation of mass and one vector equation of conservation of momentum, 

that is 1 +3=4 equations and for m-phase system -4 x m equations. Furthermore, for the m-phase 

case we have one scalar equation of the compatibility of the cross-flows and one vector equation 

of the compatibility of cross-forces, that is altogether 4m+4 equations. 

The globally averaged system contains one scalar function U(x,t) and one vector function 

V(x,t) , i.e. 4 unknown functions and two equations: one scalar equation (2.6) for conservation 

of mass and for the composite system as a whole we require the averaged vector equation (2.7) -

the condition of conservation of momentum. This globally averaged system is closed and can be 

solved separately with respect to mean head U(x,t) and mean velocity V(x,t). 

So far we have 4m + 4 + 4 = 4m+8 equations. We can add some more equations: the scalar 

condition (2.14) -the relation between U(x,t) and U; (x,t) and the vector condition (2.16) - the 

relation between V(x,t) and V; (x, t). 

Thus, for unsteady flow we finally have 8m + 4 unknown functions for 4m+ 12 independent 

equations. It is obvious that for binary composite media, that is for m=2, we have 20 independent 

equations with 20 unknown functions. The system is closed and, after solving it, we can express 

all the unknown functions in terms of U(x,t). 

By summing the equations (2.24) over all i, we obtain the mass balance equation for the entire 

composite system of the multi-continua model: 

" a U.(x,t) f div V(x,t) + L.,.a;B; I = (x,t) ; a t 
(2.34) 
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which contains the conditionally and unconditionally averaged fieldsU;(x,t) and V(x,t). 

Similarly, we can obtain the equation of momentum balance for the whole composite system in 

terms of U(x,t) and V;*(x,t) as 

La;l V;·(x,t) + V U(x,t) = 0 (2.35) 

Then after comparing the equations (2.6) and (2.34), we can write one equation for U;(x,t): 

~ a.e. au; (x,t) = a· aU(x,t) + II~A(DU(x,t)) (2.36) 
~ I I a tat rat 

And after differentiating the equation (2.14) we have 

fe. au; (x,t) aU(x,t) 
; I at at 

(2.37) 

For two phases' i and j and a; *a j the system of equations (2.36) and (2.37) have unique 

solutions of aU;(x,t)lat and aUj (x,t) lot . Integrating them with respect to time and using the 

initial conditions U;(x,to)=uo(x) and It[ DU(x,to)]=O, we obtain 

(2.38) 

Combining the globally averaged equation (2.7) with equation (2.23) and the second equation 

from (2.23) and taking into account the solution (2.38), we fmd the vectors: P; (x,t) and Pj (x,t) 
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We can derive the relations (2.38),(2.39) and (2.40) somewhat differently after 

computing,u1[DU(x,t)] = (a' (x)u' (x,t)) ,whereu'(x,t) = u(x,t)- U(x,t ) and 

a'(x) = a(x) - (a(x)). For a two-phase composite, we have a(x) = a;z;(x) + ajz/x) and 

after computing (a' (x )u' (x,t)), we find 

appropriate to note that· for each component of tensor ulm (x) of two-phase composite 

medium the correlation moment between u ml (x) and fluctuation of head u'(x,t) can be 

to (a' (x) u' (x, t)) .This results from the fact that for two-phase composite the coefficient 

of correlation between any componentulm (x) and a (x) is + 1 if 

Kim = (ufm - u~~ )( a j - a j ) is positive, and -1 if Kim is negative. Similarly we find 

(u'(x) Vu'(x,t») = (uj - u j ){B;Bj [VU;(x,t) - VU/x,t) ] + P; (x,t)} . Using the 

relationship (0-' (x) Vu' (x,t)) = (uo - (u) ) Y'U(x,t) - ,ur(DU) which derived from (2.7), 

we can directly obtain the relations (2.39) and (2.40) . 

The mean phase velocities are 

(2.41) 

where the mean phase forces are 

0; (x,t) = (uj -u; f [( u j -uo )Y'U(x,t) + pr(DU(x,t) ] + 2p( a j -aj f V1(DU(x,t)) 
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( 2.42) 

Gj (x,t) = (aj -aj r [( a j -a·)VU(x,t) + ,ur(DU(x,t)] + 2,u(aj -aj r VA(DU(x,t) 

Substituting (2.38) in (2.24), it is possible to determine the cross-flows Q(x,t) as 

Q (x,t) = OJ {f(X,t) - divV;(x,t) -a
j 
[OU(x>() + (fJ ) OA.(DU (x>(»)]} (2.43) 

at O. a -a. a t 
. I I J 

So, let the mono-continua description of flow in a random composite system is realized, e.g. 

are known the tensor of effective conductivity for all system a·, the expressions: the scalar 

,uA[ DU(x,t)] and vector ,ur[ DU(x,t)]. 

We have shown here that in this case for two-phase i and j composite random medium we can 

Find these fields: the phase mean heads Uj (x,t) and Uj (x,t) ,the phase mean Darcy's velocity 

V;. (x,t) and V; (x,t) ,the cross-flows Q (x,t) and Qj (x,t) ,cross-forces P j (x,t) 

and Pj (x,t) ,phaseflows qj (x,t) and qj (x,t) ,phase forces Gj (x,t) and Gj (x,t) . 

2.5. Steady-state flow 

Let the source density f(x,t) and boundary function qJ(x,t) for large t» to 

weakly depends on t. In this case the flow tend to steady-state and we can use for steady-state 

stage the above results. All one has to do is to set all derivatives with respect to time t to zero in 

equations (2.6) and (2.24) and in the expansions A[ DU(x,t)] and r[DU(x,t)]. 

It is significant to note, that because the correlations (a' ( x) u'.( x, t)) and (aim (x) u' ( x, t)) 

are proportional, these correlations for t ~ 00 have finite limits. Generally speaking, these 

correlatons are different from zero at these points x, where the conductivity components aim (x) 
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are correlated with field u(x) = limu(x,t) . It is obvious that at these points x the mean heads 
t-+«J 

Ui (x) ;f: U j (x) . 

2.6. Meso-equilibrium approximation 

It is a common knowledge that for basic processes in a natural heterogeneous system flow 

velocities are typically small. When a some perturbation is applied into the flow, the relatively 

short transition stage in the system creates a slowly changing process in time. Naturally, this 

stage of the process has been the main interest for application. 

Bearing in mind that by applying sufficiently small It on the meso-scale the system tends fast to 

a local equilibrium of mean phase heads. This state can be called as meso-equilibrium state. 

However, for a finite J1 this is not to say that the mean phase heads are locally equal or are 

constant in space and time. As we shoved above, even when the flow is in steady-state, for finite 

J1 in some cases the mean phase heads can be different. And only for J1 ~ 0 the mean head 

difference tends to zero. 

In this limiting case in all presented equations all terms containing small parameter Ji and its 

positive powers can be neglected. Under these conditions, when a very strong heterogeneity 

exists, the terms to be neglected can contain large parameters and possibly impose some 

restriction on the small parameter J1, such that accuracy of the averaged equations is sufficient at 

least outside the temporal border layer [e.g.,Bakhvalov and Panasenko, 1989]. 

Let us consider the process of flow in a heterogeneous medium in which the scale of 

heterogeneity J1 is so small that in the averaged equations (2.6) and (2.7) it is possible to retain 

only the dominant terms, i.e. J1 ~ o. Then, from (2.38) it follows that 

U;(x,t) = Uix,t) = U(x,t) (2.44) 
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and from (2.39) and (2.40) the cross-force vectors P;(x,t) and P/x,t) take the forms 

P;(x,t) = (O"j -0"; r ((O")-O"")VU(x,t) , P/x,t) = (0"; -O"j r ((O")-O"")VU(x,t) (2.45) 

It follows from (2.45) that in a medium with heterogeneous conductivity, the cross-force 

P; (x,t) is zero only in a layered system, provided that VU(x,t) is directed along the layers. 

For the mean phase velocities V; (x,t) we have 

V; (x,t) = -O";"VU(x,t) (2.46) 

where the tensor 0";" is 

0";" = 8;-10"; (O"j -O";[I(O"j -0"") (2.47) 

which can be called the phase conductivity. It satisfies the relations 

L8;0";-10";" = I L8;0";" = 0"" (2.48) 

For the cross-flows in the meso-equilibrium approximation"we have from (2.43) 

Q,(X,t) = OJ {/(X,t) + div[,,;VU(x,t)]-a, iJU~;,t)} (2.49) 

or after replacing the au (x, t) / at from global averaged system (2.6) and (2.7) by setting Jl = 0 

and substituting into (2.49) we have the cross-flow in another form 

Q(x,t) = (;) {((a) - a;) f(x,t) + div [((a)O";" - a;O"" )VU(x,t)] (2.50) 

If for large time the flow is steady-state, the dependence of the cross-flows Q (x) in (2.50) on 

the parameters a; is only by appearance because in this case div (0"" VU(x)) + f(x) = 0 then 

we have from (2.50): 
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(2.51 ) 

For meso-equilibrium stage, the general equation of phase flow qj(x,t) is 

(2.52) 

If the composite system is micro and macro isotropic, and the tensors u j and UO are isotropic, 

then for f ( x, t) = 0 we have 

(2.53) 

(2.54) 

. or, in another form, 

(2.55) 

aU(x,t) 
q. (x,t) = -8 a --'--'--'-

I I I at (2.56) 

It is obvious that in a fully isotropic medium the phase cross-flows Q(x) = 0 and phase flows 

qj (x) = 0 when the flow is steady-state. 

We can rewrite equation (2.55) as 

(2.57) 

where KO =uo I(a) is effective diffusivity for all system, and K;" = u;" / aj is the effective phase 

diffusivity, which is obviously different from K j = O"j I a j , the phase local diffusivity. 
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As can be seen from equation (2.57) the sign of cross-flowQ(x,t) is defined by the relation 

between parameters ,< , KO that are dependent on the quantities a j / a
j 

and a j / a
j 

as 

well as on the geometry of heterogeneity. 

Let the conductivity of the composite system be homogeneous, that is a j = a
j 
= a. For any 

I(x,t) we have from (2.55) 

(2.58) 

If a j < a j the cross-flow Q(x,t) has the same sign as aU(x,t)/ at, that is when the mean 

pressure increases in time, the i-th phase deliver flow to the j-th phase. Conversely, when the 

mean pressure falls, the i-th phase obtain flow from the j-th phase. If a j > a j the signs are 

opposite and , when the mean pressure increases, the i-th phase obtains flow, and when mean 

pressure falls, the i-th phase delivers flow to the j-th phase. In the case where a j --+ a, a j --+ a, 

but aj;j:. a j , we have 

Q.=O.a at -ao aU(x,t) 
I I UO at (2.59) 

It is easy to show that ut < UO when u j < ujand for a j > a j the inequality is a j' > u·. So, 

when a j < a j the signs of the cross-flow Qj(x,t) and the derivative aU(x,t)/ at are opposite 

and for a j > u j the signs are identical. It is interesting to examine the case a j « u j and 

OJ >>OJ that in some sense can be related to the i-th porosity system with the j-th fracture 

system. Neglecting some terms in general system of equations we obtain 
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(2.60) 

V;(x,t) ~ 0 (2.61) 

The system of equation (2.60) and (2.61) bears similarities to the phenomenological equations of 

flow in fissured porous media derived by Barenblatt at at. [1960]. The difference lies in the fact 

that the system of (2.60) and (2.61) is closed, and all it parameters are completely defined. 

Eliminating the phase cross-flow Q; (x, t) leads to the global averaged equation of pressure 

V(x,t) 

B aV(x,t) *n2V I a; ; = CF v (x,t) + (x,t) 
at 

(2.62) 

After determining V ( x, t) from (2.62) under appropriate initial and boundary conditions we can 

determine the i-th phase cross-flow 

[ 
av(x,t)] 

Q;(x,t) = B; I(x,t)-a; at (2.63) 

and from (2.61)-the j-th phase flow velocity Vj(x,t) , the phase flows q;(x,t)=Q(x,t) ,qj ~ o. 

We now examine the steady-state flow when I(x) = 0 in an binary composite system that is 

anisotropic for mean phase flow. There can be three variants in this case. 

1. Either one or both of the tensors CF; and CF j are anisotropic, and the tensor CF * is anisotropic. 

2. Either one or both of the tensors CF; and CFj are anisotropic, but the tensor CF* is isotropic. 

3. Tensors CF; and CFj are isotropic but the tensor CF* is anisotropic. 
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In all of three cases the tensors CTi• and CT; are anisotropic and the globally averaged equation is 

div (CT· \7U(x)) = 0, where the tensor CT· as noted in case 2 can be isotropic. Analysis of the 

expression for Q (x) in (2.51) shows that for steady-state flow with f(x) = 0, 

(2.64) 

Because in the case of phase flow anisotropy the tensors CTi• and CT· are non-similar (i.e., the 

components of these tensors are non-proportional) and if \7 U(x) * cons! , the phase cross

flow Q(x) is non-zero. 

This result is paradoxical at first sight, but besides the demonstrated calculation, the detailed 

qualitative analysis explains this effect. 

Let the composite medium be a granular medium, that matrix conductivity be CT
j

, and the 

conductivity of the inclusions be CTi (Fig. 1 ). It is obvious that for steady-state flow, the cross

flow from each i-th phase inclusions in the j-th phase matrix is zero. On the other hand, here we 

argue that the mean cross-flow from the i-th continuum into the j-th continuum is finite and 

differ from zero under these conditions. 

This contradiction stems from the expanded incorrect transfer of the mechanism of cross-flow 

from individual inclusion to the aggregate of many inclusions that are contained in the 

representative control volume. As indicated above, for those inclusions the basic part is 

completely confined in the control volume and the cross-flow from these inclusions into the 

matrix is zero when flow is steady-state. But there exists the cross-flow inside the control volume 

at the surface of those inclusions that are dissected by the control volume surface. If the 
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composite medium is anisotropic for mean phase flow and V U(x) :t:const , the cross-flows on 

the cut are not compensated for meso-scale control volume. 

We now study a more clear example of layered system that contains homogeneous layers with 

conductivity (J"j and (J"j (Fig.2). Such a system is micro or macro anisotropic. Each layer 

intersects the border of control volume at least twice and since it is assumed that the gradient of 

the mean pressure is not constant, the flow from layer outside the border of the control volume is 

statistically non-compensated. This means that the cross-flow from i-th layers to j-th layers is 

statistically non-compensated. 

The discussions above show that the multi-continuum description has non-trivial exceptions. For 

example, the mean cross-flow in granular composite system with isolated inclusions under some 

conditions is non-zero, whereas for each inclusions the cross-flow is zero, is a peculiar kind of 

"payment" for continual description of flow in inclusions that do not compose a connected space. 

3. EXAMPLES 

Let us now study some cases where the meso-equilibrium globally averaged systems can be 

easily constructed, thus the computation of simple closing relations for the phase cross-flows 

Q(x,t) and the phase cross-forces Pj(x,t) are possible. 

3.1Casel 

Let a two-dimensional infInite random heterogeneous system be composed of two subdomains 

with isotropic conductivities Cij and (J"j that are statistically equivalently distributed in the plane 

( for example, like an unbounded chess board with randomly distributed ''white'' and "black" 

squares). In this case the mean concentration of the phases are equal and OJ = OJ = 112. 
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It is well known (e.g., Shvidler, 1985) the effective conductivity for such a systems is isotropic . 

and a* = ~a; a j ,then from (2.46) and (2.47) : 

(3.1) 

() 
2a;ji"; 2afo: 

V; x,f = - C r;:::- VU(x, f) , ~ (X,f) = - c 1 C- VU(x,f) 
"a; + "aj "a; + "~j 

(3.2) 

(3.3) 

Further, by setting I(x,f) = 0, 

Qix,f) = -Q(x,f) (3.4) 

(3.5) 

It is easy to see that when aJ a j = a;2 / aJ the mean cross-flow Q(X,f) = 0 at any time f 

when flow is transient. The mean cross-force Pi (x,f) = 0 only if a; = ar Because the system is 

micro and macro- isotropic, the phase mean cross-flow Q;(x) =0 for steady-state flow. 

" 3.2.Case2 

The second case· is different from the previous one only in the sense that conductivity of 

subdomains are anisotropic 

(3.6) 
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This system is globally isotropic and 0'. =.J;;b (Shvidler 1985). After simple manipulation we 
obtain 

(3.7) 

2.[;b (Fa 0 J 2.[;b (Fb 0 J v; (x,t) = - Fa +..Jb 0 ..Jb VU(x,t) , Tj (x,t) = - .ra +..Jb 0 .ra VU(x,t) (3.8) 

..Jb -Fa (1 0) P;(x,t) = (I r.) VU(x,t) 
2 va+vb 0 -1 

(3.9) 

Q ( ) = ~ {f( ) 2.[;b n[(.Ja 0 Jnu( )] _ au(x,t)} i x,t x,t + ,-- r. v r. v x,t a; 
2 va+vb 0 vb at 

(3.10) 

q; (x,t) = ~[f(X,t) - a; _aU---,(=---x,-=--t)] 
2 at 

(3.11) 

It is obvious that when f(x) = 0 and under steady-state flow the globally averaged equation is 

V 2U(x) = 0 and the phase cross-flow Q(x) = 0 only if a = b or VU(x)= const. The phase 

cross-force P; (x) = 0 only when a = b. 

3.3.Case 3 

The next example involves three-dimensional, two-phase layered medium composed of 

homogeneous anisotropic layers. Let the layers be directed perpendicular to the X3 -axis, and the 

phases conductivity be such that 
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(3.12) 

Then 

(3.13) 

Where 

and the global averaged flow equation is 

( _1)-1 a
2
U(X,f) f() + C 2 2 + x,t a X3 

(3.15) 

Then, from (2.46) and (2.45), we compute the components of the i-th phase flow velocity and 

cross-force as 

V;I (x,f) 
au(x,f) 

=-a· --'---'--
I aX

I 

aU(X,f) 
, V;2 (x,f) =-bj , 

aX2 

TT.( ) __ ( _1)-laU(X,f) 
"i3 x,f - C 

aX3 

(3.16) 

-I (c) -(c-I t aU(x,f) 
Pjt (x,f) = 0 , Pi2 (x,f) = 0 , Pj3 (x,f) = OJ (3.17) 

cj -cj a X3 

Notice that the longitudinal components of the phase cross-force are zero. This is partly because 

in our example the longitudinal main axes of the tensors u j and U j are aligned with the layers. 

For the mean phase cross-flow and phase flow we can write 

(3.18) 
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q.(x,t) = -a. O. _aU---,(c......:..x'-,-t) 
I I I at (3.19) 

If the averaged flow is one-dimensional and perpendicular to the layers, the cross-flow is 

. (() ) aU(x,t) Q(x,t) = OJ a -aj 

at 
(3.20) 

and is proportional to qj(x,t). 

Let the averaged three-dimensional flow be a steady-state. Then the averaged equation is 

(3.21) 

and for the cross-flow Q(x) we have 

(3.22) 

It is obvious that for f(x)=O, if the longitudinal components of tensors a j ,ajare not equal 

and when VU(x,t);;j; const, the phase cross-flow Q (x);;j; 0. 

3.4.Case 4 

We consider a model that imitates some porous space with system of fractures. Let an 

unbounded porous media - a matrix with isotropic conductivity am and diffusivity am be 

randomly and statistically uniformly dissected by three infmite and mutually orthogonal systems 

of plates with parameters OJ and a f that simulate the infinite fractures along each Cartesian 

axis. In this case the Cartesian axis are principal axis for the global effective conductivity tensor. 
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We assume that the matrix conductivity am is significantly smaller than the fracture 

conductivity a f and the concentration of each parallel system of the fractures ck (orthogonal to 

the k -Cartesian axis) is significantly less than unity. 

Under these assumptions the a; -mean component of the effective conductivity tensor 

that are associated with k-axis is defined mainly by the matrix and the fractures that are parallel 

to k-axis. The contribution in the k-component of effective conductivity from the fractures that 

are orthogonal to k-axis is significantly less if the am « OJ, and if the fracture concentration 

Thus effective conductivity tensor 0" is approximated by 

(3.23) 

where (0') = 0' m (1 - c) + 0' f C , and the tensor C is 

(3.24) 

Then the global averaged flow equation in a fractured medium with porous parallelepiped blocks 

has the form 

V[O" V U(x,t)] + I(x,t) 

After using for 0" the expression (3.23) we have 

= (a) aU(x,t) 
at 

(3.25) 

- (3.26) 
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The mean m-th and f-th phase cross-forces are 

0"1 0"1 
P m(x,t) = CVU(x,t) , P I(x,t) = CVU(x,t) 

~-~ ~-~ 
(3.27) 

Then for mean phase cross-flow 

Qm(x,t) = (1- c) I(x,t) + O"m(1- c) V{[I + ( XO"I . )C]VU(x,t)}-am(1- c) aU(x,t) 
1-c 0" -0" at I m 

(3.28) 

It is obvious that if the effective conductivity tensor is non-isotropic (for this it is sufficient that 

not all concentrations ck are equal), the source density I(x) is zero under steady-state flow, and 

if VU(x) :I; const, then the mean phase cross-flow Qm(x) :1;0. 

If the porous medium with fractures is macro-isotropic ( c1 = c2 = c3 = c /3 ), we have 

(3.30) 

(3.31) 

(3.32) 

(3.33) 
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Qm (x,t) = (l-C){f(X,t)+(J'm[l+ (;(f )]vu(x,t)-am au(x,t)} 
31-c a -a at f m 

(3.34) 

In this case Qm (x) = Qf (x) = 0 when f(x)=O and the flow is steady-state. 

We have now completed the analysis of the mesoscale equilibrium approximation for multi-

continuum models in stochastic media. It should be noted again that the more exact description 

that takes into account the deviation from the mesoscale equilibrium resulted in a better 

representation of global averaging. 

4~ PERIODIC COMPOSITE SYSTEMS 

4.1. Problem formulation. Mono-continuum description 

Let us now introduce a positive length-dimension parameter 8 and determine the ftmctions 

aG(x) = a(x/ 8) and aG(x) = a(x/8) , for which Y -periodic ftmctions a(y) and a(y) are 

, 8Y - periodic in the variable x. As 8 ~ 0 the edges of the period of these ftmctions tend to zero 

and, consequently, (J'G (x) and a G (x) are a model of the system with small-scale periodic 

heterogeneity . 

Following Bakhvalov and Panasenko [1989 ], we use the standard method of solving the 

equations (2.1), (2.2) and (2.3) in which a(x) and a(x) are periodic ftmctions. The solution is 

found in the form of two-scale expansion in the fast y= x / 8 and slow x variables asymptotic 

with respect to the parameter 8 

00 00 

uG (x,t)= L 8nUn(X,y,t) vG(x,t) = L8nVn(X,y,t) (4.1) 
n=O n=O 

where the functions un(x,y,t) and vn(x,y,t) are Y-periodic in the fast variable y. 
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Substituting (4.1) in the system (2.1), (2.2) and (2.3) that describes the flow in periodic media 

also, if a ( x) and U ( x) are periodic functions, and expanding the operators in the powers of 6 , 

we can obtain a set of equations for Un (x,y,t) , Vn (x,y,t) whose solutions satisfy the expansion 

(4.1). Averaging these equations over the representative volume of the region UJA(whose meso-

scale 11 satisfies the inequalities 6«11« In ) is equivalent to averaging over the domainY-cell 

period by means ofthe operator (f(x,y,t) =IYI-) ff(x,y,t)dy ,where Iyl is volume of domain y. 
y 

The averaged system for the mean functions U(x,t)=(u&(x,t)) , V(x,t) =(v&(x,t)) is 

divV +a* a U +6 al(x,t) (x,t) = f , l(x,t) = (a(y)(u) +6U
2 

+ ... )) (4.2) 
a t at 

The effective storage capacity a* = canst and conductivity tensor u* = canst can be written in 

the form: 

(4.4) 

where Wi (y) is the Y -periodic generalized solution of the problem 

~ f[Uij(y) ~WI] = - L aa uij(Y) , (WI (y) )=.0 
',J Yi Yj , y, 

(4.5) 

The expansion (4.1) for u&(x,y,t) can be written in the form: 

(4.6) 

where 
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Uo(x,t) = U(x,t) , U.(x,y,t) = IWS(y) 8U(x,t) 
s 8xs 

(4.7) 

(4.8) 

Here W(y) and Wrp (y) are the Y-periodic solutions of the following equations 

(4.9) 

(4.10) 

that satisfy the conditions 

(W(y)) = 0, (Wrp (y)) = 0 (4.11) 

Then for Vii (x,t) we have 

(4.12) 

The averaged system in equations (4.2) and (4.3) has the same form as the globally averaged 

stochastic system of equation (2.6) and (2.7). The difference is that, in the periodic case, an 

explicit procedure for calculating the tensor 0'* and the parameters of the averaged equations 

scalar I(x,!) and vector y(x,!) are shown. Furthermore it is especially significant that the 

explicit expansions (4.6) and (4.12) for fields Uli (x,!) and Vii (x,!) are shown here. 

As demonstrated by Sanchez-Palencia (1980), the U(x,!) and V(x,!) fields, the means over a 

small representative volume OJ t. in the space of the slow variable x containing sufficiently 

number of cell-periods, are macroscopic fields. The usual integral conservation conditions for 
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arbitrary macroscopic domains can be written in terms of U(x,t) and V(x,t). The identity of the 

volume and surface averaging of the velocity field is ensured by satisfying the condition 

divy vo(x,y,t) = 0, which follows from equations (2.1) , (2.2) , (4.7) and (4.12) 

Thus the closed system of equations (4.2) and (4.3) together with the equations from (4.4) to 

(4.12) describes the mono-continual model of flow in a periodical composite medium in terms of 

mean head U ( x, t) and mean flow velocity V (x, t). 

4.2.MuIti-continua description 

. In order to analyze the fields in the phases of a composite system, we introduce the indicator 

function Zi (y) of the fast variable y defined as 

Zi (y) = {I if y E 1; and 0 if y E Y \ 1; } (4.13) 

and the mean value of the function tp(x,y,t) of the i- phase, that is local in the space of slow 

variable x and time t 

(4,14) 

where 0i = const, which is the volume fraction of the i-th phase in the cell-period. 

Now for periodic case we discuss the conditional averaging of the initial system (2.1) , (2.2) and 

(2.3) over the representative volume (i)!:t. , taking into account the fact that the conditional 

averaging operation commutes with differentiation with respect to time and the slow variable x, 

we obtain the following system of equations for each i-th phase from m-phase composite 

medium: 

.• (} oUj(x,t) Q ( ) (} I( ) dlVV; (x,t) + a j j + j x,t = j x,t o t (4.15) 
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a;lV;* (X,f) + ()jVUj (X,f) + Pj (x,f) = 0 (4.16) 

Here 

Uj (x,f) = (U E (X,f)) V;* (X,f) = -aj()j (VUE (x,f)) 

Q (X,f) = _(VE (X,f)VZj (y)) , Pj (x,f) = -([ UE (X,f)-U(X,f)]VZj (y)) 

m 

Since LZj (x) = 1 ,we have 
j=l 

m m 

LQ (x,f) = 0, L'¥j (x,f) = 0 
j=l j=l 

(4.17) 

(4.18) 

(4.19) 

At this point we need to take into account that any representative volume OJ Il consists of two 

parts - OJ~ and OJ~. The first part OJ~ includes all whole internal cells and the second part 

OJ~ includes non-integer cells inside the representative volume OJIl and adjoining to the border 

OOJIl • In some of the non-integer cells, the border oOJIl intersects only one phase, in the rest of 

the cells the border intersects at least two phases. As indicated earlier, in the stochastic case, the 

cross-flow from dissected inclusions under some conditions (e.g. in steady-state flow) is 

significantl. 

It is easy to see that the conditionally averaged system (4.15), (4.16) and (4.19) is completely 

identical to the conditionally averaged system (2.23), (2.24) and (2.25), that corresponds to the 

stochastic composite media. This formal expression is nonrandom because the media with 

periodical structure are a special case of all the realization of the stochastic field formed by 

random shift of one periodical structure. In the stochastic problem the treatment of the equation 

in (2.1) as continuum conservation laws is based on the obvious fact of the multiple and fairly 

arbitrary dissection by the surface of the representative control volume of various subdomains in 

the heterogeneous random system. In contrast, in the periodic system, the identity of the 

conditional means over the macroscopic volume and surface requires the satisfaction of certain 



additional conditions. It can be shown that for phase flow the equality of the means over the 

volume and the surface of the cell-period is satisfied by the condition divy vo(x,y,t) = 0 in the 
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absence of sources of the field Zj (y) Vo (x, y, t), which is equivalent to the orthogonality of the 

velocity va (x, y, t) to the phase surface. This is also equivalent to (a) the condition O"j = 0, or 

(b) when 0" j -:t:- 0 , the system is layered and the flow occurs in the directions of the layers. 

These conditions considerably limit the class of media in question, which again emphasizes the 

point that, in the multi-continuum approach the requirement that surface and volume means over 

each cell be equal is physically unjustified. It should be replaced by the natural condition of 

equality of the surface and volume means in macroscopic domain containing not only many 

whole cells but also fractions of cells dissected by the surface of the control volume, which, 

therefore cannot be arbitrary. 

The scalar function Q; (x,t) and the vector function P j (x,t) have a clear physical significance. 

The Q; (x,t) is the specific mean cross-flow of fluid from the i-th continuum-phase to the 

different phases and Pi (x,t) is the mean specific force from the other phases acting on the 

surface bounding the i-th phase. 

The system (4.15), (4.16) and (4.19) is closed since after substitution of the expressions (4.6) and 

(4.12) into equations (4.17 and (4.18) the functions Qi (x,t) and Pi (x,t) have been evaluated 

in terms Ui ( X, t) . The system can be treated as the exact flow equations in the i -th continuum, 

Equation (4.15) is the mass balance for the continuum-phase and equation (4.16) is the modified 

Darcy's law - the impulse balance for the phase. 

Considering the system (4.15), (4.16) and (4.19) together with the system (4.2), (4.3) in the 

multiphase case results in a closed set of equations,. that link the conditional mean fields 
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U; (x,t) , V; (x,t) , Q (x,t) , P; (x,t) and G; (x,t) = 0; (Vu(x,t»); with the conditional phase 

flow q; ( x, t) by the relation 

q, (x,t) = Q; (x,t)+ div V;. (x,t) (4.20) 

In terms of the averaged fieldU(x,t)that can be found from global system (4.2) and 

(4.3).Combining the systems (4.2),(4.3) and (4.15),(4.16) and (4.19) we can write the two-phase 

composite meso-scale. approximation of the phase fields and the interaction parameters as 

( .) [ . (. ) au(x,t)] Q x,t = B; f(x,t) + dlV (Y; VU -a; at (4.22) 

(4.23) 

( ) aU(x,t) () a;. (. ( ») qi x,t = Bif(x,t)-a;B; or q; x,t = B;f(x,t)--( )OidlV (Y VU x,t 
at a 

(4.24) 

The identity of the globally and conditionally averaged equations for periodic and stochastic 

media leads to the complete formal coincidence of the characteristics presented in section 2 of 

this paper. The result concerning the finiteness of the cross-flow Q; (x,t) in systems with 

anisotropy for steady-state process remains valid. Note if (Y·/(a) = (Y;. I a;, that is K· = (Y·/(a) 

- the effective diffusivity for composite is equal to i-th phase effective diffusivity < = (Yt I a; , 

the cross-flow Q; (x,t) = 0 for any non-steady-state flow. 

5.APPLICATION EXAMPLES 

As already mentioned above, for closure purposes of the phenomenological theories , the 

hypothesis concerning the structure of the transfer terms between the phase continua are used. In 
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particular, Rubinstein [1948],Barenblatt, Zheltov and Kochina [1960], Khoroshun and Soltanov 

[1984] assumed a proportional relationship between the cross flow and the phase pressure 

difference (the phase temperature difference in similar heat transport problems ). In the case of 

periodic systems this hypothesis can be tested by direct calculation. 

Applying the conditional averaging operator ( )i to the expressions (4~6), (4.7) and (4.8) we 

obtain the following quadratic (in &) expression for the mean i-th phase pressure: 

(5.1) 

(5.2) 

As can be seen from the system of equations (4.5),(4.9) and (4.1 0), the signs and the modules of 

the vector components Pt and the tensor-components P? depend on the conductivity field 

a(x) only, but the scalar P; depends on both a(x) and a(x) fields. 

If the cell-period Y contains two phases i and j , we have 

(5.3) 

and the phase head difference ~ij (x,t) = U; (x,t) - U j (x,t) has the form 

() 
_,{" s aU(x,t) 2[ aU(x,t) ~ arp a

2
u(x,t)]} 

~ij x, t = OJ & L..J Pi + & P; + L..J p; a a 
s axs at '.P x, xp 

(5.4) 

and in general ~ij (x, t) is the first order in small parameter &. 

As shown by Bakhvalov and Panasenko [1989], if in the cell-period Y the tensor a(y) has 

certain symmetry properties, then the· functions W s (y) will possess corresponding symmetry. In 
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particular, if the plane Yh = 0 is a plane of symmetry of the tensor a(y) , then the function 

Wh (y) will be odd with respect to the variable Yh ,and consequently P: = o. 

We will consider the case in which the tensor a(y) is symmetric about all the coordinate planes, 

for example, there is a spherical inclusion at the center of the space cell. If a(y) is an isotropic 

tensor, then this periodic system will be micro-isotropic and macro-isotropic and the effective 

conductivity tensor is spherical (a~ =a;8rp ). Because of symmetry Pt =0 , !l? =!l;*8rp 

and the parameter IS obtained from (5.4) as 

-) ( aU(x,t) * 2 ( )J 17ij(x,t) = ()j Pi a t + Pi V U x,t (5.5) 

The general conclusion that the vector Pt = 0 and the tensor PtP is proportional to the unit-

tensor 8 rp is implied from the fact that the completely isotropic field a(x) determines a unique 

zero -vector and a unit-tensor. 

Comparing the expression (5.5) with the globally averaged system (4.2) and (4.3), and 

eliminating V 2U(x,t) from (5.5), we obtain with the same accuracy: 

(5.6) 

It is easy to show that the when f ( x, t) same approximation for microscopic and macroscopic 

isotropic systems in (4.22) and (4.24) leads to relations 

(5.7) 

Thus, 17ij(X,t) with the same accuracy is approximately proportional to Q(x,t) or qi(X,t) and 
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If the symmetry conditions are not satisfied for the tensor a{y), then, in order to estimate the 

order of the pressure difference with respect to the parameter &, it is necessary to solve a fairly 

complex problem for the cell-period. 

S.1.Case 1 

As an example we consider the problem of two-dimensional cell depicted in Fig.3 and let (a) 

o-(y)=o-li7 if YI <Y2 and(b) o-(Y)=o- if YI >Y2 where the arbitrary parameter li7»1. 

After solving the cell-problem asymptotically with respect to the large parameter tIl (see 

Bakhvalov and Panasenko, 1989 ) we detennine that the head difference can be written as 

(
aU(x,f) aU(x,f)J 

d 21 (x,f) = U2 (x,f) -U1 (X,f) = 0.0386470 & ---'-----'-
aXI oX2 

(5.10) 

Obviously, the quantity ~21(X,f) is positive if the vector VU(X,f) is directed from the domain 

of high conductivity D2 into the domain D1 ; otherwise it is negative. If the vector VU(x,f) is 

directed along the phase interface in the cell (YI = yJ, then the head difference will be zero. We 

note that for the global averaged steady and spatially homogeneous flow, the expression for 

U2 (x) - U1 (x) being linear in & is exact, and the cross-flow QI (x) = Q2 (x) = 0 . 

S.2.Case2 
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We will consider a problem that can be solved exactly as above. Let, the cell-period have the 

form depicted in Fig.4. Solving asymptotically the corresponding problem for the cell, we obtain 

the head difference: 

aU(X,f) 
~21 (x,f) = U2 (x,f) - UI (x,f) = 0.03382168 , 

aXI 

(5.11) 

which is positive for a vector VU(x,f) directed into the right-hand half plane; otherwise it is 

negative. 

It is obvious that creating the finite quantity with dimension like cross-flow from the head 

difference is possible after dividing the head difference by 8
2

• In our case this operation leads to 

an unlimited amount of cross-flow when 8 ~ 0 and therefore, the linear proportional 

dependence between cross flow and head difference does not exist. 

5.3. Case 3 

We will now consider the case of an inhomogeneous layered system for which all the 

computations can be performed in by quadratic approximation in small parameter 8. In the cell-

period let the parameters be as follows: the capacity 

a(y) = a l if Y3 > Yo and a(y) = a2 if Y3 < Yo and the tensor of conductivity 

o-(y) = 0-1 if Y3 > Yo and o-(y) = 0"2 if Y3 < Yo . 

For example, let Yo = 0, i.e., 81 = 82 = 1/ 2. Solution of the equation (4.5), (4.9), (4.1 0) and 

(4.11) leads to the determination of WS (y) , W(y) , W'P (y). Because of symmetry fJs = 0 

the expressions 1]12 (x,f) = (UI (x, f) - U2 (x,f)/ 8 2 
, QI (x,f) , ql (x, f) take the form 
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(5.12) 

(5.13) 

(5.14) 

We note that in these expressions the derivative with respect to time has been eliminated with the 

aid of the globally averaged equation 

(5.15) 

It is easy to see from (5.12) and (5.13) that in the general case of unsteady three-dimensional 

flow for arbitrary layered systems, the head difference U1 (x, t) - U2 (x, t) is not proportional to 

However, under certain conditions proportionality may be observed. In concluding the present 

study we make the following observations. 

1. If the transverse component of conductivity of the layers are equal (0"!3 = 0";3 = 0"33)' then 

for three-dimensional non-steady flow 

(5.16) 

2. If the layers are isotropic but inhomogeneous and the globally averaged flow has a transverse 

component, then the cross flow Q; (x,t) and the head difference are not proportional. 
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3. If the global flow is purely longitudinal (8 V (x,/)/ 8 X3 = 0), the cross flow and the head 

difference are related trough the expression 

(5.17) 

4. For purely one-dimensional unsteady transverse flow ( 8 U (x"/) / 8 XI = 8 U (x,t) / 8 X 2 = 0), 

the relationship between QI (x,/) and (VI -V2 ) is given by 

(5.18) 

In Fig.5, the first quadrant of the plane (ao,O"o) is divided by the straight line a o = 1, along 

which the cross-flow is zero and the hyperbola aoO"o = 1, along which the head difference is 

zero, into four regions, within which the sign of the proportionality factor is constant. Obviously, 

in region II and IV the sign of cross flow QI (x, t) and that of head difference are opposite, which 

implies that cross flow occurs from the phase with the reduced head into the phase in which the 

head is higher than mean. We note that in phenomenological constructions using the 

proportionality hypothesis it is routinely assumed that the signs are identical. It seems likely that 

an analogous situation exist for fully isotropic systems. Because the denominator as well as the 

numerator in (5.8) can be positive or negative, the coefficient in front of the head difference may 

be negative by some combination of the a and a fields. 

5. If in a layered system with isotropic layers the flow is in a steady-state limit, the cross-flow 

and the head difference are proportional and have the same sign 
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(5.19) 

6. In all the cases involving the same layered system, when any of the derivatives entering into 

the globally averaged equation (5.15) vanishes, the cross flow and the head difference will be 

proportional. However, in accordance with (5.17), (5.18) and (5.19) the proportionality factor 

will depend to a considerable extent on the process considered. In the case of a purely transverse 

flow the proportionality factor may change sign depending on the relation between the 

conductivity and the capacities of the layer. Thus, the proportionality factor depends not only on 

the geometric and physical parameters of the layered system, but also on the process realized, or 

more precisely, on the macroscopic boundary conditions. 

Comparing the following examples we can see how sensitive this dependence is to the process. 

Let us compare purely longitudinal flow in quasi-steady period with purely steady-state and 

quasi-longitudinal flow (expression (5.17) and (5.19)). Obviously, the proportionality factors 

differ by a factor of two. A similar comparison between purely transverse flow in the quasi-

steady period and steady-state, quasi-transverse flow leads to a comparison of expression (5.18) 

and (5.19). In this case it is possible to observe not only a quantitative but also a qualitative 

difference in the proportionality factors. We note that in accordance with (5.12),(5.13) and (5.14) 

the proportionality factor is a ratio of linear combinations of the derivatives entering into the 

global averaged equation. Obviously, in the neighborhood of zero values of all derivatives the 

behavior of this ratio will depend on the rate at which each derivative tends to zero and, in 

principle, may be arbitrary. In other words, the proportionality factor essentially depends on the 

process presented in the composite system. Similar conclusions follow from an ex~ation of 

layered systems composed of anisotropic layers. Consequently, we can state that fairly generally 
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such parameters of the multi-continuum description as the cross-flows Q; (X,f), the head 

difference Uj ( x, f) - UA x, f) ,and moreover, the flows qj ( x, f) are pair-wise independent in 

the sense that, except for certain special situations, none of these parameters is proportional to 

each others. 

7. Thus, having evaluated the hypothesis of the proportionality of the cross-flow to the mean 

head difference, we can, considering its region of applicability ( micro and macro isotropic 

composite medium) regard the hypothesis as generally unsatisfactory. 
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List of Figures 

Figure 1. The control volume in composite medium with inclusions. 

Figure 2. The control volume in the layered composite system. 

Figure 3. The two-dimensional cell of periodic medium that is non-symmetric to the principal 

axIS 

Figure 4. The two-dimensional cell of periodic medium that is symmetric with respect to the Y2-

axis. 

Figure 5. The four regions within which the sign of the proportionality factor in Eq. (5.18) is 

constant. On the line ao = 1 the cross-flow is zero and on the hyperbola aoO"o = 1 the 

head difference is zero. 
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