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We argue that the “vortex-finding”
of this gauge to locate center vortices
to its success in extr~ting the vortex

Abstract

property of maximal center gauge, i.e. the ability
inserted by hand on any given lattice, is the key
content of therrnalized lattice configurations. We

explain how this property comes about, and why it is expected not only in maximal center
gauge, but also in an infinite class of gauge conditions based on adjoint-representation
link variables. In principle, the vortex-finding property can be foiled by Gribov copies.
This fact is relevant to a gauge-fixing procedure devised by Kov5.cs and Tomboulis, where
we show that the loss of center dominance, found in their procedure, is explained by a
corresponding loss of the vortex-finding property. The dependence of center dominance on
the vortex-finding property is demonstrated numerically in a number of other gauges.
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Numerical evidence in favor of the center vortex theory of confinement has been steadily
accumulating over the past three years [1–11]. Underlying most of these numerical studies
is a technique for locating center vortices in thermalized lattice configurations, known as
center projection in maximal center gauge.

In its “direct” version [2,3], maximal center gauge is the gauge in which

~ =7. J-ymLp(4]12is a maximum
x P

(1)

This gauge brings each link variable as close as possible, on average, to a ZN center element,
while preserving a residual ZN gauge invariance. Center projection is a mapping of each
SIJ(lV) link variable to the closest ZN center element; e.g. in
projection is the mapping

UP(X) -+ 2P(z) - signTr[Up(z)]

SU(2) gauge theory, center

(2)

The excitations on the projected ZN lattice are point-like, line-like, or surface-like objects,
in D = 2,3, or 4 dimensions respectively, known as “P-vortices.” These are thin objects,
only one lattice spacing across. There is substantial numerical evidence, for SU(2) gauge
theory, that thin P-vortices lie roughly in the middle of thick center vortices on the un-
protected lattice, and that these thick vortices produce the entire asymptotic SU(2) string
tension [3]. The number of P-vortices mod 2 linking a large loop is closely correlated with
the sign of the corresponding SU(2) Wilson loop [3,6], and P-vortices themselves are regions
of high action on the unprotected lattice [4]. It is fo,und that removal of center vortices
not only removes the asymptotic string tension, but ch@l symmetry goes as well, and the
SU(2) lattice is then brought to trivial topology [6]. The vortex density has been found
to scale as predicted by asymptotic freedom [7], [3,4], and, at finite temperature, the non-
vanishing string tension of spatial Wilson loops in the reconfined phase can be understood
in terms of vortices winding through the periodic time direction [8,9]. Vortex percolation
properties at finite temperature have also been studied in ref. [10]. The world-lines of
abelian-projection monopoles are found to lie on P-vortex surfaces, and the field-strength
associated with these monopoles seems to be collimated in the vortex direction [12]. Fi-
nally, it appears that even the Casimir scaling of higher-representation string-tensions at
intermediate distance scales can be understood in terms of the finite thickness of center
vortices [5].

On these grounds, we are confident that the vortices identified by our gauge-fixing + ~
projection procedure are physical objects which are crucial to the confinement mechanism.
But a disquieting question remains, namely: Why does this procedure work? In what way
does the gauge choice (l), combined with the projection (2), identify center vortices? In
particular, since a vortex creation operator (unlike a monopole creation operator) makes
no reference whatever to any special gauge choice or Higgs field, why do we need to fix to a
definite gauge in order to locate vortices? These questions become quite urgent when it is
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recognized that apparently minor changes in the gauge-fixing condition? or even, as shown
recently by Kovacs and Tomboulis [13], a small change in the gauge-fixing procedwe, can
be catastrophic, and the resulting P-vortices no longer correspond to anything physical.
So what crucial property of the gauge-fixing/projection procedure has been lost, when the
method fails?

In this article we identify this crucial property of our procedure as the “vortex-finding”
(VF) property, by which we mean the following: Suppose, in any given thermalized lattice,
a center vortex is inserted “by hand” via a discontinuous gauge transformation. The lattice
now contains at least one center vortex in a known location. Upon gauge-iixing and center
projection, a set of P-vortices is identified. Is the vortex inserted by hand found among this
set of P-vortices? If so, then the procedure has the vortex-finding property. This property
seems like a reasonable demand to make of any method which is advertised to extract the
vortex content of lattice configurations, and is presumably a necessary condition for its
success.

2 The VF-Property in Adjoint Gauges

Let us examine why maximal center gauge and, as we will see, an infinite class of other
gauges, might have this vortex-finding property. We begin by noting that the maximal
center gauge defined by eq. (1) is really the adjoint Landau gauge; i.e. it is equivalent to a
Landau gauge-fixing condition on adjoint links

R = ~ ~ ‘T@AP(x)] is a maximum (3)
x w

where UAp(%) is the link variable in the adjoint representation. This motivates considering
other gauge-fixing conditions of the general form

73[UA] is a maximum (4)

such that the gauge condition

1. depends only on the adjoint representation links;

2. is a complete gauge-fixing of the adjoint link variables;

3. transforms most links to be close to center elements, at weak coupling.

We will refer to these as “adjoint” gauges.
Let U denote some thermalized lattice configuration. A center vortex is created, on

the background /7, by a discontinuous gauge transformation (some explicit examples will
be given below). Denote the resulting configuration as U’, whose field strength differs
from that of U only at the vortex core. Away from the vortex core, the corresponding
link variables of each configuration irrthe adjoint representation, denoted UA and U~, are

3



~?.l:.ge-eai~~ivalev.t!. ‘1%.is% because the glob?.] d&mntim@ d %b.evortex-creating gauge
transformation, given by a center element, is invisible in the adjoint representation.

The crux of the argument is this: It is assumed that the gauge-fixing condition (4) is
complete for adjoint links. If we for the moment ignore both (i) the Gribov copy problem;
and (ii) the region of the lattice corresponding to the core of the created vortex, then 17~
and U~ are gauge equivalent, and gauge-fixing to (4) should map both UA and U~ into
the same gauge-fixed configuration ~A. Under these mappings, the link variables U and
U’ in the fundamental representation are transformed to configurations ~ and ~ corre-
sponding to the sa~e adjoi~t configuration CA. Since they correspond to the same SO(3)
configuration, the U and U’ lattice SU(2) configurations can differ only by continuous
and/or discontinuous 22 transformations. Then, because a continuous gauge transforma-
tion, associated with the gauge-fixing, cannot undo the discontinuous transformation which
created the center vortex, the vortex originally inserted in U’ appears as a discontinuous
Z~ transformation relating @ to U.

What has happened here is that the original discontinuous gauge transformation, which
may be quite smooth (up to the discontinuity) and extended, has been squeezed by the
gauge-fixing condition to the identity everywhere except on a Dirac volume (bounded by
the vortex core), where it has the effect of simply multiplying a certain set of links by –1.
Upon center projection, ~ ~ Z and,7 ~ Z’, and the projected configurations differ by
the same discontinuous 22 gauge transformation. This discontinuity then shows up as an
additional P-vortex in Z’, not present in Z, at the location of the vortex inserted by hand.

This “vortex-finding property” goes a long way towards explaining the success of maxi-
mal center gauge in extracting the vortex centent of lattice configurations. If, in fact, lattice
vacuum configurations have the form of a product of vortex-creation operators which op-
erate on a non-confining background state, then a procedure with the VF-property may
be reasonably expected to locate these confining vortices. The above argument not only
explains why maximal center gauge should have the VF-property, but also suggests that
any complete gauge-fixing condition on adjoint links might have the VF-property as well.
However, there are two ways that the argument we have presented may go wrong:

Gribov Copies: The argument for vortex-finding is based on complete adjoint gauge-
fixing; i.e. any two gauge-equivalent SO(3) configurations should be mapped to a
unique adjoint link configuration. Unfortunately, standard methods of implementing
eq. (4) in practice, such as over-relaxation and simulated annealing, usually wind up
in local maxima of 7?JUA],known as Gribov copies, rather than the global maximum.
So the argument for the VF-property can fail at this point.

Vortex Cores: The configurations UA and Uj are only gauge-equivalent outside the
vortex cores. Because they are gauge-equivalent outside this (relatively) small region,
we have assumed that UA and Uj will transform to the same gauge-fixed SO(3)
configuration UA outside the core region. This assumption, however, could simply be
wrong.

A
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Because of these caveats, we have no proof of the vortex-finding property in the adjoint
gauges. This is just as well, since we wilI soon discuss cases where the property fails.
Nevertheless, we now have some idea of why the ’VF-property might hold in maximal
center gauge, and a motivation to test this property numerically, both in maximal center
and in other adjoint gauges, to see if it is correlated with center dominance. We should
also note that our argument for the VF-property has no loopholes when (i) the inserted
vortex is thin (one lattice spacing thick), so that UA and U~ are SO(3) gauge-equivalent
everywhere on the lattice; and (ii) there is no Gribov problem. In that case, according to
our argument, center projection is certain to find the inserted vortex, as will be confirmed
in subsection 3.8 below.

3 Testing the VF-Property

We begin by describing a class of discontinuous SU(2) gauge transformations gv on an
L3 x 2“ lattice, which create two paralIel thin vortex surfaces at time -t= T that are closed
by lattice periodicity. These transformations have the usual form

except that the gauge transformatiori has the discontinuity

9V(%Y>%T+ 1) =
{

–9v(~, !-), z, 1) ~1 s ~ s X2

9V(% u, z, 1) otherwise

Its not hard to see that each discontinuous transformation gv of this form
the mapping

with all other links unchanged, followed by an ordinary continuous gauge

(5)

(6)

is equivalent to

(7)

transformation

(8)

Suppose that the transformation by gv is performed on a thermalized lattice, and
that the configurations U and U’ are gauge-fixed to an adjoint gauge, and then center-
projected. The corresponding projected configurations are denoted Z and Z’, and we
denote the Polyakov lines in these projected configurations by P(z, ~, z) and P’(z, y, z)
respectively. If the gauge-fixing + projection procedure has the vortex-finding property,
then the Z’ lattice should contain P-vortex surfaces on the dual lattice at fixed -t= T and
fixed z = xl – 1, Xz. The two parallel surfaces bound a Dirac 3-volume, e.g. as indicated
in fig. 1 (apart from its boundary, the location of the Dirac volume is gauge-dependent).
Now, if all the other P-vortices were located in identical positions in Z and Z’ (i.e. if, apart
ftom the inserted vortex, Z and Z’ were equivalent up to a 22 gauge transformation), then
the vortex-finding property is verified if

{

–1 x e [X1,Z2]~’(x, g, z)P(X;Y, ?) = +1 otherwise

5
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Figure 1: Left: The effect of the transformation (7) on links at fixed y, z and t = T, 1.

Downward pointing time-like links have been multiplied by –1. Right: Parallel vortex
surfaces created at constant xl, $2, t = T’bound a Dirac volume, closed in the y, z directions
by lattice periodicity.

At this point, however, we have to faceup to the Gribov copy problem. Center vortices
on unprotected lattice configurations’ are comparatively thick (R 1 fm) objects, and the
precise “middle” of a vortex core, which P-vortices are supposed to locate, is a little
ambiguous. In fact, it is found that if we take two gauge copies UI and UIZof the same
configuration U, gauge-fix each to maximal center gauge and then center project, that the
P-vortices in the corresponding projected configurations ZI and 211, although correlated,
differ somewhat in position. Thus, a P-vortex plaquette in ZI which is just inside the
minimal surface of a given loop C, may lie just outside this minimal surface in configuration
ZII (for a more detailed discussion and related numerical results, see ref. [3]).

The randomizing effect of small differences in P-vortex locations in Z and Z’ (which cor-
respond to the same “thick” vortices in U and U’) will cause the vev {P’(z, y, z)P(z, y, z))
to differ from – 1 and +1, respectively, inside and outside the region x ~ [xl, X2]. However,
if the vortex-finding property is valid, then eq. (9) should hold true when this random-
izing effect is factored out. To this end, we generate a set of thermalized SU(2) lattice
configurations and, from each configuration, we obtain three configurations consisting of

I. The original configuration, denoted U1.

II.

III.

The original configuration with an inserted vortex, denoted UIZ. In most of our
simulations, a thin vortex is inserted by applying the mapping (7), followed by a
random (but continuous) gauge transformation gII at every site.

A gauge copy of UI, denoted UIII, obtained by applying a random continuous gauge
transformation gZII to UI at every site.

We then fix each of these configurations to an appropriate adjoint gauge, center project
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according eq. (2), and compute the ratio

G(x) =
XY,Z(F’’(Z,y, ,Z)P’’,(Z,y, z))

‘&(P& y, z)F’&, g, Z))
(lo)

where F’l, PII, PIII denote Polyakov lines in the, corresponding projected configurations,
and where the denominator has the effect of factoring out the randomizing (Gribov-copy)
effects just mentioned. Then the gauge-fixing + projection procedure has the vortex-finding
property only if

(11)

3.1 Thin Vortex Insertion, Maximal Center Gauge

For our first test of the VF-property, we have performed the Monte Carlo simulation on
a 143 x 12 lattice at f) = 2.3, and applied a discontinuous gauge transformation (eq. (7)
followed by a random continuous gauge transformation) to insert thin vortices as described
above. We then fix to mtimal center gauge via over-relaxation, as described in ref. [3],
center project according to eq. (2), and calculate G(z). The discontinuity in eq. (6) is
chosen to lie in the range x E [4, 10].

The result for G(x) is shown in fig. ‘2. The criterion for the vortex-finding property, eq.
(11), appears to be nicely confirmed in this case. Given the successes of our procedure,
summarized in the Introduction, in extracting the vortex content of vacuum configurations,
the existence of a vortex-finding property was perhaps to be expected. We find that in
this case, the existence of Gribov copies in our gauge-fixing procedure does not destroy the
VF-property.

Instead of inserting vortices via the transformation (7), followed by a random gauge
transformation (8), we have also considered
which are smooth in the t-direction up to the

9V(% !/>~>~)= {[exp in(t –

1

vortex insertion by gauge transformations
discontinuity at t = T +1, taking the form

1)03/7’] for x G [z~, x2]
(12)

otherwise

and performed simulations for the same parameters as before (~ = 2.3, 143 x 12 lattice,
[zl, Z2] = [4, 10]). As in the previous case, the results are consistent with the vortex-finding
property in eq. (11).

Apart from our tests here, based on the values of G(z), we would also like to mention
some relevant results reported recently by Montero in ref. [14]. Montero, building on the
work of ref. [15], constructs classical SU(3) center vortex solutions on a ‘periodic lattice.
The stability of the solution is due to the use of twisted boundary conditions, with two
dimensions of the periodic lattice chosen much smaller than the two other dimensions. The
lattice is fixed to maximal center gauge and then center-projected. It is found that P-vortex
plaquettes accurately locate the middle of the classical vortex. This is very interesting
independent evidence for the existence of the vortex-finding property of maximal center
gauge (in SU(3) gauge theory, in this case).
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Figure 2: Graph of G(z) for configurations with thin inserted vortices (143 x 12 lattice,
380 lattices, /3= 2.3). The gauge discontinuity (7) is located in the 3-volume at z E [4, 10],
t=T.

3.2 Thin Vortex Insertion, KovAcs-Tomboulis Procedure

The argument for the vortex-finding property of adjoint gauges, as presented in section
2, explicitly neglects the problem of Gribov copies, and in fact the possibility of gauge-
fixing to a unique configuration was an essential step in the argument. Conversely, it
follows that the existence of Gribov copies in the gauge fixing procedure might destroy
the vortex-finding property, and, as a consequence, the ability of the projection procedure
to locate center vortices in thermalized lattice configurations. This appears to be what
happens in a modification of our gauge-fixing procedure considered recently by KOV6CS
and Tomboulis [13] (and also noted in ref. [6].)

KOV5CSand Tomboulis suggest fixing first to the (usual) lattice Landau gauge, before
fixing to maximal center gauge via over-relaxation. Of course, if the over-relaxation proce-
dure transformed each configuration to a unique, global maximum of eq. (1) (i.e. if there
were no Gribov copies), then a preliminary fixing to lattice Landau gauge could not pos-
sibly make a difference to the result. However, the over-relaxation procedure only finds a
locazmaximum of (1). Thus the starting point can make a difference, at least in principle.1
KOV5CSand Tomboulis find that with a Landau gauge starting point, center dominance is
completely lost in the projected configurations, which appear to have no asymptotic string

IThereis not muchdifference,however,in R. Makinga setof gaugecopiesof a givenconfiguration,
andgauge%xingeachcopyto maximalcentergaugeeitherdirectly,or witha Landau-gaugestartingpoint,
wefind that the variation in R of eq. (1) amongdifferent copies far exceeds the average difference in R
between the two procedures; in fact, our own results for this average difference are not yet statistically
significant.
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tension. This fact does not really affect the status of P-vortices, identified by the usual
method, as locators of physical objects. That status is well established by the correla-
tion of P-vortices with gauge-invariant observable, and by their scaling properties. In the
modified procedure, however, it would appear that some important property, essential for
extracting the center vortex content of vacuum configurations, has been lost. From every-
thing that has been said until now, the obvious candidate for this “essential property” is
the vortex-finding property.

Landau Before MCG: T=12, beta=2.3

‘“’ ~

-0.5

t
-1

-1.5 , , J.
O 2 4 6 8 10 12 IZ

x

Figure 3: Graph of G(z) for configurations with a thin inserted vortex. Configurations are
first fixed to the Landau gauge, and only then to ma’ximal center gauge (143 x 12 lattice,
260 lattices, ,B= 2.3). The Dirac volume is the same as in fig. 2.

In fig. 3 we display our results for the observable G(z), in which each configuration
UI, VII, /7111is first fixed to Landau gauge, before fixing to maximal center gauge via over-
relaxation. The contrast between Figs. 2 and 3 is quite striking; the Kovhcs-Tomboulis
procedure is clearly inconsistent with eq. (11), and seems to have completely lost the vortex-
finding property. Only at the boundary of the Dirac volume, where there is a strong local
field strength, does G(z) show some effect (although G(z) >0 even there). But in the
middle of the Dirac volume, G(x) is comparable to its value outside the volume. It seems
likely that if the interval [ml,Xz] were large enough, the middle of the Dirac volume would
be indistinguishable from the outside region. Since this modified procedure cannot even
identify a thin center vortex inserted into the lattice by hand, there is no reason to expect
it to locate the fuzzy, much more diffuse center vortices generated by the gauge theory
dynamics.
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3.3 Thin Vortex Insertion, Asymmetric Adjoint Gauge

The argument for the vortex-finding property in section 2 did not single out the maximal
center gauge in particular; it is possible that other adjoint gauge choices might work just
as well. Let us therefore introduce the “Asymmetric Adjoint Gauge”

R = y, y# c, Tr[u&-)]2 is a maximum
z P

(13)

where CPis some set of four positive numbers. For an exploratory run at @ = 2.3, again on
a 143 x 12 lattice, we chose a set of values

{cl, C2, C3, Q} = {1.0, 1.5,0.75,1.0} (14)

and fixed to the gauge (1) by over-relaxation (without prior Landau gauge-fixing).

Asymmetric Adjoint Gauge: T=l 2, beta=2.3

1.5, t t

1

0.5

0 r

-0.5-

-1

-1.5 L t t ,

0 2 4 6 8 10 12 14

x

Figure 4: Graph of G(z) for configurations with a thin inserted vortex. Configurations
are fixed to the asymmetric adjoint gauge with CP= {1, 1.5,0.75, 1} (143 x 12 lattice, 380
lattices, /3= 2.3). The Dirac volume is the same as in fig. 2.

The result for G(x) in this new gauge is shown in fig. 4. Once again, the vortex-finding
property is satisfied within errorbars. The next question is: Do the corresponding center-
projected configurations display center dominance (i.e. do they have the same string tension
as the unprotected configuration)? In a run at ~ = 2.3 on a 144 lattice, in the asymmetric
adjoint gauge (13), (14), the projected Creutz ratios do, in fact, agree quite well with
the asymptotic string tension extracted from gauge-invariant Wilson loops, reported in
ref. [16]. The results are shown in fig. 5.
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Center Projected Creutz ratios, 14’ lattice, fk2.3
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Figure5: Center dominance forthegaugewithcP= {1, 1.5,0.75, 1}. (144 lattice, @= 2.3.)
Solid line shows the value of asymptotic string tension quoted in ref. [16].

3.4 The Modulus Landau and Adjoint Coulomb Gauges

It was certainly not obvious that the preliminary Landau gauge-fixing, suggested by KOV5CS
and Tomboulis, followed by maximal center gauge-fixing via over-relaxation, would destroy
the VF-property (and, as a consequence, center dominance) in the projected configurations.
It is also a little surprising that certain choices of adjoint gauge, which would naively seem
just as good as maximal center gauge, appear to have similar problems. An example is a
“modulus” version of the usual lattice Landau gauge

f? = ~ ~ Tr[UP(Z)] is a maximum (15)
x P

which is also an adjoint gauge, as defined by the conditions set out in section 2. We
believe, on the basis of the argument in section 2, that if R could be fixed to a unique
global maximum then this gauge would also have the VF-property, and the projected
configurations would exhibit center dominance. However, as with maximal center gauge,
the only known gauge-fixing techniques are simulated annealing and over-relaxation, and
these are both plagued with Gribov copies. So the only way of testing the vortex-finding
property, and center dominance, is numerically.

We have used over-relaxation at /3= 2.3 to fix to the modulus Landau gauge. In this
case, the falloff with area of the projected Wilson loops appears to be much faster than
that of the unprotected loops, as seen in fig. 6; center dominance is clearly lost.

The corresponding values for G(z) in modulus Landau gauge have very large errorbars,
and this is simply because both the numerator and denominator in eq. (10) have values

.
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Figure 6: Center-projected Wilson loops vs. Area in modulus Landau gauge, for square
R x R and rectangular R x (R+ 1) loops, at ~ = 2.3 on a 124 lattice. Unprotected Wilson
loop values are also shown for comparison.

Modulus Landau Gauge: T=l 2, beta=2.3
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Figure 7: Numerator N(z) (eq. (16)) of the ratio G(x), for modulus Landau gauge (143x 12
lattice, 380 lattices,.@ = 2.3). The Dirac volume is the same as in fig. 2.

which are, within errorbars, consistent with zero. Results for the product in the numerator

N(z) = +Jy’l(x,!/,~)Rz(% Y, ~)) (16)
y,z
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are shown in fig. 7, where L (= 14) is the lattice length in the g, z-directions. It is clear
that there is in this case a total loss of the vortex-finding property. In contrast to the
Kov4.cs-Tomboulis case, in which G(z) was positive ‘irrespective of linking to the inserted
vortex, in this case G(x) seems to be essentially 0/0, irrespective of linking number. But
just as in the Kov6cs-Tomboulis case, the failure of center dominance in the. projected
configurations is associated with a corresponding 10SSof the vortex-finding property.
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Figure 8: Graph of G(x) for configurations with thin inserted vortices (143 x 12 lattice,
110 lattices, O = 2.3) in modulus Landau gauge. In this case, the lattice is first fixed to
maximal center gauge, before fixing via over-relaxation to modulus Landau gauge.

Since the modulus Landau gauge should be a perfectly good adjoint gauge, the failure
of the vortex-finding property in this case must be attributed to the Gribov copy problem.
This impression is strengthened when one compares the rms value of aO,where

UP=aoI+iii”i7 (17)

in both the modulus Landau and maximal center gauges. We find that a~ms= 0.76 in
modulus Landau gauge, vs. a~mS= 0.86 in maximal center gauge, at @ = 2.3, and that is
a surprisingly large discrepancy, in view of the fact that both gauges are, in some sense,
trying to bring links close to center elements. This suggests trying out a variation of the
Kovacs-Tomboulis procedure: Perhaps modulus Landau gauge-fixing could be improved,
if we first fix to maximal center gauge, and then fix to modulus Landau gauge via over-
relaxation.

It turns &t that a preliminary gauge$xing to maximal center gauge restores both
center dominance and the vortex-finding property. For center dominance, we find that the
Creutz ratios, at ~ = 2.3, are clustered near x[R, R] R 0.14, quite close to the asymptotic
string tension obtained on unprotected lattices. The result for G(z) is shown in fig. 8; it is



simil.a,rto what we previously fcnmd for rnaxitial center gauge and the asymmetric Landau
gauge.

Once again, the presence or absence of the vortex-finding property is associated with
the presence or absence of center dominance in the projected configurations.

Adjoint Coulomb Gauge: T=l 2, beta=2.3
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Figure 9: Numerator Al(x) (eq. (16)) of the ratio G(z), for adjoint Coulomb gauge (143x 12
lattice, 180 lattices, ~ = 2.3). The Dirac volume is the same & in fig. 2.

In section 3.3 we studied the asymmetric adjoint gauge, with a moderate variation of CP
between 0.75 and 1.5. It is also of interest to look at limiting cases of this gauge, where the
ratios of some of the CP’stend to zero or infinity. A particular example we have investigated
is the adjoint Coulomb gauge, in which

{G, C2,%>C4} = {1.0, 1.0,1.0,0.0} (18)

Center dominance is lost in this gauge also, although the disagreement between full and
projected string tensions is not quite as bad as in modulus Landau gauge without pre-
conditioning. Creutz ratios in the projected configurations at ~ = 2.3 cluster around

xwoj(~, ~) = 0.18, whereas the full asymptotic string tension is around aa2 = 0.135.
As in modulus Landau gauge, the loss of center dominance in adjoint Coulomb gauge

is accompanied by a breakdown of the vortex-finding property, as seen from a plot of the
numerator (16) in fig. 9. The qualitative difference between adjoint Coulomb gauge, and
the asymmetric adjoint gauge studied in section 3.3; may be connected with the fact that
adjoint Coulomb gauge is not really an adjoint gauge, as defined in section 2. Our third
criterion for adjoint gauges is that link variables should be brought close to center elements.
What we find instead, at @ = 2.3, is that while the rms value a~msfor spacelike links is
0.89, the corresponding rms value for- timelike links is only 0.50 (and this is identical to
the rms values of the other three components a~m’. Thus, whiIe spacelike links do indeed
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fl.uctua,tenear center elements, the ti.melikelinks do not, and the “close-to-center” criterion
is violated. This criterion for adjoint gauges will be further discussed in section 3.6.

3.5 Thicker Inserted Vortex, Maximal Center Gauge

All of the inserted vortices so far are thin vortices; the vortex core has a thickness of one
lattice spacing. On the other hand, the vortices generated dynamically by the gauge theory
seem to be rather thick objects, with core widths on the order of one fermi. It is therefore
of interest to see if an inserted vortex with a somewhat thickened core can also be identified
on the projected lattice.

In our previous examples, the –1 discontinuity in the vortex-creating transformation
gv begins and ends abruptly at x = xl and x = X2. To create a vortex core several lattice
units thick in the x-direction, we simply make the transition from the – 1 discontinuity to
+1 continuity more gradual. This is done by replacing the mapping

U4(%,y, z, T) -+ U“(z, y, z, 2’) exp[ia(x)aa]

where a(x) interpolates smoothly from a(~) = O outside the Dirac
inside the Dirac volume.

in eq. (7) by

(19)

volume, to a(x) = 7r

We make the choice for a(x) shotin in Table 1 on an 183 x 8 lattice, followed by a
random gauge transformation, to obtain configurations UZ1.

Table 1: Thick vortex core: o@) in eq. (19).

Maximal center gauge-fixing and center projection are carried out, and G(x) is calculated,
with results shown in fig. 10 (obtained at /3 = 2.3). Once again the vortex-finding property
is quite evident, with G(x) interpolating smoothly from +1 to – 1 across the vortex core.

3.6 The ‘tClose-to-Center” Criterion

All of the gauges we have considered have the property of bringing most link variables
close to the +12 center variables. This was listed as the third criterion of an adjoint gauge
in section 2, and we should now explain the rationale behind this criterion.

The picture which is implied by the numerical studies [1–11] is that thermalized SU(2)
lattice configurations have the form

U=GVOUNC [20)

where Gv is an operator creating center vortices responsible for confinement, while UNCis
a non-confining lattice background. The operator Gv is a “smoothed” discontinuous gauge
transformation; i.e. it is has the form of a discontinuous gauge transformation, away from
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Figure lO: G(x) computed forthicker vortices onan183x 81attice, 3801attices, @=2.3.

vortex cores.2 In an adjoint gauge which has the vortex-finding property, center projection
should locate the approximate position of vortices created by Gv.

There is no guarantee, however, that gauge-fixing + center projection will not also
produce, in addition to the P-vortices associated with Gv, a lot of other extraneous P-
vortices with no physical content, nor is there any obvious reason that these extraneous
P-vortices should be independent of the choice of adjoint gauge. This is the motivation for
introducing, in the definition of adjoint gauges, a “close-to-center” requirement.

In maximal center gauge (or any other adjoint gauge), not all links are close to center
elements, even at large ~; some links lying in the middle of center vortices must deviate
very substantially from +.12. This deviation from the center elements is necessary, in order
that a projected plaquette can equal –1, while the corresponding gauge-invariant plaquette
on the unprotected lattice is close to +1 at weak coupling (cf. [18]). The aim of the “close-
to-center” requirement is that links should deviate substantially from center elements only
where they must do so, i.e. in the cores of vortices created by Gv; elsewhere the gauge-
fixing condition should force links to fluctuate in the vicinity of +12. This criterion is, of
course, most obvious in maximal center gauge.

Let MC denote maximal center gauge, and AG denote another adjoint gauge which (i)
has the VF-property, and (ii) has most links close to center elements, except in the middle
of center vortices. We can then argue that, away from vortex interiors, the center-projected
configurations Z~c and ZAG will be 22 gauge-equivalent. Let U&C,U~G represent a ther-
malized configuration U fixed to the MC and AG gauges, respectively. We can write

q,f~ = ZMcU&C where Ufic = signTr[U~c]&c

‘If Gv had this form everywhere, then it would produce thin vortices of very high action; instead, the
regions of high field strength are smoothed out, and thick vortices are created.
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,

UC = ZAGU~G where U& = siW’T@&]U~G (21)

where the product and sign trace operations are of course performed link by link.3 Because
U~C and UjG are gauge-equivalent, we have

where z is a 22 gauge transformation, and Tr[g] z O. Away from vortex interiors, most
links in U~c and U~fJare close to *12 at large ~, which implies that g o U&c x +12 are
also close to center elements. Combining this with the fact that Ufic N +12 and Tr[g] >0,
we deduce that g(~) N g(x + p) in this region, and therefore g o U~c x +12. We can then
identify

U:G = gou;c

ZAG = .zo ZMC (23)

According to this argument, ZAG and ZMC are 22 gauge-equivalent, away from the vortex
interior.

Inside a vortex core, U&C is not necessarily close to the. identity, so ZAG and ZMC are
not necessarily gauge-equivalent. This implies that there will in general be some variation
in P-vortex location among different adjoint gauges (and among Gribov copies in the same
adjoint gauge), associated with the finite width of the center vortex core. But apart
from this local variation, the vortices found by two adjoint gauges should be basically the
same, providing that both gauges have the vortex-finding property, and providing that
the links in both gauges are close to center elements’ everywhere except where they must
strongly deviate, i.e. in the core of vortices created by Gv. How well this “close-to-center”
requirement is actually fulfilled, in different adjoint gauges with the vortex-finding property,
is a topic which has not yet been studied in any detail.

3.7 Speculations about Cooling and Smoothing

If maximal center gauge + center projection is applied to cooled configurations, then the
projected string tension is drastically reduced after only a few cooling steps (similar results
are found for RG-smoothed configurations) [3]. But it was also found in ref. [3] that the
cores of thick center vortices, whose approximate location is identified before cooling, also
expand considerably after ordy a few cooling steps, as measured by the one-vortex to
zero-vortex loop ratio WI (C)/We(C).

Center vortices in thermalized lattices have been found to be rather thick, “fuzzy”
objects, which percolate throughout the lattice. It appears that, after a few cooling steps,
the vortex cores overlap so much that there is virtually no region of the lattice which is

3TheU&c configuration, incidentally, is the lattice studied by de Forcrand and D’Elia [6], and it is
found to have neither confining nor chid-symmetry breaking properties.
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not part of a vortex core. In view of the second caveat (“Vortex Cores”) in section 2, it
is then not so surprising that the maximal center gauge + center projection procedure is
unable to extract the locations of these very fat, higlily overlapping objects (although the
method seems to have no trouble finding thin, inserted vortices after a few cooling steps).

3.8 Laplac;an Center Gauge

According to our argument in section 2, an adjoint gauge without the Gribov copy problem
is guaranteed to have the vortex-finding property, at least for thin inserted vortices where
vortex width is only one lattice spacing. Such a gauge was invented recently by Alexandrou,
D’Elia, and de Forcrand [17]; it is known as the “Laplacian Center Gauge.”

To fix to Laplacian center gauge, one finds the eigenvectors ti(z), O(Z) corresponding to
the two lowest eigenvalues of of the covariant lattice Laplacian

where

ujb# = ;Tr[u@”upq (25)

are matrix elements of the link variables in the adjoint representation. The gauge trans-
formation which takes the lattice configuration into Laplacian center gauge is the trans-
formation which rotates ti(z) to lie in the 3-direction, and ti(z) to lie in the 1-3 plane, at
every site x. This procedure is free of Gribov copies, and it was found in the second refer-
ence of [17] that there is agreement between the asymptotic string tensions on the full and
projected lattices, at least at the coupling ~ = 2.4 used there. Although Laplacian center
gauge does not involve directly maximizing a functional (as in eq. (4)), it does satisfy all
three conditions below (4), and thus qualifies as an adjoint gauge.

We have checked the VF-property for Laplacian center gauge as before; i.e. for a thin
inserted vortex on the same lattice as in fig. 2, at @ = 2.3. The-somewhat startling result
is that the condition

G(x) =
{

–1 x G [4, 10]
+1 otherwise

(26)

is satisfied by the numerical data exactig. In other words, there are no errorbars at all; every
configuration gives the same result for G(z). Fixing to Landau gauge, prior to Laplacian
center gauge, makes no difference to this result.

In fact, the absence of errorbars on G(x) in Laplacian center gauge is simply a confirma-
tion of the reasoning in sections 2 and 3. As noted above, the VF-property is guaranteed in
this gauge, at least for thin vortices. We have also argued, in section 3, that any deviation
from eq. (9) must be due to small variations in P-vortex location, from one Gribov copy to
another, and these variations are responsible for the statistical fluctuations in G(z). Elimi-
nating Gribov copies eliminates in turn these statistical fluctuations, and the VF-property
for Laplacian center gauge is seen in the most compelling way.
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Laplacian center gauge is not quite as “close to center” as maximal center gauge.
We find, for example, that the rms value of aO = Tr[U]/2 at @ = 2.3 is approximately

‘s = 0.86 in maximal center gauge, but only a{~’ = 0.82 in Laplacian center gauge.
fhere are also more P-vortex plaquettes in the projected Laplacian configurations; ref. [17]
reports an excess in P-vortex plaquettes of about, 1lYo, at @ = 2.4, as compared to maximal
center gauge. The greater number of P-vortex plaquettes found in Laplacian center gauge
does not affect the asympotic string tension of projected configurations, and can probably
be attributed to one (or both) of two sources: (i) a roughening of the P-vortex surface;
(ii) some extraneous “small” P-vortices, unconnected to the single large vortex responsible
for confinement, which is found [9] to percolate through the entire lattice. Either of these
effects could modify the projected Creutz ratios at short distances, while preserving the
asymptotic string tension. This may expIain the slightly delayed approach of projected
Creutz ratios to their asymptotic value, relative to previous results in maximal center
gauge.

Alexandrou et al. in ref. [17] also suggest an alternative method for identifying vortices
via Laplacian center gauge, which is based on locating certain gauge-fixing ambiguities,
rather than center projection. We have not yet investigated this method; it would be
interesting to know if our argument for the vortex-finding property in adjoint gauges can
also be applied in this alternative framework.

4 Conclusions

Gauge-fixing has had a bad reputation, in connection with studies of the confinement
mechanism. One is justifiably suspicious of any calculation which depends in an essential
way on some special gauge choice, particularly if the physical motivation of that special
gauge choice is unclear. In this article we hope to have dispelled some of that suspicion, at
least in connection with maximal center and related gauges. Center vortices are created by
discontinuous gauge transformations, which of course make no reference to any particular
gauge condition. We have argued above that in maximal center gauge – and in an infinite
class of other adjoint gauges – such discontinuous transformations are squeezed to the
identity everywhere except on Dirac volumes, whose locations (together with those of the
associated vortices) are then revealed upon center projection. This is the “vortex-finding
property” which motivates the use of adjoint gauges, and it explains how adjoint gauge-
fixing, combined with center projection, can extract the vortex content of thermalized
lattice configurations.

While we think it likely that every adjoint gauge, as defined in section 2, has the VF-
property, this is certainly not true of every gauge-fixing procedure. The argument for the
VF-property assumed a complete and unique adjoint gauge-king, but unfortunately the
standard over-relaxation and simulated annealing methods are plagued by Gribov copies.
This is a large loophole in the argument for vortex-finding, and in certain cases, e.g. the
Kov&cs-Tomboulis procedure, the Gribov copy problem is apparently severe enough to
destroy the VF-property.
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in some gauge-fixing procedures, but not in others. What does seem clear, however, is
that the vortex-finding property, and the center dominance of projected configurations, go
hand-in-hand. Maximal center gauge, asymmetric adjoint gauge, modulus Landau gauge
with maximal center preconditioning, and Laplaci.ancenter gauge all have the VF-property,
and all exhibit center dominance. Conversely, in the (i) Kov4cs-Tomboulis procedure, (ii)
modulus Landau gauge without preconditioning, and (iii) adjoint Coulomb gauge, the VF-
property is lost, and in none of these cases is there center dominance in the projected
configurations.

We conclude with a sort of tautology: To find center vortices, one must use a procedure
with the vortez-finding property. If the gauge-fixing+ projection procedure doesn’t have the
VF-property, or if that property is destroyed by some modification (e.g. by Landau gauge
preconditioning), then center vortices are not correctly identified on thermalized lattices,
and center dominance in the projected configuration is lost. This fact does not call into
question the physical relevance of P-vortices found by our usual procedure (which has the
vortex-finding property); that relevance is well established by the strong correlation that
exists between these objects and gauge-invariant observable. Ideally, potential problems
due to Gribov copies could be avoided altogether by a gauge-iixing procedure which fixes to
a unique adjoint link configuration. Laplacian center gauge [17] appears to be an example
of just such a procedure.

Acknowledgements

We thank Phillipe de Forcrand for discussions. ,J.G. is happy to acknowledge the
hospitality of the high-energy theory group at the Niels Bohr Institute, where much of this
work was carried out.

Our research is supported in part by Fends zur Forderung der Wissenschaftlichen
Forschung P11387-PHY (M.F.), the U.S. Department of Energy under Grant No. DE-
FG03-92ER40711 (J.G.), and the Slovak Grant Agency for Science, Grant No. 2/4111/97
(s. o.).

References

p]

[2]

[3]

L. Del 13ebbio, M. Faber, J. Greensite, and S. Olejnik, Phys. Rev. D55 (1997) 2298,
hep-lat/9610005.

L. Del Debbie, M. Faber, J. Greensite, and S. Olejnik, in New Developments in Quan-
tum Field Theory, ed. Poul Henrik Damgaard and Jerzy Jurkiewicz (Plenum Press,
New York-London, 1998) 47, hep-lat/9708023.

L. Del Debbie, M. Faber, J. Giedt, J. Greensite, and S. Olejnik, Phys. Rev. D58 (1998)
094501, hep-lat/9801027.

20



[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Faber, J. Greensite, and S. Olejnik, JFH3P9901 (1999) 008, hep-lat/9810008.

M. Faber, J. Greensite, and S. Olejnik, Phys. Rev. D57 (1998) 2603, hep-lat/9710039;
M. Faber, J. Greensite, and S. Olejnik, Acts. Phys. Slov. 49 (1999) 177, hep
lat/9807008.

Ph. de Forcrand and M. D’Elia, Phys. Rev. Lett. 82 (1999) 4582, heplat/9901020.

K. Langfeld, H. Reinhardt, and O. Tennert, Phys. Lett. B419 (1998) 317, hep-
lat/9710068.

M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert, heplat/’99O4OO4; and
Phys. Lett. B452 (1999) 301, hep-lat/9805002.

R. Bertle, M. Faber, J. Greensite, and S. Olejnik, JHEP 9903 (1999) 019, hep-
lat/9903023.

B. Bakker, A. VeseIov, and M. Zubkov, hep-lat/9902010;
M. Chernodub, M. Polikarpov, A. Veselov, and M. Zubkov, Nucl. Phys. Proc. Suppl.
73 (1999) 575, hep-lat/9809158.

T. Kovi% and E. Tomboulis, Lattice 99 Proceedings, hep-lat/9908031.

J. Ambj@rn, J. Giedt, and J. Greensite, hep-lat/9907021.

T. KOV4CSand E. Tomboulis, hep-lat/9905029.

A.Montero,hep-lat/9906010.

A. Gonzalez-Arroyo and A. Montero, Phys. Lett. B442 (1998) 273, hep-th/9809037.

G. Bali, C. Schlichter, and K. Schilling, Phys. Rev. D51 (1995) 5165, heplat/9409005.

C. Alexandrou, M. D’Elia, and Ph. de Forcrand, Lattice 99 Proceedings, hep
lat/9907028; and hep-lat/9909005.

K. Langfeld and H. Reinhardt, Phys. Rev. D55 (1997) 7993, heplat/9703012.

21


